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Abstract

Qubits (quantum bits) are what runs quantum computers, like a bit
in classical computers. Quantum gates are used to operate on qubits
in order to change their states. As such they are what ”programmes” a
quantum computer. An unfortunate side effect of quantum physics is that
coupling a quantum system (like our qubits) to an outside environment
will lead to a certain loss of information. Reducing this decoherence effect
is thus vital for the function of a quantum computer. Geometric quantum
computation is a method for creating error robust quantum gates by using
so called geometric phases which are solely reliant on the geometry of the
evolution of the system.

The purpose of this project has been to develop physical schemes of ge-
ometric entangling two-qubit gates along the Schmidt sphere, a geometric
construct appearing in two-qubit systems. Essentially the overall aim has
been to develop new schemes for implementing robust entangling quan-
tum gates solely by means of interactions intrinsic to the computational
systems.

In order to create this gate four mutually orthogonal states were de-
fined which together spanned the two-qubit state space. Two of the states
were given time dependent variables containing a total of two angles,
which were used to parameterize the Schmidt sphere. By designing an evo-
lution for these angles that traced out a cyclical evolution along geodesic
lines a quantum gate with exclusively geometric phases could be created.
This gate was dubbed the ”Schmidt gate” and could be shown to be en-
tangling by analyzing a change in the concurrence of a two qubit system.
Two Hamiltonians were also defined which when acted upon the prede-
fined system of states would give rise to the aforementioned evolution on
the Schmidt sphere.

The project was successful in creating an entangling quantum gate
which could be shown by looking at difference in the concurrence of the
input and output state of a two-qubit system passing through the gate.



Sammanfattning

Qubits (kvantbitar) dr vad som driver en kvantdator, likt det bits
gor i en klassisk dator. Kvantgrindar anvénds fér att verka pa qubits for
dndra pa deras tillstand. Pa sa vis &r det dessa kvantgrindar som pro-
grammerar”en kvantdator. En olycklig konsekvens av kvantfysiken ar att
nir ett kvantsystem (t.ex. vara qubits) kopplas till en utomstiende miljé
sa forsvinner en viss del av information i systemet. Att minska pa denna
dekoherens effekt ar dafor valdigt viktigt for att en kvantdator ska funge-
ra. Geometrisk kvantberikning (eng. Geometric quantum computation)
dr en metod for att skapa felskyddade kvantgrindar genom att anvinda
sa kallade geometriska faser som endast beror pa geometrin av systemets
utveckling.

Malet med detta projekt har varit att utveckla fysiska system av geo-
metriskt sammanflitande tvaqubitgrindar langs med Schmidtsfaren, vil-
ket dr en geometrisk konstruktion som uppstar i tvakubit-system. For att
uppna detta definierades fyra ortogonala tillstand dér tva gavs tidsbero-
ende paramaterar som ritade ut kurva pa Schmidtsfaren nér de utveck-
lades. Fran detta sa kunde en kvantgrind skapas (dépt Schmidtgrinden)
dér endast geometriska faser plockades upp. Tva Hamiltonianer definie-
rades som da skulle ge upphov till den kurvan som tillstanden bildade pa
Schmidtsfaren.

Projektet lyckades med att skapa en sammanflidtande kvantgrind vilket
kunde visas genomat att jimfoéra concurrence mellan input- och output-
tillstandet hos ett tvakubitsystem som passerat genom grinden.
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1 Introduction

In a classical computer logic gates are either models or some physical electronic
device that interacts with some binary input (the ones and zeroes) and returns
an output. They are the building blocks of digital circuits that run classical
computers. Similar to the logic gates, quantum computers use quantum logic
gates (or simply quantum gates) to operate on quantum bits (qubits) changing
their states. But quantum computers follow entirely different rules compared
to the boolean logic of the classical computer. Constructing quantum gates
requires an entirely different methodology having to adhere to the laws of quan-
tum physic. One major difference being the use of entanglement between qubits,
which allows quantum computers to utilize things such as quantum teleporta-
tion. An advantage quantum computers have over classical ones is the fact that
a quantum computer can perform exponentially faster computation as the num-
ber of qubits grow. With just a few dozen qubits you could theoretically have
as much computing power as a modern computer consisting of several billions
of bits [3].

An issue with creating practical quantum computers with many different
qubits working at once is maintaining the so called quantum coherence inside
of the system. An unfortunate side effect of quantum physics is that coupling
a quantum system to an outside environment will lead to a certain loss of in-
formation. Reducing this decoherence effect is thus vital for the function of
a quantum computer. One can do so by creating quantum error correcting
codes, but it is also possible to design quantum gates which are inherently more
fault-tolerant[6].

There are many different ways to construct quantum gates but one strategy
for creating error robust quantum gates is by using geometric quantum compu-
tation (GQC). GQC is the idea to use geometric phases in order to implement
quantum gates. These geometric phases depend solely on the geometry of the
evolution of the system. GQC has been used in several different experimental
platforms, such as superconducting qubits [2].

The purpose of this project has been to develop physical schemes of geo-
metric entangling two-qubit gates on the Schmidt sphere, a geometric construct
appearing in pure two-qubit systems. In this way, entanglement is used as a
pure resource for implementing a novel form of geometric gates. To achieve this
pulsed realizations of different types of qubit-qubit interacting Hamiltonians
were applied on a system of mutually orthogonal quantum states (the Hamilto-
nians being what traces out a curve on the sphere), which are typically on the
form:

Hy =S,JS,. (1)

S are the spin variables of the two particles. J is a coupling constant governing
the strength of the interaction between the qubits which takes the following
shape:

Jrz Jzy 0
I=1 Jyu Jyy O (2)
0 0 J..



The two key objectives of the project have been to identify pulsed sequences
of interactions to generate geodesic polygons on the Schmidt sphere with no
change of Schmidt vectors and to implement different types of geometric gates
controlled by piecewise variation of the coupling parameters Jo, Joy, ..., Jz2.

Essentially the overall aim has been to develop new schemes for implementing
robust entangling quantum gates solely by means of interactions intrinsic to the
computational systems.



2 Background

2.1 Single qubit systems and the Bloch sphere

A single qubit is a quantum system that can be described by two normalized
and orthogonal quantum states often denoted as |0) and |1). Unlike a regular
bit which can only exist as a Boolean state (either 0 or 1) a qubit can exist
as an arbitrary superposition of |0) and |1), which can be written on the form
a|0) + $]1). This state can also be written by a geometric representation:

[v) = ei"(cosg 0) + € sing 1)), (3)

where e represents a global phase factor which has no observable effect. § and
¢ parametrize a unit sphere referred to as the Bloch sphere, where each value of
6 and ¢ define a point on this sphere (see figure (1)). The Bloch sphere works
as a geometric representation of a single qubit system and is often used as a
visualisation tool [5].

Figure 1: Image of the Bloch sphere. It can be seen that the angles § = 0 and
6 = 7 corresponds to the states |0) and (1| respectively.

2.2 Two-qubit/bipartite systems and the Schmidt sphere

More qubits can be put together in order create higher order systems consisting
of 2™ computational basis states, which can also exist as superpositions of these
computational basis states. A two-qubit system thus has four computational
basis states (|00),]01),]10),|11)) each with an associated amplitude such that
its state vector takes the form [5]:

[t)) = a]00) + b|01) + ¢|10) 4+ d |11). (4)

For multiple qubit systems there is unfortunately no simple generalization of
the Bloch sphere, but there is a way to visualize bipartite systems in a similar
way by using the so called Schmidt sphere [4].



In order to understand the Schmidt sphere we first look at Schmidt decom-
position and how it can be used on bipartite systems. Schmidt’s theorem states
that any pure state |¢) consisting of a composite system (which in the case of
this project are bipartite states), there exist two orthonormal states for each
subsystem such that the |¢) can be written as a superposition of the products
of these orthonormal states. The dimension of this decomposed state is set by
the dimension of the lowest subsystem [5].

For the case of two qubits a and b this takes the form:

o .«
[tap) = cos 5 |ng.) |np) + P sin 5 |—n,) |—np), (5)

where a and 8 are polar angles which are used to parametrize the ”Schmidt
sphere” similar to that of the Bloch sphere. |+ng), k € a,b are mutually
orthogonal states [4].

2.3 Phases

”Phase” is a term often used in quantum mechanics with many different mean-
ings. For example in equation (3) e~ is called a global phase since it is physi-
cally indistinguishable from the same state without this phase factor. If M is a
measurement operator, then the probability of a measurement is ()| MTM [1)),
which stays the same over a global phase [5]. In GQC the most important
phases are the dynamical and the geometric phases, which we get by analyzing
the Schrodinger equation [2].

The Schrédinger equation governs the time evolution of a system, where the
Hamiltonian H contains the information of its evolution.

. d
= [H(t)) = H(t) [$(2)) - (6)

If some system undergoes a cyclic evolution i.e. an evolution which will bring
it back to its starting state after some time 7, [¢)) representing the system
will trace out a path C' (e.g. on the Bloch or Schmidt sphere). The starting
and final state will look the same but can be differentiated by some phase e'®.

Actually for any point |1 (¢)) on the curve we can choose a state ’zﬂ(t)> so that
’1])(0)> = |9(7)), from which we can then write:

(1) = e

b)) (7)

The change in the phase which is associated with the cyclic evolution on C will
thus be given by ¢ = f(7) — f(0). It is said that the system has ’picked up’
a phase ¢ after passing one evolution. The total phase ¢ can be calculated by
rewriting the Schrodinger equation (6) by inserting (7) and integrating over the
period 7. This gives the following expression:
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The total phase ¢ can be decomposed into two phases. The first one consisting
of the left component is the dynamical phase which is clearly time dependent
since it contains the Hamiltonian. The second phase is the geometric phase
consisting of the right part of the equation which only depends on the path the
system travels along, which for a single qubit system could be its path along
the Bloch sphere and for a two-qubit system its path along the Schmidt sphere.
The dynamical phase is completely independent of the Hamiltonian as well as
the rate at which the system evolves [2].

2.4 Geometric quantum computation

In order to create quantum gates solely relying on geometric phases the dynami-
cal phase needs to be eliminated. Eliminating the dynamical phase would mean
having the total phase be equal to the geometric phase (¢ = ¢¢), thus making
it independent of time. There are several different methods for achieving this
with one such method being creating a cyclical system that only travels along
geodesic lines. A geodesic line is simply the shortest path between two points on
a sphere. Creating a cyclical system will mean connecting two or more geodesic
lines thus creating so called geodesic polygons [6].

The time evolution operator U(t) is a unitary operator which as its name
suggests describes the time evolution of a system. Using the operator at time 7
on some state going through a cyclic evolution as mentioned above we can see
from (7) that we get the following expression [5][2]:

U(r) [6(0)) = [d(r)) = (9)
U(r) = e~ [4(0)) ($(0)] . (10)

This type of time evolution operator can be seen as equivalent to a quantum
gate, since it takes an input state and spits out an output state which will have
changed the parameters of the system.

What defines GQC is in general a few criteria. The first is based around
having a complete basis of orthonormal (ON) vectors that span the state space,
where the amount of ON basis needed to span the state space is related to
the number of basis states, N = 2™ where N is the number of vectors needed
for n qubits. The second criteria is based around each vector only picking up
geometric phases after its evolution. A geometric quantum gate U at time 7 for
an n-qubit system would thus take the form [2]:

N
U(r) = 3 e ) {wil (1)

k=1
which is nontrivial unless all ¢, are equal up to some integer multiplication of
2.
2.5 Entanglement and concurrence

Entanglement is a characteristic property in quantum systems in which two
or more states cannot be described separately from one another. I.e that the



state vector describing the system can no longer be separated into a product
of the subsystem states. Even if these states were to be separated physically
they still would not be independent from one another. Thus measuring one
subsystem gives information about the other system, but also gives the ability
to manipulate the properties of the other system [8].

The level of which two qubits are entangled can be measured by its so called
concurrence. Working for both pure and mixed states. Concurrence is defined
by the formula [7]:

¢ =[(ef)] 12
where ‘1ﬁ> is a "spin flip” transformation of |¢) defined by:

[#) =y ey, (13)

where Y is the Pauli Y operator and |¢*) is the complex conjugate of [i) ex-
pressed in fixed basis states. This transformation essentially takes the state of
a single e.g. |0) and flips it to |1). In order to apply this to a two-qubit system
the operation is applied on each individual qubit. A measurement like concur-
rence does not exist for systems containing more qubits and thus this simple
analytical expression is a unique property of two-qubit systems. Concurrence
goes between 0 and 1 where C' = 0 describes a completely unentangled system
and C = 1 describes one that is completely entangled. For a completely en-
tangled bit the term e-bit (entanglement bit) is sometimes used. For systems
with C' < 1 the concurrence gives a measurement of the amount of an e-bit that
system is. In something like quantum teleportation C can be seen as a measure-
ment of how well this teleportation can be done, where C' = 1 will represent a
perfect teleportation. As C shrinks the teleportation becomes more and more
randomized and at C = 0 the state achieved after the teleportation will have
lost all its relation to the state it was supposed to teleport [7].

For a two-qubit system like the one described in equation (4) the concurrence
will take the shape of the following equation:

C = 2lad — be|. (14)

2.6 Spin-spin coupling

In order to prepare entangled states there needs to be an interaction between
between the qubits. The strength of this coupling is often described using the
coupling parameter J. J can be written in terms of a 323 matrix like in (2), where
each term J; ;, (¢,7 € x,y, z) refers a certain type of coupling. For example J,
is equal to terms in front of Z ® Z, J,y for X ® Y and so on. In general the
word coupling is used in quantum mechanics when the evolution on some part
of the system is dependent on some other quantity [5].

In multiple qubit operations it is common to write the operations using the
Pauli operators (1, X,Y, Z), which generalize computation basis measurements
to give the parity between the different qubits. Operators on Pauli form often
include terms such as Z® 1,Y ® X and so on, which all have meanings for how



the system is entangled. Each Pauli operator can be coupled to a spin operator
S such that:

1 1 1
Se=2X,8,=2Y,5,=-Z 15
2777 2 2 (15)

Remember that A = 1.

The simplest interaction between qubits comes from the so called Ising
model, which is a spin-spin coupling between two spin 1/2 particles on the
form:

H=1S,,®8,,, (16)

where S; ;1,7 € 1,2 refers to the spin operators of the two qubits. From the
expression it can be seen that this type of Hamiltonian corresponds to J,. [8].
A more general interaction comes from the Heisenberg model which takes on
the form:

IN_
H= %sl .S, (17)

where S} 5 represent the spin operators belonging to the the spin pair and A
is the strength of the interaction. Dzyaloshinskii-Moriya (DM) also known an
antisymmetric exchange is another type of spin-spin coupling:

This type of coupling thus gives rise to cross terms in J, such as Jy,, J,, and
so on [1].
The last coupling we will bring up is the XY-model, which is described by:

H=01+7r)5:®S5;+(1-r)S,®5,. (19)

Inserting the Pauli operators into the equation it is quite clear that these types
of terms corresponds to J,, and J,,. Single qubit terms are also capable of
appearing in a Hamiltonian affecting a two-qubit system. One such example
is the Zeeman term which represents the qubits being places in an external
magnetic field going in the z-direction. Such a term could be on the form [6]:

H=—u.B. (20)

3 Method

3.1 Defining states

The main method used in this project is based on so called reverse engineering,
which works by first defining the states one wishes to end up with as well



deciding the type of evolution one wishes to see and then in the end using the
Schrédinger equation in order to find a Hamiltonian that gives the sought after
evolution. Since the goal is to design two-qubit gates by means of GQC we start
the analysis by defining four different mutually orthogonal states (one for each
basis state) . Two of them being entangled systems and two being uncoupled.
The four states were chosen to be on the form:

[¥1(t)) = f|n,m) + g|—n,—m), (21)
[2(t)) = =g" [n,m) + f* [=n, —m),, (22)
[¢3(t)) = In, —m), (23)
9a(t)) = |=n,m). (24)

The basis states |4, j>[i7j]:[in7im] represent the Schmidt vectors, which can con-
sist of the basis states of a two-qubit system. Actually n and m can be set as
specific states without loss in generality, thus we immediately set n,m = 0 and
—n,—m = 1. The coefficients f,g and their complex conjugate counterparts
are set as time dependent variables containing the angles o and § which will
parameterize the Schmidt sphere. Meanwhile the Schmidt vectors where are to
be constant in time, thus the time evolution of the system only relies on the
change of the coefficients in front of them. This in turn makes [¢), and [t)4)
constants in time.

3.2 Evolving the system and computing the parameters

The parameters f and g are set to be on a geometric form in order to parameterize
the Schmidt sphere, where f is purely real since one can always choose to pull
out an overall global phase out of the system. Since f is purely real it follows
that f = f*. f and g are thus chosen to be:

f=cos 3, (25)

g = sin %e_w. (26)

After defining the states and the parameters the next step is defining the evo-
lution of the system is such a way that it evolves purely on the Schmidt sphere.
The system chosen travels only along geodesics in order to remove the previously
mentioned dynamical phase (See figure (2)).

The system is chosen to start at a maximally entangled state, which is o = 3
and § = 0 (one can check that the amplitude of the Schmidt vectors are equal
for these values). As a matter of fact any other point on the Schmidt sphere can
be chosen as a starting point apart from the north pole, i.e @ = 0 and 3 some
arbitrary angle between 0 and 27. It can be shown using concurrence that this
type of gate would be incapable of entanglement (see Appendix).

The evolution is then done in two steps (see figure (2)), using two different
Hamiltonians. The first which takes the system from the starting point along
the equator past the y-axis and to the negative x-axis and the second which



Figure 2: Illustration of the Schmidt sphere along with two curves along its
surface. 6 represents the angle which the second curve is lifted from the xy-
plane. The solid angle of the curve € is defined as ) = 26.

takes the system along a curve that is lifted from the xy plane by an angle 0
from the negative x-axis back to the starting point.

In the case of the first Hamiltonian it can be seen that a(t) remains constant
at 7, which means that $(t) can be chosen as some arbitrary function that takes
B from 0 to m within some given period. For the second Hamiltonian o and 8
will depend on one another since they both evolve in time. By projecting down
the curve onto the xy-plane it can be seen that it forms an elliptical shape as
seen in figure (3), thus giving the following relation between x and y:

y =cosfy/1—x2. (27)

By rewriting the equation into spherical coordinates (x = sinacosf, y =
sin asin ) and solving for sin o we get the following equation:

sin’ 8 9 1
= 1 - /2
a arcsm((cos2 7 + cos” ) ) (28)

Similar to before 8 can then be chosen to be some function of ¢ that takes S
from 7 to 0 over some period.

3.3 The Schmidt gate

The two states |1)1,2) have both undergone identical cyclical evolutions on the
Schmidt sphere with the same spatial angle defining the curve, which means
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Figure 3: Graph showing the projection of the curve from figure 2 projected
down on the xy-plane for some value 6. Based of of equation (27).

their solid angle 2 is also the same. The geometric phase of a two-qubit system
traveling along a geodesic curve on the Schmidt sphere will have a geometric
phase given by ¢g = 0 = %Q[éﬂ The geometric phase picked up by both
these states will thus be identical, their terms only being differentiated by being
complex conjugates of one another. |[i¢34) also exist on their own Schmidt
spheres, but since they undergo no evolution they will not pick up any phase.
The quantum gate generated by this evolution we dub the ”Schmidt gate”. It is
described by the four states |11 2.3 .4) which are fixed throughout the evolution
as well as the geometric phases picked up by |11 2). Based on (11) and the
arguments above the Schmidt gate will take the form of:

U(t) = e "2 1) (1| + |01) (01] + [10) (10] + €2 [2) (o] . (29)

3.4 The Schmidt gate and entanglement

When applying the Schmidt gate (29) with a generic two qubit state vector as
our input state (see equation (4)) we will end up with the following output state:

Ulp) = (a(e™ Y2 cos® & 4 ¢/ in? &) 4 deinac? (o—i/2 _ i2/2)) |00)
(asinae ™ (o=iQ/2 _ gi2) 4 (e~ 2 6in? & 4 €12 cos? §)) [11)
+501) + ¢ [10). (30)

The new amplitudes a, d will thus have (hopefully) changed after passing through
the gate. a’,d’ corresponds to the terms in front of |00) and |11) respectively as
seen in the following equations:

10



— ; . . B, )
a = a(e iQ/2 cos2 % 4 eZQ/Z SlIl2 ) + d51n2ae (6 Q2 62Q/2)7

o
2
d/ = asin gze_w (e—iQ/Q _ eiQ/2) 4 d(e—iQ/2 sin2 % + eiQ/Q cos2 %) (31)
The concurrence of the input state is just equation (14), meanwhile the concur-
rence of the output state will be given a similar expression but with a, d replaced
with o', d’

C' =2|d'd — be|. (32)
In order to see if the entanglement of the system has changed we look for a

difference in concurrence between the input and output states. Which will only
be the case if a’d’ # ad. Inserting the expressions for a’ and d’ into a’d’ we get:

a'd =222 (426718 4 ¢2eP) (e — 1) sin? % + (1 — €'?) cos® %) (33)
2
S~ « : i
+ad(1+ —5 (e e 8 1 1)). (34)

It can be seen that using the starting point of ag = 0 or ag = 7 gives C' = C’.
Such a gate would thus give no change in the entanglement. These starting
values is the same as starting at a product state of |i1) and [i3). It is also
important to note that starting anywhere other than the poles will give a change
in the concurrence thus making U an entangling quantum gate.

3.5 Finding the Hamiltonians

Now that we have created quantum gate all that is left is to find a Hamiltonian
which would give rise to this gate. From the four states defined in the begining
of this section the general form of the Hamiltonian can be calculated by using
the Schrédinger equation (6). Since |1)3) and |14) are completely unchanged in
time the Hamiltonian will not affect these states. The Schrodinger equation will
thus only be written for |11) and |i3). This gives the following equations:

A1 [hnf  hiag

' {9} B Lffzf hzzg] ’ (35)
| =g" _ —h11g" hiaf*
¢ |: f* :| - |:_h={2g* h22f*:| . (36)

where h; ; are the components of the Hamiltonian. Solving this equation for the
components gives the Hamiltonian:

_fr+igg g f—gf
=1 L}f* g ag+ f*f} ' 37)

11



It can be seen that this Hamiltonian is trace-less, since hiy + hos = 0. The
Hamiltonian can be rewritten in terms tensor products of the Pauli operators
giving the following expression:

1
H= Z((hn —hw)(Z@1+1®Z)+i(hia —his) (XY +Y @ X)
+(h2 +hL) (X @ X —Y ®Y)). (38)

These Pauli operators can later be coupled to the spin operators. Components
containing 1® 1 and Z ® Z disappear due to containing the sum of h1; and has.

Next we rewrite (37) and (38) by inserting the expressions for f and g as
well as their time derivatives, which gives the following expressions:

—fsin? S %lﬁ(ﬁ sin o — i)

H = , ) ‘
gﬂﬁ(id + fsina) Bsin® 4

; (39)

H= %(—QBSHIQ S(Z@1+1®Z)+ (dcos B — BsinasinB)(X @Y +YV ® X) +
(Bsinacos f+asinf) (X @X -V @Y)). (40)
The terms in front of the tensor products for XX,YY,YX,XY can be assigned
to the coupling parameter J (2), where J,, = dcos — Ssinasin g and so on
for the other terms. Expressing J as a 4x4 matrix it takes the shape:

Joz
3= [Je fy]. a
[Jyr Jyy 4D

Inserting the coefficients from (40) into (41) gives the expression:

1 [Bsinacos B+ asinfB  dcosfB — Bsinasin B
=" S ) NP (42)

4 |&cosfB — BsinasinfS —fsinacosf + asin
In the end two Hamiltonians will be generated. One for each curve segment.
They are both based of the same general expression (40) but they will differ
by how the parameters o and 8 are defined. In the first Hamiltonian « is a
constant oy = 4 and in the second a is equal to equation (28). Both By 2y
can as explained above be set to some arbitrary function that that take 8 from
its starting position to its final one and are thus left as is in the results.

Inserting ayy 2y and By; 23 into equations (25) and (26) and calculating their
time derivatives as well as g* and its time derivative and inserting them into
(38) finally gives the explicit form of the Hamiltonians as:

B

Hy = Zl(—(z @1+1®2)—sin(B)(X QY +Y @ X)+cos(B)(X@X —Y @Y)),
(43)
Hy=1(-28 sinz(%arcsin((igig +cos? B)TI2N(Z@14+1® 2)
. tan?6 cos® B sin B S sin? 8 2 —-1/2 X Y Y X
NEreme e R A R
; siHQB 2 —-1/2\ _ tan?0 cosﬁsin2ﬂ _
cos + cos - & XX -Y®Y))(44
(5 ﬁ(cos’é’e ﬁ) ) (2;2221;+cos2 [3)3/2)\/17(2';;22@%»0052 [3)71))( ))( )

12



4 Discussion and outlook

One of the first things seen in the Hamiltonian (40) are the tensor product
terms. The first term relates to a Zeeman term (see section 2.6), since it only
goes in the z direction. The consequences of this term are quite big for the
initial assumptions made in this project. This shows that the form that the
Hamiltonian (1) was assumed to take was insufficient. The Zeeman term shows
clearly that one-qubit terms are also necessary to create this system.

The term containing X X — Y'Y is similar to the XY model described in 2.6
with an r = 0, however the minus sign in between is quite unconventional (I
will continue to call i the "XY term” in the rest of the discussion). Interestingly
this term can be transformed into an XY coupling by rotating one of the qubits
with the angle 7 around the x-axis (see Appendix). Actually the same transfor-
mation also affects the symmetric term turning it into the anti-symmetric DM
(Dzyaloshinskii-Moriya) coupling.

Another thing to note are the terms that do not appear in the Hamiltonian.
Due to the fact the Hamiltonian is trace-less the terms containing 1 ® 1 and
Z ® Z disappeared. This meant that J,., = 0 which represented the Heisenberg
coupling. As a matter of fact neither the Ising or DM couplings where found in
the Hamiltonian. Considering that a rotation of one of the qubits gives rise to
a DM term, maybe some other choice of Schmidt basis might have led to both
of their appearance.

There is quite a clear difference between the first and second Hamiltonian.
While H; has a rather clear and simple expression Hs is significantly longer and
more complex. This difference comes rather clearly from the fact that in Hy
there is a trigonometric relation between o and 8 (28). An interesting fact about
H; (43) is that the part containing the Zeeman term has no dependence on f3,
depending only on the value of 3. If 8 (t) is set to be some linear function of t
then this would mean that the strength of this term is constant throughout this
curve. The parts containing the symmetric exchange and XY term both have a
trigonometric dependency on . By looking at this dependency it can be seen
that at the starting and end time there will be no symmetric exchange, while on
the contrary the XY term will be at a maximum. The opposite happens halfway
through the curve at 3 = 7 where the symmetric exchange instead reaches a
maximum and the XY term disappears.

Due to the complexity of Hs analyzing its properties is slightly harder, but
there are still certain conclusion that can be made. The angle 6 influences each
coupling seen in equation (44). It can be seen that this Hamiltonian will not
work for § = 7, 37” since certain parts will go of to infinity as 6 approaches these
values. These values for 6 represent paths along the poles of the Schmidt sphere.
In order to create such a curve one might have to create what is essentially three
curves where one stops when it reaches the north pole. Similar to Hy the XY
and symmetric terms also get reduced to 0 at the same values of 5. The Zeeman
term is also nonzero for the whole path, however the strength of the coupling
varies over the curve.

One of the more surprising findings of the project has been the effect that
different starting values have on the concurrence. The fact that starting at one
of pole of the Schmidt sphere gives a gate incapable of entangling two qubits was
definitely non-trivial. This also shows a clear limitation of the Schmidt gate,
however the actual effect this would have when designing specific gates meant
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for computation would have to be analyzed.

In the analysis two of the four states (|¢3),|14) where set to be constant.
Their existence in the analysis where only really justified by |01),|10) needing
to be a part of a two qubit gate. Other than that they remained unused. These
states could have been set up in a similar way to |¢1) and |i¢3) with their own
dynamic parameters like g and f. One way to write this would have been:

|¢3) = n101) + % [10), (45)
|tha) = —£"[01) + 7" [10) . (46)

This type of system would have given rise to an entirely different Hamiltonian
giving the need to analyse more parameters, as well as giving new relations
when writing out the Hamiltonian in Pauli operator form. Giving these states
their own cyclical evolution along the Schmidt sphere along with |¢1) and [¢2)
could give rise to an entirely different form of quantum gate. A way to expand
this project could be to apply the method developed in this project on a system
which now includes the states (45) and (46).

There are several different ways to create geodesic polygons on a sphere.
The evolution chosen for this project was to create a so called ”orange slice”
(Named so due to the shape of the curve, see figure (2)). One could instead
create for example a spherical triangle. In order to create such an evolution
three Hamiltonians would need to be defined, one for each side of the triangle.
The general form of the Hamiltonian would remain the same in this scenario
since it only depends on how the states are defined. In a future project one could
analyse to see if this type of curve leads to some interesting type of entanglement
or if the outcome is similar to the one in this project.

5 Conclusion

Through the use of reverse engineering a geodesic curve on the Schmidt sphere
could be designed and two Hamiltonians were able to be found that through
piece wise implementation would give rise to this evolution. Connections to
spin-spin couplings potentially capable of being implemented in a real world
experiment where found in the Hamiltonians in the form of Zeeman, XY and
symmetric terms. The Hamiltonians found in turn created a geometric gate
dubbed the Schmidt gate capable of entangling a two qubit state as shown by
the change in concurrence of a two-qubit state passing through the gate.

Some surprising findings where made, such as starting the system from the
north pole of the Schmidt sphere created a gate incapable of entanglement.
Other finding was the lack of any J,, term in the coupling of the Hamiltonian
and the inclusion of single cubit terms in the coupling in the form of the Zeeman
terms.

The Schmidt sphere proved to be both a powerful analytical tool in terms
of being able to create this type of evolution in the first place, but also a power
full visualisation tool. Both due to how it allowed for a clear mapping of the
evolution of the system, but it also gave the possibility to clearly map the rela-
tion between the parameters a and § which was done by utilising the projection
of geodesic curve on a sphere.
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In the end the method developed in this project shows a clear success in
creating geometric entangling quantum gates. The main theoretical way to
expand upon this project would probably be to try and implement new gates
by creating a system where all basis states go through an evolution on the
Schmidt sphere. The inherent fault tolerance of creating gates using GQC would
make it interesting to see if this type of geometric gate could be implemented
experimentally or eventually even be implemented in a real quantum computer.
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Appendix

Rotating one of the qubits around the x-axis with the angle 7 on the XY terms
in the Hamiltonian responds to the transformation:

(X)1(X®X-Y®Y)(—iX)®1=
(XX(—iX)® X — (iXY(—iX)®Y =
(XXX)® X — (XYX)Y. (47)

By writing out X and Y in matrix form it can be shown that:

XXX =X, (48)
XYX =Y. (49)

Inserting these into the above transformation we can see that it becomes the
following:

XX +YY, (50)

which is precisely what the standard XY-model looks like.
Applying the same transformation on the symmetric exchange gives the fol-
lowing:

(X)L XY +YX)(—iX)®l =
(XX(—iX)®Y + (iXY(—iX)® X =
XY -YX. (51)

This is the exact the expression for DM. This transformation thus seems to
change the our couplings into a similar but slightly different type of coupling.
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