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Abstract

In the Born-Oppenheimer approximation for a quantum system the emergent synthetic magnetic
field can be seen as generated by monopoles at points of degeneracy, in full analogue to the synthetic
fields generating the geometric phase of adiabatically evolving quantum systems. The plausibility of
using these synthetic magnetic monopoles as a means to study magnetic monopole dynamics in the
absence of fundamental magnetic monopoles has been explored. A bipartite spin system consisting of
a dumbbell translating and rotating through space has been modelled, and full equations of motion
in the presence of an external magnetic field have been derived. A collection of scripts for numerical
evaluation of these equations of motion were subsequently developed, and further put to use in sample
simulations for a small range of parameters. The results demonstrate non-negligible perturbations
to the centre of mass motion when compared to motion not considering the Born-Oppenheimer
synthetic fields, for dumbbell masses of small but not unrealistic proportions. The problems inherent
in this approach to elucidating motion in magnetic monopole fields are discussed, but the method
should not yet be dismissed until further investigations have been made.

Sammanfattning

Under Born-Oppenheimer-approximationen för ett kvantsystem kan det emergenta syntetiska
magnetfältet ses som alstrat av monopoler vid degenerationspunkter, helt analogt med de syntetiska
fält som genererar den geometriska fasen vid adiabatisk utveckling av kvantsystem. Möjligheten
att använda dessa syntetiska magnetiska monopoler för att studera dynamiken från verkan av en
magnetisk monopol, trots att fundamentala magnetiska monopoler ej observerats, har utforskats.
Ett tvådelat spinsystem beståendes av en hantel som translaterar och roterar genom rummet har
modellerats, och fullständiga rörelseekvationer i närvaron av ett yttre magnetfält har härletts. Kod
till ändamålet att utvärdera dessa rörelseekvationer har därpå utvecklats, och vidare nyttjats för att
simulera rörelsen för ett stickprov av parametrar. Resultaten visar på ej försumbara perturbationer av
masscentrums rörelse vid jämförelse med rörelse utan hänsyn till de syntetiska Born-Oppenheimer-
fälten, för hantlar av liten men inte orealistiskt liten massa. Problemen och komplikationerna för
det här angreppssättet till att utforska rörelse genom magnetiska monopolers fält diskuteras, men
metoden bör ej ännu avvisas innan vidare undersökning har genomförts.
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1 Introduction
Our theory of electromagnetism carries certain asymmetries between the magnetic and electric fields.
A well known and often discussed such distinction is the absence of magnetic monopoles, i.e., that
any analogue of electric charge is absent for the magnetic field. It is an extension often suggested
by theorists, initially by Dirac in 1931 [1], to include magnetic charges and also potentially magnetic
currents in Maxwell’s equations, but there is as of yet no accepted empirical data to support this cause.
Magnetic monopoles do however appear occasionally in a less fundamental sense, as emergent phenomena
in many-body systems for example in spin ice [2] or Bose-Einstein condensates [3].

Another area in which magnetic monopoles has appeared is the study of geometric phases of quantum
systems, first described by Berry in 1984 [4]. Roughly speaking this is the phase acquired by the wave
function of a system which is not dynamic in origin. The dynamical phase of a system state is induced
by the energy of that state, while the geometric phase is surprisingly enough independent of the energy
values, and rather arises as a function of the path taken by the system through the relevant ”parameter-
space” parametrising the Hamiltonian. For certain systems this geometric phase evolution resembles the
evolution of a charged system in a magnetic vector potential field that lives in parameter space. This
field, here named the synthetic magnetic field, happens to exhibit non-zero divergence at certain points,
the degeneracy points of the state energies, which thus correspond to monopoles of the synthetic field.

Geometrical phase is an interesting field of study in itself, but it is with the appearance of magnetic-
type monopoles that the present body of work finds its premise. While the study of fundamental
magnetic monopoles remains impossible, we can through construction of a suitable system study the
effects of magnetic monopoles through their action on the system state in parameter space. Parameter
space can be put into correspondence with real space, and the movement of charged matter through
monopole fields becomes measurable, even though fundamental monopoles remain fictitious.

Berry’s original 1984 article considers a simple spin-system with a single magnetic dipole moment in an
external magnetic field B⃗. The relevant parameter space is the space of all possible external fields, and the
geometric phase contribution takes the form of a synthetic magnetic field purely generated by a monopole
sitting at the origin, i.e., at B⃗ = 0⃗. This field is the simplest example of a monopolar field, so to find more
complex behaviour this starting point of a system can be extended to include multiple spin components,
i.e., multiple magnetic dipoles, and interactions between those dipoles. The effects of introducing such
interactions is roughly that of splitting the origin-centred monopole into smaller constituent parts whose
positions in parameter space depend on the exact nature of the spin-spin interactions [5].

This splitting is desired, and so the system studied will be composed of two massive spin- 12 components
that interact through the so-called Ising interaction described in section 3.2. This is to some extent the
simplest spin-spin interaction and is dependent only on spin along a chosen axis, here taken to be the
axis connecting the two masses. Movement through parameter space can be mapped to movement of the
center of mass through real space given an external inhomogeneous magnetic field, and the movement of
the spin components relative to one another is as a simplest case the rotation through polar and azimuthal
angles with fixed inter-component distance. Such a setup is reminiscent of a dumbbell translating and
rotating through space, with the added complication that each ”weight” of the dumbbell acts as a dipole
(has spin) interacting with both the dipole at the other weight and an external magnetic field, see figure
1.

|s,m1⟩

|s,m2⟩

B⃗

Figure 1: A dumbbell with two spin components moving through a magnetic field.

It is the time evolution of this system, henceforth referred to as the dumbbell, with which this project

1



is concerned. Approximate equations of motion will be derived and then be put to test in a numerical
simulation. Underlying the process is the hope of discerning effects of the synthetic magnetic monopoles
on the movement of the dumbbell. In addition to carrying dynamics of interest, the described dumbbell
is also appropriate for its potential to model realisable physical systems. Such a realisation of the model
herein described opens up the possibility of experimentally measuring the action of the synthetic fields,
and by extension the action of synthetic monopoles.

Two paths of realisation spring to mind: Firstly a diatomic molecule with appropriate effective spin
of the two constituent atoms could be tested. It would be of importance that the magnetic moment
of each atom be large, so that the molecule couples to the external field strongly enough, and it would
further be desired that spin-spin interactions between the molecules be strong so as to achieve the more
exotic synthetic field texture mentioned in section 1. Preferably the gas phase of such a molecule should
be obtainable, for it would be desired to measure the dynamics of single such molecules without inter-
molecular interaction. For the dumbbell model to apply reasonably well the interatomic binding would
also have to be of such a nature that the interatomic distance would not vary greatly. The plausibility
of this approach, and the selection of suitable candidate molecules, is an interesting question in its own
right and warrants further research. Something as simple as hydrogen gas is not necessarily unsuited.

Secondly, one might imagine a substantially smaller system consisting of a single atom with non-
negligible nuclear and electronic spin. The same considerations concerning the strength of interactions
apply as above, but this method appears to carry larger obstructions. Nuclear magnetic moments, while
measurable due to resonance effects such as in nuclear magnetic resonance (NMR) measurements, are
orders of magnitude smaller than their electronic counterparts [6]. This, together with the disparate
masses of electrons and nucleus would necessitate a heavily asymmetric dumbbell model. It is also a
well known fact that such classical approximations as the definite position of the electronic part of the
system implied by a dumbbell model break down at these length scales. We must consider an atom a
quantum thing, for if we do not we will find incorrect results.

2 Background

2.1 The adiabatic approximation
Imagine sitting in a train holding a plate, in which a marble sits at rest much like in picture 2. Consider
then what would happen were the train to (de)accelerate. If the conductor brakes forcefully everything
in the cabin experiences a fictitious force in the opposite direction of the train acceleration. If this force
is large enough, the marble would roll up the side of the rounded plate and fall down to the floor below.
If instead the train slows down gradually the fictitious force will be much smaller, it can even be small
enough for the marble to never roll up the entire height of the plate. Then the marble would stay confined
at the bottom of the porcelain, no matter for how long the train brakes. The marble keeps its state, the
position in the plate, even though its environment, the train, undergoes change.

Figure 2: A marble on a plate on top of a ”train”.

2



This thought experiment if translated to the quantum realm, where states are kets or wavefunctions
and the environment is encapsulated in the system Hamiltonian, captures the essence of the adiabatic
theorem finalized by Born and Fock [7]. Concisely stated, the original version reads in translation to
English:

A physical system remains in its instantaneous eigenstate if a given perturbation is acting on
it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian’s
spectrum.

In addition to the classical analogue given above, where the speed of the change of environment was
required to be ”slow”, we note an additional requirement on the state: the energy of the state must not lie
close to the energy of any other state available. This facet will be of great importance in the discussion
of geometric phase, and is in a sense the origin of the synthetic magnetic monopoles. The assumption
that the conditions for this theorem are all satisfied is often referred to as the adiabatic approximation,
which will be done also in this text.

As an illustrative example consider a particle of spin s in some external magnetic field B⃗. The total
energy, and thus Hamiltonian, for such a system is

H = −γB⃗ · S⃗.

Here, S⃗ is the spin operator and γ is a constant determining the magnetic dipole moment per unit of
angular momenta, i.e., it looks typically as γ = gµ

ℏ . Here, g is a dimensionless g-factor and µ is an
appropriate magneton. The eigenstates of this Hamiltonian are the same as the spin eigenstates |n⃗,m⟩
in the direction n⃗ of B⃗ with the quantum number m describing their directional spin eigenvalues. The
eigenvalues Em of the Hamiltonian, the energies of the states, become

Em = −γBℏm.

Here B is the magnetic field strength. The adiabatic theorem states for this example that any ”slow”
change of the Hamiltonian, that is any slow change of the magnetic field B⃗, will not change the quantum
number m of the state occupied if the system was originally put into an eigenstate |n⃗,m⟩. The only
things that change in the state occupied are possibly the direction n⃗ and the energy level Em. The
criterion for the theorem to hold will here translate into, apart from the speed of change, that B be
nonzero. If B were zero the energy levels would be degenerate and the theorem would not be applicable.

2.2 The geometric phase
It was the evolution of systems satisfying the adiabatic theorem that concerned Berry as he demonstrated
the nature of the geometrical phase in the eighties [4], although non-adiabatic extensions have been made
since [8]. As mentioned in section 1 the adiabatic geometric phase is a contribution to the phase of a
system undergoing adiabatic changes which is independent of the energies during the adiabatic change
[9]. Instead it is a contribution dependent only on the path traversed through parameter space, which
in the above example is the three-dimensional space of possible external magnetic fields. The speed by
which the path, often considered to be a loop C, is traversed matters not for the geometric phase. Note
however that this speed cannot become arbitrarily large, as it would then eventually break the adiabatic
approximation. It is also relevant to the discussion to remind oneself that the accumulation of phase
in quantum mechanics compromises all of dynamics, i.e., all forms of time evolution can be phrased as
changes in the phase of states.

In less abstract terms, it can be shown that an arbitrary quantum energy eigenstate |n⟩ (labelled
after its energy En) affected by the Hamiltonian H will under adiabatic evolution along some loop C
accumulate a geometric phase ηn. This means that if the loop is traversed in time T the state will after
one revolution end up as e−

i
ℏ
∫ T
0

⟨n|H|n⟩dteiηn |n⟩. Note the inclusion of the dynamical phase with the first
factor, owing to the ”standard” time evolution due to energy. The value of ηn can be calculated from the
following integral [4]:

ηn(C) = i

∮
C

〈
n
∣∣∣∇⃗R⃗n

〉
· dR⃗. (1)

Here, R⃗ denotes the parameters at some point in parameter space, so the line integral is appropriately
carried out over that space. Note also that the Hamiltonian and therefore also all states depend on R⃗.
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By Stokes’ theorem this integral can be transformed into a surface integral over any enclosed area in
parameter space [4]. If parameter space is three dimensional as in the example in section 2.1 above the
cross product can additionally be utilized, and the geometric phase can be recast as:

ηn(C) = −
∫∫

C
dS⃗ · G⃗n(R⃗), (2)

where

G⃗n(R⃗) = Im
∑
l ̸=n

⟨n| ∇⃗R⃗H |l⟩ × ⟨l| ∇⃗R⃗H |n⟩
(El − En)2

. (3)

It is here that the monopole field makes its entrance. While the integrand of equation 1 is only
defined up to the gradient of an arbitrary differentiable function, owing to an arbitrary phase factor of
the eigenstate basis, the field G⃗n is but the curl of this integrand and thus independent of this arbitrary
term. The phase evolution due to the geometric phase has then taken the form of the time evolution
through a magnetic field G⃗n derived from the vector potential

D⃗n = i ⟨n| ∇⃗R⃗ |n⟩ . (4)

We call G⃗n the synthetic magnetic field, or the synthetic gauge field, and consider it the field the action
of which results in the geometric phase. The monopole structure so often mentioned previously is present
in precisely this field, by which it is meant that the singularities of this field which occur at points of
energy degeneration may infer a non-zero divergence ∇⃗ · G⃗n. Since the field is not defined at these
points, divergence should here be interpreted in the rather loose sense of a closed flux integral about
some point divided by the enclosed volume. A nonzero divergence of a magnetic field is not allowed for
standard Maxwellian magnetic fields and would imply some form of magnetic charge or monopole. Even
though our synthetic field does not follow Maxwell’s equations it shares the magnetic field property of
being the curl of a vector potential, and as will be clear in section 4.2 also magnetic properties in how
it establishes dynamics. For these reasons the monopoles present at the degeneracies allow us to study,
in a sense, the action of Maxwellian magnetic monopoles. It may be worthwhile to emphasize that the
singular nature of the field at the energy degeneracies, that the field is there undefined, is crucial to the
nonzero divergence. This mimics the model of electrical point charges, but also makes the dependence
on the adiabatic approximation abundantly clear.

2.3 Regarding the monopoles
The system outlined in the final paragraph of section 2.1 forms a sort of minimal working example of a
synthetic field. The energies of different states are there degenerate only for an external magnetic field of
zero magnitude, that is at the origin of parameter space, so the synthetic field has a monopole precisely
at the origin. The action from the synthetic field, that is the accumulation of geometrical phase, could
be achieved either from slowly varying the external field magnitude and direction or likewise from the
slow movement of the particle through an inhomogeneous external field yielding the same effect. It is
further the case for this simple example that the synthetic field not only contains monopoles, but that it
is purely monopolar in origin. This is to say that a ”charge” placed at the origin emanating a spherically
symmetric field that falls off as the inverse square of the distance yields precisely the synthetic field in
question, the field is only due to ”charges” [4]. It is important to note that this must not always be the
case, the synthetic magnetic field may, depending on the Hamiltonian, take a form which is not possible
to describe only through inverse-square falloff from charges. It could even be the case that no such
charges are present at all, what the synthetic field simply does is to allow for them.

One case for which the synthetic field is not purely monopolar is two spin constituents interacting
with both an external magnetic field and each other as shown by Eriksson and Sjöqvist [5], much like
the system outlined in section 1. These authors further note that the nonzero curl of a synthetic field
that is not purely monopolar can be used to extend the allegory between synthetic and Maxwellian fields
through a synthetic electrical ”current” defined through the curl of the synthetic magnetic field. The
main effect of spin-spin interaction of composite spin systems is however the ”splitting” or movement of
magnetic charge away from the origin of parameter space yielding more exotic fields. This movement
of magnetic monopoles is continuous with respect to the spin-spin interaction parameters, and will be
fully determined by these parameters. It is further important to the splitting of monopoles that the
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spin-spin interaction is of such nature that the total system is not spherically symmetric. Were the
system spherically symmetric, the synthetic field would have to be likewise in parameter space, and
any monopoles would be restricted to sit at the origin. Since the system outlined in section 1 contains
precisely an Ising interaction along some selected axis the synthetic field is in this case not fully spherically
symmetric, but must have a rotational symmetry determined by said axis.

For the sake of this body of work we note that the synthetic field of the dumbbell model will be
nontrivial in nature, carries distinct synthetic monopoles and further may exhibit nonzero curl, so that
it is not purely monopolar.

3 System description

3.1 Coordinates and quantities
Here follows a complete model of the scenario outlined in section 1, with the purpose of simulating the
system numerically to gain insights into the dynamics of synthetic magnetic fields. Consider a dumbbell-
like system consisting of two equal masses at a distance l from one another, and let m be the total mass.
The system can be freely translated and rotated throughout space, so let x, y, z be the position of the
centre off mass, and θr, φr be the polar and azimuthal angle respectively of the axis connecting the two
masses. Notate these coordinates compactly as the vector

r⃗ =


x
y
z
ϑr

φr

 .

Fix the angles such that a polar angle of ϑr = 0 implies a dumbbell parallel to the z-axis and so that an
azimuthal angle of φr = 0 implies that the dumbbell axis lies in the xz-plane.

Consider also each of the masses of the dumbbell to carry spin, intrinsic angular momentum, of size
1
2 each. The state of the spin components must be described quantum mechanically, so let |s,m′⟩ denote
the state of the system with total spin magnitude squared s(s+ 1)ℏ2 and total spin measured along the
z-axis ℏm′. Note that the spin quantum number s will be 1 for the composite system, and so values of
m′ will range from −1 to 1. An external field B⃗ is present, which we can describe by its magnitude B
and its angular direction ϑB , φB in analogue with the angles defined above.

3.2 The Hamiltonian
The time evolution of such a system is governed in both classical and quantum mechanics by its Hamil-
tonian. Since spin is the epitome of a phenomena demanding a quantum mechanical interpretation we
have no choice but to model the whole system quantum mechanically. The Hamiltonian which will be
assumed for the system is:

H =

5∑
i=1

p⃗i
2

2mi
+

4J

ℏ
S(1)
µ S(2)

µ − γB⃗(r⃗) · S⃗. (5)

The first sum is over the five degrees of translational and rotational coordinates in r⃗ . Their conjugate
momentum operators are taken to be pi = iℏ∂i with ∂i as the derivative with respect to the corresponding
coordinate. Note that it is not a priori clear that the effective masses mi for all degrees of freedom are
the same, but we can until later note that at least the first three are equal to m.

For the potential energy the spin-spin interaction is taken to be of Ising form, which is the first term
after the sum, while the Zeeman interaction between spin and magnetic field is considered in the final
term. An Ising interaction requires a preferred axis, which for symmetry reasons of the system has been
chosen to be the direction µ of the dumbbell axis, the axis connecting the two masses. The necessity
for selecting an axis is the reason for choosing precisely an Ising interaction, as it breaks the spherical
symmetry of the system and allows for more exotic synthetic field textures as described in section 2.3.
The parameters J and γ are the strengths of both of these interactions, while the operators S⃗ and S

(n)
µ

are respectively the one related to the total spin of the system and the spin in the µ-direction of the nth
system component. Note that the parameter γ much like the example of section 2.1 typically looks like
γ =

gµf

ℏ , where g is a g-factor and µf is some appropriate magneton.
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Similar systems as the one considered here has been studied before in the context of geometric phase,
in particular a bipartite spin- 12 system with coordinate-fixed Ising axis by Yi and Sjöqvist [10]. If the
rotational degrees of the present system are ignored and the coordinate ϑr is set to 0 whenever present
the system of [10] will be matched in full, save for that the external field is there varied directly instead
of through centre of mass motion.

3.3 Effective mass
To clearly see the values of the effective masses paired with the rotational momenta a quick derivation
of the kinetic part of the Hamiltonian is in order. The kinetic energy related to rotation is of the form

Krot =
m

2

(
l

2

)2(
ϑ̇2
r + φ̇2

r

)
,

which is the same as the relevant terms of the Lagrangian. The quantum mechanical momenta correspond
to the momenta received from differentiating the classical Lagrangian, and as of such we have in the
classical picture that

p4 =
∂K

∂ϑ̇r

=
ml2

4
ϑ̇r,

p5 =
∂K

∂φ̇r
=

ml2

4
φ̇r.

Performing the Legendre transform from the Lagrangian to the Hamiltonian yields:

Hrot = p4ϑ̇r + p5φ̇r −Krot =
p24 + p25

2

4

ml2
.

It is then clear that the effective masses to be used in equation 5 are:

mi =

{
m, i = 1, 2, 3,
ml2

4 , i = 4, 5.

The rotational effective ”masses” are of course moments of inertia, but will be referred to as masses such
that all five degrees of freedom are treated equally.

3.4 Rotation matrices
The potential energy operators will be of great use in some matrix form, so let the spin state of the entire
system be described in the total spin basis (|0, 0⟩ , |1,−1⟩ , |1, 0⟩ , |1, 1⟩) with the coordinate z-axis as the
spin measurement direction. In the special case where the axis of the dumbbell (henceforth ”Ising axis”)
and the magnetic field B⃗ are parallel to the z-axis, it is clear that the operators take the form:

B⃗ · S⃗ = Bℏ


0

−1
0

1

 (6)

and

S(1)
µ S(2)

µ =
ℏ2

4


−1

1
−1

1

 . (7)

The second matrix follows from the well known representation of a two-component spin- 12 system as
singlet and triplet states: Let |m1⟩ ⊗ |m2⟩ be the state with spin-z number m1 for the first spin and m2
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for the second spin. Then

|0, 0⟩ = 1√
2

[∣∣∣∣12
〉
⊗
∣∣∣∣−1

2

〉
−
∣∣∣∣−1

2

〉
⊗
∣∣∣∣12
〉]

|1,−1⟩ =
∣∣∣∣−1

2

〉
⊗
∣∣∣∣−1

2

〉
|1, 0⟩ = 1√

2

[∣∣∣∣12
〉
⊗
∣∣∣∣−1

2

〉
+

∣∣∣∣−1

2

〉
⊗
∣∣∣∣12
〉]

|1, 1⟩ =
∣∣∣∣12
〉
⊗
∣∣∣∣12
〉
.

Both matrices above assume that the basis is aligned with B⃗ and the Ising axis respectively. Therefore
some rotation operator must be found that can describe a state given in the z-axis basis in a basis aligned
with B⃗ or the Ising axis.

Consider therefore first a rotation of the state vectors, which can be inverted to receive the forward
transformation also necessary for the transformation of operator matrices. The inversion process is but
a complex conjugation since the operator in question is unitary. It can be shown that the rotation about
three Euler angles α, β, δ of a state is given by the matrix with elements as [11]:

Um′m′′ = ⟨s,m′| e
−iSµα

ℏ e
−iSyβ

ℏ e
−iSµδ

ℏ |s,m′′⟩ .

Here, s, m′, m′′ are spin quantum numbers of the system, which in the more general case can be replaced
by angular momentum quantum numbers. The rotations α, β and δ are done about the z−, y− and
then z− body axes of the system. Since the spin states considered here are symmetric about their body
z-axes the final rotation δ is superfluous and thus will be discarded. Identifying the angles α = φ and
β = ϑ for rotation to some spherical coordinates it can further be shown that the exponential operators
amount to:

U =


1 0 0 0

0 e−iφ

2 (1 + cos(ϑ)) e−iφ
√
2

sin(ϑ) e−iφ

2 (1− cos(ϑ))

0 − 1√
2
sin(ϑ) cos(ϑ) 1√

2
sin(ϑ)

0 eiφ

2 (1− cos(ϑ)) − eiφ√
2
sin(ϑ) eiφ

2 (1 + cos(ϑ))

 .

An operator matrix A transforms under rotation as Arot = UAU†, so the operator of equation 6, which
is expressed in terms of a basis rotated by angles ϑB and φB , can be written in the z-axis basis as:

B⃗ · S⃗ = Bℏ


0 0 0 0

0 − cos(ϑB)
e−iφB√

2
sin(ϑB) 0

0 eiφB√
2

sin(ϑB) 0 e−iφB√
2

sin(ϑB)

0 0 eiφB√
2

sin(ϑB) cos(ϑB)

 . (8)

Analogously, the matrix of equation 7 is expressed in a basis rotated through angles ϑr and φr, so in the
z-axis basis it can be written:

S(1)
µ S(2)

µ =
ℏ2

4


−1 0 0 0

0 cos2(ϑr) − eiφr√
2
sin(2ϑr) e−2iφr sin2(ϑr)

0 − e−iφr√
2

sin(2ϑr) − cos(2ϑr)
e−iφr√

2
sin(2ϑr)

0 e2iφr sin2(ϑr)
eiφr√

2
sin(2ϑr) cos2(ϑr)

 . (9)

In equations 8 and 9 it is readily visible that the spin singlet state |0, 0⟩ is unaffected by the external
magnetic field, as could be concluded even without the explicit Hamiltonian. As a result the total
Hamiltonian for the singlet state is but the sum of two terms dependent on different sets of variables.
This is to say that separation of variables can be used to solve the eigenstate problem, so the qualities
presently at interest are lost. For this reason henceforth only the non-singlet, that is triplet, states are
considered, and matrices will subsequently be reduced to the relevant three-dimensional subspace for
simplicity’s sake.
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At last all parts of the potential energy are expressed in a single basis, such that the potential part
of the Hamiltonian takes the form:

Hf = γBℏ


ξ cos2(ϑr) + cos(ϑB) − e−iφB√

2
sin(ϑB)− ξ e−iφr√

2
sin(2ϑr) ξe−2iφr sin2(ϑr)

− eiφB√
2

sin(ϑB)− ξ eiφr√
2
sin(2ϑr) −ξ cos(2ϑr) − e−iφB√

2
sin(ϑB) + ξ e−iφr√

2
sin(2ϑr)

ξe2iφr sin2(ϑr) − eiφB√
2

sin(ϑB) + ξ eiφr√
2
sin(2ϑr) ξ cos2(ϑr)− cos(ϑB)

 .

(10)

Here, ξ = J
γB is a proportionality factor between the spin-spin and spin-field interactions. This together

with the kinetic part of the Hamiltonian

Hs =

5∑
n=1

p2i
2mi

. (11)

will determine the time evolution of the system.

4 The Born-Oppenheimer approximation

4.1 Derivation
Solving for the eigenstates of such a Hamiltonian as described above is a mighty task. Note in particular
that the contribution from potential energy to the Hamiltonian, equation 10, is heavily dependent on
the position and orientation of the dumbbell through all parameters ϑr, ϑB , φr, φB and B. This couples
all degrees of freedom for the system, which complicates the problem greatly.

An approximation is therefore in order. If the position and orientation, henceforth the ”slow” parame-
ters, are more or less static in comparison with the spin degrees of freedom, henceforth ”fast” parameters,
the Born-Oppenheimer approximation is applicable. A version of the adiabatic approximation described
in section 2.1, it assumes that a ”fast” subsystem, dependent on the fast parameters, can be described by
eigenstates of a Hamiltonian parametrised by the slow parameters. A fast system in such an eigenstate
can be considered to remain in the same eigenstate as the associated ”fast” Hamiltonian slowly changes,
changing its eigenvalue as the slow parameters evolve. So far this is just the adiabatic approximation. In
the terminology used for geometric phases the slow parameters then correspond to the parameter space
of the fast system.

The Born-Oppenheimer approximation involves the extension of this to also consider how the ”slow”
system evolves, in practice finding an effective Hamiltonian to the slow system as well. Originally an
approximation used in molecular physics proposed in 1927 [12], it applies also to the present situation.
The full system is considered to be described by the product of a wave function to the slow system Ψs

and some eigenstate of the fast Hamiltonian |n⟩, i.e.,

|Ψfull⟩ = Ψs |n⟩ .

The aforementioned fast and slow Hamiltonians are for the system in consideration the previously found
Hf and Hs, respectively. The full solution of the fast system is assumed to be known, i.e., that

Hf |n⟩ = En |n⟩

is solved. The Schrödinger equation implies, since ∂
∂t |n⟩ = 0,

iℏ
∂

∂t
(Ψs |n⟩) = (Hf +Hs)Ψs |n⟩

iℏ
∂Ψs

∂t
= ⟨n| (Hf +Hs) |n⟩Ψs = (⟨n|Hs |n⟩+ En)Ψs.

This can be interpreted as an effective Hamiltonian H(n)
eff = ⟨n|Hs |n⟩ + En governing the slow wave

function. The inner product term can be further manipulated in our system as follows:

⟨n|Hs |n⟩Ψs =

5∑
i=1

[
⟨n| p2i

2mi
|n⟩Ψs + ⟨n| pi

mi
|n⟩ piΨs +

p2i
2mi

Ψs

]
.
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Here, it is to be understood that the momentum operators in Hs act on both the spin ket and and the slow
wave function. An operator to the left of a ket and wave function product will however be understood
to act on the ket only, if no clarifying parentheses are written out explicitly. Since all pi are Hermitian
operators and can thus be acted on bras to the left without conjugation the most troublesome term can
also be written as:

⟨n| p2i |n⟩ = ⟨pin|pin⟩
= ⟨pin|n⟩ ⟨n|pin⟩+ ⟨pin| (1− |n⟩ ⟨n|) |pin⟩

= ⟨n|pin⟩2 + ⟨pin| (1− |n⟩ ⟨n|) |pin⟩ .

An identity relation was used in the second step, where 1 is the identity operator. Inserting the derivative
form of the momentum operator as seen in section 3.2 and rearranging terms with some convenient
notation we arrive to the Hamiltonian providing the interesting properties sought after:

H(n)
eff =

5∑
i=5

(pi −A
(n)
i )2

2mi
+Φ(n) + En, (12)

A
(n)
i = iℏ ⟨n|∂in⟩ , (13)

Φ(n) =

5∑
i=1

ℏ2

2mi
⟨∂in| (1− |n⟩ ⟨n|) |∂in⟩ . (14)

4.2 Interpretation
Equation 12 has been aptly written on a form which suggests the physics to be studied. Note that the sum
over i looks precisely like the Hamiltonian of a magnetic field with vector potential A⃗(n) = iℏ

〈
n
∣∣∣∇⃗n

〉
on

a particle of charge 1 and momentum p⃗ = (p1, . . . , p5). Note also that this magnetic field is the same as
the synthetic magnetic field outlined in section 2.2, and as of such carries precisely the same properties.
In particular the field will carry a monopolar dependence, as desired. A difference present to Maxwellian
magnetic fields is that both field and momentum are here five dimensional, and furthermore that the
masses of the two final degrees of freedom are rather moments of inertia. The dynamics of this term is
the main interest of this discussion, but we note also a scalar field Φ(n), analogously called the synthetic
electric field or the synthetic scalar field. Roughly speaking however this field is a factor ℏ smaller than
the synthetic magnetic field and will in most cases be negligible.

It can however be shown that the scalar field acts as a repulsive inverse square force near degeneracies
in the fast Hamiltonian[13]. The inverse square dependence to the distance of a degeneracy point means
that the scalar field will have appreciable effects if the slow parameters are close enough to the degen-
eracy, and furthermore the repulsive nature actually leads to a strengthening of the Born-Oppenheimer
approximation as the adiabatic approximation loses validity at points of degeneracy.

4.3 Dynamics
Having found an effective Hamiltonian to the slow system the application of this Hamiltonian to the
dynamics of the system remains to be performed. One could proceed with the quantum mechanical
methods used so far, solving for eigenstates of Heff . It is however now practical to consider the slow
subsystem to effectively lie in the classical domain, and the Hamiltonian derived by quantum mechanical
means will be utilized in the role of the Hamiltonian for classical mechanics.

Hamilton’s canonical equations indicate the time evolution of r⃗ :

dr⃗

dt
=

∂H(n)
eff

∂p⃗
=

p⃗− A⃗(n)

m

dp⃗

dt
= −

∂H(n)
eff

∂r⃗
=

(
∂A⃗(n)

∂r⃗

)T
p⃗− A⃗(n)

m
− ∂Φ(n)

∂r⃗
− ∂En

∂r⃗
=

(
∂A⃗(n)

∂r⃗

)T
dr⃗

dt
− ∂Φ(n)

∂r⃗
− ∂En

∂r⃗
.

Note in particular that the first of these equations imply that the canonical momentum p⃗ is not mdr⃗
dt .

The effective force acting on the system can be found, utilizing that the synthetic vector potential does
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not depend explicitly on time, i.e., that ∂A⃗(n)

∂t = 0:

m
d2r⃗

dt2
=

dp⃗

dt
− dA⃗(n)

dt
=

(
∂A⃗(n)

∂r⃗

)T
dr⃗

dt
−
(
dr⃗

dt
· ∇⃗
)
A⃗(n) − ∂Φ(n)

∂r⃗
− ∂En

∂r⃗
. (15)

The Jacobian matrix can be treated elementwise, as well as the second term:

1

iℏ

(
∂A⃗(n)

∂r⃗

)
ji

= ∂i ⟨n|∂jn⟩ = ⟨∂in|∂jn⟩+ ⟨n|∂i∂jn⟩

1

iℏ

((
dr⃗

dt
· ∇⃗
)
A⃗(n)

)
i

=

5∑
j=1

drj
dt

∂j ⟨n|∂in⟩ =
5∑

j=1

drj
dt

(⟨∂jn|∂in⟩+ ⟨n|∂j∂in⟩).

Insertion into equation 15 then yields a higher dimensional analogue to a cross-product based Lorentz-
type force:

1

iℏ

(∂A⃗(n)

∂r⃗

)T
dr⃗

dt
−
(
dr⃗

dt
· ∇⃗
)
A⃗(n)


i

=
1

iℏ
FA
i =

5∑
j=1

drj
dt

[⟨∂in|∂jn⟩ − ⟨∂jn|∂in⟩]

=

5∑
j=1

∑
l

drj
dt

[⟨∂in|l⟩ ⟨l|∂jn⟩ − ⟨∂jn|l⟩ ⟨l|∂in⟩]

=

5∑
j=1

∑
l ̸=n

drj
dt

[⟨∂in|l⟩ ⟨l|∂jn⟩ − ⟨∂jn|l⟩ ⟨l|∂in⟩]

=
∑
j ̸=i

∑
l ̸=n

drj
dt

[⟨∂in|l⟩ ⟨l|∂jn⟩ − ⟨∂jn|l⟩ ⟨l|∂in⟩].

Here, |l⟩ simply denotes an eigenstate to Hf of some index l, and the sum over l is over all available
states. The exclusion of l = n-terms follows as ⟨∂in|n⟩ is purely imaginary, which can be seen from
differentiating ⟨n|n⟩ = 1. This rearrangement is highly desirable, for it now so happens that this allows
us to take derivatives of the Hamiltonian instead of the rather tricky differentiation of the eigenkets.
Differentiating the Schrödinger equation and acting on it with some other eigenbra yields:

Hf |n⟩ = En |n⟩ =⇒
∂Hf |n⟩+Hf |∂n⟩ = En |∂n⟩ =⇒

⟨l| ∂Hf |n⟩ = ⟨l|∂n⟩ (En − El).

Rearranging, a very useful relation emerges:

⟨l|∂n⟩ = ⟨l| ∂Hf |n⟩
En − El

. (16)

This we can insert into the above:

1

iℏ
FA
i =

∑
j ̸=i

∑
l ̸=n

drj
dt

(En − El)
2 [⟨n| ∂iHf |l⟩ ⟨l| ∂jHf |n⟩ − ⟨n| ∂jHf |l⟩ ⟨l| ∂iHf |n⟩]

= 2i
∑
j ̸=i

∑
l ̸=n

drj
dt

(En − El)
2 Im [⟨n| ∂iHf |l⟩ ⟨l| ∂jHf |n⟩]. (17)

Equation 16 can also be used when evaluating the synthetic electric potential:

Φ(n) =

5∑
i=1

∑
l ̸=n

ℏ2

2mi
⟨∂in|l⟩ ⟨l|∂in⟩ =

5∑
i=1

∑
l ̸=n

ℏ2

2mi

⟨n| ∂iHf |l⟩ ⟨l| ∂iHf |n⟩
(En − El)

2 (18)

=

5∑
i=1

∑
l ̸=n

ℏ2

2mi

| ⟨n| ∂iHf |l⟩ |2

(En − El)
2 . (19)
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For the last equalities to hold in both contributions we require that the derivative of the Hamiltonian
is Hermitian, but thankfully derivatives of Hermitian operators are Hermitian so this holds true. Note
however that no simple form to the derivative of the electric potential Φ(n) has been found, which might
not be easily described analytically.

The problem has thus been reduced to evaluating, per equations 17 and 18,

m
d2r⃗

dt2
= F⃗A − ∂Φ(n)

∂r⃗
− ∂En

∂r⃗
. (20)

4.4 Differentiation of the Hamiltonian
In order to easily evaluate equations 17 and 18 derivatives of Hf from equation 10 are to be found.
Writing any of the coordinates x, y, z as r the derivatives can be written:

∂rHf = γBℏ

 Ḃ
B cos(ϑB)− ϑ̇B sin(ϑB) Ω 0

Ω∗ 0 Ω

0 Ω∗ − Ḃ
B cos(ϑB) + ϑ̇B sin(ϑB)

 ,

∂ϑr
Hf = γBξℏ

 − sin(2ϑr) −
√
2e−iφr cos(2ϑr) e−2iφr sin(2ϑr)

−
√
2eiφr cos(2ϑr) 2 sin(2ϑr)

√
2e−iφr cos(2ϑr)

e2iφr sin(2ϑr)
√
2eiφr cos(2ϑr) − sin(2ϑr)

 ,

∂φr
Hf = γBξℏ


0 i e

−iφr√
2

sin(2ϑr) −2ie−2iφr sin2(ϑr)

−i e
iφr√
2
sin(2ϑr) 0 −i e

−iφr√
2

sin(2ϑr)

2ie2iφr sin2(ϑr) i e
iφr√
2
sin(2ϑr) 0

 . (21)

Here, Ω = (− Ḃ
B sin(ϑB) + iφ̇B sin(ϑB)− ϑ̇B cos(ϑB))

e−iφB√
2

is introduced as a means of compressing the
rather lengthy expressions for the derivative with respect to r.

4.5 Solution of the fast subsystem
The usage of the Born-Oppenheimer approximation requires a solution for the fast subsystem, i.e., that
the eigenvalues and eigenvectors of Hf are found. Unfortunately this is not possible analytically for the
present system, but note that it is the same as solving the following cubic characteristic equation, which
follows from equation 10, for the eigenvalues λn = En

γBℏ :

0 =

∣∣∣∣∣∣∣∣
ξ cos2(ϑr) + cos(ϑB)− λn − e−iφB√

2
sin(ϑB)− ξ e−iφr√

2
sin(2ϑr) ξe−2iφr sin2(ϑr)

− eiφB√
2

sin(ϑB)− ξ eiφr√
2
sin(2ϑr) −ξ cos(2ϑr)− λn − e−iφB√

2
sin(ϑB) + ξ e−iφr√

2
sin(2ϑr)

ξe2iφr sin2(ϑr) − eiφB√
2

sin(ϑB) + ξ eiφr√
2
sin(2ϑr) ξ cos2(ϑr)− cos(ϑB)− λn

∣∣∣∣∣∣∣∣ .
(22)

Calculation of eigenvalues and eigenvectors may be left to numerics from the onset. Equation 22 could
in principle be differentiated implicitly to receive the derivatives of the energies also needed, but since
simulation of the system requires many other quantities to be calculated numerically, the derivatives of
the energies will be done likewise for the sake of practicality.

5 Simulation
The equation of motion 20 represents the furthest point that analytical methods have reached for this
system. The inherent complexity in the problem now necessitates numerical analysis if further results
are to be reached, and for this reason the resultant dynamics of the translating and rotating dumbbell
have been simulated for selected parameters in a predetermined external magnetic field.

5.1 The chosen field
It is apparent from the form of the differentiated Hamiltonians of equations 21 that the synthetic fields
are set in proportion to the inhomogeneity of the external magnetic field. To maximize the action of the
synthetic fields it then becomes important to consider an external field which varies as much as possible
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in both magnitude and direction. It is furthermore of interest that the field contains a point or points
of zero magnitude. If the spin-spin interaction factor J is zero, these will be the points of synthetic
magnetic charge which we wish to study. In general we consider J ̸= 0, for which these charges will not
sit precisely at the points of vanishing fields but will translate as a function of J away from these as
described in section 2.3.

As an initial example of such a field consider two simple coils of the same diameter and axis of
symmetry placed some distance apart. If a current is run through both coils but the direction of current
is different between the two, one running clockwise and the other counter-clockwise, a suitable field is
created. Not even the complete field of a single coil has a closed analytic expression, but we may still
note some qualitative properties. If the axis of rotational symmetry for both coils is taken to be the
z-axis, as will be done in the simulations, the xy-plane at equal distance to both coils will have a field
z-component that is zero. This follows from simple symmetry reasons, from which it is also apparent
that the total field is precisely zero at the ”centre” of this plane, where the distance to all current-carrying
wires are the same. The magnetic field in the plane then increases in magnitude as the distance between
xy-plane and the nearest coil wire decreases, pointing either directly towards or away from the centre
point depending on current direction. In the limit of increasing distance to the centre point the field
naturally tends towards zero. If points away from the xy-plane are considered the field will tend in a
smooth fashion towards the regular single coil field.

I

Figure 3: The currents generating the external magnetic field enclosing the simulated ”lab” region,
shown in red. A blue dot marks the point of zero field strength at the centre.

For computational practicality the coils for the simulation are taken to be as described above, with
the axis of symmetry being the z-axis, but being of square form instead of the regular circular shape.
This perturbs the field described above slightly, which after all does nothing but increase the desired
inhomogeneity. The side length of the coils is taken to be the distance between the coils, so that they
form edges of a cube, see figure 3.

5.2 Code outline
Simulation of the system is in essence nothing more complicated than solving the ordinary differential
equation, the ODE, 20. Some difficulties arise since the fast Hamiltonian is not analytically diagonal-
isable, all scalar fields must be calculated and in addition several quantities need to be numerically
differentiated. The dumbbell is given an initial velocity and is positioned close to the boundary of a
box of side length 3

5 times the distance between the coils, centred about the zero-field point described in
section 5.1. All simulation is done in the box. That is to say, that the dumbbell is only allowed inside of
this box and that field values are exclusively calculated within the box, which will be at times referred
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to as the ”lab”.
For complete Python scripts, see appendix A. A few notable choices of methods will be here mentioned,

but further details should be discernible from the commented code.
The lab is divided into a discrete lattice of points so that field values can be calculated in advance

and saved to file, illustrated by the red grid in figure 3. This has the side-effect of restricting the position
of the dumbbell to points in this lattice. The field generation is done per numerical integration of the
Biot-Savart law using the same step size as the lab lattice.

Solution of the differential equation is done by means of the scipy function solve_ivp() which is a
somewhat sophisticated tool containing error estimation and flexible termination conditions, here used
to stop the algorithm if the dumbbell leaves the lab. As is often done the ODE is transformed into first
order by extension of the five positional coordinates to a ten-dimensional position and velocity vector.
All acceleration contributions are summed up in a single function called by the ODE solver. As part of
this process the diagonalization of the fast Hamiltonian is performed by the scipy funtion eigh(). It here
becomes crucial to consider which eigenstate of the fast Hamiltonian the dumbbell is in. A predetermined
eigenstate is selected for each simulation, indexed by n = 0, 1, 2 in increasing order of energies. Since
each eigenstate is indexed by the value of its energy it is crucial that the energies never cross, which would
lead to eigenstates changing index. This problem is of course resolved by the adiabatic approximation
assumed, and any trajectories of dumbbells traversing points of energy degeneracy are discarded.

At many stages in the process derivatives of fields are needed, as well as derivatives of the fast energies.
Since no closed forms of these quantities are available the derivatives of some quantity Λ(ω) depending
on coordinate ω has been approximated as

∂Λ

∂ω
≈ Λ(ω + sω)− Λ(ω − sω)

2sω
,

where sω is the step size of ω implied by the lattice. This is sometimes called the three-point centred
difference formula. No error estimation scheme has been implemented for these parts of the algorithm,
so care must be taken that the step size does not become so small that rounding errors of the floating
point operators dominate. A rule of thumb is that a step size of sω ≈ 3

√
ϵωc is close to the optimal point

of good precision without leading to large rounding errors [14]. Here ϵ is the machine epsilon in the order
of 10−16, and ωc is the typical scale of ω, which is taken to be the lab side length, so it is clear that any
lattice with less than 105 sites along each cube side leads to step sizes well above this limit.

Finally the result is plotted using appropriate functions, as of yet a simple pyplot implementation
has been done.

6 Results
Sample executions of the simulation outlined in section 5 have been performed. As a starting point a
lab side length of 1 mm was chosen, the lattice granularity was set to 1013 sites and the current running
through each coil was selected as 10 A. All graphs presented are drawn with metres as axis units. In
light of the typical Stern-Gerlach experiment the total mass of the dumbbell was initially assumed to be
3.58× 10−25 kg, the mass of two silver atoms, and additionally the distance between the two dumbbell
masses was set to 5 × 10−5 m. At first a distance in the order of Ångström was used, but nonzero
spin-spin coupling J then led to rotational accelerations too large for the ODE solver to handle. The
velocity by which the dumbbell enters the lab was 1 cm/s in the positive x direction for all simulations.
A maximum simulation time of 0.1 s was assumed, but this matters only for the high energy state since
the other trajectories exit the lab before then. The graphs shown have been ”swarmed”, by which it
is meant that several simulations of equal parameters have been placed at equidistant initial positions
along the yz plane. Note also that the linearity of the external magnetic field strength B with respect
to the current I means that any multiplication of that variable will yield the same effect as an equal
change in the spin-field coupling γ, since the field strength and coupling parameter always appear as a
single product. For this reason the current of the magnetic field will in general be held fixed and γ will
be varied instead, as this does not require additional field generation.

The scripts print average force magnitudes for the different terms in equation 20. For sake of brevity,
these are not displayed in full here, but will be quoted when appropriate. Note also that the rotation of
the dumbbell, while simulated and while it does affect the centre off mass trajectory, is not plotted.

First all three possible eigenstates were tested for the given parameters, and with γ = 1010 J/(ℏT),
J = 105 J/ℏ, see figure 4. For all of these simulations the gradient of the fast Hamiltonian energy was
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the dominating term by a factor ∼ 105, but note the large differences in behaviour of this non-synthetic
action. This is the expected behaviour, as will be discussed in section 7.1 , but note for now that the
low energy state is repelled away from the lab and is thus not very useful. The high energy state is
”caught” between the coils while the middle state achieves but a perturbed straight motion through the
lab. Motion for the same parameters but excluding synthetic field effects were simulated, see figure 5.

(a) n = 0 (b) n = 1 (c) n = 2

Figure 4: All three eigenstates simulated for γ = 1010 J/(ℏT), J = 105 J/ℏ.

Note that the nonsynthetic dynamics dominate completely. While small differences can be found they
are miniscule, and may very well lie within the error of the simulation.

(a) n = 0 (b) n = 1 (c) n = 2

Figure 5: All three eigenstates simulated for γ = 1010 J/(ℏT), J = 105 J/ℏ, without synthetic field
effects.

6.1 The middle state
Let now attention be turned to the middle state (n = 1) case. If the nonsynthetic term is to be reduced
in size, such that the synthetic field effects become visible, a reduction in fast Hamiltonian energy is
desired. Note that for the special case J = 0 the fast Hamiltonian diagonalizes, and the middle state will
simply have zero energy. This change in parameter yields a graph such as the one to the left in figure 6.
As predicted the fast energy is now identically zero, up to a numerical error in the order of ∼ 10−44 J,
and since that was previously the dominating term motion is simply rectilinear. While hardly a useful
result in itself, it is now notable that the synthetic contributions to the dynamics are generally many
orders of magnitude larger than the fast energy gradient, which is but a numerical residue in the order
of ∼ 10−37 N. The magnitude of the synthetic forces, in the order of ∼ 10−31 N for the magnetic field
and ∼ 10−33 N for the scalar field, are simply too small in comparison to the dumbbell mass to yield
appreciable acceleration.

Any simple tool for increasing the action of the synthetic fields is however absent. As can be noted
both by parallel to the geometric phase and directly from equations 17 and 18, the synthetic potentials
are generally not dependent on the magnitude of the fast energy. As of such direct increases of parameters
J and γ will typically have the effect of increased nonsynthetic action while the synthetic fields are not
strengthened. Also relevant is the dependence of the synthetic magnetic force on the velocity of the
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(a) J = 0, n = 1,
m = 3.58× 10−25 kg

(b) J = 0, n = 1,
m = 3.58× 10−28 kg

(c) J = 0, n = 1,
m = 3.58× 10−29 kg

Figure 6: Three different masses for n = 1, J = 0

dumbbell. However, much like the motion through a classical magnetic field the impulse from a Lorentz-
type force over a fixed distance is independent of the velocity, as the travel time scales reciprocally to
the force magnitude. The lab length could be adjusted, but here too would the effects on the synthetic
magnetic field action cancel out. Imagine that the velocity were kept constant in relation to the lab side
length. Multiplying the side length by any factor would then scale the velocity equally. However the
derivatives present in equation 17 would scale reciprocally, and nothing would be achieved.

All that is left is to adjust the mass of the dumbbell, as this affects nothing but the resultant
acceleration. Reduction of mass yields perceptible effects first in the order of ∼ 10−28 kg, and in ∼ 10−29

kg, as visible in figure 6. The dumbbell is clearly repelled from the point of energy degeneration, as
is the predicted behaviour of the synthetic scalar field per section 4.2. That this behaviour is due to
the synthetic fields only is clear from simulations run without synthetic dynamics, see figure 7. That
the scalar synthetic field now dominates even though the numbers cited earlier for the ”high” mass case
would indicate otherwise can be traced to that the printed force magnitudes are averaged out over the
trajectory, so a difference in trajectory will affect the average force values. Specifically if the scalar field
repels the dumbbell away from the lab a larger proportion of the trajectory will be close to the centre
and thus the average scalar force will increase. This is visible in the printouts, for the simulation to the
right hand panel in figure 6 the average synthetic scalar force was in the order of ∼ 10−30 N.

(a) J = 0, n = 1,
m = 3.58× 10−25 kg

(b) J = 0, n = 1,
m = 3.58× 10−28 kg

(c) J = 0, n = 1,
m = 3.58× 10−29 kg

Figure 7: Three different masses for n = 1, J = 0, without synthetic field effects.

That it is indeed the synthetic scalar field repelling the trajectories from the centre point can be
confirmed through running simulations without either the synthetic scalar or magnetic field, as has been
done in figure 8.

Note that the impact of the synthetic magnetic field as in the leftmost graph is not completely
negligible, but does constitute a visible perturbation to the rectilinear motion. Further reduction of the
mass to increase the synthetic magnetic dynamic lead however to no interesting patterns.

It should be noted that such large reductions of mass make the results rather unstable to numerical
errors. It can be noted in many graphs above that the trajectories are not fully symmetric as one would
expect in the perfect case, but that numerical perturbations propagate. It would be a stretch to call the
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(a) J = 0, n = 1,
m = 3.58× 10−29 kg, no synthetic

scalar field

(b) J = 0, n = 1,
m = 3.58× 10−29 kg, no synthetic

magnetic field

Figure 8: The final simulation of figure 6 without the synthetic scalar or magnetic fields

behaviour ’chaotic’, but the exact trajectories should not be taken for more than examples of qualitative
behaviour.

The more exotic synthetic field given by a nonzero value of J would be of interest to consider, but
regrettably leads to a sharp increase in the fast eigenvalues. This puts a limit to the size of the parameter
which can be simulated before the dumbbell is quickly expelled from the lab, but sample simulations
of γ = 1010 J/(ℏ T) and J = 100 J/ℏ were performed in figure 9. Note the dependence on whether
synthetic field effects are included. Once again it is the synthetic scalar effects that dominate.

(a) γ = 1010 J/(ℏ T) and J = 100
J/ℏ, n = 1, m = 3.58× 10−29 kg,

with synthetic field effects

(b) γ = 1010 J/(ℏ T) and
J = 100, n = 1, m = 3.58× 10−29

kg, without synthetic field effects

Figure 9: Simulations for the middle state with nonzero J , both with synthetic field effects and without.

6.2 The high energy state
The behaviour of the nonsynthetic fields to ”trap” the dumbbell between the coils if placed in the high
energy state (n = 2 ) is promising. Even if the fast energy gradient can be assumed to dominate the be-
haviour, the prospect of the synthetic fields acting on the dumbbell for extended periods of time suggests
perhaps notable perturbations to the nonsynthetic motion. As seen in figure 4 the graphs are quickly
cluttered when several starting positions are considered, and so a different ”swarming” procedure was
adopted. Choosing a single starting position and velocity trajectories owing to different choices of fields
contributing were performed simultaneously, and subsequently coloured thereafter for visibility. Further-
more the simulation time was increased to half a second, as to propagate the synthetic perturbations as
much as possible without obstructing visibility too much. This then infers a choice of starting position.
Several such choices were sampled, here are presented the most interesting ones found as of yet. Further
reducing the number of starting positions and parameters possible is the fact that some trajectories cross
the degeneration at the centre, prohibiting field action comparison. Such choices of parameters are not
shown here.

First simulations of the same parameters as in figure 4 were performed for a starting position close
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(a) With synthetic fields in red,
without in blue

(b) Without synthetic magnetic
field in green, without synthetic

scalar field in yellow

(c) Without any synthetic fields in
blue, without synthetic magnetic

field in green

Figure 10: Simulations of the high energy state at a fixed starting position for γ = 1010 J/(ℏT),
J = 105 J/ℏ.

to y = 0 mm and z = 0.75 mm, see figure 10. Note the clearly visible perturbation of the synthetic field
on the trajectory, and note further the large influence of the synthetic magnetic field on the trajectory
compared to the synthetic scalar field. Direct comparison between the trajectory without synthetic fields
at all and the trajectory without the synthetic magnetic field show large similarities, but still perturbation
by the synthetic field is noticeable. It can be concluded that the synthetic magnetic field plays a major
role in repelling the trajectory from the slim cylinder traversed otherwise as seen in the left panel of
figure 10. This is also supported by the average force values, which for the present simulation were in
the order of ∼ 10−29 N for the synthetic magnetic field, ∼ 10−34 N for the synthetic scalar field and
∼ 10−24 N for the fast energy gradient.

(a) With synthetic fields in red, without in blue (b) Without synthetic magnetic field in green,
without synthetic scalar field in yellow

Figure 11: Simulations of the high energy state at a fixed starting position for γ = 108 J/(ℏT), J = 105

J/ℏ, m = 3.58× 10−27 kg.

Just like the discussion in section 6.1 concluded reduction of mass is the main tool for increase of
synthetic magnetic field effects. To this end simulations were run for a mass of 3.58 × 10−27 kg, where
the spin-field coupling constant was adjusted accordingly to γ = 108 J/(ℏT) such that the fast energy
acceleration remained approximately the same, see figure 11. The starting position was close to y = 0.25
mm and z = 0.25 mm. Here, the synthetic effects can easily be said to play a significant role in the
dynamics of the system. Qualitative descriptions of the behaviour are not from the onset very clear
however, with the exception that the synthetic scalar field appears to somewhat confine the motion, or
in the very least reduce the rotation about the system z-axis. That all contributions to the dynamics
play noticeable roles can be seen from the pairwise comparisons of figure 12. For these simulations the
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magnitude of the synthetic scalar and magnetic forces were in the same order of ∼ 10−28 N, while the
fast energy gradient was in the order of 10−26 N.

(a) With synthetic fields in red, without synthetic
magnetic field in green

(b) With synthetic fields in red, without synthetic scalar
field in yellow

(c) Without synthetic magnetic field in green, without
both synthetic fields in blue

(d) Without synthetic scalar field in yellow, without both
synthetic fields in blue

Figure 12: Simulations of the high energy state at a fixed starting position for γ = 108 J/(ℏT), J = 105

J/ℏ, m = 3.58× 10−27 kg.

7 Discussion

7.1 On the nonsynthetic behaviour of the eigenstates
Why is there such a sharp distinction between the nonsynthetic forces on the different fast Hamiltonian
eigenstates as seen in figure 4? This can be understood in the limit J ≪ γ. For such parameters,
which is often the case considered, the eigenstates of the fast Hamiltonian will tend to the simple cases
of |n⃗, 1⟩, |n⃗, 0⟩ and |n⃗,−1⟩, where the integer designates the directional spin along the axis n⃗ of the
external magnetic field. This follows from that the fast Hamiltonian is diagonalizable at J = 0, where
the high and low energy states in addition can be seen as the spin pointing in antiparallell or parallel
fashion, respectively, to the external field. The fast energies of those states will tend towards −Bγℏ, 0
and Bγℏ respectively. The only quantity therein dependent on the position or angle of the dumbbell
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is the external field strength B, and since the nonsynthetic force acts in opposite direction to the fast
energy gradient the only behaviour of the dumbbell in this limit is to seek or avoid higher external field
strengths, depending on whether the low or high energy state is assumed.

It is also the case that within the volume enclosed between the two coils, the lab, external field
strength is at its highest further away from the centre, close to the coils, and at its lowest at the point of
zero field magnitude at the centre. By this simple reasoning it becomes clear that the high energy state
will be attracted to the centre of the lab, while the low energy state is quickly pushed away from that
very point. The middle state has no energy gradient in the limit of low J , and so passes through the lab
without any nonsynthetic force acting on it.

Of course, a different lab setup can change this behaviour. If the coils are for example put inside of
the simulated lab, the low energy state becomes available to study as it will be attracted to the coils
now present in the lab. This is a possible extension when considering further simulations done with the
developed code. Whether it is an interesting one however remains to be seen, and it should be noted
that such a setup would repel the high energy state from the lab instead.

7.2 On the topic of mass
It is a peculiar feature of the synthetic magnetic field that its strength is hardly affected by the parameters
of the setup. As discussed in section 6.1 for a fixed magnetic field configuration this means adjustment of
the dumbbell mass is a major tool for exploring synthetic dynamics. For the middle state however these
dynamics became significant first when the mass was reduced to values in the order of ∼ 10−29 kg, a
most displeasing result. The atomic mass unit is approximately 1.66× 10−27 kg, dumbbell masses but a
hundredth of this magnitude are far from feasible for any system where the movement can be considered
”slow” and classical. Consequently the results of section 6.1 may be considered of value mostly due to
the appearance of the predicted repulsive nature of the synthetic scalar field.

The case of the high energy states however bring great promise when it comes to domains of mass. Not
only is the synthetic effects visible for the dumbbell mass of two silver atoms, rather heavy an element,
but strong synthetic action appears already at masses in the order of ∼ 10−27. Diatomic dumbbells of
light elements such as hydrogen lie within this mass region, and as of such could constitute candidates
for realisations of the model if ever that enterprise is undertaken.

Adjustments of mass lead, at least in the high energy case, to corresponding adjustments of the spin-
field coupling strength γB as was done in section 6.2. There, adjustments were only done to γ, since field
strength adjustments are computationally more demanding, but it is of course the case that any real life
realisation of the system would carry with it some rather fixed value of γ. It is therefore fortunate that
the field strength in a realisation is highly adjustable by means of the current flowing through the coils.
It remains unknown whether the currents needed are of reasonable order, but this could be checked by
estimating plausible dumbbell parameters.

Is mass the only tool available for strengthening the synthetic effects? This need not be the case.
Recalling the link between the Born-Oppenheimer synthetic magnetic field and the geometric phase,
it is clear that traversing larger swathes of parameter space is connected to larger synthetic magnetic
field action. This geometric line of thinking can elucidate the independence of the synthetic fields on
energy magnitudes. Increasing the energy magnitudes, say through increasing B, does not change the
path taken through parameter space more than multiplying its distance to the origin. Typical geometric
phases, such as Berry’s initial consideration of a system like that discussed in section 2.1, are independent
of the path’s distance to the origin, and by these means the energy magnitudes can be seen to not affect
the synthetic magnetic field effects.

Here, another way of strengthening the synthetic effects become clear: by complicating the path
taken through parameter space. The capability of the dumbbell to rotate already constitute a great
achievement in this regard, as the relative direction of the magnetic field to the dumbbell axis may
vary much more than what would otherwise be the case. Something not done here is however letting the
dumbbell pass through some much more complicated external field. Many options are here available with
nothing but one’s creativity setting the limits. A more complicated field does however also complicate
the study of the monopoles in the synthetic field, as the complexity of the mapping between real space
and parameter space increases.
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7.3 On the topic of monopoles
It was an explicit objective of this project to study the dynamics arising from magnetic monopole fields,
as these are made available by the synthetic magnetic field. While non-negligible synthetic field action has
been demonstrated for both the synthetic scalar and magnetic field, most prominently in the simulations
of figure 11, the interpretation of these fields as arising from monopole action is a difficult one to consider.

One reason for such difficulties is simply that the monopoles to the synthetic magnetic field ”live” in
the appropriate parameter space, in the present case the space of external fields, both when it comes
to their locations as well as the field they generate. The map between this space and real space cannot
however be the identity map, such an external field is not allowed by Maxwell’s equations, instead
the map will be rather nontrivial in general. Any motion through real space must therefore first be
”translated” by means of this map if that motion is to be seen as motion in a monopole field. Luckily the
present choice of external magnetic field inadvertently implies a not too complex such map, see figure
13. As described in section 5.1 the external field from the two opposing coils increase in magnitude
with increasing distance to the zero-point at the centre. The field additionally points towards the xy-
plane intersecting the centre, and points either away from or towards the axis of symmetry depending
on the choice of current direction. Therefore a simple reflection in the mentioned xy-plane followed, if
the current direction requires it, by inversions of the x and y coordinates about the centre is almost
the map between real space and parameter space required. Some scaling of all dimensions must also be
performed, the details of which are potentially quite complex.

External field in real space.

M

External field in parameter space.

Figure 13: An illustration of the map M between real space and parameter space, which must map
every point of external field b⃗ to the parameter space point with the same external field b⃗. The planes
shown are the xz-planes through the zero-field centre point of the lab and the origin, respectively.

It can also be noted, in contrast with the established goal, that the modification of the pure monopolar
magnetic synthetic field by the introduction of the spin-spin coupling breaks the monopolar structure
in unwanted ways. While the splitting of magnetic charge as described in section 2.3 is desired and
interesting, it is also associated with a conversion of the field from purely monopolar to a field of nonzero
curl. If we wish to study the effects of the monopole action this will obscure the results with dynamics
arising from the non-monopolar part of the field, and separating the two effects may be impossible.

7.4 Numerical limitations
While the scripts written appear to work as intended no real analysis of their errors and stability has been
performed. The apparent instability of the results presented in section 6.1 in particular motivate such
considerations. The division of the lab into a discrete lattice, as well as the discretization of dumbbell
rotation angles, can be assumed to limit the accuracy of the result. The selection of 1013 sites in the
lattice was merely due to performance limitations, that number would have been increased had the setup
allowed it, but the external field generation function quickly ran out of available resources if this was
trialled. The discussion of section 5.2 shows that the used granularity is far below the optimal selection
for the performance of the numerical differentiations, so increasing the amount of sites would be of high
priority were the code to be optimized further. In addition to code optimization more powerful computing
resources could further be employed to increase performance. The simulations here displayed were run
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but on a low-end personal laptop unit, so access to high-performance resources such as UPPMAX [15]
could play a decisive role in further studies.

It was also encountered that the ODE solver simply would not converge in any reasonable amount
of time for many choices of parameters. Being highly undesirable since this narrows the parameter
ranges available for study, the precise reasons for this behaviour warrants further investigation. As an
example large values of J or reductions of the dumbbell length l would often not integrate properly as the
rotational accelerations and velocities became exceedingly large. Fast rotation of the dumbbell is perhaps
not unphysical for the scenario considered, but appeared to not behave well in the numerical simulation.
In addition it will be noted that exceedingly quick rotation could violate the adiabatic approximation,
undermining the model. A possible correction to the model, if such rotations are deemed physical, could
be to consider the rotational degrees of freedom part of the fast system instead of the slow. A hypothesis
considering the origin of these non-convergent parameters is that the ODE solver does not behave well
in conjunction with the lab discretization. The solver wishes to keep certain error estimates below a
threshold value, here set to depend on the granularity of the lattice, and will reduce the step size of the
integration until this is satisfied. It could be the case however that reductions of step size do not yield
the intended effect for the solver, as the fitting of all positions to points in the lattice puts a lower bound
on the effective step size attainable. Further investigation would be desirable.

8 Conclusions
The plausibility of synthetic field effects from the Born-Oppenheimer approximation playing a part in the
dynamical evolution of the dumbbell model has been explored. Complete equations of motion, including
the rotational degrees of freedom, have been found. These contain a Lorentz-type force involving a five-
dimensional generalization of the cross product, which depends on the synthetic magnetic field emanating
from the monopoles that are to be studied. Numerical evaluation of these equations of motion has been
made possible through the development of Python scripts, one of the main achievements of the project.

Sample simulations by these scripts for a small set of parameters have been performed. The main
results of these include a demonstration of the repulsive nature of the synthetic scalar field of the Born-
Oppenheimer approximation, albeit for unrealistically small masses. For a much more reasonable mass
range, in the order of the atomic mass unit, the simulations have demonstrated noticeable impact of
both synthetic scalar and magnetic fields on the resultant dynamics for the high energy eigenstate of the
spin system. The nature of these contributions has not been explored in any qualitative nor quantitative
manner, but investigations into such matters have been facilitated by the construction of the scripts.

The promise of observing precisely the monopole effects of the synthetic magnetic field has been
discussed with its limitations and difficulties. In addition to theoretical complications the endeavour is
currently limited by the numerical performance of the scripts developed. Thus, optimization and further
developments of these are warranted, as is further research into proposing experimental realisations of
the system herein modelled.

21



References
1P. A. M. Dirac, “Quantised singularities in the electromagnetic field,” Proceedings of the Royal Society
of London. Series A, Containing Papers of a Mathematical and Physical Character 133, 60–72 (1931).

2C. Castelnovo, R. Moessner, and S. L. Sondhi, “Magnetic monopoles in spin ice”, Nature 451, 42–45
(2008).

3M.W. Ray, E. Ruokokoski, K. Tiurev, M. Möttönen, and D. S. Hall, “Observation of isolated monopoles
in a quantum field”, Science 348, 544–547 (2015).

4M. V. Berry, “Quantal phase factors accompanying adiabatic changes”, Proceedings of the Royal Society
of London. A. Mathematical and Physical Sciences 392, 45–57 (1984).

5A. Eriksson and E. Sjöqvist, “Monopole field textures in interacting spin systems”, Physical Review A
101 (2020).

6K. Krane, D. Halliday, and J. W. Sons, Introductory nuclear physics (Wiley, 1988), p. 606.
7M. Born and V. Fock, “Beweis des adiabatensatzes”, Zeitschrift für Physik 51, 165–180 (1928).
8Y. Aharonov and J. Anandan, “Phase change during a cyclic quantum evolution”, Phys. Rev. Lett. 58,
1593–1596 (1987).

9E. Sjöqvist, “Geometric phases in quantum information”, International Journal of Quantum Chemistry
115, 1311–1326 (2015).

10X. X. Yi and E. Sjöqvist, “Effect of intersubsystem coupling on the geometric phase in a bipartite
system”, Phys. Rev. A 70, 042104 (2004).

11J. J. Sakurai and J. Napolitano, Modern quantum mechanics, 3rd ed. (Cambridge University Press,
2020).

12M. Born and R. Oppenheimer, “Zur quantentheorie der molekeln”, Annalen der Physik 389, 457–484
(1927).

13M. V. Berry and R Lim, “The born-oppenheimer electric gauge force is repulsive near degeneracies”,
Journal of Physics A: Mathematical and General 23, L655–L657 (1990).

14W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes 3rd edition: the
art of scientific computing, 3rd ed. (Cambridge University Press, USA, 2007), p. 230.

15Uppsala multidisciplinary center for advanced computational science, (2022) https://www.uppmax.
uu.se/.

22

https://doi.org/10.1098/rspa.1931.0130
https://doi.org/10.1098/rspa.1931.0130
https://doi.org/10.1038/nature06433
https://doi.org/10.1038/nature06433
https://doi.org/10.1126/science.1258289
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103%2Fphysreva.101.050101
https://doi.org/10.1103%2Fphysreva.101.050101
https://doi.org/10.1007/BF01343193
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/https://doi.org/10.1002/qua.24941
https://doi.org/https://doi.org/10.1002/qua.24941
https://doi.org/10.1103/PhysRevA.70.042104
https://doi.org/https://doi.org/10.1002/andp.19273892002
https://doi.org/https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1088/0305-4470/23/13/004
https://www.uppmax.uu.se/
https://www.uppmax.uu.se/


A Code
Below follow the scripts used for numerical simulation of the described dumbbell system, all written
in Python. The code is divided into three files: one containing the tools for constructing the external
magnetic fields used, one containing the tools used to integrate the dynamics within some such field and
one main script for setting parameters and calling the necessary functions from the two other modules.
To execute properly all three .py - files must be placed in the same folder additionally containing a
subfolder named ”saves”, and that subfolder must in turn contain three subfolders ”fields”, ”odesols” and
”graphs”.

A.1 magfield.py

import pandas as pd
import numpy as np
from s c ipy . cons tant s import mu_0 as mu
from s c ipy . cons tant s import pi as p i
from matp lo t l i b import pyplot as p l t

def s implewi re ( nr , lab length , I , ove rwr i t e=False ) :
##Returns a p l a c eho l d e r f i e l d corresponding to a curren t I through a

wire a long the
##x−ax i s . Saves the f i e l d and won ’ t genera te a p r e e x i s t i n g f i e l d un l e s s
##’ ove rwr i t e=True ’ i s c a l l e d . Takes nr as the number o f po in t s a long

each ax i s .

#I n i t i a t e v a r i a b l e s :
s t ep r = lab l eng th /( nr−1) #Length o f each l a t t i c e s i t e
generate = False #Whether the f i e l d needs to be genera ted
wire = np . array ( [ 0 , 0 ] ) #Pos i t i on in x and y o f curren t

try : #Try to load pregenera ted f i e l d
f i e l d = np . load ( f ’ saves / s implewi re { I } f i e l d {nr } ,{ l ab l eng th } . npy ’ )

except FileNotFoundError :
generate = True

#Returned saved f i e l d un l e s s not found or ove rwr i t e turned on
i f not ( generate or ove rwr i t e ) :

#Return pregenera ted f i e l d
print ( "Loading␣ saved␣magnetic ␣ f i e l d " )
return f i e l d

else :
#Generate f i e l d
print ( "Generating ␣magnetic ␣ f i e l d " )

xx , yy , zz = np . mgrid [ 0 : nr , 0 : nr , 0 : nr ]
d i s t anc e = [ ( xx − xx ) ∗ s tepr , ( yy − wire [ 0 ] ) ∗ s tepr , ( zz − wire [ 1 ] ) ∗

s t ep r ]
#Use Biot−Savart formula to c a l c u l a t e the magnetic f i e l d
Bx , By , Bz = np . z e ro s ( [ nr , nr , nr ] ) , np . z e r o s ( [ nr , nr , nr ] ) , np .

z e r o s ( [ nr , nr , nr ] )
Bx , By , Bz = mu/(4∗ pi ) ∗2∗ I ∗np . c r o s s ( [ 1 , 0 , 0 ] , d i s tance ,

ax i sb=0, ax i s c=0)/ gr iddot ( d i s tance , d i s t ance )
Br , Bth , Bph = cart_to_sph (np . array ( [ Bx ,By , Bz ] ) ) #Express as

s p h e r i c a l coord ina t e s
f i e l d = np . array ( (Bx , By , Bz , Br , Bth , Bph) )

np . save ( f ’ saves / s implewi re { I } f i e l d {nr } ,{ l ab l eng th } . npy ’ , f i e l d )
return f i e l d
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def o p p o s i t e c o i l s ( nr , lab length , I , ove rwr i t e=False ) :
##Returns a f i e l d corresponding to two curren t s I o f opposing

d i r e c t i o n s through square c o i l s
##placed o r t ho gona l l y to the z−ax i s centred 1/3 rd from the edges o f the

l a t t i c e . Saves the f i e l d and won ’ t genera te a p r e e x i s t i n g f i e l d
un l e s s

##’ ove rwr i t e=True ’ i s c a l l e d . Takes nr as the number o f po in t s a long
each ax i s .

#I n i t i a t e v a r i a b l e s :
s t ep r = lab l eng th /( nr−1) #Length o f each l a t t i c e s i t e
generate = False #Whether the f i e l d needs to be genera ted

#Pos i t i on s o f a l l f l ow ing cur ren t s be low :
qindex = int ( nr /3)
wire1 = np . array ([− qindex ,−qindex ] ) #Current in p o s i t i v e x c l o s e to z=0

and y=0 ( pos in y , z )
wire2 = np . array ([− qindex , nr−1+qindex ] ) #Current in p o s i t i v e y c l o s e to

z=0 and f a r from x=0 ( pos in z , x )
wire3 = np . array ( [ nr−1+qindex ,−qindex ] ) #Current in nega t i v e x c l o s e to

z=0 and f a r from y=0 ( pos in y , z )
wire4 = np . array ([− qindex ,−qindex ] ) #Current in nega t i v e y c l o s e to z=0

and c l o s e to x=0 ( pos in z , x )
wire5 = np . array ([− qindex , nr−1+qindex ] ) #Current in nega t i v e x f a r from

z=0 and c l o s e to y=0 ( pos in y , z )
wire6 = np . array ( [ nr−1+qindex , nr−1+qindex ] ) #Current in nega t i v e y f a r

from z=0 and x=0 ( pos in z , x )
wire7 = np . array ( [ nr−1+qindex , nr−1+qindex ] ) #Current in p o s i t i v e x f a r

from z=0 and y=0 ( pos in y , z )
wire8 = np . array ( [ nr−1+qindex ,−qindex ] ) #Current in p o s i t i v e y f a r from

z=0 and c l o s e to x=0 ( pos in z , x )

try : #Try to load pregenera ted f i e l d
f i e l d = np . load ( f ’ saves / f i e l d s / o p p o s i t e c o i l s { I } f i e l d {nr } ,{ l ab l eng th

} . npy ’ )
except FileNotFoundError :

generate = True

#Returned saved f i e l d un l e s s not found or ove rwr i t e turned on
i f not ( generate or ove rwr i t e ) :

#Return pregenera ted f i e l d
print ( "Loading␣ saved␣magnetic ␣ f i e l d " )
return f i e l d

else :
#Generate f i e l d
print ( "Generating ␣magnetic ␣ f i e l d " )

xx , yy , zz = np . mgrid [ 0 : nr , 0 : nr , 0 : nr ]
#In t e g r a t e the f i e l d per Biot−Savart a long a l l cu r ren t s
Bx , By , Bz = np . z e r o s ( [ nr , nr , nr ] ) , np . z e r o s ( [ nr , nr , nr ] ) , np .

z e r o s ( [ nr , nr , nr ] )

#Currents a long x :
for px in range(−qindex , nr+qindex ) : #Maybe ad j u s t wi th a +1

dx = [ stepr , 0 , 0 ]
#wire1
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d i s t anc e = [ ( xx−px ) ∗ s tepr , ( yy−wire1 [ 0 ] ) ∗ s tepr , ( zz−wire1 [ 1 ] ) ∗
s t ep r ]

dBx1 , dBy1 , dBz1 = (mu∗ I /(4∗ pi ) ∗ np . c r o s s (dx , d i s tance , ax i sb
=0,

ax i s c=0)/( g r iddot ( d i s tance , d i s t ance )
∗∗(3/2) ) )

Bx += dBx1
By += dBy1
Bz += dBz1

#wire3
d i s t anc e = [ ( xx−px ) ∗ s tepr , ( yy−wire3 [ 0 ] ) ∗ s tepr , ( zz−wire3 [ 1 ] ) ∗

s t ep r ]
dBx3 , dBy3 , dBz3 = −(mu∗ I /(4∗ pi ) ∗ np . c r o s s (dx , d i s tance , ax i sb

=0,
ax i s c=0)/( g r iddot ( d i s tance , d i s t ance )

∗∗(3/2) ) )
Bx += dBx3
By += dBy3
Bz += dBz3

#wire5
d i s t anc e = [ ( xx−px ) ∗ s tepr , ( yy−wire5 [ 0 ] ) ∗ s tepr , ( zz−wire5 [ 1 ] ) ∗

s t ep r ]
dBx5 , dBy5 , dBz5 = −(mu∗ I /(4∗ pi ) ∗ np . c r o s s (dx , d i s tance , ax i sb

=0,
ax i s c=0)/( g r iddot ( d i s tance , d i s t ance )

∗∗(3/2) ) )
Bx += dBx5
By += dBy5
Bz += dBz5

#wire7
d i s t anc e = [ ( xx−px ) ∗ s tepr , ( yy−wire7 [ 0 ] ) ∗ s tepr , ( zz−wire7 [ 1 ] ) ∗

s t ep r ]
dBx7 , dBy7 , dBz7 = (mu∗ I /(4∗ pi ) ∗ np . c r o s s (dx , d i s tance , ax i sb

=0,
ax i s c=0)/( g r iddot ( d i s tance , d i s t ance )

∗∗(3/2) ) )
Bx += dBx7
By += dBy7
Bz += dBz7

#Currents a long y :
for py in range(−qindex , nr+qindex ) : #Maybe ad j u s t wi th a +1

dy = [ 0 , s tepr , 0 ]
#wire2
d i s t anc e = [ ( xx−wire2 [ 1 ] ) ∗ s tepr , ( yy−py ) ∗ s tepr , ( zz−wire2 [ 0 ] ) ∗

s t ep r ]
dBx2 , dBy2 , dBz2 = (mu∗ I /(4∗ pi ) ∗ np . c r o s s (dy , d i s tance , ax i sb

=0,
ax i s c=0)/( g r iddot ( d i s tance , d i s t ance )

∗∗(3/2) ) )
Bx += dBx2
By += dBy2
Bz += dBz2

#wire4
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d i s t anc e = [ ( xx−wire4 [ 1 ] ) ∗ s tepr , ( yy−py ) ∗ s tepr , ( zz−wire4 [ 0 ] ) ∗
s t ep r ]

dBx4 , dBy4 , dBz4 = −(mu∗ I /(4∗ pi ) ∗ np . c r o s s (dy , d i s tance , ax i sb
=0,

ax i s c=0)/( g r iddot ( d i s tance , d i s t ance )
∗∗(3/2) ) )

Bx += dBx4
By += dBy4
Bz += dBz4

#wire6
d i s t anc e = [ ( xx−wire6 [ 1 ] ) ∗ s tepr , ( yy−py ) ∗ s tepr , ( zz−wire6 [ 0 ] ) ∗

s t ep r ]
dBx6 , dBy6 , dBz6 = −(mu∗ I /(4∗ pi ) ∗ np . c r o s s (dy , d i s tance , ax i sb

=0,
ax i s c=0)/( g r iddot ( d i s tance , d i s t ance )

∗∗(3/2) ) )
Bx += dBx6
By += dBy6
Bz += dBz6

#wire8
d i s t anc e = [ ( xx−wire8 [ 1 ] ) ∗ s tepr , ( yy−py ) ∗ s tepr , ( zz−wire8 [ 0 ] ) ∗

s t ep r ]
dBx8 , dBy8 , dBz8 = (mu∗ I /(4∗ pi ) ∗ np . c r o s s (dy , d i s tance , ax i sb

=0,
ax i s c=0)/( g r iddot ( d i s tance , d i s t ance )

∗∗(3/2) ) )
Bx += dBx8
By += dBy8
Bz += dBz8

Br , Bth , Bph = cart_to_sph (np . array ( [ Bx ,By , Bz ] ) ) #Express as
s p h e r i c a l coord ina t e s

f i e l d = np . array ( (Bx , By , Bz , Br , Bth , Bph) )

np . save ( f ’ saves / f i e l d s / o p p o s i t e c o i l s { I } f i e l d {nr } ,{ l ab l eng th } . npy ’ ,
f i e l d )

return f i e l d

def gr iddot ( a , b ) :
##Returns the dot product f o r each po in t in the supp l i e d g r i d s a , b .

Contracts the
##f i r s t dimension .
r e s u l t = np . z e ro s ( a [ 0 ] . shape ) + 1e−20 #Super ug l y bodge to f i x NaN
for i in range ( len ( a ) ) :

r e s u l t += a [ i ]∗b [ i ]

r e s u l t = np . where ( r e s u l t == 0 , 1e−20, r e s u l t )
return r e s u l t

def cart_to_sph ( ca r t ) :
##Returns s p h e r i c a l coord ina t e s o f the form ( r , po lar , az imutha l ) f o r

the g iven ca r t e s i an
##coord ina t e s o f the form (x , y , z ) t a k e s an array wi th coords as the

f i r s t dimension .
sph = np . z e r o s ( ca r t . shape ) #I n i t i a l i z e array
xsqysq = car t [ 0 ]∗∗2 + car t [ 1 ]∗∗2 #Value o f x^2 + y^2
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sph [ 0 ] = np . sq r t ( xsqysq + car t [ 2 ] ∗ ∗ 2 ) #Radius r
sph [ 1 ] = np . arctan2 (np . s q r t ( xsqysq ) , ca r t [ 2 ] ) #Polar ang l e t h e t a
sph [ 2 ] = np . arctan2 ( ca r t [ 1 ] , c a r t [ 0 ] ) #Azimuthal ang l e phi
return sph

A.2 synfieldtools.py

import pandas as pd
import numpy as np
import s c ipy
from matp lo t l i b import pyplot as p l t
from matp lo t l i b . patches import FancyArrowPatch
from mpl_toolk i ts import mplot3d
from s c ipy . cons tant s import hbar
from s c ipy . i n t e g r a t e import so lve_ivp
import warnings

##This i s a c o l l e c t i o n o f s c r i p t s r e l a t e d to the f i n d i n g o f e i g e n s t a t e s and
thence the

##de r i v a t i on o f the s y n t h e t i c f i e l d s .

#Common v a r i a b l e s de f ined below , are ad ju s t ed by s y n f i e l d s o l v e r . py :
ntheta = 25 #Number o f po in t s o f t h e t a
s t ep the ta = np . p i /( ntheta −1) #Step s i z e o f t h e t a
nphi = 50 #Number o f po in t s o f ph i
s t epph i = 2∗np . p i /( nphi ) #Step s i z e o f phi
l ab l eng th = 1e−3 #Side l en g t h o f environment cube in meters
tmax = 1 #Maximum simu la ted time in seconds

##In genera l x , y , z−coord ina t e s are g i v e s as index numbers , ang l e s in
rad ians

J = 1e9 #Spin−sp in coup l ing s t r en g t h
Gamma = 1e9 #Spin− f i e l d coup l ing s t r en g t h

mass0 = 3.58 e−25 #The t o t a l mass o f the dumbbe l l in kg , as a p l a c eho l d e r
t h i s i s the mass o f two

#s i l v e r atoms
l en0 = 5e−10 #The d i s t ance between dumbbe l l edges in m
mass = np . repeat (mass0 , 5) #Fu l l mass vec t o r
mass [ 3 ] = mass0∗ l en0 ∗∗2/4
mass [ 4 ] = mass [ 3 ]

#Define s t a t i s t i c s v a r i a b l e s
dsca la ravg=0
Faavg=0
denergyavg=0
energyavg=0

##Returns the d i f f e r e n t i a t e d Hamiltonian w. r . t . the s p e c i f i e d par . d i f f p a r=
r , th_r , ph_r at

##the po in t g i ven in po in t=(x , y , z , th_r , ph_r ) in the e x t e rna l f i e l d
f i e l d .

##I f d i f f p a r=r a l i s t o f matr ices f o r d e r i v a t i v e s w. r . t . x , y , z are
re turned

di f fhamsave = {}
def d i f f h am i l t on i an ( d i f f p a r , point , f i e l d ) :
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#Check i f the d i f f e r e n t i a t e d Hamiltonian has a l r eady been c a l c u l a t e d
here

global di f fhamsave
i f ( d i f f p a r , po int ) in di f fhamsave :

#pr in t ( ’ d i f fhamsave used ’ )
return di f fhamsave [ ( d i f f p a r , po int ) ]

#Find nr and s t e p r
nr = f i e l d . shape [ 1 ] #Number o f po in t s a long each ax i s o f the l a t t i c e
s t ep r = lab l eng th /( nr−1) #Distance between l a t t i c e po in t s
#Se l e c t d e r i v a t i v e to re turn
i f ( d i f f p a r == " r " ) :

#I n i t i a l i z e re turn matr ices
diff_hamx = np . z e r o s ( [ 3 , 3 ] , dtype=’ complex_ ’ )
diff_hamy = np . z e r o s ( [ 3 , 3 ] , dtype=’ complex_ ’ )
diff_hamz = np . z e ro s ( [ 3 , 3 ] , dtype=’ complex_ ’ )

#Fi r s t f i nd coord ina te va l u e s o f a l l ne i ghbour ing s i t e s
pointx = int ( po int [ 0 ] ) #Get po in t index ( t h i s i s needed f o r dtype

purposes )
pointy = int ( po int [ 1 ] )
po intz = int ( po int [ 2 ] )

ne i ghg r id = np . mgrid [ −1:2 , −1:2 , −1:2] ##Meshgrid to genera te
ne ighbours

ne i ghg r id = np . array ( [ pointx , pointy , po intz ] ) [ : , None , None , None ] +
ne i ghg r id ##Uses b roadcas t ing to dup l i c a t e
#x , y , z i n t o each po in t on the g r i d . The r e s u l t has f i r s t

dimension determining which
#coord ina te i s g i ven and the remaining s p e c i f y i n g p o s i t i o n

r e l a t e d to the po in t

#Find ne ighbour ing r_B va lue s
Bgrid = np . z e ro s ( [ 3 , 3 , 3 ] )
Bgrid [ 1 , 1 , 1 ] = f i e l d [ 3 , ne i ghg r id [ 0 , 1 , 1 , 1 ] , n e i ghg r id [ 1 , 1 , 1 , 1 ] ,

n e i ghg r id [ 2 , 1 , 1 , 1 ] ]
Bgrid [ 2 , 1 , 1 ] = f i e l d [ 3 , ne i ghg r id [ 0 , 2 , 1 , 1 ] , n e i ghg r id [ 1 , 2 , 1 , 1 ] ,

n e i ghg r id [ 2 , 2 , 1 , 1 ] ]
Bgrid [ 0 , 1 , 1 ] = f i e l d [ 3 , ne i ghg r id [ 0 , 0 , 1 , 1 ] , n e i ghg r id [ 1 , 0 , 1 , 1 ] ,

n e i ghg r id [ 2 , 0 , 1 , 1 ] ]
Bgrid [ 1 , 2 , 1 ] = f i e l d [ 3 , ne i ghg r id [ 0 , 1 , 2 , 1 ] , n e i ghg r id [ 1 , 1 , 2 , 1 ] ,

n e i ghg r id [ 2 , 1 , 2 , 1 ] ]
Bgrid [ 1 , 0 , 1 ] = f i e l d [ 3 , ne i ghg r id [ 0 , 1 , 0 , 1 ] , n e i ghg r id [ 1 , 1 , 0 , 1 ] ,

n e i ghg r id [ 2 , 1 , 0 , 1 ] ]
Bgrid [ 1 , 1 , 2 ] = f i e l d [ 3 , ne i ghg r id [ 0 , 1 , 1 , 2 ] , n e i ghg r id [ 1 , 1 , 1 , 2 ] ,

n e i ghg r id [ 2 , 1 , 1 , 2 ] ]
Bgrid [ 1 , 1 , 0 ] = f i e l d [ 3 , ne i ghg r id [ 0 , 1 , 1 , 0 ] , n e i ghg r id [ 1 , 1 , 1 , 0 ] ,

n e i ghg r id [ 2 , 1 , 1 , 0 ] ]
B = Bgrid [ 1 , 1 , 1 ] #Magnetic f i e l d s t r en g t h at po in t

#Find ne ighbour ing theta_B va lue s
th e t ag r i d = np . z e ro s ( [ 3 , 3 , 3 ] )
th e t ag r i d [ 1 , 1 , 1 ] = f i e l d [ 4 , ne i ghg r id [ 0 , 1 , 1 , 1 ] , n e i ghg r id [ 1 , 1 , 1 , 1 ] ,

n e i ghg r id [ 2 , 1 , 1 , 1 ] ]
t h e t ag r i d [ 2 , 1 , 1 ] = f i e l d [ 4 , ne i ghg r id [ 0 , 2 , 1 , 1 ] , n e i ghg r id [ 1 , 2 , 1 , 1 ] ,

n e i ghg r id [ 2 , 2 , 1 , 1 ] ]
t h e t ag r i d [ 0 , 1 , 1 ] = f i e l d [ 4 , ne i ghg r id [ 0 , 0 , 1 , 1 ] , n e i ghg r id [ 1 , 0 , 1 , 1 ] ,

28



ne i ghg r id [ 2 , 0 , 1 , 1 ] ]
t h e t ag r i d [ 1 , 2 , 1 ] = f i e l d [ 4 , ne i ghg r id [ 0 , 1 , 2 , 1 ] , n e i ghg r id [ 1 , 1 , 2 , 1 ] ,

n e i ghg r id [ 2 , 1 , 2 , 1 ] ]
t h e t ag r i d [ 1 , 0 , 1 ] = f i e l d [ 4 , ne i ghg r id [ 0 , 1 , 0 , 1 ] , n e i ghg r id [ 1 , 1 , 0 , 1 ] ,

n e i ghg r id [ 2 , 1 , 0 , 1 ] ]
t h e t ag r i d [ 1 , 1 , 2 ] = f i e l d [ 4 , ne i ghg r id [ 0 , 1 , 1 , 2 ] , n e i ghg r id [ 1 , 1 , 1 , 2 ] ,

n e i ghg r id [ 2 , 1 , 1 , 2 ] ]
t h e t ag r i d [ 1 , 1 , 0 ] = f i e l d [ 4 , ne i ghg r id [ 0 , 1 , 1 , 0 ] , n e i ghg r id [ 1 , 1 , 1 , 0 ] ,

n e i ghg r id [ 2 , 1 , 1 , 0 ] ]
theta = the tag r i d [ 1 , 1 , 1 ] #Value o f theta_B at po in t

#Find ne ighbour ing phi_B va lu e s
ph ig r id = np . z e ro s ( [ 3 , 3 , 3 ] )
ph i g r id [ 1 , 1 , 1 ] = f i e l d [ 5 , ne i ghg r id [ 0 , 1 , 1 , 1 ] , n e i ghg r id [ 1 , 1 , 1 , 1 ] ,

n e i ghg r id [ 2 , 1 , 1 , 1 ] ]
ph i g r id [ 2 , 1 , 1 ] = f i e l d [ 5 , ne i ghg r id [ 0 , 2 , 1 , 1 ] , n e i ghg r id [ 1 , 2 , 1 , 1 ] ,

n e i ghg r id [ 2 , 2 , 1 , 1 ] ]
ph i g r id [ 0 , 1 , 1 ] = f i e l d [ 5 , ne i ghg r id [ 0 , 0 , 1 , 1 ] , n e i ghg r id [ 1 , 0 , 1 , 1 ] ,

n e i ghg r id [ 2 , 0 , 1 , 1 ] ]
ph i g r id [ 1 , 2 , 1 ] = f i e l d [ 5 , ne i ghg r id [ 0 , 1 , 2 , 1 ] , n e i ghg r id [ 1 , 1 , 2 , 1 ] ,

n e i ghg r id [ 2 , 1 , 2 , 1 ] ]
ph i g r id [ 1 , 0 , 1 ] = f i e l d [ 5 , ne i ghg r id [ 0 , 1 , 0 , 1 ] , n e i ghg r id [ 1 , 1 , 0 , 1 ] ,

n e i ghg r id [ 2 , 1 , 0 , 1 ] ]
ph i g r id [ 1 , 1 , 2 ] = f i e l d [ 5 , ne i ghg r id [ 0 , 1 , 1 , 2 ] , n e i ghg r id [ 1 , 1 , 1 , 2 ] ,

n e i ghg r id [ 2 , 1 , 1 , 2 ] ]
ph i g r id [ 1 , 1 , 0 ] = f i e l d [ 5 , ne i ghg r id [ 0 , 1 , 1 , 0 ] , n e i ghg r id [ 1 , 1 , 1 , 0 ] ,

n e i ghg r id [ 2 , 1 , 1 , 0 ] ]
phi = ph ig r id [ 1 , 1 , 1 ] #Value o f phi_B at po in t

#Approximate the d e r i v a t i v e s o f B
dBdr = np . z e ro s (3 )
dBdr [ 0 ] = 0 . 5∗ ( Bgrid [2 ,1 ,1 ] − Bgrid [ 0 , 1 , 1 ] ) / s t ep r
dBdr [ 1 ] = 0 . 5∗ ( Bgrid [1 ,2 ,1 ] − Bgrid [ 1 , 0 , 1 ] ) / s t ep r
dBdr [ 2 ] = 0 . 5∗ ( Bgrid [1 ,1 ,2 ] − Bgrid [ 1 , 1 , 0 ] ) / s t ep r

#Approximate the d e r i v a t i v e s o f theta_B
dthdr = np . z e r o s (3 )
dthdr [ 0 ] = 0 . 5∗ ( th e t ag r i d [2 ,1 ,1 ] − th e t ag r i d [ 0 , 1 , 1 ] ) / s t ep r
dthdr [ 1 ] = 0 . 5∗ ( th e t ag r i d [1 ,2 ,1 ] − th e t ag r i d [ 1 , 0 , 1 ] ) / s t ep r
dthdr [ 2 ] = 0 . 5∗ ( th e t ag r i d [1 ,1 ,2 ] − th e t ag r i d [ 1 , 1 , 0 ] ) / s t ep r

#Approximate the d e r i v a t i v e s o f phi_B
dphdr = np . z e r o s (3 )
dphdr [ 0 ] = 0 . 5∗ ( ph i g r i d [2 ,1 ,1 ] − ph ig r id [ 0 , 1 , 1 ] ) / s t ep r
dphdr [ 1 ] = 0 . 5∗ ( ph i g r i d [1 ,2 ,1 ] − ph ig r id [ 1 , 0 , 1 ] ) / s t ep r
dphdr [ 2 ] = 0 . 5∗ ( ph i g r i d [1 ,1 ,2 ] − ph ig r id [ 1 , 1 , 0 ] ) / s t ep r

#Assign matrix e lements
s i n = np . s i n ( theta ) #Ca lcu l a t e the s ine
cos = np . cos ( theta ) #Ca lcu l a t e the cos ine
omega = (− dBdr∗ s i n + 1 j ∗B∗dphdr∗ s i n − B∗dthdr∗ cos ) ∗np . exp(−1 j ∗phi )

/np . s q r t (2 ) #Ca l cu l a t e s o f f d i a g on a l s
diff_hamx [ 0 , 0 ] , diff_hamy [ 0 , 0 ] , diff_hamz [ 0 , 0 ] = (dBdr∗ cos − B∗

dthdr∗ s i n )
diff_hamx [ 0 , 1 ] , diff_hamy [ 0 , 1 ] , diff_hamz [ 0 , 1 ] = omega
diff_hamx [ 1 , 0 ] , diff_hamy [ 1 , 0 ] , diff_hamz [ 1 , 0 ] = np . conjugate ( omega

)
diff_hamx [ 1 , 2 ] , diff_hamy [ 1 , 2 ] , diff_hamz [ 1 , 2 ] = omega
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diff_hamx [ 2 , 1 ] , diff_hamy [ 2 , 1 ] , diff_hamz [ 2 , 1 ] = np . conjugate ( omega
)

diff_hamx [ 2 , 2 ] , diff_hamy [ 2 , 2 ] , diff_hamz [ 2 , 2 ] = (−dBdr∗ cos + B∗
dthdr∗ s i n )

#Return the matr ices wi th co r r e c t p r e f a c t o r s
diff_hamx = Gamma∗hbar∗diff_hamx
diff_hamy = Gamma∗hbar∗diff_hamy
diff_hamz = Gamma∗hbar∗diff_hamz

di f fhamsave [ ( d i f f p a r , po int ) ] = diff_hamx , diff_hamy , diff_hamz #
Save the r e s u l t

return diff_hamx , diff_hamy , diff_hamz

e l i f ( d i f f p a r=="th_r" ) :

diff_ham = np . z e ro s ( [ 3 , 3 ] , dtype=’ complex_ ’ ) #I n i t i a l i z e re turn
matrix

#Assign matrix e lements
s i n = np . s i n (2∗ po int [ 3 ] ) #Ca lcu l a t e the s ine o f tw ice theta_r
cos = np . cos (2∗ po int [ 3 ] ) #Ca lcu l a t e the cos ine o f tw ice theta_r
exp = np . exp (1 j ∗ po int [ 4 ] ) #Ca lcu l a t e the complex e xponen t i a l o f

phi_r
sq = np . sq r t (2 ) #Ca lcu l a t e the square roo t o f two used
omega = sq∗exp∗ cos # Ca lcu l a t e an o f t en occur ing element

diff_ham [ 0 , 0 ] = −s i n
diff_ham [ 0 , 1 ] = −1∗np . conjugate ( omega )
diff_ham [ 0 , 2 ] = s i n /exp∗∗2
diff_ham [ 1 , 0 ] = −1∗omega
diff_ham [ 1 , 1 ] = 2∗ s i n
diff_ham [ 1 , 2 ] = np . conjugate ( omega )
diff_ham [ 2 , 0 ] = exp∗∗2∗ s i n
diff_ham [ 2 , 1 ] = omega
diff_ham [ 2 , 2 ] = −s i n

#Return the matrix wi th co r r e c t p r e f a c t o r s
diff_ham = J∗hbar∗diff_ham

di f fhamsave [ ( d i f f p a r , po int ) ] = diff_ham #Save the r e s u l t

return diff_ham

e l i f ( d i f f p a r=="ph_r" ) :

diff_ham = np . z e ro s ( [ 3 , 3 ] , dtype=’ complex_ ’ ) #I n i t i a l i z e re turn
matrix

#Assign matrix e lements
s i n = np . s i n (2∗ po int [ 3 ] ) #Ca lcu l a t e the s ine o f tw ice theta_r
s i n2 = np . s i n ( po int [ 3 ] ) ∗∗2 #Ca lcu l a t e the square o f s ine o f theta_r
exp = np . exp (1 j ∗ po int [ 4 ] ) #Ca lcu l a t e the complex e xponen t i a l o f

phi_r
sq = np . sq r t (2 ) #Ca lcu l a t e the square roo t o f two used
omega = 1 j ∗exp∗ s i n / sq # Ca lcu l a t e an o f t en occur ing element
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diff_ham [ 0 , 1 ] = −np . conjugate ( omega )
diff_ham [ 0 , 2 ] = −2 j ∗ s i n2 /exp∗∗2
diff_ham [ 1 , 0 ] = −omega
diff_ham [ 1 , 2 ] = np . conjugate ( omega )
diff_ham [ 2 , 0 ] = 2 j ∗ s i n2 ∗exp∗∗2
diff_ham [ 2 , 1 ] = omega

#Return the matrix wi th co r r e c t p r e f a c t o r s
diff_ham = J∗hbar∗diff_ham

di f fhamsave [ ( d i f f p a r , po int ) ] = diff_ham #Save the r e s u l t

return diff_ham

else :
raise ValueError ( " Inva l i d ␣ s t r i n g ␣ f o r ␣ d i f f e r e n t i a t i o n ␣ coord inate ␣

passed ␣ to ␣ d i f f h am i l t on i an " )

##So l ve s the e i g enva l u e problem of the f a s t Hamiltonian at po in t po in t f o r
f i e l d f i e l d .

##The po in t i s taken to be o f shape ( x , y , z , theta_r , phi_r ) .
##Returns the ene r g i e s and e i g en v e c t o r s in pa i r s wi th ascending ene r g i e s .

The v e c t o r s are
##normal ized column vec t o r s in the s i n g l e t − t r i p l e t b a s i s .
def e i g e n s o l v e r ( point , f i e l d ) :

warnings . f i l t e rw a r n i n g s ( " e r r o r " )

#Fi r s t c a l c u l a t e the f a s t Hamiltonian at po in t
ham = np . z e ro s ( [ 3 , 3 ] , dtype=’ complex_ ’ ) #I n i t i a l i z e empty matrix
pointx = int ( po int [ 0 ] ) #Get po in t index ( t h i s i s needed f o r dtype

purposes )
pointy = int ( po int [ 1 ] )
po intz = int ( po int [ 2 ] )

#Find the va l u e s o f B, theta_B and phi_B at po in t
B = f i e l d [ 3 , pointx , pointy , po intz ]
thetaB = f i e l d [ 4 , pointx , pointy , po intz ]
phiB = f i e l d [ 5 , pointx , pointy , po intz ]
x i = J/(Gamma∗B)
i f x i == np . i n f or np . i snan ( x i ) :

print ( f ’ External ␣ f i e l d ␣ i s ␣ zero ␣ at ␣ po int ␣{ po int } ! ␣ Please ␣ c o r r e c t ␣ the
␣ f i e l d ␣ or ␣ the ␣ streams ’ )

#Extrac t theta_r and phi_r at po in t
the ta r = point [ 3 ]
ph i r = point [ 4 ]

#Assign matrix e lements
co s r = np . cos ( the ta r ) #Ca lcu l a t e the cos ine o f theta_r
s i n 2 r = np . s i n (2∗ the ta r ) #Ca lcu l a t e the s ine o f tw ice theta_r
cos2r = np . cos (2∗ the ta r ) #Ca lcu l a t e the cos ine o f tw ice theta_r
s i n r s q = np . s i n ( the ta r ) ∗∗2 #Ca lcu l a t e the square o f s ine o f theta_r
co s r sq = np . cos ( the ta r ) ∗∗2 #Ca lcu l a t e the square o f cos ine o f theta_r
cosB = np . cos ( thetaB ) #Ca lcu l a t e the cos ine o f theta_B
sinB = np . s i n ( thetaB ) #Ca lcu l a t e the s ine o f theta_B
expr = np . exp (1 j ∗ phi r ) #Ca lcu l a t e the complex e xponen t i a l o f phi_r
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expB = np . exp (1 j ∗phiB ) #Ca lcu l a t e the complex e xponen t i a l o f phi_B
sq = np . sq r t (2 ) #Ca lcu l a t e the square roo t o f two o f t en used

ham [ 0 , 0 ] = x i ∗ co s r sq + cosB
ham[ 0 , 1 ] = −sinB / ( expB∗ sq ) − x i ∗ s i n 2 r /( expr∗ sq )
ham [ 0 , 2 ] = x i ∗ s i n r s q / expr ∗∗2
ham [ 1 , 0 ] = −expB∗ sinB/ sq − x i ∗ expr∗ s i n 2 r / sq
ham [ 1 , 1 ] = −x i ∗ cos2r
ham [ 1 , 2 ] = −sinB /( expB∗ sq ) + x i ∗ s i n 2 r /( expr∗ sq )
ham [ 2 , 0 ] = x i ∗ expr ∗∗2∗ s i n r s q
ham [ 2 , 1 ] = −expB∗ sinB/ sq + x i ∗ expr∗ s i n 2 r / sq
ham [ 2 , 2 ] = x i ∗ cosrsq−cosB

#Fix matrix p r e f a c t o r s
ham = Gamma∗B∗hbar∗ham

#Ca lcu l a t e e i g enva l u e s and e i g en v e c t o r s
e igenva lue s , e i g env e c t o r s = sc ipy . l i n a l g . e igh (ham)

#Return the r e s u l t
return e igenva lue s , e i g env e c t o r s

##Ca l cu l a t e s the s y n t h e t i c s c a l a r f i e l d at po in t po in t f o r f i e l d f i e l d f o r
s t a t e number n .

##The po in t i s taken to be o f shape ( x , y , z , theta_r , phi_r ) .
##Returns a t u p l e o f the s c a l a r f i e l d va lue f o l l owed by the f a s t energy .
s c a l a r s a v e = {}
def s c a l a r c a l c ( point , f i e l d , n ) :

po int = tuple ( po int )

#Fi r s t check i f the s c a l a r f i e l d has been c a l c u l a t e d here b e f o r e
global s c a l a r s a v e
i f ( point , n ) in s c a l a r s a v e :

#pr in t ( ’ s c a l a r s a v e used ’ )
return s c a l a r s a v e [ ( point , n ) ]

#Fix po in t format
po int = tuple ( po int )

#Fi r s t r e t r i e v e the ene r g i e s and e i g e n s t a t e s
ene rg i e s , e i gve c = e i g e n s o l v e r ( point , f i e l d )

#Di f f e r e n t i a t e the Hamiltonian w. r . t . each coord ina te
dHam = [ 0 , 0 , 0 , 0 , 0 ]
dHam[ 0 ] , dHam[ 1 ] , dHam[ 2 ] = d i f f h am i l t on i an ( ’ r ’ , point , f i e l d )
dHam[ 3 ] = d i f f h am i l t on i an ( ’ th_r ’ , point , f i e l d )
dHam[ 4 ] = d i f f h am i l t on i an ( ’ph_r ’ , point , f i e l d )

Phi = 0 #I n i t i a l i z e s y n t h e t i c s c a l a r

for i in range (5 ) :
for l in range (3 ) :

i f not l == n : #Remove d iagona l s
braket = np . vdot ( e i gve c [ n ] , np . dot (dHam[ i ] , e i gv e c [ l ] ) ) #

Braket f o r formula
Phi += ( hbar ∗∗2 /(2∗mass [ i ] ) ∗ #Add up con t r i b u t i on s to the

s y n t h e t i c s c a l a r
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braket ∗np . conjugate ( braket ) / ( e n e r g i e s [ n ] − e n e r g i e s [ l ] )
∗∗2) . r e a l #Note the d i s ca rd o f the imaginary part ,
numerical e r ro r s o the rw i s e a r i s e

r e t u r n l i s t = (Phi , e n e r g i e s [ n ] )
s c a l a r s a v e [ ( point , n ) ] = r e t u r n l i s t

return r e t u r n l i s t

##Ca l cu l a t e s the a c c e l e r a t i o n due to the s y n t h e t i c magnetic f i e l d and
summarizes a l l

##ac c e l e r a t i on c on t r i b u t i on s . This i s done f o r the p o s i t i o n pos , the
v e l o c i t y v e l as a t u p l e

##with the f i e l d f i e l d f o r s t a t e number n . The po s i t i o n and v e l o c i t y i s
taken to be o f

##shape ( x , y , z , theta_r , phi_r ) . Note t ha t p o s i t i o n i s here g iven in m,
and w i l l be

##f i t t e d to the d i s c r e t e l a t t i c e .
##Returns the v e l o c i t y in m/s ( f o r i n t e g r a t i o n purposes ) f o l l owed by the

a c c e l e r a t i o n o f the
##system in m/s ^2.
##Note t ha t the t argument i s a dummy.
def acc ( t , posve l , f i e l d , n , norot , nosyn ) :

#Find nr and s t e p r
nr = f i e l d . shape [ 1 ] #Number o f po in t s a long each ax i s o f the l a t t i c e
s t ep r = lab l eng th /( nr−1) #Distance between l a t t i c e po in t s
#Extrac t pos and v e l :
pos = posve l [ 0 : 5 ]
v e l = posve l [ 5 : 1 0 ]

#I n i t i a l i z e f o r c e s
Fa = np . z e ro s (5 )
d s c a l a r = np . z e r o s (5 )
denergy = np . z e r o s (5 )

#Fit p o s i t i o n to a po in t
po int = [ 0 , 0 , 0 , 0 , 0 ]
for i in range (3 ) :

po int [ i ] = int (round( pos [ i ] / s t ep r ) )
i f po int [ i ] >= nr−2 or po int [ i ] < 2 :

return np . concatenate ( ( ve l , np . z e r o s (5 ) ) ) ##Sets the
a c c e l e r a t i o n to zero i f a

##poin t ou t s i d e the
g r i d i s sampled

po int [ 3 ] = pos [ 3 ]
po int [ 4 ] = pos [ 4 ]

po int = tuple ( po int )

i f not nosyn == "True" :
##Make sure the B− f i e l d i s nonzero

pointx = int ( po int [ 0 ] ) #Get po in t index ( t h i s i s needed f o r dtype
purposes )

pointy = int ( po int [ 1 ] )
po intz = int ( po int [ 2 ] )

#Find the va l u e s o f B at po in t
B = f i e l d [ 3 , pointx , pointy , po intz ]
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i f B == 0 . 0 :
print ( f ’Warning , ␣ ex t e rna l ␣ f i e l d ␣ o f ␣ zero ␣ encountered ␣ at ␣{pos} ’ )
return np . z e ro s (10) #Freeze stream

i f nosyn == "False " or nosyn == "Nosca lar " :
#Find ene r g i e s and e i g e n s t a t e s at po in t
ene rg i e s , e i gve c = e i g e n s o l v e r ( point , f i e l d )

#Di f f e r e n t i a t e the Hamiltonian w. r . t . each coord ina te
dHam = [ 0 , 0 , 0 , 0 , 0 ]
dHam[ 0 ] , dHam[ 1 ] , dHam[ 2 ] = d i f f h am i l t on i an ( ’ r ’ , point , f i e l d )
dHam[ 3 ] = d i f f h am i l t on i an ( ’ th_r ’ , point , f i e l d )
dHam[ 4 ] = d i f f h am i l t on i an ( ’ph_r ’ , point , f i e l d )

#Ca lcu l a t e the a c c e l e r a t i on due to the syn . magnetic f i e l d
for i in range (5 ) :

for j in range (5 ) :
i f not j == i : #Remove d iagona l s

for l in range (3 ) :
i f not l == n : #Remove d iagona l s

i f e n e r g i e s [ n ] == ene r g i e s [ l ] :
print ( f ’ Degenerate ␣ f a s t ␣ e i g enva lu e s ␣{

en e r g i e s [ n ] } ␣and␣{ en e r g i e s [ l ] } ! ’ )
Fa [ i ] += (−2∗hbar ∗ ve l [ j ] / ( e n e r g i e s [ n]−

e n e r g i e s [ l ] ) ∗∗2 ∗
np . imag (np . vdot ( e i gve c [ n ] , np . dot (dHam[

i ] , e i gv e c [ l ] ) ) ∗
np . vdot ( e i gve c [ l ] , np . dot (dHam[ j ] ,

e i gve c [ n ] ) ) ) )

global Faavg
Faavg = (Faavg + np . l i n a l g . norm(Fa) ) /2

i f nosyn == "False " or nosyn == "Nomag" :

#To ge t the d e r i v a t i v e s o f the s c a l a r f i e l d s f i nd coord ina te va l u e s
o f a l l ne i ghbour ing s i t e s

##meshgrid to genera te ne ighbours
ne i ghg r id = np . mgrid [−1:2 ,−1:2 ,−1:2 , −1:2 , −1 :2 ] . astype ( ’ f l o a t ’ )
ne i ghg r id [ 3 , : , : , : , : , : ] ∗= stepthe ta #Fix t h e t a and phi s t ep s i z e s
ne i ghg r id [ 4 , : , : , : , : , : ] ∗= stepph i
ne i ghg r id = np . array ( po int ) [ : , None , None , None , None , None ] +

ne i ghg r id
#uses b roadcas t ing to dup l i c a t e
#x , y , z i n t o each po in t on the g r i d . the r e s u l t has f i r s t dimension

determining which
#coord ina te i s g i ven and the remaining s p e c i f y i n g p o s i t i o n r e l a t e d

to the po in t

#Find ne ighbour ing s c a l a r f i e l d va l u e s and e i g e n s t a t e ene r g i e s
s c a l a r = np . z e r o s ( [ 3 , 3 , 3 , 3 , 3 ] )
energy = np . z e r o s ( [ 3 , 3 , 3 , 3 , 3 ] )
s c a l a r [ 2 , 1 , 1 , 1 , 1 ] , energy [ 2 , 1 , 1 , 1 , 1 ] = s c a l a r c a l c ( ne i ghg r id

[ : , 2 , 1 , 1 , 1 , 1 ] , f i e l d , n )
s c a l a r [ 0 , 1 , 1 , 1 , 1 ] , energy [ 0 , 1 , 1 , 1 , 1 ] = s c a l a r c a l c ( ne i ghg r id

[ : , 0 , 1 , 1 , 1 , 1 ] , f i e l d , n )
s c a l a r [ 1 , 2 , 1 , 1 , 1 ] , energy [ 1 , 2 , 1 , 1 , 1 ] = s c a l a r c a l c ( ne i ghg r id
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[ : , 1 , 2 , 1 , 1 , 1 ] , f i e l d , n )
s c a l a r [ 1 , 0 , 1 , 1 , 1 ] , energy [ 1 , 0 , 1 , 1 , 1 ] = s c a l a r c a l c ( ne i ghg r id

[ : , 1 , 0 , 1 , 1 , 1 ] , f i e l d , n )
s c a l a r [ 1 , 1 , 2 , 1 , 1 ] , energy [ 1 , 1 , 2 , 1 , 1 ] = s c a l a r c a l c ( ne i ghg r id

[ : , 1 , 1 , 2 , 1 , 1 ] , f i e l d , n )
s c a l a r [ 1 , 1 , 0 , 1 , 1 ] , energy [ 1 , 1 , 0 , 1 , 1 ] = s c a l a r c a l c ( ne i ghg r id

[ : , 1 , 1 , 0 , 1 , 1 ] , f i e l d , n )
s c a l a r [ 1 , 1 , 1 , 2 , 1 ] , energy [ 1 , 1 , 1 , 2 , 1 ] = s c a l a r c a l c ( ne i ghg r id

[ : , 1 , 1 , 1 , 2 , 1 ] , f i e l d , n )
s c a l a r [ 1 , 1 , 1 , 0 , 1 ] , energy [ 1 , 1 , 1 , 0 , 1 ] = s c a l a r c a l c ( ne i ghg r id

[ : , 1 , 1 , 1 , 0 , 1 ] , f i e l d , n )
s c a l a r [ 1 , 1 , 1 , 1 , 2 ] , energy [ 1 , 1 , 1 , 1 , 2 ] = s c a l a r c a l c ( ne i ghg r id

[ : , 1 , 1 , 1 , 1 , 2 ] , f i e l d , n )
s c a l a r [ 1 , 1 , 1 , 1 , 0 ] , energy [ 1 , 1 , 1 , 1 , 0 ] = s c a l a r c a l c ( ne i ghg r id

[ : , 1 , 1 , 1 , 1 , 0 ] , f i e l d , n )

#Di f f e r e n t i a t e the s c a l a r f i e l d
ds ca l a r [ 0 ] = ( s c a l a r [ 2 , 1 , 1 , 1 , 1 ] − s c a l a r [ 0 , 1 , 1 , 1 , 1 ] ) /(2∗ s t ep r )
d s c a l a r [ 1 ] = ( s c a l a r [ 1 , 2 , 1 , 1 , 1 ] − s c a l a r [ 1 , 0 , 1 , 1 , 1 ] ) /(2∗ s t ep r )
d s c a l a r [ 2 ] = ( s c a l a r [ 1 , 1 , 2 , 1 , 1 ] − s c a l a r [ 1 , 1 , 0 , 1 , 1 ] ) /(2∗ s t ep r )
d s c a l a r [ 3 ] = ( s c a l a r [ 1 , 1 , 1 , 2 , 1 ] − s c a l a r [ 1 , 1 , 1 , 0 , 1 ] ) /(2∗ s t ep the ta )
d s c a l a r [ 4 ] = ( s c a l a r [ 1 , 1 , 1 , 1 , 2 ] − s c a l a r [ 1 , 1 , 1 , 1 , 0 ] ) /(2∗ s t epph i )

global dsca la ravg
dsca la ravg = ( dsca la ravg + np . l i n a l g . norm( d s ca l a r ) ) /2

e l i f nosyn == "True" or nosyn == "Nosca lar " :
#To ge t the d e r i v a t i v e s o f the ene r g i e s f i nd coord ina te va l u e s o f

a l l ne i ghbour ing s i t e s

##meshgrid to genera te ne ighbours
ne i ghg r id = np . mgrid [−1:2 ,−1:2 ,−1:2 , −1:2 , −1 :2 ] . astype ( ’ f l o a t ’ )
ne i ghg r id [ 3 , : , : , : , : , : ] ∗= stepthe ta #Fix t h e t a and phi s t ep s i z e s
ne i ghg r id [ 4 , : , : , : , : , : ] ∗= stepph i
ne i ghg r id = np . array ( po int ) [ : , None , None , None , None , None ] +

ne i ghg r id
#uses b roadcas t ing to dup l i c a t e
#x , y , z i n t o each po in t on the g r i d . the r e s u l t has f i r s t dimension

determining which
#coord ina te i s g i ven and the remaining s p e c i f y i n g p o s i t i o n r e l a t e d

to the po in t

#Find ene r g i e s at ne ighbour ing po in t s
energy = np . z e r o s ( [ 3 , 3 , 3 , 3 , 3 ] )
energy [ 2 , 1 , 1 , 1 , 1 ] = e i g e n s o l v e r ( ne i ghg r id [ : , 2 , 1 , 1 , 1 , 1 ] , f i e l d ) [ 0 ] [ n

]
energy [ 0 , 1 , 1 , 1 , 1 ] = e i g e n s o l v e r ( ne i ghg r id [ : , 0 , 1 , 1 , 1 , 1 ] , f i e l d ) [ 0 ] [ n

]
energy [ 1 , 2 , 1 , 1 , 1 ] = e i g e n s o l v e r ( ne i ghg r id [ : , 1 , 2 , 1 , 1 , 1 ] , f i e l d ) [ 0 ] [ n

]
energy [ 1 , 0 , 1 , 1 , 1 ] = e i g e n s o l v e r ( ne i ghg r id [ : , 1 , 0 , 1 , 1 , 1 ] , f i e l d ) [ 0 ] [ n

]
energy [ 1 , 1 , 2 , 1 , 1 ] = e i g e n s o l v e r ( ne i ghg r id [ : , 1 , 1 , 2 , 1 , 1 ] , f i e l d ) [ 0 ] [ n

]
energy [ 1 , 1 , 0 , 1 , 1 ] = e i g e n s o l v e r ( ne i ghg r id [ : , 1 , 1 , 0 , 1 , 1 ] , f i e l d ) [ 0 ] [ n

]
energy [ 1 , 1 , 1 , 2 , 1 ] = e i g e n s o l v e r ( ne i ghg r id [ : , 1 , 1 , 1 , 2 , 1 ] , f i e l d ) [ 0 ] [ n

]
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energy [ 1 , 1 , 1 , 0 , 1 ] = e i g e n s o l v e r ( ne i ghg r id [ : , 1 , 1 , 1 , 0 , 1 ] , f i e l d ) [ 0 ] [ n
]

energy [ 1 , 1 , 1 , 1 , 2 ] = e i g e n s o l v e r ( ne i ghg r id [ : , 1 , 1 , 1 , 1 , 2 ] , f i e l d ) [ 0 ] [ n
]

energy [ 1 , 1 , 1 , 1 , 0 ] = e i g e n s o l v e r ( ne i ghg r id [ : , 1 , 1 , 1 , 1 , 0 ] , f i e l d ) [ 0 ] [ n
]

energy [ 1 , 1 , 1 , 1 , 1 ] = e i g e n s o l v e r ( ne i ghg r id [ : , 1 , 1 , 1 , 1 , 1 ] , f i e l d ) [ 0 ] [ n
]

else :
print ( f ’ I n c o r r e c t ␣parameter ␣"nosyn"␣=␣{nosyn} ’ )

global energyavg
energyavg = ( energyavg + energy [ 1 , 1 , 1 , 1 , 1 ] ) /2

#Di f f e r e n t i a t e the ene r g i e s
denergy [ 0 ] = ( energy [ 2 , 1 , 1 , 1 , 1 ] − energy [ 0 , 1 , 1 , 1 , 1 ] ) /(2∗ s t ep r )
denergy [ 1 ] = ( energy [ 1 , 2 , 1 , 1 , 1 ] − energy [ 1 , 0 , 1 , 1 , 1 ] ) /(2∗ s t ep r )
denergy [ 2 ] = ( energy [ 1 , 1 , 2 , 1 , 1 ] − energy [ 1 , 1 , 0 , 1 , 1 ] ) /(2∗ s t ep r )
denergy [ 3 ] = ( energy [ 1 , 1 , 1 , 2 , 1 ] − energy [ 1 , 1 , 1 , 0 , 1 ] ) /(2∗ s t ep the ta )
denergy [ 4 ] = ( energy [ 1 , 1 , 1 , 1 , 2 ] − energy [ 1 , 1 , 1 , 1 , 0 ] ) /(2∗ s t epph i )

acc = Fa − ds ca l a r − denergy #Summarize f o r c e s

global denergyavg
denergyavg = ( denergyavg + np . l i n a l g . norm( denergy ) ) /2

for i in range (5 ) :
acc [ i ] = acc [ i ] / mass [ i ] #Divide by mass to ge t a c c e l e r a t i o n

i f norot : #Freeze r o t a t i o n a l axes i f norot i s turned on
ve l [ 3 : 5 ] = 0
acc [ 3 : 5 ] = 0

i f acc [ 3 ] > 1e10 :
print ( f ’The␣ r o t a t i on ␣ i s ␣out␣ o f ␣ cont ro l , ␣ acc ␣=␣{acc } ’ )

return np . concatenate ( ( ve l , acc ) )

##So l ve s the ODE and re turns the s o l u t i o n as per s s c i p y . i n t e g r a t e . so l ve_ivp
.

##The e x t e rna l magnetic f i e l d i s g i ven as f i e l d . The
##dumbbe l l i s p laced i n i t i a l l y a t p o s i t i o n pos and with v e l o c i t y v e l o f the

shape ( x , y ,
##z , theta_r , phi_r ) . Note t ha t c a r t e s i an po s i t i o n here i s in m.
##The sp in subsystem i s assumed to remain in the f a s t
##e i g e n s t a t e l a b e l e d n . Runs u n t i l the time reaches tmax .
##The g iven i n i t i a l c ond i t i on s must be t u p l e s .
def so lvedyn ( pos , ve l , f i e l d , n , norot=False , nosyn=’ Fa l se ’ ) :

posve l = pos + ve l

#Reset average f o r c e counters
global Faavg
global dsca la ravg
global denergyavg
global energyavg
Faavg = 0
dsca la ravg = 0
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denergyavg = 0
energyavg = 0

#Find t imes to r e qu i r e ODE eva l ua t i on
t_eval = np . l i n s p a c e (0 , tmax , 100000)

#Set error t o l e r an c e s
nr = f i e l d . shape [ 1 ]
t o l r = lab l eng th /(2∗ ( nr − 1) )
t o l t h e t a = st ep the ta /2
t o l ph i = stepph i /2
a t o l = [ t o l r , t o l r , t o l r , t o l the ta , to lph i , t o l r /10 , t o l r /10 , t o l r /10 ,

t o l t h e t a /10 ,
t o l ph i /10 ]

edged i s tance . t e rmina l = True
s o l = solve_ivp ( acc , (0 , tmax) , posve l , events=edged i s tance , args=( f i e l d

, n , norot , nosyn ) , a t o l=ato l , t_eval=t_eval )

s o l . Faavg = Faavg
s o l . denergyavg = denergyavg
s o l . d sca la ravg = dsca la ravg
s o l . energyavg = energyavg

return s o l

##Event to terminate i n t e g ra t i on , r e turns d i s t ance to the c l o s e s t edge
minus a sma l l

##cor r e c t i on to avoid h i t t i n g the edge
def edged i s tance ( t , posve l , f i e l d , n , norot , nosyn ) :

pos= posve l [ 0 : 3 ]
mindist = np . amin ( pos )
maxdist = np . amax( pos )
d i s t ance toedge = min( mindist , l ab l eng th − maxdist )

#Find nr and s t e p r
nr = f i e l d . shape [ 1 ] #Number o f po in t s a long each ax i s o f the l a t t i c e
s t ep r = lab l eng th /( nr−1) #Distance between l a t t i c e po in t s

return d i s tance toedge − 2∗ s t ep r

##P lo t t i n g func t ion , t a k e s a l i s t o f s o l u t i o n s s o l from solve_ivp , a f i e l d
f i e l d and d i s p l a y s an

##i n t e r a c t i v e 3D swarm p l o t . Uses ma t p l o t l i b .
def l i n e p l o t ( so l , f i e l d , I , i n i t v e l , swarmnum , n , norot , nosyn ,

a l t e rna t e s t r e ams ) :

#Print average a c c e l e r a t i on components
for stream in s o l :

print ( f ’ S t a t i s t i c s ␣ f o r ␣ stream␣ s t a r t i n g ␣ at ␣{ stream . y [ 0 : 3 , 0 ] } ’ )
print ( f ’ Faavg␣=␣{ stream . Faavg} ’ )
print ( f ’ d sca la ravg ␣=␣{ stream . dsca la ravg } ’ )
print ( f ’ denergyavg␣=␣{ stream . denergyavg} ’ )
print ( f ’ energyavg ␣=␣{ stream . energyavg } ’ )

f i g , ax = p l t . subp lo t s ( subplot_kw={ ’ p r o j e c t i o n ’ : ’ 3d ’ })

ax . set_xlim ( ( 0 , l ab l eng th ∗1000) )
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ax . set_ylim ( ( 0 , l ab l eng th ∗1000) )
ax . set_zl im ( ( 0 , l ab l eng th ∗1000) )
ax . s e t_x labe l ( ’ x␣ (mm) ’ , f o n t s i z e =10, c o l o r=’ blue ’ )
ax . s e t_y labe l ( ’ y␣ (mm) ’ , f o n t s i z e =10, c o l o r=’ blue ’ )
ax . s e t_z l abe l ( ’ z␣ (mm) ’ , f o n t s i z e =10, c o l o r=’ blue ’ )

#Find nr and s t e p r
nr = f i e l d . shape [ 1 ] #Number o f po in t s a long each ax i s o f the l a t t i c e
s t ep r = lab l eng th /( nr−1) #Distance between l a t t i c e po in t s
#Create g r i d s f o r the qu i v e r :
xx , yy , zz = s t ep r ∗np . mgrid [ 0 : nr , 0 : nr , 0 : nr ]
xx = xx [ 0 : : int ( nr /5) , 0 : : int ( nr /5) , 0 : : int ( nr /5) ]
yy = yy [ 0 : : int ( nr /5) , 0 : : int ( nr /5) , 0 : : int ( nr /5) ]
zz = zz [ 0 : : int ( nr /5) , 0 : : int ( nr /5) , 0 : : int ( nr /5) ]
Bx = f i e l d [ 0 , : , : , : ] [ 0 : : int ( nr /5) , 0 : : int ( nr /5) , 0 : : int ( nr /5) ]
By = f i e l d [ 1 , : , : , : ] [ 0 : : int ( nr /5) , 0 : : int ( nr /5) , 0 : : int ( nr /5) ]
Bz = f i e l d [ 2 , : , : , : ] [ 0 : : int ( nr /5) , 0 : : int ( nr /5) , 0 : : int ( nr /5) ]

for stream in s o l :
#Extrac t pos

#Set stream co lour
try :

c o l o r = stream . c o l o r
except Attr ibuteError :

c o l o r = ’ red ’
pos = stream . y [ 0 : 3 , : ]
pos = pos ∗1000 #Plot in mm
ax . plot3D ( pos [ 0 , : ] , pos [ 1 , : ] , pos [ 2 , : ] , c o l o r=co l o r ) #Plot the

i n t e g r a t e d path
#Plo t magnetic f i e l d f o r t e s t i n g purposes
#ax . qu i v e r ( xx , yy , zz , Bx , By , Bz , l e n g t h =0.0001 , normal ize=True )

p l t . s a v e f i g ( f ’ saves / graphs / I { I }nr{nr} l ab l eng th { l ab l eng th }tmax{tmax}J{J}
Gamma{Gamma}mass{mass0} l en { len0 }n{n} ve l { i n i t v e l }swarmnum{swarmnum}
norot { norot }nosyn{nosyn} a l t s t r eam { a l t e rna t e s t r e ams } . png ’ ,

bbox_inches=’ t i g h t ’ )
p l t . show ( )

A.3 synfieldsolver.py

import numpy as np
import magf i e ld as mg
import s y n f i e l d t o o l s as sn
import p i c k l e
from numpy import pi as p i

i f __name__ == ’__main__ ’ :
#Set f i e l d and modes
a v a i l a b l e f i e l d t y p e s = [ ’ s implewi re ’ , ’ o p p o s i t e c o i l s ’ ]
f i e l d t y p e = ’ o p p o s i t e c o i l s ’
I = 10 #Current parameter f o r the f i e l d
norot = False #Whether to ignore r o t a t i o n a l degrees o f freedom
nosyn = ’ Fal se ’ #Whether to ignore s y n t h e t i c f i e l d s , accep t s the

s t r i n g s ’ Fa lse ’ ,
#’True ’ , ’Nomag ’ and ’ Noscalar ’

ov e rw r i t e r e s u l t = Fal se #Whether to ove rwr i t e prev ious ODE r e s u l t s
a l t e rna t e s t r e ams = False #Whether to use a l t e r n a t e swarming scheme
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#Define parameters

nr = 101 #Number o f po in t s in f i e l d l a t t i c e
l ab l eng th = 1e−3 #Cube s i d e o f l a b in m
tmax = 0 .1 #Trajec tory time in s
J = 1e5 #Spin−sp in coup l ing s t r en g t h
Gamma = 1e10 #Spin− f i e l d coup l ing s t r en g t h

mass0 = 3.58 e−25 #The t o t a l mass o f the dumbbe l l in kg , as a
p l a c eho l d e r t h i s i s the mass o f

#two s i l v e r atoms
l en0 = 5e−5 #The d i s t ance between dumbbe l l edges in m
mass = np . repeat (mass0 , 5) #Fu l l mass vec t o r
mass [ 3 ] = mass0∗ l en0 ∗∗2/4
mass [ 4 ] = mass [ 3 ]

#Set parameters
sn . nr = nr
sn . l ab l eng th = lab l eng th
sn . tmax = tmax
sn . J = J
sn .Gamma = Gamma
sn . mass0 = mass0
sn . l en0 = len0
sn . mass = mass

#Set i n i t i a l po s i t i on , v e l o c i t y and the f a s t e i g e n s t a t e to cons ider
s tep = lab l eng th /nr
i n i t p o s a r r a y = np . array ((10∗ step , 10∗ step , 10∗ step , 0 , 0) )
swarmnum = 4 #Square roo t o f number o f streams in swarm
swarmgrid = np . mgrid [ 0 : lab length −20∗ s tep : swarmnum∗1 j , 0 : l ab length −20∗

s tep : swarmnum∗1 j ] #Grid to swarm the i n i t i a l p o s i t i o n s
swarmgrid = np . i n s e r t ( swarmgrid , 2 , np . z e r o s ( swarmgrid . shape [ 1 : 3 ] ) ,

ax i s=0)
swarmgrid = np . i n s e r t ( swarmgrid , 2 , np . z e r o s ( swarmgrid . shape [ 1 : 3 ] ) ,

ax i s=0)
swarmgrid = np . i n s e r t ( swarmgrid , 0 , np . z e r o s ( swarmgrid . shape [ 1 : 3 ] ) ,

ax i s=0)
i n i t p o s a r r a y = in i t p o s a r r a y [ : , None , None ] + swarmgrid
a l t i n i t p o s = in i t p o s a r r a y [ : , 1 , 1 ] #Sta r t i n g p o s i t i o n f o r a l t e r n a t e

swarming method
i n i t v e l = (1 e−2, 0 , 0 , 0 , 0)
e i g e n s t a t e = 2

try : #Try to load pregenera ted r e s u l t
with open( f ’ saves / ode s o l s / r e su l tF { f i e l d t y p e } I { I }nr{nr} l ab l eng th {

l ab l eng th }tmax{tmax}J{J}Gamma{Gamma}mass{mass0} l en { l en0 }n{
e i g e n s t a t e } ve l { i n i t v e l }swarmnum{swarmnum}norot { norot }nosyn{nosyn
} a l t s t r eam { a l t e rna t e s t r e ams } . bin ’ , ’ rb ’ ) as f i l e :
s o l = p i c k l e . load ( f i l e )
print ( f ’ Loading␣ r e s u l t ␣ from␣ f i l e ␣ r e su l tF { f i e l d t y p e } I { I }nr{nr}

l ab l eng th { l ab l eng th }tmax{tmax}J{J}Gamma{Gamma}mass{mass0} l en
{ l en0 }n{ e i g e n s t a t e } ve l { i n i t v e l } norot { norot }nosyn{nosyn}
a l t s t r eam { a l t e rna t e s t r e ams } . bin ’ )

except FileNotFoundError :
o v e rw r i t e r e s u l t = True

#Generate a f i e l d
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i f f i e l d t y p e == ’ s implewi re ’ :
f i e l d = mg. s implewi re ( nr , lab length , I )

i f f i e l d t y p e == ’ o p p o s i t e c o i l s ’ :
f i e l d = mg. o p p o s i t e c o i l s ( nr , l ab length , I )

i f ov e rw r i t e r e s u l t : #Only perform c a l c u l a t i o n s i f r e s u l t not a v a i a b l e
on save :

#In t e g r a t e paths
print ( ’ I n t e g r a t i n g ␣dynamics␣ . ␣ . ␣ . ␣ Please ␣wait ’ )
s o l = [ ]
i f a l t e rna t e s t r e ams :

print ( f ’ S imulat ing ␣ s t a r t ␣{ tup l e ( a l t i n i t p o s ) }␣with␣ syn the t i c ␣
f i e l d s ’ )

try :
stream = sn . so lvedyn ( tuple ( a l t i n i t p o s [ : ] ) , i n i t v e l , f i e l d ,

e i g en s t a t e , norot , ’ Fa l se ’ )
stream . c o l o r = ’ red ’
s o l . append ( stream )
print ( f ’ Stream␣number␣{ l en ( s o l ) }␣has␣been␣ in t e g r a t ed ! ’ )

except Exception as e :
print ( e )
print ( f ’A␣ stream␣has␣ f a i l e d ␣ to ␣ generate , ␣most␣ probably ␣due␣

to ␣ c r o s s i n g ␣ the ␣ cent r e ’ )
print ( f ’ S imulat ing ␣ s t a r t ␣{ tup l e ( a l t i n i t p o s ) }␣without ␣ syn the t i c ␣

f i e l d s ’ )
try :

stream = sn . so lvedyn ( tuple ( a l t i n i t p o s [ : ] ) , i n i t v e l , f i e l d ,
e i g en s t a t e , norot , ’ True ’ )

stream . c o l o r = ’ blue ’
s o l . append ( stream )
print ( f ’ Stream␣number␣{ l en ( s o l ) }␣has␣been␣ in t e g r a t ed ! ’ )

except Exception as e :
print ( e )
print ( f ’A␣ stream␣has␣ f a i l e d ␣ to ␣ generate , ␣most␣ probably ␣due␣

to ␣ c r o s s i n g ␣ the ␣ cent r e ’ )
print ( f ’ S imulat ing ␣ s t a r t ␣{ tup l e ( a l t i n i t p o s ) }␣without ␣ the ␣

magnetic ␣ syn th e t i c ␣ f i e l d ’ )
try :

stream = sn . so lvedyn ( tuple ( a l t i n i t p o s [ : ] ) , i n i t v e l , f i e l d ,
e i g en s t a t e , norot , ’Nomag ’ )

stream . c o l o r = ’ green ’
s o l . append ( stream )
print ( f ’ Stream␣number␣{ l en ( s o l ) }␣has␣been␣ in t e g r a t ed ! ’ )

except Exception as e :
print ( e )
print ( f ’A␣ stream␣has␣ f a i l e d ␣ to ␣ generate , ␣most␣ probably ␣due␣

to ␣ c r o s s i n g ␣ the ␣ cent r e ’ )
print ( f ’ S imulat ing ␣ s t a r t ␣{ tup l e ( a l t i n i t p o s ) }␣without ␣ the ␣ s c a l a r

␣ syn the t i c ␣ f i e l d ’ )
try :

stream = sn . so lvedyn ( tuple ( a l t i n i t p o s [ : ] ) , i n i t v e l , f i e l d ,
e i g en s t a t e , norot , ’ Nosca lar ’ )

stream . c o l o r = ’ orange ’
s o l . append ( stream )
print ( f ’ Stream␣number␣{ l en ( s o l ) }␣has␣been␣ in t e g r a t ed ! ’ )

except Exception as e :
print ( e )
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print ( f ’A␣ stream␣has␣ f a i l e d ␣ to ␣ generate , ␣most␣ probably ␣due␣
to ␣ c r o s s i n g ␣ the ␣ cent r e ’ )

else :
for i in range ( i n i t p o s a r r a y . shape [ 1 ] ) :

for j in range ( i n i t p o s a r r a y . shape [ 2 ] ) :
print ( tuple ( i n i t p o s a r r a y [ : , i , j ] ) )
try :

s o l . append ( sn . so lvedyn ( tuple ( i n i t p o s a r r a y [ : , i , j ] ) ,
i n i t v e l , f i e l d , e i g en s t a t e , norot , nosyn ) )

print ( f ’ Stream␣number␣{ l en ( s o l ) }␣has␣been␣
in t e g r a t ed ! ’ )

except Exception as e :
print ( e )
print ( f ’A␣ stream␣has␣ f a i l e d ␣ to ␣ generate , ␣most␣

probably ␣due␣ to ␣ c r o s s i n g ␣ the ␣ cent r e ’ )

#Save the r e s u l t
print ( f ’ Saving␣ r e s u l t ␣ to ␣ f i l e ␣ r e su l tF { f i e l d t y p e } I { I }nr{nr} l ab l eng th

{ l ab l eng th }tmax{tmax}J{J}Gamma{Gamma}mass{mass0} l en { len0 }n{
e i g e n s t a t e } ve l { i n i t v e l } norot { norot }nosyn{nosyn} a l t s t r eam {
a l t e rna t e s t r e ams } . bin ’ )

with open( f ’ saves / ode s o l s / r e su l tF { f i e l d t y p e } I { I }nr{nr} l ab l eng th {
l ab l eng th }tmax{tmax}J{J}Gamma{Gamma}mass{mass0} l en { l en0 }n{
e i g e n s t a t e } ve l { i n i t v e l }swarmnum{swarmnum}norot { norot }nosyn{nosyn
} a l t s t r eam { a l t e rna t e s t r e ams } . bin ’ , ’wb ’ ) as f i l e :
p i c k l e . dump( so l , f i l e )

else :
print ( ’ Loading␣ p r ev i ou s l y ␣ generated ␣ r e s u l t ’ )

#Extrac t p o s i t i o n s and o r i e n t a t i o n s o f the f i r s t stream
pos = s o l [ 0 ] . y [ 0 : 3 , : ]
v e l = s o l [ 0 ] . y [ 5 : 8 , : ]
o r i = s o l [ 0 ] . y [ 3 : 5 , : ]
#Print the r e s u l t
print ( ’ Times␣sampled : ’ )
print ( s o l [ 0 ] . t )
print ( ’ Rotation ␣ i n t e g r a t ed : ’ )
print ( o r i )

sn . l i n e p l o t ( so l , f i e l d , I , i n i t v e l , swarmnum , e i g en s t a t e , norot , nosyn ,
a l t e rna t e s t r e ams )
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