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ABSTRACT

Photocatalysis and electrocatalysis are two sustainable and renewable technologies that can meet global
energy demands in environmentally friendly ways. According to recent research, 2D boron mono-
chalcogenides in the 1 T and 2 H phases are stable, strong, and broad bandgap semiconductors. Our
calculations show a strong UV absorption ability and suitable band edge positions for water splitting
oxidation and reduction, making it a good choice for an efficient photocatalyst. The development of
bifunctional electrocatalysts has piqued the interest of researchers working in the field of electrocatalysts
for fuel cells. The electrocatalytic properties of 2D boron monochalcogenides are also investigated for
catalyzing both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). The calculated
overpotentials for OER/ORR mechanism are found to be 0.92/1.09 for BS (1 T), 1.00/0.59 for BS (2 H), 0.96/
1.05 for BSe (1 T), 0.92/0.85 for BSe (2 H), and 1.10/0.92 for BTe (1 T), which are close to benchmark
catalysts. The ORR overpotential of BS (2H) is 0.59 V, near well-known catalyst Pt (0.45 V). Therefore, our
investigations indicate that the family of 2D materials, boron monochalcogenides, are promising pho-
tocatalyst and electrocatalyst candidates for OER and ORR.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Photocatalysis and electrocatalysis are two critical sustainable
and green approaches to satisfy the energy demands in a cleaner
way effectively. At present, the difficulties in the quest for high-
efficiency, low-cost, and reliable catalysts are still limited to
these two technologies [1,2]. The efficiency of photocatalysts and
electrocatalysts is related to the structure and design of materials.
2D materials have unique structural merits, mainly charge carrier
transport, stability, active surface sites, electronic band structure,
and light-absorbing properties [3]. However, 2D materials for
photocatalyst present some significant challenges such as isola-
tion, mobility of photogenerated electron-hole pairs, and light
trapping at the surface of materials [4]. In order to achieve an
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efficient photocatalyst, the redox potential of water should lie
between the conduction band edge and the valence band edge of
the materials. The conduction band edge should be above H*/H;
redox potential, and the valence band edge should be below H,0/
0, oxidation potential [5,6]. In the present work, we obtained the
band edge positions of all boron monochalcogenides suitable for
photocatalyst, excluding the BTe (2H) phase. In the electrocatalytic
procedure, the catalyst’s performance is evaluated by its capability
for absorption/desorption of main reaction intermediates associ-
ated with intermediate reactions. There are two basic electro-
chemical processes, OER and ORR, taking place in energy storage/
conversion devices like metal-air batteries and renewable fuel
cells. In metal-air batteries and fuel cells, i.e. galvanic mode (dis-
charging) oxygen molecule gets reduced into water molecule and
electrolytic mode (charging) water molecule gets oxidized into an
oxygen molecule. However, in both reactions, redox pair O2/H>0 is
present, but the procedure of ORR is just reversed to OER [7—10].

Some other technological problems have to be resolved before
their huge level applications, one of the sluggish kinetics of ORR at
the time of discharging and OER during charging. For instance, the
current exchange density of ORR at the cathode is much smaller
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than the oxidation reaction at the anode. Additionally, OER is
censorial to Zn-air batteries regarding voltage performance and
recharge rate, usually lower than in the current batteries system
[11]; hence, developing a bifunctional electrocatalyst for OER and
ORR is remarkably advantageous in improving the recharge rate
and voltage performance in rechargeable metal-air batteries.
Developing a single bifunctional catalyst that is efficient for OER
and ORR is, however, challenging. Platinum (Pt) and Pt-based alloys
are the most effective electrocatalyst for ORR; however, they are
poor electrocatalysts for OER [12—14]. On the other hand, ruthe-
nium and iridium oxide-based electrocatalysts have excellent OER
electrocatalysts, but they are poor electrocatalysts for ORR [15].
Besides this, the exorbitant prices and shortage of platinum and
other valuable metals hinder the operational use of these metals as
an electrolyte in energy storage/conversion devices [16]. Recently,
2D materials such as hexaaminobenzene-based coordination
polymers [17], nitrogen-doped graphene [18], 2D transition-metal
carbides [19], CoNy embedded graphene [20], and transition
metal-implanted 2D CsN monolayer [21] have been widely inves-
tigated for applications in OER and ORR activity [22,23]. Becuase of
a vast number of reaction sites and high activity toward OER and
ORR, catalysts based on 2D materials are considered as promising
candidates for OER/ORR activity. In comparison, nitrides [24] and
chalcogenides [25] have also been studied for ORR. Particularly,
chalcogenide materials have drawn colossal attention for OER and
ORR catalyst applications because of their high electric conductivity
and specific surface area (active sites) [26,27]. Ternary spinal sele-
nide based on indium [28] and two-dimensional indium chalco-
genide InpX3 (X = S, Se, Te) was identified as a potential
photocatalyst for the overall splitting of water [29]. As far as the
synthesis of materials is considered, we expect that the boron
monochalcogenides monolayers can be synthesized like other
group IIIA chalcogenides Ga,Ss [30], GaSe [31], GaTe [32], InSe [33],
and InpTes [34] monolayer. The possible synthesis approaches,
which can be followed are vapor phase deposition, wet chemical
synthesis, and exfoliation technique.

Encouraged by the fascinating properties of chalcogenide ma-
terials toward photocatalyst for water splitting and electrocatalyst
for OER and ORR activities, we have investigated the photocatalytic
properties of boron monochalcogenide BX (X = S, Se, Te) for water
splitting and OER/ORR activity. In this work, we have strategically
investigated structural, electronic, optical, photocatalytic proper-
ties and bifunctional catalytic activity toward OER/ORR using the
first-principles calculations. Our calculations demonstrated that BX
(X =S5, Se, Te) in both phases, 1 T and 2 H, is a bifunctional catalyst
for both OER and ORR. The OER overpotential of boron mono-
chalcogenides is even superior to valuable Pt catalyst. It is excepted
that this research shed more light on 2D photocatalyst and elec-
trocatalyst mechanism and is very useful in the design and devel-
opment of highly effective multifunctional photocatalysts and
electrocatalysts.

2. Computational methods

All simulations are based on density functional theory (DFT)
[35]. For DFT calculations, we used the Vienna ab-initio simulation
package (VASP) [36]. For describing core electrons, we used pro-
jector augmented wave potentials (PAW) [37]. The exchange-
correlation functional has been categorized by the generalized
gradient approximation (GGA) with the Perdew—Burke—Ernzerhof
(PBE) functional [38]. We have used Grimme’s suggested DFT-D3 to
define weak Vander Waals (vdW) interactions [39]. The plane wave
energy cutoff was taken as 500 eV. The k-points sampling
19 x 19 x 1 is used in the Brillion zone for conjugate gradient (CG)
calculation as according to Monkhorst—Pack scheme [40]. To
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prevent interference with the nearby layer, a vacuum of 15 A in z-
direction was used for the calculations. The convergence criterion
for energy is set as 107> eV in every self-consistent loop. We relaxed
the structure until the Hellmann—Feynman force on each atom had
not reached equal or was less than 0.005 eV/A.

In an acid environment, the overall OER can be defined as,

2H,0 — O, + 4H" + 4e~ 1)

The elementary reaction steps in 4e~ pathway are given below:

Hy0 (1) + * —» *OH + e~ + H" (a)
“OH — *0 + e~ + H' (b)
H,0 (I) + *O — *OOH + e~ + H* (c)
*OOH — Ox(g) + e~ + H* (d)

Where * indicates a site for catalyst activity while (1) and (g) relate
to the phase of the liquid and gas.

The ORR takes place by simple steps in the opposite direction of
the OER.

0, + 4H' + 4e~ — 2H,0 (2)

The ORR process via the 4e™ transfer pathway in acidic solution
is given below:

* 4+ 0y(g) + e +H" - *OOH (a1)
*00H 4 e~ + Ht — Hy0(l) + *O (b1)
*O+e +H+ — *OH (c1)
*OH + e + H™ — H,0(l) + * (d1)

The reaction Gibbs free energy AG for each step is defined by the
following equation [41],

AG = AE + AZPE - TAS + AGy + AGpy (3)

The binding energy, zero-point energy change, and change in
entropy of the absorbed state of the system and gas-phase state are
represented by AE, AZPE, and AS. The AZPE and AS values are ob-
tained from DFT calculation and standard thermodynamic data.
AGy = -eU, where U s related to a standard electrode. AG,y denotes
Gibbs free energy associated with the concentration of H' ions,
AGpy = KgT x In10 x pH. Using the technique proposed by Nerskov
and co-workers [42], the Gibbs free energy of these element steps
can be calculated. The reference electrode was adopted as the
reversible hydrogen electrode (RHE), in which the proton-electron
pair energy was set to half a hydrogen molecule: uy. +u, = (% )uHa,
under conditions of U =0V and Py, =1 bar.

For the four basic steps of OER, the free energy change can be
calculated as. AG; = AG+on, AGp = AGxo - AGxon, AGe = AG+oon -
AG+g AGq = 4.92- AG+oou. free energy change in ORR steps are
calculated as, AGy = -AGqg, AGy = -AG¢, AGy = -AGp, AGy = -AG,.

Now, the overpotential (1) can be determined by using the
following equations,

Noer = Max {AG,, AGp, AG, AGq,}/e — 1.23 (4)

Norr = Max {AGy, AGy, AGe, AGg,}/e +1.23 (5)
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3. Results and discussion
3.1. Structural properties

The 2D boron monochalcogenides BX (X = S, Se, Te) have two
phases 1 T and 2 H. In the 1 T phase, two graphene-like hexagonal
monolayers of BX are arranged in such a way that chalcogenide
atoms (S, Se, Te) are in the center of the hollow space of the
hexagon and boron atoms are placed just above the boron atoms as
demonstrated in Fig. 1 (a) and (c). ABBC generally represents the
stacking of atoms. On the other side in the 2H phase structure, two
graphene-like hexagonal monolayers of BX are arranged in such a
way that chalcogenide atoms (S, Se, Te) are just above the chalco-
genide atoms, and boron atoms are just above the boron atoms as
illustrated in Fig. 1 (b) and (d) that stacking of atoms are generally
represented by ABBA. The lattice constant of different structures of
boron monochalcogenides BS (1 T), BS (2 H), BSe (1 T), BSe (2 H),
BTe (1 T), and BTe (2 H) are lies between 3.04 A to 3.59 A. Our
previous work [43] explains more detailed information about other
structural parameters such as bond length, bond angle, and cohe-
sive energy. Negative cohesive energies of all materials indicate the
structural stability of all materials.

As for as dynamic stability is concerned, boron monochalcog-
enides’ dynamic stability is investigated by calculating the spec-
trum of phonon. The calculated phonon dispersion curves are
shown in Fig. S1 and these phonon dispersion curves are strongly
consistent with previous studies [44]. Imaginary frequencies are
absent in most boron monochalcogenide monolayers, except BTe
(2 H). BTe (2 H) could be recognized as dynamic stable containing
minimal imaginary frequencies (—0.224 THz) near to I', and if high
K-points or bigger supercell will be employed in the computation, it
can be corrected. Despite this, it was identified as dynamic and
stable in the previous investigation [43].

Furthermore, we investigated thermal stability by performing
ab-initio molecular dynamics (AIMD) calculations at 300 K and

PO

r** *

oB
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found that the remaining preserved structures were preserved after
5 ps as shown in Fig. 2. During the AIMD simulations, the motion
(vibration from mean position) of the atoms increases compared to
the equilibrium state; that is why energy fluctuates. In the energy
vs. time graph (Fig. 2), the trough represents the equilibrium state
of the structure (minimum energy); when atoms move away from
the equilibrium state, crest forms. For MD calculations, we kept our
systems at a constant temperature of 300 K for 5 ps. It was seen
that after every equilibrium state, atoms behave in the same
manner and a repeated pattern was obtained in the energy graph
(Fig. 2). It was observed that there is no breaking of bonds between
the atoms at 300 K. Therefore, the outcomes support the remark-
able thermal stability of boron monochalcogenide (BX) monolayers.
We conclude from the above descriptions that BX monolayers are
dynamically and thermally stable.

3.2. Electronic properties

We have also investigated the electronic properties of boron
chalcogenides BX (X = S, Se, Te) based on the partial density of
states diagrams, as shown in Fig. 3. Electronic properties play a very
important role in understanding photocatalyst and electrocatalyst
activities of materials. From our previous work [43], we found that
all boron monochalcogenides are wide-bandgap indirect semi-
conductors and bandgaps are 2.92 eV, 2.83 eV, 2.76 eV, 2.55 eV,
1.78 eV and 1.53 eV for BS (1 T), BS (2 H), BSe (1 T), BSe (2 H) BTe
(1 T) and BTe (2 H), respectively. The wide indirect bandgap makes
it less possible to recombine electron-hole pairs. From Fig. 3, in all
boron monochalcogenide 2D materials in valence band, 3p states of
the chalcogenide atoms S, Se, and Te are dominant over all the
states of a boron atom, but at near Fermi level, 2p state of the boron
atom is hybridized with 3p states of chalcogenide atoms. The high
density of states near the Fermi level makes it easier to transfer
electrons from the valence band near the bottom of the conduction
band, 2p state of the boron atom is dominant over all the states of

(b) & A A

A ;

(d)

X

Fig. 1. Relaxed structures of boron monochalcogenides, (a) and (c) top view and side view of 1 T phase, (b) and (d) top view and side view of 2 H phase.



P. Mishra, D. Singh, Y. Sonvane et al.

Materials Today Energy 27 (2022) 101026

(a) BS (1T) (b) BS (2H)
i M/V\/V\M/\/‘ o
’g‘ -5.75 'g -5.75AMM/\AM/\
Z 580 Lagagad & -580F 111 3132
g -5.85‘ _.,"'_ « t.“n % _5.85_ .‘.“,‘. A‘AAA‘A‘
> -5.90F KR =-590F XXX} Ak
a . - " o u
5 -5.95} 5 595 aaan YYYY
2 YYY S
= -6.00F A o = -6.00F
-6.05 / \ -6.05 / \
-6.10 + x . L -6.10 " ) . .
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time (fs) Time (fs)
() (d)
BSe (1T) BSe (ZH)
i ® Ht/\/\/\/\/\/\/\/\-"\#
: -5,20£/\./\/V\M/\N\ T 520
:‘5-25' N - - N = 5.25F 4 Ak Ak
= I e PR @ Tl
% 530 “THh ANV = s30F “ XX RS
> -5.35} T A : 5.35) 350 0 A ¢ Li L1
Eﬂ 5 i w3 i-b-jj T i
g -540F Y'Y 8 4 & 4 g -540F YY)J XXX
= 5.45f S 545}
-5.50/ -5,50/ \
-5.55 : : . L -5.55 . . . .
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time (fs) Time (fs)
(e) ()
BTe (1T) BTe (2H)
2 ISAAANAANA] 2 L ANANAANAAAN
-4.65
S 470F M | S |
= -4.75} ?ic‘:?l‘n:? alelefalo g -4.70-; ? 99 qzofog‘vic
% -480F “An B 450 Ay AN XL
E£-4.85_ e p 5 P O 03 O:\; Et)::.::- i OAQ‘U‘Q"C
- Sl .5 ¥ 5 5 5 O I R W 0 < XK
= -4.95} = -4.90F
5.00f / \ 4.95-/ \
-5.05 L L L . -5.00 . . . .
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Time (fs)

Time (fs)

Fig. 2. AIMD simulations at 300 K for the evolution of total energy per atom in 5000 fs for (a) BS (1 T), (b) BS (2 H), (c) BSe (1 T), (d) BSe (2 H), (e) BTe (1 T), and (f) BTe (2 H)
monolayers. The atomic structure at the start and end of the AIMD simulation is shown in the inset diagrams.

chalcogenide atoms (S, Se, and Te). On moving toward high energy
levels, in the case of BS and BSe monolayers such as 1 T and 2 H
phase, 2p state of boron atom hybridized with 3p state of S atom
and in case of BSe, 2p state of B atom hybridized with 4p state of Se
atom. In the case of BTe monolayers in both 1 T and 2 H phase, the
2p state of B atom hybridized with 5p state of Te atom but for
particular energy such as 4.30 eV for 1 T phase and 4.20 eV for 2H
phase 5p state of Te atom dominant over all the states.

3.3. Optical absorption

The optical properties of any material can be determined by
using the equation given below

e (w) = &1 (w)+ie2 (w) (6)
where ¢ (w) is the frequency-dependent dielectric function, £ (w) is
the real part of dielectric function obtained from the Kramers-
Kronig transformation, and &, (w) is the imaginary part of the
dielectric function determined by using simulation over empty
states.

The absorption coefficient o (w) is obtained from the equation:

a(w) = \/z'w\/, [e} (0) + €3 (0) — e1(w)

(7)
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Fig. 3. PDOS of (a) BS (1 T) (b) BS (2 H) (c) BSe (1 T) (d) BSe (2 H) (e) BTe (1 T) (f) BTe (2 H) structures.

The absorption spectra of each boron monochalcogenides
structure are shown in Fig. S2. We have calculated the absorption
coefficient in both directions E||X (in the plane) and E||Z (out of the
plane). For E||X absorption peaks occurred at 8.48 eV, 7.02 eV,
8.37 eV, 8.75 eV, 7.18 eV and 7.66 eV for BS (1 T), BS (2 H), BSe(1 T),
BSe (2 H), BTe (1 T) and BTe(2 H), respectively. For E||Z absorption
peaks occurred at 21.63 eV, 21.52 eV, 19.16 eV,19.45 eV, 16.88 eV,
17.11 eV for BS (1 T), BS (2 H), BSe (1 T), BSe (2 H), BTe (1 T) and BTe
(2 H), respectively. According to the above data, the highest ab-
sorption peaks occur in the UV region of electromagnetic spectra.
However, these are the highest absorption peaks, but there are
petite curves and peaks available at a low energy level for E||Z-di-
rection like at 6.23 eV, 6.69 eV, 6.31 eV, 6.37,eV 5.54 eV, and 8.49 eV
for BS (1 T), BS (2 H), BSe (1 T), BSe (2 H), BTe (1 T), and BTe (2 H),

respectively. Therefore, it is potentially advantageous in photo-
catalyst applications.

3.4. Photocatalytic properties

Generally, in the process of photocatalytic water-splitting, a
photocatalyst (usually a semiconductor) is immersed in water.
Whenever it is excited from photon energy equal to or greater than
its bandgap’s energy, the valence band’s electrons move to the
conduction band and start reducing H* to H,. Although the holes
stay in the valence band, the oxidation of H,0 in H/O, is started.
An efficient and effective photocatalyst for water splitting must
keep the conduction band edge (CB edge) above the level of water
reduction (H"/H,) and the valence band edge (VB edge) below the
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level of water oxidation (02/H20). To investigate this requirement
for boron monochalcogenides, we have calculated the energy po-
sition of CB edge and VB edge by using the formulae [45]:

ECB =x- Eo - O.S(Eg) (8)
Evg = Ecg + Eg 9)

where Ecp and Eyp are the value of CB edge and VB edges, 7, is the
absolute electronegativity of BX (X = S, Se Te), Eg is bandgap en-
ergy, and Eo, the energy of free electron on hydrogen scale is 4.5 eV.

Fig. 4 shows the CB edge and VB edge of BX monolayers. As
shown in Fig. 4, the BS (1 T), BS (2 H), BSe (1 T), and BSe (2 H)
contain a strong capacity for reducing H" to H, because its CB edge
is more negative to the water reduction potential of H*/H, (0 eV vs.
NHE). Other than this, the VB edge is also lower than water
oxidation potential (1.23 eV vs. NHE); hence these materials also
have a strong oxidizing ability to H,O to O2. However, in the case of
BTe (1 T) and BTe (2 H), the CB edge is more negative to 0 eV, so they
can easily reduce H to Hy. On the other hand, the VB edge of BTe
(1 T) at 1.24 eV so it can oxidize H,O to O, but not as strongly as
boron sulfide and boron selenide monolayers for BTe (2 H) its VB
edge at 1.12 eV; unfortunately, it cannot oxidize H,0 to O,. These
results ensure that the materials BS(1 T), BS (2 H), BSe(1 T),
BSe(2 H), and BTe(1 T) can split water molecules into Hy and O. In
addition, the absorption spectra of each boron monochalcogenides
structure are shown in Fig. S2. From Fig. S2, it is evident that the
highest absorption peaks exist in the ultraviolet (UV) region of
electromagnetic spectra. Consequently, these materials are useful
in photocatalyst applications.

3.5. Bifunctional electrocatalytic for OER/ORR activity

Now, we moved to the OER and ORR performance of boron
monochalcogenides. In the OER process, there are four elementary
steps. In the first step, the H,O molecule split into H" and *OH on
the catalyst’s surface (the *OH represents that OH is adsorbed on
the catalyst’s surface). In the second step, *OH split into an H" and
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adsorbing *0. In step third, *O reacts with another H,O molecule
and forms *OOH. O, is formed and liberated from the catalyst
surface in the fourth step. We have examined the most favorable
site for oxygenated intermediates (*OH, *O, *O0H) for absorption
on boron monochalcogenide monolayers. We found that at the near
of chalcogenide atoms (S, Se, Te) are energetically favorable sites for
absorption of oxygenated intermediates. Fig. 5 and Fig. 6 show the
relaxed structure of BX monolayers with intermediates (*O, *OH
and *OO0H).

Fig. 7 illustrates the free energy diagram for BX (1 T) and BX
(2 H) formation of *OH, *O, *O0H, and O, steps for OER and simi-
larly reverses this for ORR. From Fig. 7(a) and (b) for BS (1 T) and BS
(2 H), *OH is the potential-limiting step for OER. The overpotential
for OER (nogr) we got from our calculation is 0.92 V and 1.00 V.
From Fig. 7(c) for BSe (1 T), *OOH is the potential-limiting step for
OER, and corresponding overpotential (nogr) is 0.96 V. From
Fig. 7(d), *OH is the potential-limiting step in the case of BSe (2 H)
and overpotential (noggr) is found to be 0.92 V. From Fig. 7(e) and (f)
for BTe (1 T) and BTe (2 H) for both *OOH is a potential-limiting step
and the corresponding overpotential are found to be 1.10 V and
0.97 V, respectively.

Additionally, ORR is just the reverse of the OER mechanism.
From the free energy diagram in Fig. 7(a), for BS (1 T) O, to *OOH,
protonation acts as the potential-limiting step and the over-
potential for ORR (nogrr) is 1.09 V. In Fig. 7(b), for BS (2 H) process,
*QOH to *O functions as the potential-limiting step and the over-
potential (nogrg) is 0.59 V, which is comparable to most commonly
accepted Pt catalysts (norr = 0.45 V) [46]. In Fig. 7(c), for BSe (1 T),
protonation of O, to *OOH works as the potential-limiting step and
the overpotential is (nogrr) 1.05 V. In Fig. 7(d), for BSe (2 H) reduc-
tion, protonation of of O to *OH acts as the potential-limiting step
and the overpotential (norr) is 0.85 V. In Fig. 7(e) and (f), in the case
of both BTe (1 T) and BTe (2 H), protonation of O, to *OOH acts as
the potential-limiting step and the overpotentials (nogr) are 0.92 V
and 0.73 V, respectively.

In order to describe the bifunctional electrocatalytic activity, we
used the sum of OER and ORR overpotential nogr/orr as a measure.
It has been identified that boron monochalcogenides monolayers
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Fig. 4. The band edge positions of boron monochalcogenides with respect to water oxidation and reductions potential levels.
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Fig. 5. The top view and side view of the relaxed structure after adsorption of *O, *OH, *OOH on BS (1 T), BS (2 H), and BSe (1 T).

are promising bifunctional electrocatalysts whose mMoggrjorr are
found to be 0.92/1.09: 2.01 V for BS(1 T), 1.00/0.59; 1.59 V for BS
(2 H), 0.96/1.05; 2.01 V for BSe (1 T), 0.92/0.85; 1.77 V for BSe (2 H),
1.10/0.92; 2.02 V for BTe (1 T) and 0.97/0.73 1.70 V for BTe (2 H). The
calculated values of mogrjorr are comparable to Pt (1.23/0.45;
1.68 V) and IrO (0.65/1.12; 1.77 V) [47], particularly with regard to
all boron monochalcogenides, 2 H phase structure such as BS (2 H),
and BSe (2 H) shows the superior performance bifunctional OER/
ORR electrocatalytic activity. For comparison, the overpotential
values for the OER/ORR mechanism of recently reported pristine 2D
materials are summarized in Table 1. In Table 1, we observe that the
overpotentials of boron monochalcogenides are less for some

materials and a little bit high for some materials. It was seen that
the norr is higher in the present work as compared to 2D boron
phosphide [48] and B-Sb monolayer [49].

3.6. Evaluation of electrocatalytic activity

All the above results suggest that boron monochalcogenide
shows satisfactory performance for both OER and ORR activity. For
better understating of kinetic of electrocatalytic activity, Bader
charge analysis, isosurface charge density plots, and partial density
of states (PDOS) with oxygenated intermediates (*O, *OH, *OO0H)
are analyzed comparatively for hybridization of states and charge
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transfer analysis [13,14]. In Table 2, *O atom gets the maximum
charge although moving toward heavier chalcogenide atoms it
decreases, *OH obtained less charge and *OOH get the minimum
charge resulting in *O strongly is interacted with chalcogenide
atoms of the monolayer. Since at monolayer O, OH, and OOH are
optimized at the top of chalcogenide atoms. Hence, we consider
that these charges are mostly transferred from the chalcogenide’s
atom (S, Se, Te). For visualization of charge transfer, we have plotted
the isosurface charge density profile (Fig. S3 and Fig. S4), i.e.
accumulation of charge (yellow color) exists across the adsorbed *O
atom and depletion of charge (cyan color) located near the chal-
cogenide atoms. On moving *OH and *OOH yellow area gradually

decreases due to weakening attraction between chalcogenide
atoms and *OH, *OOH.

These outcomes can be better described by investigating PDOS.
From Fig. S5 and Fig. S6, in the case of BS (1 T) and BS (2 H) near Fermi
level peak of O-p state is just below the peak of S-p states, which
shows nearly all charge transfer to O atom and O atom is strongly
bounded with S atom which shows the ionic character of bonding. In
the case of BSe(1 T), BSe (2 H), BTe (1 T), and BTe (2 H), however, O-p
states overlap with the Se-p state and Te p-states, which implies that
the p state of the O atom is hybridized with the p state of Se and Te
atoms. It means that it shows covalent nature of the binding, which
makes it more active toward OER/ORR activity for bifunctionality.
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Fig. 7. Calculated free energy diagrams of OER and ORR pathways for boron monochalcogenides, where the potential limiting steps are marked in red and black colors.

Table 1

Over potentials (nogr and Mogr) for OER/ORR of previously reported pristine 2D Table 2

materials. Charge transfer in the unit of e~ in case of *O, *OH, *OOH species from boron

— - monochalcogenide monolayers.

Pristine 2D materials Ref MNOER TNORR
Boron Phosphide [48] 1.62 0.67 0 () *OH(e™) *OOH(e™)
B-Sb monolayer [49] 0.73 0.35 BS (1T) 1.93436 0.38560 0.08045
Black arsenene [50] 1.85 2.19 BS(2H) 1.94216 0.37649 0.09026
Mo,B; monolayer [51] 2.67 1.50 BSe(1T) 1.79052 0.44453 0.16256
Black phosphorene [52] 3.03 2.02 BSe(2H) 1.79393 0.43644 0.25235
SiP homo-bilayer [53] 1.59 1.66 BTe(1T) 1.76620 0.90131 0.30885
SiAs homo-bilayer [53] 2.06 1.68 BTe(2H) 1.77247 0.64454 0.42763
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4. Conclusions

In summary, we examined structural, electronic, photocatalytic,
and electrocatalytic activity toward OER and ORR by DFT calcula-
tions. The boron monochalcogenides BX (X = S, Se, Te) monolayers
are wide bandgap semiconductors. Moreover, the band edge posi-
tions of boron monochalcogenides confirm its excellent ability to
trigger reduction and oxidation reactions for water splitting except
for BTe (2 H). Therefore, BX monolayers can be recognized as an
excellent water-splitting photocatalyst. We have also studied the
activity of the BX monolayer for both OER and ORR. It is observed
that the BX monolayer system demonstrates fair activity OER and
ORR. The overpotentials for both OER and ORR are good enough for
all monolayers. In the present work, the 2D BS (2 H)/BSe (2 H)
monolayers are good candidates for OER/ORR catalyst, with the
calculated overpotential nogr/Morr values found to be 1.00/0.59 V
and 0.92/0.85 V, respectively. The results can be potentially useful
for developing photocatalyst and oxygen redox (OER/ORR) bifunc-
tional catalysts.
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