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1 Introduction

In the recent years, enormous progress in the analysis of the BPS properties and spectra of
4D N = 2 quantum field theories has been achieved. There are essentially two approaches
for solving the BPS spectral problem of a given 4D N = 2 model. One is geometrical,
relying upon spectral networks [1–10], the other is algebraic and it is based on BPS quivers,
motivated by geometric engineering in Type II superstrings [11–29]. One of the interesting
aspects that emerged from these studies is that there are deep interconnections in between
the spectrum of BPS states and the properties of the theory at the origin of the Coulomb
branch. In particular, the quantity1

I(q) = (q)2r
∞ Tr

−−−−→∏
γ∈ BPS

I1
2H

(q; Yγ)

 , (1.1)

where the product is taken in order of increasing arguments of the central charges of the
BPS states with the smaller phase on the left, has been conjectured to agree with the Schur
limit of the superconformal index for SCFTs [30–34]. Here

(q)∞ =
∏
n≥1

(1− qn), I1
2H

(q; z) =
∏
n≥0

(
1 + zqn+ 1

2
)−1

, (1.2)

and the Yγ are valued in a quantum torus [12]

YγYγ′ ≡ y
〈γ,γ′〉

2 Yγ+γ′ , (1.3)

and we have identified the fugacity parameter q with the quantum deformation parameter y.
This motivates the question: given a BPS spectrum at a given point of the Coulomb branch,
is it possible to understand whether it corresponds to an SCFT or to an asymptotically free
theory? From the above conjecture, it seems that the answer is affirmative: computing I(q)
and checking that it gives rise to the vacuum character of a 2D chiral algebra [35] can be
interpreted as a signal of superconformal symmetry for the 4D theory. This fact is closely
related to another conjecture to which we now turn. Consider the quantum monodromy
operator [12],2

M(q) ≡
−−−−→∏
γ∈ BPS

I1
2H

(q; Yγ). (1.4)

This operator gives rise to an inner automorphism of the quantum torus algebra

Yγ 7→ Y′γ ≡ AdM(q) (Yγ) , (1.5)

that in the limit q → 1 gives rise to a Y -system. More precisely, it can happen that the M(q)
admits a 1/2s root, a fractional quantum monodromy [12]. In that case M(q) = N(q)2s.

1 In this formula for notational simplicity we refer to theories that admit a finite BPS chamber where
the spectrum of stable BPS particles consists only of hypermultiplets. It is straighforward to generalize
the above formula to theories where the BPS spectrum admits more complicated multiplets, exploiting the
explicit expression of the KS operator.

2The operator M(q) defined in [12] is the inverse of the one we are going to use in this paper.
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Notice that every system admits a 1/2 monodromy corresponding to the action of CPT
on the BPS spectrum. Whenever a model admits a BPS chamber with a Z2s symmetry,
it automatically has a 1/2s fractional monodromy. BPS particles can be labelled by their
electric, magnetic and flavour charges. These charges are elements of an integral lattice
Γ, endowed with an integer valued anti-symmetric pairing that we shall denote by 〈−,−〉.
Choosing a basis γi of Γ, and setting

Yi ≡ Yγi (1.6)

we can define a discrete time evolution as follows

Yi(t± 1) ≡ AdN(q)±1Yi(t). (1.7)

In the q → 1 limit, the Yi become just ordinary commutative variables Yi and the above
action reduces to a rational function

Yi(t± 1) ≡ R(±)[{Yi(t)}]. (1.8)

This auxiliary dynamical system satisfies the following conjectures:

1. The Y -system above is periodic ⇔ the theory at the origin of the Coulomb branch is
superconformal [12]. Moreover, if the N = 2 theory has U(1)R charges for Coulomb
branch operators of the form

q1
p1
,
q2
p2
, . . . ,

qr
pr

(1.9)

where qi and pi are coprime, the period of the Y -system is given by

` ≡ lcm(pi) Yi(t+ 2s`) = Yi(t) (1.10)

In particular, for Lagrangian theories or for class S theories with regular punctures,
` = 1.

2. The Y -system above is non periodic but integrable (it has a number of independent
commuting hamiltonians, that equals the number of independent Y -system variables)
⇔ the theory at the origin of the Coulomb branch is asymptotically free [36].

These conjectures were formulated based on a number of explicit computations. We refer
our readers to [12] and to [36] for a review.

Let us address the above conjecture by probing the 4D N = 2 theory of interest with
BPS line operators Lζ [37–39]. One can argue for both 1.) and 2.) above just using the
Witten effect [40] on BPS line operators [41].

More in details, following [42] we consider the 4D N = 2 theory of interest on a circle
S1 of finite radius and we obtain an effective 3d N = 4 theory with a moduli space of vacua
MH . For theories of class S such a moduli space is identified with the Hitchin moduli
space parametrizing harmonic bundles on a curve C and in particular has the structure of a
torus fibration over the four dimensional Coulomb branchMC . Such moduli space can be
given TBA coordinates Xγ(ξ) and the Y -system above can be considered as a Y -system for

– 2 –
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the TBA equations of the Xγ(ξ). Techniques based on spectral networks can be used to
employ line defects as probes of the geometry ofMH , as in [9, 43–46]. Another approach
using semiclassical methods is discussed in [47–53]. The connection with cluster algebras is
further investigated in [54–56]. For a review see [57].

Now consider wrapping the S1 with a BPS line operator [39]. This gives rise to a chiral
operator in 3d that we denote by L̂ζ . Being a chiral operator it can be given a vev that
must be a function of the coordinates onMH , schematically

〈L̂ζ〉 = F (Xγ) =
∑
γ∈ΓL

Ω(γ; L̂ζ)Xγ(ζ), (1.11)

where the Ω(γ; L̂ζ) are protected spin characters (PSCs) for framed BPS states.3 When it
is clear from the context we will omit the dependence of the PSC on the line operator and
write simply Ω(γ). The key for our argument is that while on one hand

〈L̂ e±2πiζ〉 =

 R(±) ◦ · · · ◦R(±)︸ ︷︷ ︸
2s times

◦ F

 (Xγ) (1.12)

on the other,
L e±2πiζ = W∓ Lζ , (1.13)

where W± is an operator implementing the Witten effect on dyonic BPS lines. Here it is
crucial that the phase ζ labeling the line defects is not valued on S1 but in a covering of
it [39]. From eq. (1.12) it is easy to reformulate the conjecture 1.) in terms of the structure
of such covering: 1.) is equivalent to the requirement that the covering is finite, which is
the statement we are going to argue. Also 2.) can be reformulated in terms of BPS line
defects: it becomes equivalent to the statement that there are enough Wilson lines, which
are BPS lines w such that W±wζ = wζ .

For Lagrangian theories this can be understood as follows. For theories without defects,
the U(1)R symmetry of the 4D N = 2 algebra is unbroken at the conformal point, and it
gets broken by flowing to a generic point along the Coulomb branch to a Z2 subgroup that
corresponds to the CPT symmetry. At non-generic points these symmetries can enhance
to larger cyclic subgroups of U(1)R commuting with CPT, Z2s. Even if the model is
asymptotically free, often certain discrete subgroups of the U(1)R symmetry turn out to be
still symmetries of the theory (e.g. CPT again), and still survive at special points along the
Coulomb branch. Indeed, in this case an anomalous U(1)R rotation of angle α corresponds
to a shift in the effective action of

− 2bα
32π2

∫
F ∧ F, (1.14)

3Recall that a PSC for framed BPS states is defined as

Ω(γ;Lζ) ≡ TrHBPS
Lζ

(γ)y
2J3 (−y)2I3 ,

where HBPS
Lζ

(γ) is the Hilbert space of framed BPS states of charge γ bound to the defect Lζ , J3 is the
generator of spin, and I3 is a generator of SU(2)R.

– 3 –
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where b is the coefficient of the 1-loop beta function. This rotation can be compensated by
shifting the theta angle by θ0 = 2b α. In particular, for theories with integer b, this breaks
the U(1)R to a discrete subgroup Z2b determined by the integrality property of 1

32π2
∫
F ∧F ,

and for α = 2π(n/2b) we are shifting the θ angle of a multiple of its period. For a U(1)R
rotation of angle α, the central charge rotates Z → ei2αZ. In particular, a 2π rotation of
the Z-plane, corresponds to a shifting of θ0 = 2πb.

Of course these discrete symmetries are broken by coupling the model to a BPS line
defect Lζ . Hence they have a non-trivial action on the space of line defects. A ±2π rotation
of the Z-plane corresponds to a ∓2π rotation of the argument ζ of the BPS line. Now, for
gauge theories with a non-zero beta function, such rotation is a symmetry for the theory in
the bulk corresponding to the Witten effect: shifting the theta angle θ → θ ± θ0 a dyon of
charge (mi, ei), where mi are magnetic charges while ei are electric ones, is mapped to a
dyon of charge (mi, e

′
i), where

(mi, ei)
W±−−−−−−→ (mi, e

′
i) = (mi, ei ±mi θ0/2π). (1.15)

The same effect takes place for the BPS dyonic lines: the theory T coupled to a defect Lζ
is mapped to itself, but now coupled to a different defect Le±2πiζ = W∓Lζ . This gives a
proof of the conjectures above in the case of Lagrangian theories. Indeed, if b = 0, there
is no Witten effect and this entails the fact that for Lagrangian SCFTs ` = 1. If instead
b 6= 0, we have that the Wilson BPS lines in a representation ρ have null magnetic charges
mi = 0 and therefore are such that

wρ
e±2πiζ = wρ (1.16)

and hence give rise to constants of motion for the Y-system:

wρ(Xγ) ≡ 〈 ŵρ
ζ 〉 = 〈 ŵρ

e±2πiζ 〉 = (R(±) ◦ wρ)(Xγ) (1.17)

To complete the proof of integrability, one has to show that the Y -system depends on
a number of independent Y -variables which equals the number of Wilson lines in the
fundamental representations. Using the results of [36] it is not hard to see that this
is the case for Lagrangian gauge theories with known BPS quivers as well as for non-
Lagrangian theories.

In this paper we consider the consequences of the above effect on the framed quiver
SQM characterizing framed BPS states [23, 58].4 A BPS line operator with ζ ∈ S1 extended
along the time direction can be interpreted as an infinitely heavy BPS particle sitting
steady at a point in space. In presence of such an external heavy object, the 4D N = 2
system develops extra sectors of BPS excitations bound to the defect, the framed BPS
states [39]. The quiver SQM description we alluded to above is easily obtained from this
picture [23, 58].5 The framed BPS degeneracies of 4D N = 2 theories which have a quiver
regime are captured by the representation theory of framed BPS quivers.6 In particular,

4See also [54], where a different approach is given for class S[A1] models.
5See [59, 60] for similar results in the context of BPS black hole physics.
6We address a minor puzzle of [58] in appendix A.
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we find that rotations of the Z-plane are mapped to sequences of framed BPS mutations
and using this method the argument for showing the validity of the conjectures above
becomes extremely simple, combinatorial and graphical. These results on the structure of
the discrete dynamical systems can be reinterpreted in terms of the presence or absence of
a U(1)R symmetry — see the discussion on pp.29–30 of [34]. From our analysis, we expect
that further framed quiver mutation sequences can be also exploited to extend the results
of our paper and implement the action of generalized S-dualities on BPS lines.

This paper is organized as follows: in section 2, in order to establish the notation we
are going to use throughout this paper, we briefly review certain aspects of the BPS quiver
theory; in section 3 we revisit the description of framed BPS states by means of quiver
SQM; in section 4 we study the case of the pure SYM su2 theory in detail. In section 5 we
introduce certain discrete integrable systems and discuss the identification of their conserved
charges with the fundamental Wilson line defects. Sections 6, 7 and 8 contain several
computations of vevs of line defects using the techniques developed in the first part of the
paper. We end with the Conclusions. Two appendices contain technical results.

2 BPS quivers and mutations ad usum delphini

2.1 BPS quiver quantum mechanics

Often the BPS states of a 4D N = 2 theory of rank r in its Coulomb phase can be described
as boundstates of certain elementary BPS monopoles and dyons, hypermultiplets that
can become massless along the Coulomb branch [61, 62]. For a given model with such
property, let us denote γ1, . . . , γD ∈ Γ the charges of the corresponding elementary BPS
particles, taking values in the lattice of charges Γ. In a Coulomb phase a central charge Z
for the 4D N = 2 supersymmetry algebra is generated dynamically [63], which gives a map
Z : p ∈ P 7→ Z(p,−) ∈ Hom(Γ,C), where P is the parameter space of the model (the space
of all couplings, mass deformations and vevs). In the regions of P such that the central
charges Z(p, γi) became all almost aligned, these BPS bound-states can be characterized in
terms of a quiver supersymmetric quantum mechanics with four supercharges (SQM) [11].
We call this a quiver regime. Rotating the Z-plane if necessary, we can choose the Z(γi) to
be all almost aligned with the purely imaginary axis. From now on let us assume that we
have done so. In absence of exotics BPS states [39], there are no walls of the third kind [64],
and the validity of the quiver SQM description can be extended to the whole upper half
Z-plane Im Z > 0: let us assume that this is the case for the models at hand.7 Consider a
boundstate consisting of Ni copies of each elementary γi BPS particle, where Ni ≥ 0. This
corresponds to a BPS state of charge γ =

∑
iNiγi. The quantum mechanics governing such

boundstate has gauge group
∏
i U(Ni). Let us denote by ξi the corresponding F-I terms.

At a fixed point p ∈ P, for any given γ, the ξi are determined from the central charge of
7This is indeed the case for all the quiver theories obtained from SYM theories by adjoint higgsing as was

shown in [64] as well as from all theories obtained from toric CY three-folds as would follow from generalizing
the argument in [23]. Also, we refer the interested readers to the seminar by Thomas T. Dumitrescu, Current
Algebra Constraints on BPS Particles, PIRSA 16030131 about his result with C. Cordova on the absence of
exotic BPS particles, which is an even stronger motivation for our assumption.
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the 4D N = 2 supersymmetry algebra as follows

ξi ≡ Im(Z(p ; γi)/Z(p ; γ)). (2.1)

In addition to the gauge group, whenever the DSZ elecromagnetic pairing 〈γi , γj〉 is positive,
there are Bij ≡ 〈γi , γj〉 bifundamental fields Xα transforming in the representation (N i, Nj).
This matter content can be conveniently repackaged into a BPS quiver Q, defined as the
quiver whose nodes correspond to the elementary charges γi and whose intersection matrix
is given by Bij [12, 13, 17]. Whenever a BPS quiver has an oriented loop, `, one can write
down a corresponding (single trace) superpotential term W` = tr(

∏
α∈`Xα). The resulting

potential is
W =

∑
`

c`W` (2.2)

for c` ∈ C. The boundstate with charge γ is stable provided the corresponding SQM has
a non-empty moduli space of vacua,M(γ, ζi), determined by solving the F-term and the
D-term equations for the corresponding SQM. The quantum numbers of the BPS state
are encoded in the Dolbeault cohomology of M(γ, ζi). In particular, the protected spin
character [39] is given by:8

Ω(γ, p; y) =
∑
m,n

(−1)m−ny2m−dhm,n(M(γ, ζi)). (2.3)

Assuming the absence of exotics BPS particles the above simplifies to

Ω(γ, p; y) =
∑
m

y2m−dhm,m(M(γ, ζi)). (2.4)

There are several different methods to compute the protected spin characters Ω(γ, p; y).
From SQM, one of the simplest is given by a standard geometric invariant theory argument:
the moduli spaces M(γ, ζi) are obtained trading the D-terms for a complexification of
the gauge groups and a stability condition (dictated by the F-I terms), and solving the
F-terms ∂W = 0. In this case, computingM(γ, ζi) boils down to a well-posed problem in
the representation theory of the jacobian algebra underlying the BPS quiver for the theory.
There are other methods to determine the Ω(γ, p; y) from SQM: one is the MPS Coulomb
branch formula [65–71], another is a direct evaluation of the corresponding index via a
localization formula, which boils this down to a matrix model like path integral [72, 73]
(see also [26, 74]). In particular, from the representation theory perspective, it follows a
remarkable property of these BPS quiver SQMs: the category of representations of a quiver
with potential does not depend on the choice of the coefficients c` in the definition of W,
provided W is DWZ-generic [75] (see below for a definition).

8The protected spin character Ω(γ, p; y) is defined as

Ω(γ, p; y) ≡ (y − 1/y)−1 TrHBPS,p(γ)(2J3)(−1)2J3 (−y)2(J3+I3),

where J3 (resp. I3) is an SU(2)spin (resp. SU(2)R) generator and the trace is taken over the single particle
BPS sector of charge γ at p ∈ P [39].

– 6 –
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2.2 Quiver mutations and discrete symmetries

For the sake of CPT symmetry, any BPS spectrum must be symmetric under γ → −γ.
In particular, it is enough to determine the spectrum of stable BPS particles to recover
the whole BPS spectrum: if the BPS spectrum contains a given particle with charge γ, a
corresponding antiparticle with charge −γ is automatically part of the spectrum as well.

Any given quiver regime is selecting a preferred basis of elementary BPS particles
(denoted γi above). Moving around the moduli space the Zi ≡ Z(p ; γi) spread over the
Z-plane, and it can happen that at a given p ∈ P one of the Zi crosses the real axis
of the Z-plane, thus rotating out of the upper half plane. Whenever this occurs, the
BPS particles which looked elementary in the original quiver regime can no longer be
interpreted as elementary: this region of the parameter space is connected to a different
regime, corresponding to a novel set of elementary constituents, with charges γ′i.

These transitions occur at codimension one walls along P , the walls of the second kind.
Notice that transitions of this sort which connects different quiver regimes always occur
when the charge γi that is being “rotated out” of the Z-plane is the charge of a (elementary)
hyper and the charges γ′i of the new regime are charges of (elementary) hypers as well. That
is the case because in a quiver regime all charges of BPS particles are expressed as linear
combinations of the γi (or of the γ′i) with non-negative integer coefficients, and therefore
their image in the Z-plane is a convex cone, by linearity of Z.

In particular, in a quiver regime the two boundaries of such a cone are always basis
elements, which are elementary by definition. Say that the charge γj of the original quiver
basis exits the Z-plane along the negative (resp. positive) real axis, the novel quiver basis
of elementary BPS constituents γ′i is determined from the former by a right (resp. left)
mutation γ′i ≡ µ−j (γi) (resp. γ′i ≡ µ+

j (γi)), defined as follows:9

γ′i ≡ µ∓j (γi) ≡

−γi if i = j

γi + [±〈γj , γi〉]+γj otherwise
(2.5)

Notice that µ+
j µ
−
j = id and µ−j µ

+
j = id. The mutations acts on the corresponding quiver

SQMs as Seiberg dualities for the correspoding U(Nj) gauge group, which also transform
the SQM superpotential W (see e.g. [75]).

We say that a superpotential is good whenever it allows to integrate out all the quadratic
terms generated upon mutation, otherwise it is bad. A given superpotential is DWZ-generic
iff it is good for all quivers that can be obtained from a given one by sequences of mutations.
Only in this case the representations of the quiver are independent from the choice of c` in
eq. (2.2).

It is important to stress that not all the walls of the second kind along P can be
described in the way discussed above. That is the case only for the walls corresponding
to hypers that are rotated out of the Z-plane. Whenever a higher spin particle lies on
the boundary of a BPS cone of particles, that obstructs a quiver description in the sense
above — see figure 1: the boundaries of the grey shaded region represent BPS particles

9Here [x]+ ≡ max(0, x).
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.
.. ...

Figure 1. Infinite BPS spectrum: generic structure. In the grey shaded region a dense subset with
higher spin BPS particles. The dots stand for an accumulating sequence of hypers.

with spin ≥ 1, tilting the Z-plane the quiver description breaks down when we are hitting
the boundary of such cones.10 By contrast, finite BPS spectra of stable hypers correspond
to finite mutation sequences

m ≡ µi` · · ·µi2 µi1 (2.6)

such that ij 6= ij+1, m(Q,W) = (Q,W) and m(γi) = −γπ(i) where π ∈ SD is an elementary
permutation of the D nodes. This can be seen as follows, if at a point p ∈ P one such finite
BPS spectrum is found, just tilt the Z-plane 180◦ clockwise or counterclockwise to produce
the sequence of elementary mutations stated above.

In particular, if the finite BPS chamber above has a Z2k discrete symmetry, this can
be interpreted at the level of the corresponding mutation sequences as the following fact:
there is a shorter mutation sequence

s ≡ µis · · ·µi1 (2.7)

and a permutation of the nodes σ such that s(Q,W) = σ(Q,W) and m = (σ−1s)k. If that
is the case, Z2k can be interpreted as a finite discrete subgroup of the U(1)R symmetry of
the N = 2 supersymmetry algebra. Indeed, we have that

{Qiα, Q
j
β} = εijεαβZ, (2.8)

and by assigning R[Q] = 1, we have that R[Z] = 2: a π/2 U(1)R rotation acts on Z as
the CPT map, which corresponds to the mutation sequence m. If a discrete subgroup of
U(1)R is left unbroken by Z, then by compatibility with CPT its order must be even, and
its action on the Z-plane corresponds to the mutation sequence σ−1s.

Whenever two mutually non-local BPS states with charges γ and γ′ are such that
Z(γ, p)/Z(γ′, p) ∈ R+, the BPS spectrum changes discontinuously, giving rise to a wall-
crossing phase transition, characterized by the value of 〈γ, γ′〉.11 The loci

WMSγ,γ′ ≡
{
p ∈ P : Z(γ, p)/Z(γ′, p) ∈ R+

}
⊂ P (2.9)

10This suggest that quivers are not fundamental and another description in terms of triangulated categories
is much more adequate. This is beyond the scope of the present note and will be discussed elsewhere.

11The change in the BPS spectrum is controlled by the KS wall-crossing formulas, as have been argued
in [39, 42, 76] (see also [77, 78]).
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where wall-crossing phase transitions occur are codimension one in P and are called walls of
the first kind or wall of marginal stability. The space P splits into BPS chambers, regions
bounded by the walls of the first kind corresponding to the pairs of stable mutually non-local
BPS excitations in the spectrum.

2.3 Quantum monodromies and rational transformations

When a finite BPS chamber is associated to a sequence of mutations m or to a fractional
sequence s, the quantum monodromy M(q) and the fractional quantum monodromy N(q)
can be decomposed as a sequence of quantum mutations [79]. Quantum mutations are com-
positions of an ordinary mutation (2.5) with the adjoint action of the function I 1

2H
(q; Yγ).

Denote by TΓ the quantum torus algebra spanned by the q-commutative variables
Yγ . The quantum monodromy can be written as an element of TΓ as follows. Consider a
BPS chamber C with a finite number of BPS states. The operator M(q) defines the inner
automorphisms of TΓ

Yγ −→ AdM(q)±1 Yγ (2.10)

and is a wall crossing invariant. The equivalence of different decompositions of M(q) in
different chambers is the KS wall-crossing formula [80].

If our chamber C has a discrete symmetry we can define finer monodromies, precisely
as we have done with quiver mutations. Assume that the spectrum within the chamber C

admits a Z2s involution. This involution can be understood as the action of a kinematic
operator acting on the charges. This operator lifts to TΓ and allows to define the 1/(2s)
fractional quantum monodromy

Yγ −→ AdN(q)±1 Yγ (2.11)

which has the property that
M(q) = N(q)2s . (2.12)

In particular the 1/2 monodromy is always well defined due to CPT.
In the q −→ 1 limit all the monodromy operators reduce to rational transformations

on the function Yγ . In particular we can consider rational transformations arising from
the limit of the half monodromy or of any fractional monodromy. Consider a sequence of
mutations s = µis · · ·µi1 corresponding to the finest fractional monodromy, within a finite
chamber in an N = 2 model. Let σ be the associated permutation. We denote by γi the
charges of the nodes of the quiver and employ the usual notation Yγi = Yi. The q −→ 1
limit of (2.11) defines the rational transformations

Yi(t± 1) = R
(±)
i [{Y1, . . . , Yn}] . (2.13)

This recursive relation defines a discrete integrable system associated to the finite chamber
C [36]. After an evolution given by one unit of time, the underlying quiver is back to itself,
since we are taking into account the permutation σ, while all the Yi variables have evolved
by a sequence of mutations.
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The rational transformation (2.13) can be decomposed according to elementary rational
transformations, which can be seen as the commutative limit of quantum mutations

R
(−)
j [{Y1, . . . , Yn}] = σ−1R

(−)
j,is

R
(−)
j,ik−1

· · ·R(−)
j,i1

[{Y1, · · · , Yn}] ,

R
(+)
j [{Y1, . . . , Yn}] = σ−1R

(+)
j,is

R
(+)
j,ik−1

· · ·R(+)
j,i1

[{Y1, · · · , Yn}] , (2.14)

where by partial abuse of notation we use the same symbol σ to denote the action of
the permutation on the quiver nodes and on the Yγ functions. The elementary rational
transformations are given by cluster transformations [81, 82]

R±i,k[{Y1, . . . , Yn}] =

 Y −1
i if i = k

Yi
(
1 + Y

∓sign〈γk,γi〉
k

)∓〈γk,γi〉 if i 6= k
. (2.15)

These sets of rational transformations endow the moduli spaceMH with the structure of a
cluster variety, at least locally.12

3 Framed SQM revised

3.1 4D defect groups

As we have reviewed in the Introduction, a 4D N = 2 theory in presence of a BPS line defect
L develops a novel subsector of BPS excitations, describing BPS states which are bound
to the defect, the framed BPS states. For a 4D N = 2 theory of rank r in its Coulomb
phase, a BPS line defect can be described with a mild extension of the ideas outlined in
section 2 [58]. Fix a point p ∈ P . As we reviewed in the Introduction, any BPS line defect
with ζ ∈ U(1) can be thought of as an extra elementary BPS particle which is very heavy,
sitting at the origin of space. One of the differences among ordinary BPS particles and line
defects is that the charges of line defects are valued in the dual of the lattice of charges

Γ∗ ≡ {α ∈ RD : 〈α, γ〉 ∈ Z ∀ γ ∈ Γ}. (3.1)

In particular, a framed BPS state can be modeled as bound states among a heavy BPS
particle with charge α valued in Γ∗ and the various BPS particles in the bulk, with charges
valued in Γ. Notice that the charges of the framed BPS states are always valued in a torsor
of Γ of the form α+ Γ ⊆ Γ∗. The charge α ∈ Γ∗ is the core charge of the defect, which can
jump discontinuously across walls that are analogue of the walls of the second kind (the
GMN anti-walls), see section 3.3 for a review in the context of quiver SQM. Consistency
with the Dirac quantization condition requires that for a given model, only core charges
such that

〈α, α′〉 ∈ Z (3.2)
12Some of these Y -systems and their properties are well known and important in the literature. In

particular, we find extremely interesting connections with the works [83–89] that we are going to report
about in part II of this work. In particular, the evolution operator can be generalized by means of the
Faddeev Modular Double leading to a unitary discrete integrable system.
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are allowed. Maximal sub-lattices of Γ∗ that satisfy (3.2) characterize different models which
have the same content of local operators, but are distinguished by the respective spectra of
non-local operators. Example of models of this kind are e.g. the pure SYM theories with
gauge groups SU(N)/ZN and SU(N) (see [90] for a detailed discussion). To a given lattice
Γ with DSZ pairing 〈−,−〉 therefore correspond at least one maximal local sublattice

Γ ⊂ ΓL ⊆ Γ∗, (3.3)

but there can be more ΓL′ , ΓL′′ such that while 〈ΓL,ΓL〉 ∈ Z, in general 〈ΓL,ΓL′〉 ∈ Q.
It is interesting to consider the group ΛL ≡ ΓL/Γ, consisting of those defect charges that
cannot be screened by charges of particles in the bulk.13 It is clear that whenever two core
charges have the same class in ΛL, they are valued in a torsor of Γ of the form α+ Γ, where
α ∈ Γ∗ \ Γ. While the core charge α undergoes (anti-)wall-crossings, its class [α] ∈ ΛL does
not jump, it is an (anti-)wall-crossing invariant and, as such, a property of the model that
is independent of the boundary conditions (a UV property). It is tempting to identify it
with an IR analogue of the ’t Hooft flux of the corresponding BPS line defect.

3.2 Framed BPS quiver quantum mechanics

To obtain the SQM describing the framed BPS states, the SQM governing the BPS states
for the theory in the bulk can be modified by adding an extra elementary constituent
with charge

γL ≡ α+ γF (3.4)

where α ∈ Γ∗ is the core charge of the BPS line defect, while γF is an additional flavor charge

〈γF , γi〉 = 0 ∀ i = 1, . . . , D. (3.5)

In particular, notice that α has an expansion

α =
∑
i

αiγi αi ∈ Q, (3.6)

where the coefficients αi can be rational numbers as long as α ∈ Γ∗. The central charge can
be extended by linearity setting

Z(γF ) ≡ mζ for ζ ∈ U(1). (3.7)

The fact that the γL particle is very heavy is modeled by studying the regime

m≫ |Zi| ∀ i = 1, . . . , D. (3.8)
13This discussion suggests a possible refinement of the arguments of [91] in the context of 6D theories,

which, of course, goes beyond the scope of this note. In particular, here for simplicity we are neglecting the
presence of flavor charges in the lattice. It would be interesting, but beyond the scope of the present work,
to include these into the analysis, which would give a way of understanding if the 0-form symmetry of the
theory and the 1-form symmetry can mix. For recent progress on the role of line operators in this context
see [92–94].
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Figure 2. A framed BPS quiver.

Now, if the bulk theory admits a quiver basis, the same framework we described in section 2
can be applied to characterize the framed BPS states. We view the framed BPS states as
bound states among some elementary BPS particles in the bulk with charge γi ∈ Γ and the
heavy particle with charge γL which models the defect. Notice that the charge

γ =
∑
i

Niγi ∈ Γ (3.9)

can be viewed as the charge of a bulk BPS particle. Of course, we always obtain an SQM
with gauge group

U(1)L ×
∏
i

U(Ni), (3.10)

where the Ni are supported on the nodes of the bulk BPS quiver, and U(1)L corresponds
to an extra node. The latter group decouples in the strict infinite mass limit. The matter
content of the SQM is determined again by the DSZ pairing: if 〈γL, γi〉 is positive (resp.
negative) it gives rise to a fundamental (resp. antifundamental) of U(Ni) with positive
(resp. negative) U(1)L charge — see figure 2. The F-I terms for such SQM are determined
by (2.1). In particular [39],

M(γL + γ) ≥ |Z(α+ γ) +mζ| ∼ m+ Re(Z(α+ γ)/ζ) +O(1/m), (3.11)

where the charge γ̂ = α+ γ, renormalized by subtracting m, gives the framed BPS bound
M(γ̂) ≥ Re(Z(γ̂)/ζ) in the limit m→∞.14 For our purposes, it is more natural to keep m
very large but finite, and to study the problem from the SQM perspective.

14Our conventions differs from those of [39, 49] as far as the particle/antiparticle splitting is concerned.
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Figure 3. Quiver mutation VS framed quiver mutation. up left: mapping a BPS spectrum to the
Z-plane. up right: BPS spectrum in the Z-plane in presence of a BPS line defect with phase ζ.
mid left: choice of a quiver basis, splitting among particles and anti-particles. mid right: our
choice of conventions: anti-walls and walls of the second kind coincide. down left: rotating the
Z-plane or equivalently changing convention about the particle/antiparticle splitting thus leading to
a quiver mutation. down right: framed BPS quiver mutation: the Zi rotate, while ζ is held fixed.
Notice that this implies also a framed BPS wall-crossing.

3.3 Framed BPS quivers and mutations

In the construction of the framed BPS quiver SQM we are still free to choose a quiver basis
of particles (see figure 3).15 The behavior under mutations of a framed BPS quiver is rather
different with respect to that of an ordinary BPS quiver. This can be understood from
the following remark.16 Whenever one of the Zi aligns with ζ a boundstate among the
defect and the BPS particle of charge γi can be formed if 〈γi, γL〉 6= 0. This has the effect

15Such a choice was labeled right adapted in [58].
16See section 12 of [39]. Notice that we are working with a different set of conventions: in the language of

that paper, it is natural for us to choose a triangulation of the curve for which the anti-walls coincide with
the walls of the second kind.
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of screening the charge γL, by shifting the core charge α. The precise change of the core
charge is encoded in a mutation

α′ ≡ µ−i (α) ≡ α+ [〈γi, α〉]+γi, (3.12)

where γi is the charge of the BPS hyper such that (anti-wall)

Z(γi)/ζ ∈ R+. (3.13)

The arrows connecting the defect node γL to the rest of the bulk BPS quiver are completely
determined by the core charge

〈γi, γL〉 ≡ 〈γi, α〉, (3.14)

therefore changing it via a mutation of the type in eq. (3.12) has the effect of changing
the framed BPS quiver. One of the main features of our choice of conventions is that
whenever this occurs we are simultaneously changing the spectrum of framed BPS states.
The walls of the second kind for a framed BPS quiver encode not only loci where a mutation
occurs for the bulk BPS quiver, they are simultaneously walls of marginal stability for the
framed BPS particles and anti-walls for the core charges. In particular, the jump in the
framed BPS spectrum is accounted for by the fact that whenever a mutation for the bulk
BPS quiver occurs, the stability condition governing the structure of the moduli spaces for
the framed BPS SQMs changes as we are holding ζ fixed while the Zi are rotating. The
corresponding framed BPS quiver mutates following the ordinary rules we have reviewed in
section 2. There is however a main difference: the framing node γL never mutates. This
can be understood from the fact that while the central charges Z(p, ·) does change as we
vary p ∈ P, the phase ζ corresponding to the node γL is held fixed as it is part of the
definition of the defect we are considering, hence it never exits the upper half plane.17 In
the language of Cluster Algebras, the node corresponding to the BPS defect is frozen. This
corresponds to a framing of the Z-plane. Considering for simplicity a model with a finite
BPS chamber, we compare the two cases in figure 3.

Let us notice that there is another possible choice of conventions leading to the same
mechanisms we illustrated above, it is the CPT transform of ours (see figure 4), obtained
by choosing a quiver basis with charges γ′i = −γi. If one use this other basis, the mutation
corresponding to an anti-wall is given by

α′ ≡ µ+
i (α) ≡ α+ [〈α, γi〉]+γi. (3.15)

These two choices were called respectively right adapted or left adapted in [58]. These
two choices have a mathematical description in terms of the representation of the jacobian
algebra of the underlying quiver: they correspond to co-cyclic or cyclic stability conditions.
Imposing cyclic stability conditions amounts to consider only cyclic modules over the
jacobian algebra, that is modules that are generated by a vector.

From the above discussion, a key difference in between a quiver SQM and a framed
quiver SQM emerges: while mutations are symmetries for the modeling of BPS states in

17Of course one can still use the mutation method to determine the framed BPS states, as was done e.g.
in [33, 58].
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Figure 4. Two possible choices of conventions for framed BPS quivers such that walls of the second
kind, anti-walls and walls of marginal stability for framed BPS states coincide. Notice that they are
CPT conjugates.

the absence of BPS line defects, this is no longer the case in their presence. This can be
understood from the idea that rotations of the Z-plane correspond on one hand to mutations
while on the other to U(1)R rotations: in presence of a BPS line defect, no non-trivial
subgroup of the U(1)R survives by definition. The SQM description accounts for this fact by
combining two physical facts. The first is that the core charge mutates as we have reviewed
above, the second is that the spectrum of framed BPS states jumps across walls of marginal
stability. From our perspective this is essentially analogous to the ordinary wall-crossing as
captured e.g. from quiver representation theory, however again there is a difference here
because the change in the stability condition for the framed BPS states coincides with a
wall of the second kind and not of the first kind. Let us proceed by explaining this fact in
more detail below.

3.4 Framed BPS chambers and mutations of framed BPS quivers

Consider a theory T with parameter space PT . Given a point p ∈ PT , consider the BPS
chamber at p:

Sp ≡ {γ ∈ Γ: HBPS
p (γ) is not empty} ⊂ Γ. (3.16)

Notice that Sp can be given an ordering mod 2π from the ordering inherited mapping the
charges on S1 with argZ(p,−).

In this paper we focus on theories such that they admit at least a p ∈ P such that Sp

is finite and Ω(γ) = 1 for all γ ∈ Sp. These are models that have a finite chamber of BPS
hypermultiplets. Let us denote one such finite chamber as NS where

N ≡ #(Sp)/2. (3.17)

In this case, let us label the charges of the BPS states γ(1), . . . , γ(2N) in decreasing order
of argZ(p, γ(I)) chosen from π to −π, notice that γ(N+J) = −γ(J). Famous examples of
N = 2 theories of this sort are provided e.g. by the pure G SYM theories, which have finite
BPS chambers with N = rGhG.

Now couple the theory T to a BPS line defect Lζ . Consider a point p ∈ PT such
that we have a finite chamber of hypermultiplets with charges NS. Corresponding to the
γ(I) ∈ NS we have a family of framed BPS chambers at the point p ∈ PT . The stability of
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Figure 5. Structure of framed BPS chambers in the Z-plane. up left: structure of chambers
for an SCFT with integer valued R-charges. up right: generic structure of chambers: for SCFTs
the index a is defined modulo `, whenever the R-charges are valued in N/`, for asymptotically free
theories a runs over the integers. down left/right: chambers related by crossing a wall of the
second kind, corresponding to rotating out the charge γ(1) on the a-th sheet of the covering.

the corresponding framed BPS particles is controlled by the position of arg ζ relative to the
argZ(γ(I)). We refer to the I-th framed BPS chamber as the one for which

argZ(γ(I)) < ζ < argZ(γ(I+1)) (3.18)

From this discussion it is evident that for every finite BPS chamber of hypers of the theory
in the bulk, there are inequivalent framed BPS chambers in a number that is at least
equal to twice the number of BPS states. Indeed, as we shall see below this is the case for
superconformal N = 2 theories that have the feature of having purely integer R-charges
and a finite BPS chamber of hypermultiplets, e.g. SU(2) Nf = 4. In general, however, this
turns out to be too naive. As was remarked already in [39] the parameter ζ is not valued
on S1 but in a covering of the circle. We claim that a necessary condition for a given BPS
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spectrum to give rise to an SCFT is that such a covering is finite. This result an many other
concerning SCFT will be discussed in a forthcoming paper. As we shall see below, this
claim can be interpreted as a different version of an old conjecture relating superconformal
invariance to the periodicity of the quantum monodromy [12, 14, 36].

For superconformal N = 2 theories that have R-charges valued over the rationals, of the
form qi/pi where qi and pi are coprime, let ` ≡ lcm(pi). The naive number of inequivalent
framed BPS chambers corresponding to a finite chamber NS in that case is 2N`. We label
the corresponding framed BPS chambers with roman numerals from 1 to 2N with an extra
index taking values mod `. For instance the chamber IIIa denotes the one for which

argZ(γ(3)) < ζ < argZ(γ(4)) (3.19)

and ζ belong to the a-th sheet of a covering of S1 with ` sheets. This structure is illustrated
in figure 5.

For asymptotically free theories, instead, the covering turns out to have an infinite
number of sheets and there are infinitely many inequivalent framed BPS chambers. In such
a case we are going to label them in the same way, where (a) takes integer values.

Inequivalent framed BPS chambers correspond to inequivalent framed BPS quivers,
which is related to the fact that we have chosen conventions such that the wall of the second
kind for the bulk BPS quiver correspond to the anti-walls and to marginal stability walls
for framed BPS states.

From this perspective, under the assumptions above, the framed BPS chamber (K−1)a
correspond to a framed BPS quiver such that γ(K) and γ(K+N−1) are part of a quiver basis
for the finite BPS chamber NS. Such chamber is related to the framed BPS quiver for
chamber (K)a by a mutation corresponding to rotating out γ(K) along the negative real
axis of the Z-plane, this gives right to a mutation µ−γ(K)

for the corresponding bulk quiver,
while the core charge shifts from α to α′ determined from eq. (3.12):

α′ = α+ [〈γ(K), α〉]+γ(K). (3.20)

Similarly to shift from the framed BPS chamber (K − 1)a to the chamber (K − 2)a one
needs to rotate out γ(K+N−1) along the positive real axis of the Z-plane. This gives rise to
a mutation µ+

γ(K+N−1)
for the corresponding bulk quiver, while the core charge still shifts

according to eq. (3.12) with the difference that now it is −γ(K+N−1) that aligns with α,
therefore

α′ = α− [〈α, γ(K+N−1)〉]+γ(K+N−1) (3.21)

is the framed BPS charge corresponding to the defect in such chamber.

4 The su2 case

4.1 Example: a ’t Hooft BPS line for pure SU(2) SYM

To illustrate the above phenomenon it is more convenient to start with an example. Con-
sider the SU(2) SYM theory. The corresponding quiver SQM is given by the Kronecker
quiver Â(1, 1)

γ◦ //
// γ• (4.1)
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Choose a ’t Hooft defect with core charge α = γ•. The corresponding framed BPS quiver is
given by

γ◦ //
//

  
  

γ•

α

(4.2)

With our choice of conventions, this quiver gives rise to a single framed BPS state of charge
α. If we consider the strongly coupled chamber of SU(2), corresponding to the choice of
central charges

0 < argZ◦ < argZ• < π, (4.3)

there are only two stable hypermultiplets: one has charge γ◦ and the other has charge γ•.
Consider varying the central charge in such a way that the γ• particle exits the upper half
plane from the negative imaginary axis without crossing any walls of marginal stability.
This corresponds to a mutation µ−• . Then we obtain a framed BPS quiver

γ◦

  
  

−γ•oo
oo

α

(4.4)

Relabeling the basis γ′◦ = −γ• and γ′• = γ◦, we obtain

γ′•

ψ1

��

ψ2

��

γ′◦
A1oo

A2
oo

α′

(4.5)

In the new basis α′ = γ• = −γ′◦. In this case no bound state was formed among the
defect and the BPS particle with charge γ• because 〈α, γ•〉 = 0. Notice also that we had
no wall crossing on the framed BPS spectrum for the same reason. The mutated central
charges satisfy

0 < argZγ′◦ < argZγ′• < π. (4.6)

Let us proceed and rotate the charge γ′• out along the imaginary axis. In this case we
expect the occurence of both phenomena because 〈α′, γ′•〉 6= 0: the core charge will change
and the framed BPS spectrum as well. We obtain

−γ′•
aa

ψ∗j

aa
γ′◦
//

A∗i
//

[Aiψj ]
4

��

α

i = 1, 2
j = 1, 2

(4.7)
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We can relabel the basis as we did before obtaining

γ′′◦ = −γ′• = −γ◦, γ′′• = γ′◦ = −γ•, α′′ = −γ′◦ + 2γ′• = −(γ′′• + 2γ′′◦ ) (4.8)

γ′′◦
``

ψ∗j

``
γ′′•
//

A∗i
//

[Aiψj ]
4
~~

α′′

i = 1, 2
j = 1, 2

(4.9)

In this case a superpotential is generated

W =
2∑

i,j=1
[ψjAi]A∗iψ∗j (4.10)

The jacobian relations entail

A∗iψ
∗
j = [ψjAi]A∗i = ψ∗j [Aiψj ] = 0 (4.11)

And we obtain 3 framed BPS states with charges and PSCs

β1 = α′′ = −(γ′′• + 2γ′′◦ ) Ω(β1) = 1,
β2 = α′′ + γ′′◦ = −(γ′′• + γ′′◦ ) Ω(β2) = y + 1/y,
β3 = α′′ + 2γ′′◦ = −γ′′• Ω(β3) = 1.

(4.12)

Now consider instead starting from the quiver in eq. (4.2) and start rotating the Z-plane
in the opposite direction with the same stability condition. This leads to rotating γ◦ out of
the upper half-plane going in the opposite direction. Simultaneously, the bulk BPS quiver
undergoes a left mutation µ+

◦ , and α changes as dictated by eq. (3.12):

α′ ≡ α− [〈−γ◦, α〉]+γ◦ = α− [〈α, γ◦〉]+γ◦ = α (4.13)

because the argument of α aligns with that of −γ◦ and 〈−γ◦, α〉 < 0 in the quiver of
eq. (4.2). We obtain

γ′• oo
oo

__ __
γ′◦

α′

(4.14)

where we have relabeled the basis as follows:

γ′• = −γ◦ γ′◦ = γ• α′ = γ• = γ′◦. (4.15)

There are again 3 framed BPS states with charges and PSCs

β′1 = α′ = γ′◦ Ω(β1) = 1,
β′2 = α′ + γ′• = γ′◦ + γ′• Ω(β2) = y + 1/y,
β′3 = α′ + 2γ′• = γ′◦ + 2γ′• Ω(β3) = 1.

(4.16)
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Figure 6. The Z4 point of su2 at strong coupling.

Let us proceed tilting the plane clockwise. Z(γ′◦) gets rotated out and we obtain

γ′′◦ //
//

`` ``
γ′′•

α′′

(4.17)

where we have relabeled the basis as follows:

γ′′• = −γ′◦ γ′′◦ = γ′• α′′ = −γ′′• . (4.18)

It is a simple exercise in combinatorics to see that in this case we obtain the following
framed BPS spectrum:18

β2,1 = α′′ = −γ′′• Ω(β2,1) = 1
β2,2 = α′′ + γ′′◦ = −γ′′• + γ′′◦ Ω(β2,2) = y + 1/y
β2,3 = α′′ + 2γ′′◦ = −γ′′• + 2γ′′◦ Ω(β2,3) = 1
β2,4 = α′′ + γ′′◦ + γ′′• = γ′′◦ Ω(β2,4) = 2 + y2 + 1/y2

β2,5 = α′′ + γ′′◦ + 2γ′′• = γ′′◦ + γ′′• Ω(β2,5) = y + 1/y
β2,6 = α′′ + 2γ′′◦ + γ′′• = 2γ′′◦ Ω(β2,6) = 1/y3 + 1/y + y + y3

β2,7 = α′′ + 2γ′′◦ + 2γ′′• = 2γ′′◦ + γ′′• Ω(β2,7) = 2 + 1/y4 + 1/y2 + y2 + y4

β2,8 = α′′ + 2γ′′◦ + 3γ′′• = 2γ′′◦ + 2γ′′• Ω(β2,8) = 1/y3 + 1/y + y + y3

β2,9 = α′′ + 2γ′′◦ + 4γ′′• = 2γ′′◦ + 3γ′′• Ω(β2,9) = 1

(4.19)

One can continue this exercise ad libitum, but we prefer to stop here. Notice that for a
special tuning this chamber can preserve a Z4 symmetry (cfr. figure 6).

18We have explicitly checked these results also match with the MPS Coulomb branch formula.
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4.2 The su2 Y -system

The su2 Y -system can be obtained from the BPS spectum of the su2 gauge theory at strong
coupling easily with the method discussed in [36]. It is given by

R(+) : (Y•, Y◦) 7→
(

1
Y◦
,

Y•Y
2
◦

(1 + Y◦)2

)

R(−) : (Y•, Y◦) 7→
(
Y◦(1 + Y•)2,

1
Y•

) (4.20)

Consider the example of the previous section. To start with we have

〈 L̂ζ 〉 = Y•. (4.21)

Now tilting the Z-plane counterclockwise, we had to mutate on •, which in this case
corresponds to R(+), indeed

〈 L̂eiπ/4ζ 〉 = 1/Y◦ = R(+)(Y•). (4.22)

Now, rotating again, we had to mutate on γ′•, which at the Z4 symmetric point, is identified
with γ•. We obtain

〈 L̂eiπ/2ζ 〉 = (1 + Y◦)2

Y•Y 2
◦

= 1
Y•Y 2

◦
+ 2
Y•Y◦

+ 1
Y•
. (4.23)

Notice the agreement in between this expression, and the framed BPS degeneracies as
caputerd by the framed quiver SQM in eq. (4.12). The effect of the Z4 symmetry is encoded
in the base change (dropping the primes). Consider now a rotation in the opposite direction.
We obtain

〈 L̂e−iπ/4ζ 〉 = Y◦ + 2Y◦Y• + Y◦Y
2
• = R(−)(Y•), (4.24)

that matches precisely with the spectrum obtained using the BPS quiver in eq. (4.16). A
further iteration of R(−) leads to

〈 L̂e−iπ/2ζ 〉 = 1
Y•

+ 4Y◦ + 2Y◦
Y•

+ 2Y•Y◦ + 4Y 2
◦ + Y 2

◦
Y•

+ 6Y•Y 2
◦ + 4Y 2

• Y
2
◦ + Y 3

• Y
2
◦ . (4.25)

Notice that it matches exactly with the y → 1 limit of eq. (4.19).

4.3 Wilson lines

The SU(2) W -boson is represented by the representation with dimension vector δ ≡ (1, 1),
therefore the unit electric charge and the corresponding magnetic charge are given by [19]

q ≡ 1
2δ and m(X) = dimX◦ − dimX• . (4.26)

Consider the Wilson line in the n + 1 representation of SU(2). The corresponding core
charge is:

α[wn+1
ζ ] ≡ −n q. (4.27)
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This determines the corresponding framed BPS quiver, but not the corresponding superpo-
tential. The framed BPS quiver is:

Q
SU(2)
wn+1
ζ

≡

•

α1
,,

...

αn

��
∗

βnrr

...

β1

��
◦

A

KK

B

KK

(4.28)

Notice that this quiver has the following property:

µ•

(
Q

SU(2)
wn+1
ζ

)
= σ

(
Q

SU(2)
wn+1
ζ

)
µ◦

(
Q

SU(2)
wn+1
ζ

)
= σ

(
Q

SU(2)
wn+1
ζ

)
, (4.29)

where σ is the permutation which exchanges ◦ with • and viceversa. As we have discussed
in the Introduction, the Wilson lines are constants along the Y -system evolution. This, in
particular, entails that the corresponding superpotentials have to satisfy:

µ•W|on shell =W up to relabeling. (4.30)

To show this fact, it is sufficient to consider the vev of the Wilson line in the fundamental,
corresponding to the case n = 1 for the quiver above. In this case there is a unique
superpotential that is linear in the fields and satisfies (4.30), it is

W1 = βαA, (4.31)

where unicity follows from the fact that Â(2, 1) is an acyclic quiver.
To discuss the relevant representation theory of this quiver it is useful to introduce a

diagrammatic tool to keep track of the cyclic modules. Recall that for left-adapted stability
conditions the relevant modules over the jacobian algebra which describe stable states are
generated by a vector v. This in practice means that the vector spaces of the representation
have a basis whose element are all of the form of jacobian algebra elements acting on the
vector v, for example {v, βi v,Aβi v, · · · }. Such a collection of vectors has to be linearly
independent over the jacobian algebra, which means upon imposing the F-term relations
∂W = 0. Once this is done, we pick a representative from each equivalence class and
connect them with arrows which mimic the way the module is generated. We call this a
skeleton diagram.

For example, in the case n = 1, the skeleton diagram for cyclic modules is given by

v
β

// βv
B // Bβv

α // αBβv = bv b ∈ C, (4.32)

as ∂AW = βα = 0, either βv = 0 or b = 0 in this case. Then, the representation theory
reduces to that of the A3 Dynkin quiver, and the allowed representations are (1, 0, 0),
(1, 1, 0), and (1, 1, 1). From this follows that

〈 ŵ2
ζ 〉 = 1 + Y◦ + Y◦Y•

(Y◦Y•)1/2 =
[ 1

(Y◦Y•)1/2 + (Y◦Y•)1/2
]

+ Y
1/2
◦

Y
1/2
•

, (4.33)
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in perfect agreement with [39]. This vev is indeed invariant with respect to the Y -system
evolution we described above.

Using the fact that the OPE algebra descends by construction to the 3d vev’s of BPS
lines, this property has to be shared by all other Wilson line vev’s for n > 1, as these
are completely determined using simply the vev above and the OPE relations.19 The
uniqueness of the superpotential W1 subject to the constraint eq. (4.30) is therefore enough
to completely fix the values of the vev’s of all the tower of Wilson lines from their well
known OPEs.

A nice consistency check for the superpotentials for n > 1 is that there is always more
than one solution to eq. (4.30) that is linear in the fields, and moreover, higher order terms
are allowed. There are however several universal properties for this class of superpotentials
that are worth to continue this discussion. The stability of a module X of the quiver QSU(2)

Wn+1

for left adapted stability conditions entails that

ker βi ∩ ker βj = 0 for all pairs i 6= j ∈ {1, . . . , n} (4.34)

As dimX∗ = 1 by construction, this is enough to constrain

dimX◦ ≤ n (4.35)

independently of the choice ofW . Without using the OPE this implies that the corresponding
generating function of cyclic modules satisfies

wn(Y◦, Y•) = 1
(Y◦Y•)n/2

∑
0≤m1≤n
m2≥0

cm1,m2 Y
m1
◦ Y m2

• , (4.36)

where cm1,m2 are some positive integers depending on W that we have to determine. Notice
that the quiver of eq. (4.28) is invariant along the Y -system evolution by construction, and
therefore the corresponding wn(Y◦, Y•) have to be constants as well. As we will see, this is
essentially enough to fix almost all of the cm1,m2 ’s.

Consider the class of cubic superpotentials. Imposing the constraint above it follows
that the only allowed superpotentials are of the form

Wn,k ≡
k∑
i=1

βiαiA+
n∑

j=k+1
βjαjB k = 1, . . . , n (4.37)

Indeed, a mutation at the node • gives

µ•Wn,k =
k∑
i=1

βi[αiA] +
n∑

j=k+1
βj [αjB] +

n∑
`=1

[α`A]A∗α∗` + [α`B]B∗α∗` . (4.38)

Eliminating the quadratic terms, the partial derivatives with respect to the βi arrows set
the arrows [αiA] for i = 1, . . . , k and [αjB] for j = k + 1, . . . , n to zero, while the partial

19For instance, from the OPE relations w2
ζ ∗w2

ζ = 1 + w3
ζ we obtain that 〈ŵ3

ζ 〉 = (〈ŵ2
ζ 〉)2 − 1, and so on

using the multiplication table of SU(2) representations.
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derivatives with respect to the arrows [αiA] and [αjB] set βi = A∗α∗i and βj = B∗α∗j , as
these arrows are fixed by the eom’s we can safely neglect them in the mutated quiver,
we obtain:

µ•Wn,k|on shell =
n∑

j=k+1
[αjA]A∗α∗j +

k∑
i=1

[αiB]B∗α∗i . (4.39)

Therefore, the resulting quiver with superpotential on shell is exactly the one we started
with. The relations from Wn,k are

αiA = Aβi = 0 i = 1, . . . , k
αjB = Bβj = 0 j = k + 1, . . . , n

k∑
i=1

βiαi = 0
n∑

j=k+1
βjαj = 0.

(4.40)

To keep track of the structures for cyclic modules, we draw the relevant skeleton
diagram in figure 7. Notice that, as dimX∗ = 1,

αi1Bβi2v ≡ bi1 ,i 2v αj1Aβj2 ≡ aj1−k , j2−kv, bi1 ,i 2 , aj1−k , j2−k ∈ C, (4.42)

for i1, i2 = 1, . . . , k and j1, j2 = k + 1, . . . , n. In principle, the skeleton diagram would
replicate itself at each of the nodes of the last column in figure 7, times the appropriate
complex constant. However, we have the relations

k∑
i=1

βiαi = 0 =⇒
k∑
i=1

bi`βiv = 0 ∀ ` = 1, . . . , k

n∑
j=k+1

βjαj = 0 =⇒
n−k∑
j=1

aj`βj+kv = 0 ∀ ` = 1, . . . , n− k
(4.43)

From these equations it follows that whenever some αi’s are non-zero, they introduce some
linear relations in between the otherwise linearly independent vectors βiv ∈ X◦: therefore,
whenever the diagram has the chance to replicate, this also lowers the allowed dimensions
on the node X◦. From the skeleton diagram we see that the dimension of X• is constrained
to be less than or equal to that of X◦. Therefore, the biggest possible dimension vector
for a cyclic module corresponds to the case in which all αi’s are zero: only in that case
there are no additional relations in between the vectors βiv ∈ X◦, and we can choose them
to be linearly independent. Therefore, the dimension vectors of the cyclic modules of the
quiver QSU(2)

wn
ζ

with superpotential Wk,n have to obey the following constraint (independent
from k):

0 ≤ dimX• ≤ dimX◦ ≤ n. (4.44)

From this simple analysis it follows that a BPS Wilson line in the n + 1 representation
carries (n+ 1)(n+ 2)/2 distinct framed BPS states, and

〈ŵn+1
ζ 〉 = 1

(Y◦Y•)n/2
∑

0≤m1≤m2≤n
cm1,m2 Y

m1
◦ Y m2

• , (4.45)
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α1Bβ1v · · ·

β1v // Bβ1v

77

''

...

αkBβ1v · · ·

...

α1Bβkv · · ·

βkv // Bβkv

77

''

...

αkBβkv · · ·

v

DD

LL

��

��

αk+1Aβk+1v · · ·

βk+1v // Aβk+1v

77

''

...

αnAβk+1v · · ·

...

αk+1Aβnv · · ·

βnv // Aβnv

77

''

...

αnAβnv · · ·

X∗ X◦ X• X∗

(4.41)

Figure 7. Skeleton diagram for a Wilson line in the n+ 1 dimensional representation of SU(2).

where cm1,m2 are some positive integers that we have to determine. These coefficients
however should depend from the specific choice of the superpotential Wk,n, and this is
problematic as only one element of the class Wk,n correctly describes the SQM of the BPS
excitations framed by the BPS Wilson line in the n + 1 of SU(2). There are several ways
to determine these coefficients. The most direct approach is to compute the allowed cyclic
modules. In the case n = 1, k = 1 was discussed above. If we consider the case n = 2 there
are two possibilities to be considered:

W2,1 = β1α1A+ β2α2B and W2,2 = (β1α1 + β2α2)A. (4.46)

Before doing that, however, notice that the quiver of eq. (4.28) with superpotential Wk,n is
invariant along the Y -system evolution by construction, and therefore the corresponding
vev’s have to be constants of motions. This is essentially enough to fix almost all of the
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cm1,m2 ’s. First of all, notice that with respect to R(+)

1
(Y•Y◦)n/2

→ (1 + Y◦)n

(Y•Y◦)n/2
Y m1
◦ Y m2

• → Y m1
• Y 2m1−m2

◦
(1 + Y◦)2m1

. (4.47)

So, the invariance of the Wilson lines amounts to the condition:∑
0≤m1≤m2≤n

cm1,m2Y
m1
◦ Y m2

• =
∑

0≤m1≤m2≤n
cm1,m2Y

m1
• Y 2m1−m2

◦ (1 + Y◦)n−2m1 . (4.48)

Consider for example the case n = 1: we obtain

c00 + c10Y◦ + c11Y◦Y• = c00(1 + Y0) + c10
Y•Y

2
◦

(1 + Y◦)
+ c11

Y•Y◦
(1 + Y◦)

= c00(1 + Y0) + Y•Y◦
(1 + Y◦)

(c10Y◦ + c11)
(4.49)

This equality can be satisfied only if c00 = c10 = c11. Moreover, c00 = 1 since it corresponds
to the rigid simple module with support on the framing node. This correctly reproduces
eq. (4.33) above. Consider the case n = 2: we obtain

c00 + c10Y◦ + c11Y◦Y• + c20Y
2
◦ + c21Y

2
◦ Y• + c22Y

2
◦ Y

2
•

= c00(1 + Y◦)2 + c10Y•Y
2
◦ + c11Y•Y◦ + c20

Y 2
• Y

4
◦

(1 + Y◦)2 + c21
Y 2
• Y

3
◦

(1 + Y◦)2 + c22
Y 2
• Y

2
◦

(1 + Y◦)2

= c00(1 + Y◦)2 + c10Y•Y
2
◦ + c11Y•Y◦ + Y 2

• Y
2
◦

(1 + Y◦)2

(
c20Y

2
◦ + c21Y◦ + c22

) (4.50)

Again this equation can be satisfied only if c00 = c20 = c22 = c21/2 = c10/2. Moreover
c00 = 1 as previously. There is only one ambiguity to be fixed: the coefficient c11 is not
determined in this case. This is indeed a constant contribution to the vev and the fact
that this argument is not able to fix this term uniquely is related to the fact that there
is more than one superpotential that remains invariant w.r.t. to the mutation on •. This
is very interesting: the choice in between W2,1 and W2,2 can only affect c11 in this case.
We will discuss these issues further in appendix B, where we carry out the corresponding
representation theory. In particular one finds that with a superpotential W2,1 we obtain
c11 = 1, while with a superpotential W2,2 we obtain c11 6= 1, and all other coefficients are
exactly equal. The consistency with the OPE

w2 ∗w2 = 1 + w3 (4.51)

entails that the correct superpotential for the case n = 2 is W2,1, indeed in that case
we obtain:

〈ŵ3
ζ 〉 = 1 + 2Y◦ + Y 2

◦ + 2Y 2
◦ Y• + Y◦Y• + Y 2

◦ Y
2
•

Y◦Y•

=
[
Y•Y◦ + 1 + 1

Y•Y◦

]
+ Y◦
Y•

+ 2
Y•

+ 2Y◦
(4.52)

that is the correct result. The Coulomb branch formula should account for both possibilities
as well: the case in which all single centered degeneracies are set to zero corresponding to
the superpotential W2,1.
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Let us proceed by considering the case n = 3. We have only two inequivalent su-
perpotentials, namely W3,1 and W3,3, as W3,2 give rise to the same relations of W3,1 up
to relabeling:

W3,1 = β1α1A+ (β2α2 + β3α3)B and W3,3 = (β1α1 + β2α2 + β3α3)A. (4.53)

Proceeding as before we obtain the following system of equations:

c00 + c10Y◦ + c20Y
2
◦ + c30Y

3
◦ = c00(1 + Y◦)3

c11 + c21Y◦ + c31Y
2
◦ = (1 + Y◦)(c11 + c10Y◦)

c22 + c32Y◦ = (c22 + c21Y◦ + c20Y
2
◦ )/(1 + Y◦)

c33 = (c33 + c32Y◦ + c31Y
2
◦ + c30Y

3
◦ )/(1 + Y◦)3

(4.54)

Combining the first two equations with the last one gives:

1 = c00 = c10/3 = c20/3 = c30 = c31/3 = c32/3 = c33 c21 = 3 + c11 (4.55)

From the relations above the third equation admits a family of solutions:

c22 = a+ 3 c11 = a+ 3 c21 = a+ 6 a ∈ Z≥−3. (4.56)

This in turn corresponds to the following family of rational functions

fa(Y◦, Y•) ≡
(
1 + 3Y◦ + 3Y 2

◦ + Y 3
◦ + (a+ 3)Y◦Y• + (a+ 6)Y 2

◦ Y• + 3Y 3
◦ Y•

+ (a+ 3)(Y◦Y•)2 + 3Y 3
◦ Y

2
• + (Y•Y◦)3

)
/(Y◦Y•)3/2

(4.57)

all constant along the Y -system evolution. From the representation theory above, it follows
that the minimal possible allowed choice for a is a = −2 (indeed, there are always cyclic
modules with the corresponding dimension vectors). With this choice we obtain:

f−2(Y◦, Y•) =
[
(Y•Y◦)3/2 + (Y•Y◦)1/2 + 1

(Y•Y◦)1/2 + 1
(Y•Y◦)3/2

]

+ 3 Y
1/2
◦

Y
3/2
•

+ Y
3/2
◦

Y
3/2
•

+ 3
Y

3/2
• Y

1/2
◦

+ 3Y 1/2
• Y

3/2
◦ + 3Y 3/2

◦

Y
1/2
•

+ 4 Y
1/2
◦

Y
1/2
•

(4.58)

Notice that this is precisely the result obtained in [58] for the case n = 3 using the Coulomb
branch formula. The logic of the argument above can be reversed: we know the for the
Wilson line in the fundamental there is no ambiguity in the choice of the superpotential.
Moreover, we know the OPE of Wilson lines. Therefore we can obtain all the vev’s of
the Wilson lines starting from the one in the fundamental representation and using the
OPE relations.

4.4 Lines for su2 theories

As discussed in [39], the charge lattice of line operators is determined by a maximal sublattice
of the dual lattice

Γ∗su2 ≡
{
α ∈ Qn : 〈α, γ〉D ∈ Z, ∀ γ ∈ Γ

}
(4.59)
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Γ∗SU(2) Γ∗SO(3)− Γ∗SO(3)+

Figure 8. Here we draw the fundamental cells of the lattices in eq. (4.60). The cartesian grid refers
to the (γ•, γ◦) basis, the γ◦ direction being the vertical one. In red we draw the fundamental cells
identified in [90].

compatible with Dirac quantization. Notice that the dual lattice Γ∗ is determined uniquely
by the su2 structure, which is reflected in the Dirac pairing defining the BPS quiver. The
lattice Γ∗su2 is 1

2Z ×
1
2Z. To determine the maximal sublattices compatible with Dirac

quantization we use the fact that the latter are strongly constrained by the knowledge of
the Wilson line operators in the spectrum. We obtain three distinct maximal sublattices
of Γ∗su2 :

Γ∗SO(3)− ≡ {(
n
2 , k), n, k ∈ Z} = 1

2Z× Z ⊂ 1
2Z×

1
2Z

Γ∗SO(3)+
≡ {(k, n2 ), n, k ∈ Z} = Z× 1

2Z ⊂
1
2Z×

1
2Z

Γ∗SU(2) ≡ {(n2 ,
n
2 + k), n, k ∈ Z} = (0,Z) + (1

2 ,
1
2)Z ⊂ 1

2Z×
1
2Z

(4.60)

In figure 8 we draw them and identify the AST cells [90]. In the case of su2 theories the
defect group consists of one non-trivial element only, as expected.

4.5 Framed BPS states of su2 theories

We begin by identifying the set of fundamental defects. These are the defects which have a
framed BPS spectrum consisting of a single framed BPS state with charge that equals the
core charge of the defect. In this case the core charge and the UV charge of the defect are
expected to match.20 Let us denote α = q•γ• + q◦γ◦ ∈ Γ∗su2 , we claim that α is the core
charge of a fundamental defect iff:

〈γ•, α〉 ≥ 0 and 〈γ◦, α〉 ≥ 0 =⇒ q◦ ≤ 0 and q• ≥ 0. (4.61)

The set of fundamental defects is closed with respect to the OPE because of charge
conservation. Indeed, if α1 and α2 are two elements of Γ∗ which satisfy eq. (4.61), so does
α1 + α2. Therefore the set of simple line defects is an associative magma, a semigroup. We

20We thank Andy Royston for a discussion about this point.
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denote such a set as Γ∗su2,F
. The framed BPS quiver for a fundamental line defect with

charge α ∈ Γ∗su2,F
is

•
2|q◦|

��
∗

◦

OOOO

2q•

??
(4.62)

and by construction there is a unique representation of this quiver which satisfies the axioms
for a framed BPS state: the simple representation corresponding to the framing node, S∗.
Simple representations being rigid by construction, the corresponding vev is

〈fα,ζ〉 = (Y•)q•
(Y◦)|q◦|

∀α ∈ Γ∗G,s. (4.63)

Notice that the quivers in eq. (4.62) are all acyclic, and therefore have null superpotential.
From these remarks, we see that the vevs of all fundamental defects in Γ∗su2,F

are determined
from the vevs of two of them, which are

〈f1,ζ〉 = (Y•)1/2 and 〈f2,ζ〉 = 1
(Y◦)1/2 (4.64)

These two are the simple fundamental defects of the Γ∗su2 lattice. From eq. (4.63) we have
that [58]

fα,ζ = f1,ζ · . . . · f1,ζ︸ ︷︷ ︸
2q• times

· f2,ζ · . . . · f2,ζ︸ ︷︷ ︸
2|q◦| times

(4.65)

for all α ∈ Γ∗su2,F
. Not surprisingly, the knowledge of the simple defects uniquely determines

all framed BPS spectra of dyonic BPS defects by means of the interplay in between U(1)R
rotations, the Witten effect, and framed wall crossings. With reference to figure 9 moving
up/down along a diagonal with constant magnetic charge corresponds precisely to evolving
the corresponding fundamental defect using the Y -system. The situation is identical to the
one we discussed in section 4.1.

4.6 SU(2) vs. SO(3)

To construct the lattice of charges of line defects we use the following procedure. We fix a
chamber and we consider certain classes of core charges which are in principle allowed. Then
we complete the lattice by considering all the core charges which are mutually consistent,
in the sense that they obey the Dirac quantization condition. This is exactly the same
procedure used in [90, 95], but now at the level of the IR defects. We stress that this
requires fixing a point p ∈ P , the parameter space, although the results are independent of
this choice by consistency with wall-crossing.

Consider the Lie algebra su(2). We know that the Wilson line is present in SU(2),
with α = −1

2(γ◦ + γ•). Then core charges of the form nγ◦ + mγ• with m,n ∈ Z obey
the consistency condition because of the pairing 〈γ◦, γ•〉 = 2 which cancels the 2 in the
denominator. On the other hand 1

2γ◦ or
1
2γ• don’t have integral pairing with all the Wilson
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Figure 9. Orbits of defects in the su2 lattice. Lines of constant magnetic charge contain BPS lines
which are part of the same orbit (indicated here using dots of the same colors along the same line).
In blue we are drawing the Wilson lines.

lines, and therefore they cannot be part of the same set of line defects, they must be in
different theories, which we will call SO(3)± following [90]. Note that 1

2γ◦ and
1
2γ• have

non integer pairing between themselves and therefore they cannot be both part of the same
lattice. We will call SO(3)+ the theory which contains 1

2γ◦.
The SU(2) and the SO(3) theories have different smallest fractional monodromy available.

The reason is that the presence of a fractional monodromy is a consequence of the discrete
R-symmetry of the UV theory. The surviving non-anomalous R-symmetry in turns is related
to the periodicity of the θ-angle. Let us briefly recall this connection.

By the index theorem given an instanton background of instanton number k the number
of zero modes of a fermion ψ in the representation r minus the zero modes of ψ is given
by 2C2(r)k, where C2(r) is the quadratic Casimir of the representation. Therefore under
a phase rotation ψ −→ e i δψ the integration measure changes by the phase e 2C2(r)k i δ,
corresponding to the extra zero modes. This phase shift is a symmetry of the theory if it
can be absorbed by a shift of the θ angle in the instanton term. In the case of SU(2) the
periodicity of the θ angle is θ −→ θ+ 2π, and therefore only chiral rotations with δ = 2π

2C2(r)
are allowed. If we specialize to SU(2), since the gaugino is in the adjoint representation,
we have C2(adj) = 2 and therefore the allowed phase rotation is e π i /2 and the surviving
R-symmetry is Z4. On the other hand if we consider SO(3), the periodicity of the θ angle is
θ −→ θ + 4π, which corresponds to the fact that the instanton number on a spin manifold
(as is R4) is k ∈ 1

2Z. Now the allowed phase is e i δ = e i 4π
2C2(r) = e iπ, since for SO(3) again

C2(adj) = 2 (for SO(N) is 2N − 4). Therefore the only surviving R-symmetry is Z2. These
arguments play a key role in understanding S-duality for N = 4 SYM [96].
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This implies that a SU(2) gauge theory admits a chamber with a 1
4 -fractional monodromy,

while an SO(3) theory only has the half-monodromy. Note that this does not imply any
difference in the spectrum of stable BPS states. However it does imply a difference in the
spectrum of allowed line defects, since as we have shown these can be generated by the
action of the smallest fractional monodromy.

We will now show this explicitly; as usual we take the following quiver

γ◦ //
// γ• . (4.66)

Consider the three cases:

SU(2). In this case we have the Wilson lines wn+1
ζ which correspond to

−n
2 (γ◦ + γ•)

n

yy
γ◦ //

// γ•

n
ee

(4.67)

where n ∈ Z. If we insist that we must have any value of n ∈ Z, then we must include
core charges γ◦ and γ•, but not their fractions. We will take cyclic stability conditions.
Therefore we have the line operators

−γ◦

γ◦ //
// γ•

2
aa

γ•

γ◦

2

>>

//
// γ•

(4.68)

where we have written explicitly the core charge at the framing node. The corresponding
vevs are

〈 L̂γ• 〉 = Yγ• , (4.69)

〈 L̂−γ◦ 〉 = 1/Yγ◦ . (4.70)

For notational simplicity we omit to write explicitly the phase ζ. These operators generate
the following cluster families of line defects. Starting from Lγ• , by applying the rational
transformation corresponding to the 1/4 monodromy we find

〈 L̂−2γ•−γ◦ 〉 =

(
1 + 2Yγ◦ + 2Yγ•Yγ◦ + Y 2

γ◦ + 3Yγ•Y 2
γ◦ + 3Y 2

γ•Y
2
γ◦ + Y 3

γ•Y
2
γ◦

)2

Y 2
γ•Yγ◦

, (4.71)

〈 L̂−γ•〉 =

(
1 + Yγ◦ + 2Yγ•Yγ◦ + Y 2

γ•Yγ◦

)2

Yγ•
, (4.72)

〈 L̂γ◦ 〉 = (1 + Yγ•)2Yγ◦ , (4.73)

〈 L̂γ• 〉 = Yγ• , (4.74)

〈 L̂−γ◦ 〉 = 1
Yγ◦

, (4.75)
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〈 L̂−γ•−2γ◦ 〉 = (1 + Yγ◦)2

Yγ•Y
2
γ◦

, (4.76)

〈 L̂−2γ•−3γ◦ 〉 =

(
1 + 2Yγ◦ + Y 2

γ◦ + Yγ•Y
2
γ◦

)2

Y 2
γ•Y

3
γ◦

, (4.77)

〈 L̂−3γ•−4γ◦ 〉 =

(
1 + 3Yγ◦ + 3Y 2

γ◦ + 2Yγ•Y 2
γ◦ + Y 3

γ◦ + 2Yγ•Y 3
γ◦ + Y 2

γ•Y
3
γ◦

)2

Y 3
γ•Y

4
γ◦

. (4.78)

In general we generate 〈 L̂−(n−1)γ•−nγ◦ 〉 and 〈 L̂−nγ•−(n−1)γ◦ 〉, both with n ≥ 0. The framed
quivers are

−(n− 1)γ• − nγ◦
2n−2

xx
γ◦ //

// γ•

2n
ff

−nγ• − (n− 1)γ◦
2n

xx
γ◦ //

// γ•

2n−2ff

(4.79)

SO(3)+. We call SO(3)+ the case with the core charges γ• and −1
2γ◦. They correspond

to the two quivers

−1
2γ◦

γ◦ //
// γ•

aa

γ•

γ◦

2

>>

//
// γ•

(4.80)

and vevs

〈 L̂γ• 〉 = Yγ• ,

〈 L̂− 1
2γ◦
〉 = 1/Y 1

2γ◦
= 1/Y 1/2

γ◦ . (4.81)

Note that only the Wilson lines wn+1
ζ with core charge −n(γ◦ + γ•) where n ∈ Z>0 are

now allowed by the consistency condition. These are precisely the Wilson lines in those
representations of SU(2) which are invariant under the action of the center Z2.

Now we can use the monodromy operators to generate families of line defects starting
from the defects above. However here we are in an SO(3) theory and so we have to be
careful. In particular the periodicity of the theta angle is changed from θ −→ θ + 2π to
θ −→ θ + 4π. As a consequence the R-symmetry is not anymore Z4 but only a Z2 remains.
This is a consequence of the fact that the R-symmetry of the fermions is related to the
shift of the theta angle in an instanton background (and on spin manifolds the instanton
number of an SO(3) instanton is in 1

2Z). Since now we only have Z2 R-symmetry, the half
monodromy is the only fractional monodromy. Therefore starting from the two operators
in (4.81) we generate two distinct families. Indeed applying the 1/4-monodromy to 1/Y 1

2γ◦

would give Y 1
2γ•

which would violate Dirac consistency condition.
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One family is precisely as before, and contains

〈 L̂−γ• 〉 =

(
1 + Yγ◦ + 2Yγ•Yγ◦ + Y 2

γ•Yγ◦

)2

Yγ•
, (4.82)

〈 L̂γ• 〉 = Yγ• , (4.83)

〈 L̂−γ•−2γ◦ 〉 = (1 + Yγ◦)2

Yγ•Y
2
γ◦

, (4.84)

〈 L̂−3γ•−4γ◦ 〉 =

(
1 + 3Yγ◦ + 3Y 2

γ◦ + 2Yγ•Y 2
γ◦ + Y 3

γ◦ + 2Yγ•Y 3
γ◦ + Y 2

γ•Y
3
γ◦

)2

Y 3
γ•Y

4
γ◦

, (4.85)

and the other contains the operators

〈 L̂−γ•− 1
2γ◦
〉 =

(
1 + 2Yγ◦ + 2Yγ•Yγ◦ + Y 2

γ◦ + 3Yγ•Y 2
γ◦ + 3Y 2

γ•Y
2
γ◦ + Y 3

γ•Y
2
γ◦

)
Yγ•Y

1/2
γ◦

, (4.86)

〈 L̂ 1
2γ◦
〉 = (1 + Yγ•)Y 1/2

γ◦ , (4.87)

〈 L̂− 1
2γ◦
〉 = 1

Y
1/2
γ◦

, (4.88)

〈 L̂−γ•− 3
2γ◦
〉 =

(
1 + 2Yγ◦ + Y 2

γ◦ + Yγ•Y
2
γ◦

)
Yγ•Y

3/2
γ◦

, (4.89)

which are simply given by the square root of the corresponding operators in SU(2). Note
that these SU(2) line operators are still present, since they arise from multiplication of (4.86)
with themselves (or equivalently they are generated by iteration of the half-monodromy
rational transformation starting from 1/Yγ◦).

To summarize the line operators obtained in this way are

〈 L̂−nγ•−(2n+1)/2γ◦ 〉 , 〈 L̂−nγ•−(2n−1)/2γ◦ 〉 with n ≥ 0
(
from Y− 1

2γ◦

)
〈 L̂−(n−1)γ•−nγ◦ 〉 with n ≥ 0 even and 〈 L̂−nγ•−(n−1)γ◦ 〉 with n ≥ 0 odd (from Yγ•)
〈 L̂−(n−1)γ•−nγ◦ 〉 with n ≥ 0 odd and 〈 L̂−nγ•−(n−1)γ◦ 〉 with n ≥ 0 even (from Y−γ◦)
〈ŵ−n(γ•+γ◦)〉 with n > 0

(4.90)
The third line is redundant, but we include it to clarify that the dyonic operators of SU(2)
are always present

SO(3)−. Now the remaining case of SO(3)− is the one with core charges 1
2γ• and −γ◦.

They correspond to the two quivers

−γ◦

γ◦ //
// γ•

2
aa

1
2γ•

γ◦

>>

//
// γ•

(4.91)
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and v.e.v.’s

〈 L̂ 1
2γ•
〉 = Y 1

2γ•
= Y 1/2

γ• , (4.92)

〈 L̂−γ◦ 〉 = 1/Yγ◦ . (4.93)

Once again the only consistent Wilson lines have charges −n(γ◦ + γ•). As before applying
the half-monodromy we find the consistent set of line operators

〈 L̂− 1
2γ•
〉 =

(
1 + Yγ◦ + 2Yγ•Yγ◦ + Y 2

γ•Yγ◦

)
Y

1/2
γ•

,

〈 L̂ 1
2γ•
〉 = Y 1/2

γ• ,

〈 L̂− 1
2γ•−γ◦

〉 = (1 + Yγ◦)
Y

1/2
γ• Yγ◦

,

〈 L̂− 3
2γ•−2γ◦ 〉 =

(
1 + 3Yγ◦ + 3Y 2

γ◦ + 2Yγ•Y 2
γ◦ + Y 3

γ◦ + 2Yγ•Y 3
γ◦ + Y 2

γ•Y
3
γ◦

)
Y

3/2
γ• Y 2

γ◦

, (4.94)

and

〈 L̂−2γ•−γ◦ 〉 =

(
1 + 2Yγ◦ + 2Yγ•Yγ◦ + Y 2

γ◦ + 3Yγ•Y 2
γ◦ + 3Y 2

γ•Y
2
γ◦ + Y 3

γ•Y
2
γ◦

)2

Y 2
γ•Yγ◦

,

〈 L̂γ◦ 〉 = (1 + Yγ•)2Yγ◦ ,

〈 L̂−γ◦ 〉 = 1
Yγ◦

,

〈 L̂−2γ•−3γ◦ 〉 =

(
1 + 2Yγ◦ + Y 2

γ◦ + Yγ•Y
2
γ◦

)2

Y 2
γ•Y

3
γ◦

. (4.95)

As before we can generate another family of operators starting from Yγ• , which would give
the square of (4.94). Summarizing the set of line operators obtained in this way is

〈 L̂−(2n−1)/2γ•−nγ◦ 〉 , 〈 L̂−(2n+1)/2γ•−nγ◦ 〉 with n ≥ 0
(
from Y 1

2γ•

)
〈 L̂−(n−1)γ•−nγ◦ 〉 with n ≥ 0 odd and 〈 L̂−nγ•−(n−1)γ◦ 〉 with n ≥ 0 even (from Y−γ◦)
〈 L̂−(n−1)γ•−nγ◦ 〉 with n ≥ 0 even and 〈 L̂−nγ•−(n−1)γ◦ 〉 with n ≥ 0 odd (from Yγ•)
〈 ŵ−n(γ•+γ◦) 〉 with n > 0

(4.96)
Again the third line is redundant.

Note that if we apply the 1/4-fractional monodromy to an operator in the first line, we
would get precisely an operator in SO(3)+ (simply because the generators of these families
are mapped into each other). The fractional monodromy is related to the Z4 R-symmetry,
which is not a symmetry anymore, and its action is compensated by θ −→ θ + 2π (while
the physical invariance is now θ −→ θ + 4π). This operation exchages the line defects of
SO(3)+ with those of SO(3)−: in other words what we are seeing is the statement that
SO(3)θ+ = SO(3)θ+2π

− as noted in [90].
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5 Q-systems and conserved charges

Now we develop a more general approach to study Wilson lines in asymptotically free
theories. We will mostly focus on SU(N) theories and their respective line defects. For
these class of theories the finer fractional monodromy, in the q −→ +1 limit, is a certain
rational transformation which coincides with the evolution of a certain integrable system,
the so-called Q-system. In this section we will introduce Q-systems from the point of view
of cluster algebras, and their relation with N = 2 models [36, 97, 98]. We will also discuss
the conserved charged of these systems which we will identify as the Wilson lines of the
gauge theories. We will then discuss an explicit example.

5.1 Q-systems and cluster algebras

The Ar Q-system is defined in terms of the family of commutative variables {Qα,n : α ∈
Ir, n ∈ Z}, with Ir = 1, . . . , r together with the recursion relation

Qα,n+1Qα,n−1 = Q2
α,n −Qα+1,nQα−1,n , Q0,n = Qr+1,n = 1 , (α ∈ Ir , n ∈ Z) . (5.1)

In this case the variables Qα,n are related to the Ar Kirillov-Reshetikhin modules [99], by
imposing the boundary conditions

Qα,0 = 1 , Qα,1 = ch V (ωα) , α ∈ Ir . (5.2)

In the original applications of the Q-systems, Qα,1 is the character of the fundamental
Kirillov-Reshetikhin module V (ωα), the fundamental representation of slr+1 associated
with the highest weight ωα. The relation between Q-systems and cluster algebras becomes
apparent by relaxing this boundary condition and passing to the following variables

Rα,n = εαQα,n , εα = e iπα(r+1−α)/2 . (5.3)

These variables obey a recursion relation given by

Rα,n+1Rα,n−1 = R2
α,n +Rα+1,nRα−1,n , R0,n = Rr+1,n = 1 , (α ∈ Ir , n ∈ Z) .

(5.4)
These relations are precisely the exchange relations of cluster algebras. Introduce the seed
(x, B) with

x = (R1,0, . . . ,Rr,0;R1,1, . . . ,Rr,1) , B =
(

0 −C
C 0

)
(5.5)

where C is the Cartan matrix of Ar.
Time evolution for the Q-system takes the form of sequence of mutations of the seed

(x, B). As usual we label mutation by a discrete time variable t. Then the recursion
relations for the Q-system (5.4) have the form

xj [t+ 1] = xj,t+1 = µk(xj,t) =

x
−1
j,t

(∏2r
i=1 x

[B(t)
ij ]+

i,t +
∏2r
i=1 x

[−B(t)
ij ]+

i,t

)
, k = j

xj,t otherwise
(5.6)
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with the identification xα[t] = Rα,2t and xα+r[t] = Rα,2t+1. Similarly the adjacency matrix
B evolves in time with

B′ij =
{

−Bij if i = k or j = k

Bij + sgn(Bik)[Bik Bkj ]+ otherwise
. (5.7)

Note that since mutations have inverse, the Q-system can evolve forward or backward in
time. After a sequence of mutations µr · · ·µ1 (x, B) or µ2r · · ·µr+1 (x, B), all the variables
Rα,n will have evolved forward or backward in time, and the generic seed

x = (R1,2t, . . . ,Rr,2t;R1,2t+1, . . . ,Rr,2t+1) , B =
(

0 −C
C 0

)
, (5.8)

will have evolved to one of the seeds

x′ = (R1,2t+2, . . . ,Rr,2t+2;R1,2t+1, . . . ,Rr,2t+1) , B′ =
(

0 C

−C 0

)
, (5.9)

x′′ = (R1,2t, . . . ,Rr,2t;R1,2t−1, . . . ,Rr,2t−1) , B′′ =
(

0 C

−C 0

)
, (5.10)

respectively [97, Lemmata 3.6,3.8]. Note that the adjacency matrix has changed sign.
We can express the Q-system in terms of the Y -variables at the same instant t; if we

keep track of the “time” variable by writing Yi,t for the mutated Y -seed, we can write

Yi,t =
∏
i

x
B

(t)
ij

i,t , (5.11)

and the transformations (5.6) coincide now with the Y -mutations (2.15). Therefore the time
evolution of the Q-system corresponds precisely to the fractional monodromy associated
with the sequence of mutations r = µr · · ·µ1 and discussed in section 2.3. In the following
we will usually drop the discrete time dependence.

5.2 Conserved charges

Consider now a certain line defect L with core charge α. Assume that the framed quiver is
invariant under the finest fractional monodromy transformations, that is under a sequence
of mutations whose iteration generates the vanilla BPS spectrum in a certain chamber,
eventually up to a permutation. We will argue that this is the case for the Wilson lines. The
action of the sequence of mutations on the framed quiver lifts to an action on the line defect
vevs 〈 L̂ζ,α 〉. In particular we have argued that if a sequence of mutations corresponding to
the fractional monodromy maps a framed quiver into another, then the corresponding line
defects are related by the corresponding rational transformations R± (2.13). On the other
hand if a framed quiver is invariant under the sequence of mutations, this translates into a
condition for the corresponding line defect generating function 〈L̂ζ,α〉: it must be a fixed
point of a series of cluster transformations. Note that in these arguments one must keep
explicitly track of any permutation in the nodes of the quiver.
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It is easy to see why Wilson lines should correspond to conserved charges from a
graphical point of view. Consider for example a Wilson line given by the following framed
BPS quiver

fN // ◦1

�� ��

•2 //oo · · · // ◦N−1

�� ��
•1

``

// ◦2

OOOO

· · ·oo •N−1oo

. (5.12)

The unframed BPS quiver describes suN SYM and the framing a Wilson line corresponding
to one of the fundamental representations. We would like to show that such a framed quiver
is invariant under the sequence of quiver mutations which generates the spectrum in the
strong coupling chamber, the finest fractional monodromy. But this simply follows from
the fact that the coupling of the fundamental Wilson lines is local in the quiver, that is
it involves only a Kronecker sub-quiver. Indeed for this class of quivers the sequence of
mutations which generates the strong coupling spectrum is such that two adjacent mutations
involve nodes with mutually local charges. As a consequence we can analyze separately
what happens to the Kronecker sub-quiver involving the framing and what happens to
the remaining of the quiver. But we know that both will return to themselves after the
sequence of mutations: the framed Kronecker sub-quiver, because we have showed it in
section 4.3, and the rest of the quiver, by construction. Note that this argument involves
also the superpotential.

Assume that a certain line defect 〈 L̂ζ,f 〉 is fixed by a fractional monodromy operator.
Using the identification between cluster algebras and Q-systems outlined in section 5.1,
this translates into the fact that the line defect generating function is invariant under the
evolution of the Q-system. In other words it is a constant of motion. Therefore we conclude
that constructing such defects in supersymmetric quantum field theory is equivalent to the
determination of the constants of motions of the associated Q-system. There is however a
slight difference between the evolution of the Q-system and the finest fractional monodromy,
as the latter may involve a permutation. When this happens the rational transformation
corresponding to the finest fractional monodromy will simply permute the conserved charges
of the Q-system between themselves. We conclude that we can identify the Wilson line
defects with the conserved charges of the Q-system.

In the next sections we will show several examples of this phenomenon. The problem
of computing the framed BPS spectra for Wilson lines is reduced to finding the conserved
charges of a discrete integrable system. This problem was solved in [98] for the case of Ar as
follows. One begins by constructing the matrix whose entries are (Mα,n)i,j = R1,n+i+j−1−α;
explicitly

Mα,n =


R1,n−α+1 R1,n−α+2 · · · R1,n
R1,n−α+2 R1,n−α+3 · · · R1,n+1

...
... . . . ...

R1,n R1,n+1 · · · R1,n+α−1

 . (5.13)
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Define the discrete Wronskian determinant Wα,n = detMα,n. Then one can show that
Rα,n = Wα,n; the rationale behind the argument is that the Plücker relations between the
minors of a higher rank version of (5.13) coincide with the relations (5.4).

The boundary condition Rr+1,n = 1 therefore implies that the determinant Wr+1,n = 1
and in particular is a conserved quantity, that is independent on n. This boundary condition,
together with the relations (5.4) and the fact that Wr+2,n = 0, implies that the minors

ci = det(Mr+2,n)r+2−i
r+2 i = 0, . . . , r , (5.14)

which are polynomials in the variables Rα,n, are conserved quantities, independent on the
time variable n. The notation M j1,...,jl

i1,...,ik
means that the rows i1, . . . , ik and the columns

j1, . . . , jl have been removed from the matrix M . The boundary conditions imply that
c0 = cr+1 = 1. The other constants {c1, . . . , cr} are non trivial polynomials, independent on
n and completely fixed by the initial data. They furthermore determine the linear recursion
relation for the variable {R1,n}n∈Z

r+1∑
m=0

(−1)m cr+1−mR1,n+m = 0 , n ∈ Z . (5.15)

As we have mentioned before, Wilson line defects will correspond to conserved charges
of the Q-system. We have just outlined an algorithm to find r conserved charges. Of course,
sum and products of conserved charges are still conserved. Therefore any Wilson line defect
vev can be generated from the set of r “elementary” conserved charges of the Q-system, by
multiplication and sum. These abstract ideas have a very concrete physical counterpart.
Indeed let us consider a certain representation k of a simply laced group G. Our arguments
concerning the conserved charges of the Q-systems were special to A-type Lie algebras, but
we believe these ideas are more general. We would like to study the generating function
〈 ŵk

ζ 〉 of a Wilson line in the representation k in full generality, but we can still learn a lot
about them by thinking first about their classical limit first. Classically all quantum effects
are suppressed and the Wilson lines literally correspond to the classical holonomy in the
representation k. By going to the Coulomb branch the gauge group G is reduced to its
maximal torus U(1)r and any irreducible representation k of G decomposes into sums of
U(1) irreducible representations (with precisely dim k factors). Similarly the representation
space of k, V , decomposes into its weight spaces V =

⊕
w Vw, with w ∈ Λw an element

of the weight lattice corresponding to the representation k. Note that the core charge is
directly given by the highest weight. Therefore in the semi-classical approximation we can
immediately write

〈 ŵk
ζ 〉 =

∑
w weight

Ω(γ;wk
ζ ) Ye·B−1·w + quantum effects , (5.16)

where the sum is over the weights of the representation k, and we have expressed the charges
γ in terms of the weight vectors w using the adjacency matrix B. Here e is the standard
basis of Rdim k. The degeneracies Ω(γ;wk

ζ ) can now be interpreted as the multiplicities
in the weight decomposition. Physically these terms are color states of the core charge.
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Note that we can also turn our arguments the other way around and predict that every
conserved charge of an ADE Q-system will contain terms associated with the weights of an
irreducible representation of the corresponding simply laced group G.

Our general formalism predicts that these statements hold quantum mechanically.
Consider the r conserved charges of the Q-system constructed above {c1, . . . , cr}. In the
next sections we can will identify them with Wilson lines explicitly, by identifying the lowest
order monomial with the highest weight of an irreducible representation of G. We will
see that these operators correspond to the irreducible representations associated to the
fundamental weights of G. Assume that we have two conserved charges ci and cj computed
as above and let us multiply them together. We find a result of the form

ci · cj =
∑
k

Nk
ij c̃k , (5.17)

where the charges c̃k are conserved, though a priori not elements of the set {c1, . . . , cr}. At
the semi-classical level this OPE is just the decomposition of the tensor product of two
representations into irreducible representations, a fact that is physically clear from the weak
coupling description of the Wilson line operators. But the result is much stronger: it holds
for the full quantum generating functions of framed degeneracies.

In principle the identification of c̃k follows by restricting attention to simple line defects,
that is line defects which cannot be written as sum of other line defects. But how do we
proceed in practice? We can do so by recalling that line defects are identified by their core
charge, by looking at the monomial whose overall power is the lowest. Multiplying the
two conserved charges ci · cj together, allows us to predict the lowest core charge among
all the line operators appearing on the right hand side of (5.17), which simply results by
direct multiplication of the two monomials corresponding to the core charges of ci and
cj respectively. Therefore, since the electro-magnetic charge is quantized, the conserved
charges are automatically ordered. Finally to identify the conserved charges on the right
hand side of (5.17), we simply have to multiply the conserved charges on the left hand
side in the appropriate order, making sure every time that there is only a new term in the
right hand side of (5.17), and that the conserved charges labelled by a lower core charge
have already been computed. In this way, simply by inspection of the right hand side
of (5.17), we can identify all the new conserved charges. Note that this argument strictly
holds only at a fixed point in the Coulomb branch, since crossing an anti-wall would change
the core charge.

Note that in this case the concept of a conserved charge is somewhat ambiguous, as
any constant term will be conserved and could be added. However physically no such term
is possible, since a neutral particle will not have any electro-magnetic interaction with
the core charge and therefore will not form a bound state, unless the constant term is
forced upon us by gauge invariance: the irreducible representation contains the zero weight
in its decomposition. Therefore the decomposition (5.17) is unambiguous and perfectly
determined by the core charges of the defects, or highest weights of their irreducible
representations in the ultraviolet.
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Let us summarize our strategy. We will consider BPS quivers framed by Wilson line
defects. We will then check explicitly that the quivers are invariant under the smallest
fractional monodromy, including explicitly the corresponding permutation if necessary.
Then we will compute the conserved charges of the corresponding Q-system and identify
them with the Wilson lines using the core charge. Since we will start from the smallest core
charges available, which is the highest weight of the corresponding representation, we will
only deal with simple line defects and the prescription is unambiguous.

5.3 An example: su2 revisited

To exemplify this formalism, let us go back to the case of su2 SYM discussed in section 4,
and consider a Wilson line in the fundamental representation w2

ζ . As we have remarked in
section 5.2, this is precisely the case where we can argue that a line defect is given by a con-
served charge of the associated Q-system. In particular this gives us a systematic approach
to compute the framed spectrum. In this case the Q-system has seed ((R1,0;R1,1), BSU(2)),
and there is only one conserved charge, which has the form

c1 = det(M3,n)2
3 = R1,n−2R1,n+1 −R1,nR1,n−1 . (5.18)

Now we can use the Q-system relations (5.4), to express this charge in terms of the original
seed variables:

c1 = R1,1
R1,0

+ 1
R1,0R1,1

+ R1,0
R1,1

. (5.19)

Finally the latter can be expressed in term of the cluster variables Y◦ and Y• using (5.11):

R1,0 = Y
−1/2
◦ , (5.20)

R1,1 = Y
1/2
• , (5.21)

where we have used our standard notation Y◦. Finally the corresponding line defect is

〈ŵ2
ζ 〉 = F [ŵ2

ζ , {Y•, Y◦}] =
[

1
(Y•Y◦)

1
2

+ (Y•Y◦)
1
2

]
+
(
Y◦
Y•

) 1
2
, (5.22)

which agrees with the results of section 4.

6 su3 super Yang-Mills

In this section we will study su3 Yang-Mills. This theory is not complete but still of quiver
type. Its BPS spectrum is known in several chambers and the theory has an intricate
pattern of walls of marginal stability [17]. We will provide a systematic analysis of the
framed BPS spectra using our methods, firstly for Wilson lines, and then for other line
defects. The quiver which describes the BPS spectrum of su3 can be chosen as

•1

&&

•2

xx◦1

OOOO

◦2

OOOO

(6.1)
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in a certain duality frame. Using the sequence of mutations m+ = µ+
•2 µ

+
•1 µ

+
◦2 µ

+
◦1 µ

+
•2 µ

+
•1 we

generate the finite spectrum {γ•1 , γ•2 , γ•2 + γ◦1 , γ•1 + γ◦2 , γ◦2 , γ◦1}, plus anti-particles. The
system admits a 1/6-monodromy, generated by the sequence r+ = µ+

•2 µ
+
•1 , with permutation

σ = {(•1, ◦1), (•2, ◦2)}. The existence of this monodromy is a consequence of an unbroken
Z6 R-symmetry. The R(+) transformation associated with σ−1 s+ is given by:

R(+) ≡



Y•1 → 1/Y◦1

Y•2 → 1/Y◦2

Y◦1 →
Y 2
◦1 (Y◦2+1)Y•1

(Y◦1+1)2

Y◦2 →
(Y◦1+1)Y 2

◦2Y•2
(Y◦2+1)2

. (6.2)

6.1 Wilson lines

Now we pass to the study of the Wilson line operators. These are characterized by purely
electric core charges. Consider the two defects with core charges

γ3 = −2
3(γ•1 + γ◦1)− 1

3(γ•2 + γ◦2) (6.3)

γ3̄ = −1
3(γ•1 + γ◦1)− 2

3(γ•2 + γ◦2) (6.4)

corresponding to the framed quivers

γ3

  

•1oo

&&

•2

xx
◦1

OOOO

◦2

OOOO

,

•1

%%

•2

yy

// γ3̄

~~
◦1

OOOO

◦2

OOOO

. (6.5)

It is easy to see that these framed quivers are invariant under the action of r+ composed
with the permutation σ−1. We therefore predict that the corresponding vev’s are the
conserved charges of the associated Q-system, which we will now compute explicitly. In this
case the Q-system has seed ((R1,0,R2,0;R1,1R2,1), BSU(3)), with BSU(3) being the adjacency
matrix of the quiver (6.1). There are therefore two conserved charges, expressed in terms of
the minors of the matrix (5.13)

c1 = det(M4,n)3
4 , (6.6)

c2 = det(M4,n)2
4 . (6.7)

Using the Q systems relations (5.4), these charges can be expresses in terms of the orig-
inal seed variables. Finally the latter can be expressed in term of the cluster algebra
Y -variables using

R1,0 = Y
−2/3
◦1 Y

−1/3
◦2 (6.8)

R2,0 = Y
−1/3
◦1 Y

−2/3
◦2 (6.9)

R1,1 = Y
2/3
•1 Y

1/3
•2 (6.10)

R2,1 = Y
2/3
•1 Y

1/3
•2 . (6.11)
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The result is

〈 ŵ3
ζ 〉 = F [ŵ3

ζ , {Yi}] =
[

1
Y

2/3
•1 Y

1/3
•2 Y

2/3
◦1 Y

1/3
◦2

+ Y
1/3
•1 Y

1/3
◦1

Y
1/3
•2 Y

1/3
◦2

+ Y
1/3
•1 Y

2/3
•2 Y

1/3
◦1 Y

2/3
◦2

]

+ Y
1/3
◦1

Y
2/3
•1 Y

1/3
•2 Y

1/3
◦2

+ Y
1/3
•1 Y

1/3
◦1 Y

2/3
◦2

Y
1/3
•2

(6.12)

〈 ŵ3̄
ζ 〉 = F [ŵ3

ζ , {Yi}] =
[

1
Y

1/3
•1 Y

2/3
•2 Y

1/3
◦1 Y

2/3
◦2

+ Y
1/3
•2 Y

1/3
◦2

Y
1/3
•1 Y

1/3
◦1

+ Y
2/3
•1 Y

1/3
•2 Y

2/3
◦1 Y

1/3
◦2

]

+ Y
1/3
◦2

Y
1/3
•1 Y

2/3
•2 Y

1/3
◦1

+ Y
1/3
•2 Y

2/3
◦1 Y

1/3
◦2

Y
1/3
•1

(6.13)

This vevs were first computed in [55]. The terms in square brackets contain the semi-classical
contribution; indeed one can easily see that the charges involved correspond to the weights
of the irreducible representations, as in (5.16)

3 [1, 0], [−1, 1], [0,−1] , (6.14)
3 [0, 1], [1,−1], [−1, 0] . (6.15)

We label a weight λ by its Dynkin labels, defined as ai = 2(λ, α)/(αi, αi) for i = 1, . . . , n
for the An Lie algebra, where αi are the simple roots. In particular λ =

∑n
i=1 ai ωi where

ωi are the fundamental weights. We will employ this notation thoroughout this paper.
As expected, one can easily see that the two line defects are invariant under the action

of the rational transformation (6.2)

F [ŵ3
ζ , {Yi}] = F [ŵ3

ζ , R
(+){Yi}] , (6.16)

F [ŵ3
ζ , {Yi}] = F [ŵ3

ζ , R
(+){Yi}] , (6.17)

where we have taken the permutation of the nodes into account.21 As we have discussed,
all the conserved charges of the system can be derived by products and sums of c1 and c2.
We can impose the OPE relations for SU(3)

w3
ζ ∗w3̄

ζ = 1 + w8
ζ (6.18)

w3
ζ ∗w3

ζ = w3̄
ζ + w6

ζ (6.19)
w3
ζ ∗w6

ζ = w8
ζ + w10

ζ (6.20)

21Note that without the permutation the rational transformation would exchange the two vev’s. The
reason for this is the change of variables (5.11). After a full evolution of the Q-system the adjacency matrix
in (5.8) has changed sign, corresponding of the exchange of the two Cartan submatrices. The effect of this
exchange is compensated by the permutation σ on the Y -seed in (5.11).
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and obtain the operators

〈 ŵ6
ζ 〉=

[
1

Y
4/3
•1 Y

2/3
•2 Y

4/3
◦1 Y

2/3
◦2

+ 1
Y

1/3
•1 Y

2/3
•2 Y

1/3
◦1 Y

2/3
◦2

+ Y
2/3
•1 Y

2/3
◦1

Y
2/3
•2 Y

2/3
◦2

+ Y
1/3
•2 Y

1/3
◦2

Y
1/3
•1 Y

1/3
◦1

+Y
2/3
•1 Y

1/3
•2 Y

2/3
◦1 Y

1/3
◦2 +Y

2/3
•1 Y

4/3
•2 Y

2/3
◦1 Y

4/3
◦2

]
+ 2
Y

4/3
•1 Y

2/3
•2 Y

1/3
◦1 Y

2/3
◦2

+ Y
2/3
◦1

Y
4/3
•1 Y

2/3
•2 Y

2/3
◦2

+ 2Y 2/3
◦1

Y
1/3
•1 Y

2/3
•2 Y

2/3
◦2

+ Y
1/3
◦2

Y
1/3
•1 Y

2/3
•2 Y

1/3
◦1

+ 2Y 2/3
◦1 Y

1/3
◦2

Y
1/3
•1 Y

2/3
•2

+ 2Y 2/3
•1 Y

2/3
◦1 Y

1/3
◦2

Y
2/3
•2

+ Y
1/3
•2 Y

2/3
◦1 Y

1/3
◦2

Y
1/3
•1

+ Y
2/3
•1 Y

2/3
◦1 Y

4/3
◦2

Y
2/3
•2

+2Y 2/3
•1 Y

1/3
•2 Y

2/3
◦1 Y

4/3
◦2 , (6.21)

〈 ŵ8
ζ 〉=

[ 1
Y•1Y•2Y◦1Y◦2

+ 1
Y•2Y◦2

+ 1
Y•1Y◦1

+2+Y•1Y◦1 +Y•2Y◦2 +Y•1Y•2Y◦1Y◦2

]

+ 2
Y•1

+ 2
Y•2

+ 1
Y•1Y•2

+ 1
Y•1Y•2Y◦1

+2Y◦1 + Y◦1

Y•1
+ 1
Y•1Y•2Y◦2

+2Y◦2 + Y◦2

Y•2

+Y◦1Y◦2 +Y•1Y◦1Y◦2 +Y•2Y◦1Y◦2 , (6.22)

〈 ŵ10
ζ 〉=

[
1

Y 2
•1Y•2Y

2
◦1Y◦2

+ 1
Y•1Y•2Y◦1Y◦2

+ 1
Y•2Y◦2

+ 1
Y•1Y◦1

+ Y•1Y◦1

Y•2Y◦2
+1+Y•1Y◦1 +Y•2Y◦2

+Y•1Y•2Y◦1Y◦2 +Y•1Y
2
•2Y◦1Y

2
◦2

]
+ 2
Y•1

+ 2
Y•2

+ 4
Y•1Y•2

+ 1
Y•1Y•2Y◦1

+2Y◦1 + Y◦1

Y•1

+ 6Y◦1

Y•2
+ 3Y◦1

Y•1Y•2
+ 3Y•1Y◦1

Y•2
+ 3
Y 2
•1Y•2Y◦2

+ 4
Y•1Y•2Y◦2

+ 3
Y 2
•1Y•2Y◦1Y◦2

+ 3Y◦1

Y•2Y◦2

+ Y◦1

Y 2
•1Y•2Y◦2

+ 3Y◦1

Y•1Y•2Y◦2
+2Y◦2 + Y◦2

Y•2
+4Y◦1Y◦2 +4Y•1Y◦1Y◦2 + 3Y◦1Y◦2

Y•2

+ 3Y•1Y◦1Y◦2

Y•2
+Y•2Y◦1Y◦2 +3Y•1Y◦1Y

2
◦2 +

Y•1Y◦1Y
2
◦2

Y•2
+3Y•1Y•2Y◦1Y

2
◦2 . (6.23)

Again the charges of terms in square brackets, when multiplied by the adjacency matrix,
reproduce precisely the weights of the irreducible representations of su3,22

6 [2, 0], [0, 1], [−2, 2], [1,−1], [−1, 0], [0,−2] , (6.24)
8 [1, 1], [−1, 2], [2,−1], [0, 0], [0, 0], [−2, 1], [1,−2], [−1,−1] , (6.25)

10 [3, 0], [1, 1], [−1, 2], [2,−1], [−3, 3], [0, 0], [−2, 1], [1,−2], [−1,−1], [0,−3] . (6.26)

This results can be independently verified by a direct localization computation [100].

22These weights can be easily checked using, for example, the mathematica package LieArt.
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6.2 Dyonic defects

To generate infinite series of dyonic line defects we can start with the following set of
“elementary” line defects

〈 L̂ζ,f?1
〉 = Y −2

◦1 Y −1
◦2 , f?1 = −2 γ◦1 − γ◦2 , (6.27)

〈 L̂ζ,f?2
〉 = Y −1

◦1 Y −2
◦2 , f?1 = −γ◦1 − 2γ◦2 , (6.28)

〈 L̂ζ,f?3
〉 = Y 2

•1 Y
1
•2 , f?1 = 2 γ•1 + γ•2 , (6.29)

〈 L̂ζ,f?4
〉 = Y 1

•1 Y
2
•2 , f?1 = γ•1 + 2γ•2 . (6.30)

These defects have the property that their framed quivers consists in a number of arrows
from the unframed BPS quiver to the framing node, the only cyclic module being the trivial
one. Each of them can be used to generate a whole cluster orbit of new line defects. For
example we can start with the framed BPS quiver with core charge f?1 and iterate the
mutation sequence σ−1s+:

f?1 •1αioo
ψ

// ◦2

Ã1

��

Ã2

��
◦1

A1

OO

A2

OO

•2
φ

oo

W = Ã1ψA1φ+ Ã2ψA2φ

σ ◦ r+

=⇒

f
[1]
?1

βi
  

•1
αi1

oo

αi2oo ψ
// ◦2

Ã1

��

Ã2

��
◦1

A1

OO

A2

OO

•2
φ

oo

W =
3∑
i=1

(βiαi2A2 + βiαi1A1) + Ã1ψA1φ+ Ã2ψA2φ

,

(6.31)
wiht i = 1, 2, 3. An iteration of the rational transformation (6.2) produces

〈 L̂
ω6ζ,f

[1]
?1
〉 = 1

Y 2
•1Y•2Y

4
◦1Y

2
◦2

(1 + Y◦1)3 (6.32)

which indeed can be verified by a direct localization computation [100].
We can go one iteration further

f
[2]
?1

&&
βi1,β

i
2

&&

•1oo
oo

αi1,α
i
2,α

i
3

oo
ψ

// ◦2

Ã1

��

Ã2

��
◦1

A1

OO

A2

OO

•2
φ

oo

W =
3∑
i=1

(A1β
i
1α

i
1 +A2β

i
2α

i
2 + αi3(A1β

i
2 −A2β

i
1)) + Ã1ψA1φ+ Ã2ψA2φ

(6.33)

where again i = 1, 2, 3 everywhere in the quiver. To see how this superpotential arise,
mutate at •1 the framed quiver for f [2]

?1

f
[1]
?1 //

αi,∗1 ,αi,∗2 // •1

A∗1

��

A∗2

��

◦2
ψ∗

oo

Ã1

��

Ã2

��
◦1

[αi1A1],[αi1A2],[αi2A1],[αi2A2]

ff
βi,∗

ff
44 44

•2
φ

oo

(6.34)
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We only consider the part of the superpotential associated with the framing node:

W =
3∑
i=1

βi[αi2A2] + βi[αi1A1] + [αi1A1]A∗1α
i,∗
1 + [αi2A1]A∗1α

i,∗
2 + [αi2A1]A∗2α

i,∗
2

+ [αi1A2]A∗2α
i,∗
1 + · · · (6.35)

The F-term equations for βi set [αi2A2] = −[αi1A1], so that the superpotential becomes

W =
3∑
i=1

[αi1A1](A∗1α
i,∗
1 −A

∗
2α

i,∗
1 ) + [αi2A1]A∗1α

i,∗
2 + [αi2A1]A∗2α

i,∗
2 + · · · (6.36)

and one further mutation at •2 reproduces (6.33) after an appropriate relabeling of the
arrows. The line defect vev can be again computed from the rational transformation (6.2):

〈L
ω2

6ζ,f
[2]
?1
〉 = 1

Y 4
•1Y

2
•2Y

6
◦1Y

3
◦2

(1 + 2Y◦1 + Y 2
◦1 + Y•1Y

2
◦1 + Y•1Y

2
◦1Y◦2)3 (6.37)

and ω6 is a root of unity in Z6. Also this result can be checked with an explicit localization
computation [100].

Similar results can be obtained, say, from f?3

〈 L̂
ω6ζ,f

[1]
?3
〉 = 1

Y 2
◦1Y◦2

, (6.38)

〈 L̂
ω2

6ζ,f
[2]
?3
〉 = (1 + Y◦1)3

Y 2
•1Y•2Y

4
◦1Y

2
◦2

, (6.39)

〈 L̂
ω3

6ζ,f
[3]
?3
〉 =

(1 + 2Y◦1 + Y 2
◦1 + Y•1Y

2
◦1 + Y•1Y

2
◦1Y◦2)3

Y 4
•1Y

2
•2Y

6
◦1Y

3
◦2

, (6.40)

〈 L̂
ω4

6ζ,f
[4]
?3
〉 = 1

Y 6
•1Y

3
•2Y

8
◦1Y

4
◦2

(
1 + 3Y◦1 + 3Y 2

◦1 + 2Y•1Y
2
◦1 + Y 3

◦1 + 2Y•1Y
3
◦1 + Y 2

•1Y
3
◦1

+ 2Y•1Y
2
◦1Y◦2 + 2Y•1Y

3
◦1Y◦2 + 2Y 2

•1Y
3
◦1Y◦2 + Y 2

•1Y
3
◦1Y

2
◦2 + Y 2

•1Y•2Y
3
◦1Y

2
◦2

)3
.

(6.41)

Overall we get the picture

· · · −→ 〈 L̂
ω−1

6 ζ,f
[−1]
?a

〉 −→ 〈 L̂
ζ,f

[0]
?a

〉 −→ 〈 L̂
ω1

6ζ,f
[1]
?a

〉 −→ 〈 L̂
ω2

6ζ,f
[2]
?a

〉 −→ · · · (6.42)

for a = 1, 2, 3, 4, where an infinite class of line defects is organized into four cluster families,
and their vevs are explicitly computed by the iteration of rational transformations.

7 su4 super Yang-Mills

Now we will carry on the same calculations in the case of pure su4 super Yang-Mills. Its
BPS quiver is [17]

◦1

�� ��

•2 //oo ◦3

�� ��
•1 // ◦2

OOOO

•3oo

(7.1)
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The finite BPS spectrum with charges, in decreasing phase order,

{γ•1 , γ•2 , γ•3 , γ•2 + γ◦1 , γ•1 + γ•3 + γ◦2 , γ•2 + γ◦3 , (7.2)
γ•3 + γ◦2 , γ•2 + γ◦1 + γ◦3 , γ•1 + γ◦2 , γ◦3 , γ◦2 , γ◦1} (7.3)

plus CPT conjugates, is generated by the sequence

m+ = µ+
◦3 µ

+
◦2 µ

+
◦1 µ

+
•3 µ

+
•2 µ

+
•1 µ

+
◦3 µ

+
◦2 µ

+
◦1 µ

+
•3 µ

+
•2 µ

+
•1 . (7.4)

This is a repetition of the sequence

s+ = µ+
•3 µ

+
•2 µ

+
•1 (7.5)

with permutation σ = {(•1, ◦1), (•2, ◦2), (•3, ◦3)}, and the system exhibit a 1/8 fractional
monodromy. The rational transformation R(+) corresponding to σ−1 s+ is

R(+) ≡



Y•1 → 1/Y◦1

Y•2 → 1/Y◦2

Y•3 → 1/Y◦3

Y◦1 →
Y 2
◦1 (1+Y◦2 )Y•1

(1+Y◦1 )2

Y◦2 →
(1+Y◦1 )Y 2

◦2 (1+Y◦3 )Y•2
(1+Y◦2 )2

Y◦3 →
(1+Y◦2 )Y 2

◦3Y•3
(1+Y◦3 )2

. (7.6)

7.1 Wilson lines

Now we consider the Q-system (5.4) for the case of SU(4). In this case the Q-system
variables {R1,n}n∈Z satisfy the following recursion relation

R1,n − c3R1,1+n + c2R1,2+n − c1R1,3+n +R1,4+n = 0 , n ∈ Z , (7.7)

where the constant of motion c1, c2 and c3 are defined as the minors of (5.13)

ci = (M5)5−i
5 , i = 1, . . . , 3 . (7.8)

The constants of motion can be solved for in terms of the original seed variables

(R1,0, . . . ,R3,0;R1,1, . . . ,R3,1) (7.9)

using the Q-system relations (5.4).
We now express them in terms of the Y seed using (5.11), which in this case reads

Ri,0 =
6∏
j=1

Y
Bj,i
◦j , i = 1, 2, 3 , (7.10)

Ri,1 =
6∏
j=1

Y
Bj,i
•i , i = 1, 2, 3 . (7.11)
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Explicitly one finds

c1 = 〈 ŵ4
ζ 〉 =

[
1

Y
3/4
•1 Y

1/2
•2 Y

1/4
•3 Y

3/4
◦1 Y

1/2
◦2 Y

1/4
◦3

+ Y
1/4
•1 Y

1/4
◦1

Y
1/2
•2 Y

1/4
•3 Y

1/2
◦2 Y

1/4
◦3

+ Y
1/4
•1 Y

1/2
•2 Y

1/4
◦1 Y

1/2
◦2

Y
1/4
•3 Y

1/4
◦3

+ Y
1/4
•1 Y

1/2
•2 Y

3/4
•3 Y

1/4
◦1 Y

1/2
◦2 Y

3/4
◦3

]
+ Y

1/4
◦1

Y
3/4
•1 Y

1/2
•2 Y

1/4
•3 Y

1/2
◦2 Y

1/4
◦3

+ Y
1/4
•1 Y

1/4
◦1 Y

1/2
◦2

Y
1/2
•2 Y

1/4
•3 Y

1/4
◦3

+ Y
1/4
•1 Y

1/2
•2 Y

1/4
◦1 Y

1/2
◦2 Y

3/4
◦3

Y
1/4
•3

, (7.12)

c2 = 〈 ŵ6
ζ 〉 =

[
1

Y
1/2
•1 Y•2Y

1/2
•3 Y

1/2
◦1 Y◦2Y

1/2
◦3

+ 1
Y

1/2
•1 Y

1/2
•3 Y

1/2
◦1 Y

1/2
◦3

+ Y
1/2
•1 Y

1/2
◦1

Y
1/2
•3 Y

1/2
◦3

+ Y
1/2
•3 Y

1/2
◦3

Y
1/2
•1 Y

1/2
◦1

+ Y
1/2
•1 Y

1/2
•3 Y

1/2
◦1 Y

1/2
◦3 + Y

1/2
•1 Y•2Y

1/2
•3 Y

1/2
◦1 Y◦2Y

1/2
◦3

]
+ 1
Y

1/2
•1 Y•2Y

1/2
•3 Y

1/2
◦1 Y

1/2
◦3

+ Y
1/2
◦1

Y
1/2
•1 Y

1/2
•3 Y

1/2
◦3

+ Y
1/2
◦3

Y
1/2
•1 Y

1/2
•3 Y

1/2
◦1

+ Y
1/2
◦1 Y

1/2
◦3

Y
1/2
•1 Y

1/2
•3

+ Y
1/2
•1 Y

1/2
◦1 Y

1/2
◦3

Y
1/2
•3

+ Y
1/2
•3 Y

1/2
◦1 Y

1/2
◦3

Y
1/2
•1

+ Y
1/2
•1 Y

1/2
•3 Y

1/2
◦1 Y◦2Y

1/2
◦3 , (7.13)

c3 = 〈 ŵ4̄
ζ 〉 =

[
1

Y
1/4
•1 Y

1/2
•2 Y

3/4
•3 Y

1/4
◦1 Y

1/2
◦2 Y

3/4
◦3

+ Y
1/4
•3 Y

1/4
◦3

Y
1/4
•1 Y

1/2
•2 Y

1/4
◦1 Y

1/2
◦2

+ Y
1/2
•2 Y

1/4
•3 Y

1/2
◦2 Y

1/4
◦3

Y
1/4
•1 Y

1/4
◦1

+ Y
3/4
•1 Y

1/2
•2 Y

1/4
•3 Y

3/4
◦1 Y

1/2
◦2 Y

1/4
◦3

]
+ Y

1/4
◦3

Y
1/4
•1 Y

1/2
•2 Y

3/4
•3 Y

1/4
◦1 Y

1/2
◦2

+ Y
1/4
•3 Y

1/2
◦2 Y

1/4
◦3

Y
1/4
•1 Y

1/2
•2 Y

1/4
◦1

+ Y
1/2
•2 Y

1/4
•3 Y

3/4
◦1 Y

1/2
◦2 Y

1/4
◦3

Y
1/4
•1

. (7.14)

Indeed it is easy to check that these operators are invariant under the action of the rational
transformation (7.6). In square brackets are the terms corresponding to the weights of the
irreducible representations of su4

4 [0, 0, 1], [0, 1,−1], [1,−1, 0], [−1, 0, 0] , (7.15)
6 [0, 1, 0], [1,−1, 1], [−1, 0, 1], [1, 0,−1], [−1, 1,−1], [0,−1, 0] , (7.16)
4 [1, 0, 0], [−1, 1, 0], [0,−1, 1], [0, 0,−1] , (7.17)

which can be obtained by changing basis using the adjacency matrix Bij . The highest
weights are associated with the core charges

γ4 = −1
4(γ•1 + γ◦1)− 1

2(γ•2 + γ◦2)− 3
4(γ•3 + γ◦3) , (7.18)

γ6 = −1
2(γ•1 + γ◦1)− (γ•2 + γ◦2)− 1

2(γ•3 + γ◦3) , (7.19)

γ4 = −3
4(γ•1 + γ◦1)− 1

2(γ•2 + γ◦2)− 1
4(γ•3 + γ◦3) , (7.20)
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in the basis of charges. These line defects correspond to the framed quivers

◦1

�� ��

•2 //oo ◦3

�� ��

γ4̄
oo

•1 // ◦2

OOOO

•3oo

>>

, γ4 // ◦1

�� ��

•2 //oo ◦3

�� ��
•1

``

// ◦2

OOOO

•3oo

γ6

��

◦1

�� ��

•2 //oo

>>

◦3

�� ��
•1 // ◦2

OOOO

•3oo

(7.21)
We can use these operators to compute the full ring of Wilson lines using their operator

product expansion using the strategy outlined in section 5. For example we can define

w15
ζ = w4̄

ζ ∗w4
ζ − 1 . (7.22)

The result is

〈 ŵ15
ζ 〉=

[
1

Y•1Y•2Y•3Y◦1Y◦2Y◦3
+ 1
Y•2Y•3Y◦2Y◦3

+ 1
Y•1Y•2Y◦1Y◦2

+ 1
Y•2Y◦2

+ 1
Y•3Y◦3

+ 1
Y•1Y◦1

+3+Y•1Y◦1 +Y•3Y◦3 +Y•2Y◦2 +Y•1Y•2Y◦1Y◦2 +Y•2Y•3Y◦2Y◦3

+Y•1Y•2Y•3Y◦1Y◦2Y◦3

]
+ 2
Y•1

+ 2
Y•2

+ 1
Y•1Y•2

+ 2
Y•3

+ 1
Y•2Y•3

+ 1
Y•1Y•2Y◦1

+2Y◦1

+ Y◦1

Y•1
+ 1
Y•1Y•2Y◦2

+ 1
Y•2Y•3Y◦2

+ 1
Y•1Y•2Y•3Y◦2

+ 1
Y•1Y•2Y•3Y◦1Y◦2

+2Y◦2 + Y◦2

Y•2

+Y◦1Y◦2 +Y•1Y◦1Y◦2 +Y•2Y◦1Y◦2 + 1
Y•2Y•3Y◦3

+ 1
Y•1Y•2Y•3Y◦2Y◦3

+2Y◦3 + Y◦3

Y•3

+Y◦2Y◦3 +Y•2Y◦2Y◦3 +Y•3Y◦2Y◦3 +Y•2Y◦1Y◦2Y◦3 +Y•1Y•2Y◦1Y◦2Y◦3

+Y•2Y•3Y◦1Y◦2Y◦3 . (7.23)

As a non trivial check of our construction note that the above operator is manifestly strongly
positive, and the terms in square brackets corresponds to the weights of the 15 of su4.

7.2 Dyonic defects

As in the case of su3, we can write down immediately the vevs of a set of “elementary” line
defects

〈 L̂ζ,f?1
〉 = Y −3

◦1 Y −2
◦2 Y −1

◦3 , (7.24)

〈 L̂ζ,f?2
〉 = Y −2

◦1 Y −4
◦2 Y −2

◦3 , (7.25)
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〈 L̂ζ,f?3
〉 = Y −1

◦1 Y −2
◦2 Y −3

◦3 , (7.26)

〈 L̂ζ,f?4
〉 = Y 3

•1Y
2
•2Y•3 , (7.27)

〈 L̂ζ,f?5
〉 = Y 2

•1Y
4
•2Y

2
•3 , (7.28)

〈 L̂ζ,f?6
〉 = Y•1Y

2
•2Y

3
•3 , (7.29)

whose framed BPS quiver has a single arrow from the BPS quiver Q to the framing node,
and starting from those derive whole new cluster families of defects by iterating the rational
transformation R(+) from (7.6)

· · · −→ 〈 L̂
ω−1ζ,f

[−1]
?a

〉 −→ 〈 L̂
ζ,f

[0]
?a

〉 −→ 〈 L̂
ω1ζ,f

[1]
?a

〉 −→ 〈 L̂
ω2ζ,f

[2]
?a

〉 −→ · · · , (7.30)

for a = 1, 2, 3, 4, 5, 6. For example

〈 L̂
ζ,f

[1]
?2
〉 = (1 + Y◦2)4

Y 2
•1Y

4
•2Y

2
•3Y

4
◦1Y

8
◦2Y

4
◦3

, (7.31)

〈 L̂
ζ,f

[2]
?2
〉 =

(
1 + 2Y◦2 + Y 2

◦2 + Y•2Y
2
◦2 + Y•2Y◦1Y

2
◦2 + Y•2Y

2
◦2Y◦3 + Y•2Y◦1Y

2
◦2Y◦3

)4
Y 4
•1Y

8
•2Y

4
•3Y

6
◦1Y

12
◦2 Y

6
◦3

. (7.32)

The structure of the cluster families for these line defects is similar to the case of su3. This
is not a surprise, since the elementary defects we have chosen are coupled to each Kronocker
sub-quiver separately. Consider now a defect such as

〈 L̂ζ,f� 〉 =
Y 2
•1Y

4
•2Y

2
•3

Y 3
◦1Y

2
◦2Y◦3

, (7.33)

which comes from the OPE Lζ,f?5
∗ Lζ,f?1

between two line defects based on different
Kronecker sub-quivers. Then it is easy to see that

〈 L̂
ζ,f

[1]
�
〉 = (1 + Y◦1)4

Y 3
•1Y

2
•2Y•3Y

8
◦1Y

8
◦2Y

4
◦3

, (7.34)

〈 L̂
ζ,f

[2]
�
〉 =

(1 + Y◦2)4 (1 + 2Y◦1 + Y 2
◦1 + Y•1Y

2
◦1 + Y•1Y

2
◦1Y◦2

)4
Y 8
•1Y

8
•2Y

4
•3Y

13
◦1 Y

14
◦2 Y

7
◦3

, (7.35)

which contain non-diagonal couplings between the two Kronecker sub-quivers.

8 su5 super Yang-Mills

Our last example is pure su5 super Yang-Mills. Its BPS quiver has the form

◦1

�� ��

•2 //oo ◦3

�� ��

•4oo

•1 // ◦2

OOOO

•3oo // ◦4

OOOO

(8.1)

This system has a 1/10 fractional monodromy: five iterations of the sequence

s+ = µ+
•4 µ

+
•3 µ

+
•2 µ

+
•1 , (8.2)
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with permutation σ = {(•1, ◦1), (•2, ◦2), (•3, ◦3), (•4, ◦4)}, generate the spectrum of BPS
particles, in decreasing phase order

{γ•1 , γ•2 , γ•3 , γ•4 , γ•2 + γ◦1 , γ•1 + γ•3 + γ◦2 , γ•2 + γ•4 + γ◦3 , γ•3 + γ◦4 , γ•3 + γ◦2 ,

γ•2 + γ•4 + γ◦1 + γ◦3 , γ•1 + γ•3 + γ◦2 + γ◦4 , γ•2 + γ◦3 , γ•4 + γ◦3 , γ•3 + γ◦2 + γ◦4 ,

γ•2 + γ◦1 + γ◦3 , γ•1 + γ◦2 , γ◦4 , γ◦3 , γ◦2 , γ◦1} ,
(8.3)

and the full spectrum is obtained by adding their CPT conjugates. The corresponding
rational transformation R(+) is

R(+) ≡



Y•1 → 1/Y◦1

Y•2 → 1/Y◦2

Y•3 → 1/Y◦3

Y•4 → 1/Y◦4

Y◦1 →
Y 2
◦1 (1+Y◦2 )Y•1

(1+Y◦1 )2

Y◦2 →
(1+Y◦1 )Y 2

◦2 (1+Y◦3 )Y•2
(1+Y◦2 )2

Y◦3 →
(1+Y◦2 )Y 2

◦3 (1+Y◦4 )Y•3
(1+Y◦3 )2

Y◦4 →
(1+Y◦3 )Y 2

◦4Y•4
(1+Y◦4 )2

. (8.4)

8.1 Wilson lines

We begin with the Wilson line defects. The conserved charges of the Q-system are the
minors

ci = (M5)6−i
6 , i = 1, . . . , 4 , (8.5)

and are associated with the recursion relations

R1,n − c4R1,1+n + c3R1,2+n − c2R1,3+n + c1R1,4+n −R1,5+n = 0 , n ∈ Z . (8.6)

We now change basis to the Y -seed by using (5.11) which in this case reads

Ri,0 =
8∏
j=1

Y
Bj,i
◦i , i = 1, 2, 3, 4 , (8.7)

Ri,1 =
8∏
j=1

Y
Bj,i
•i , i = 1, 2, 3, 4 . (8.8)
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In this basis the constant of motions are

〈 ŵ5
ζ 〉 =

[
1

Y
4/5
•1 Y

3/5
•2 Y

2/5
•3 Y

1/5
•4 Y

4/5
◦1 Y

3/5
◦2 Y

2/5
◦3 Y

1/5
◦4

+ Y
1/5
•1 Y

1/5
◦1

Y
3/5
•2 Y

2/5
•3 Y

1/5
•4 Y

3/5
◦2 Y

2/5
◦3 Y

1/5
◦4

+ Y
1/5
•1 Y

2/5
•2 Y

1/5
◦1 Y

2/5
◦2

Y
2/5
•3 Y

1/5
•4 Y

2/5
◦3 Y

1/5
◦4

+ Y
1/5
•1 Y

2/5
•2 Y

3/5
•3 Y

1/5
◦1 Y

2/5
◦2 Y

3/5
◦3

Y
1/5
•4 Y

1/5
◦4

+ Y
1/5
•1 Y

2/5
•2 Y

3/5
•3 Y

4/5
•4 Y

1/5
◦1 Y

2/5
◦2 Y

3/5
◦3 Y

4/5
◦4

]
+ Y

1/5
◦1

Y
4/5
•1 Y

3/5
•2 Y

2/5
•3 Y

1/5
•4 Y

3/5
◦2 Y

2/5
◦3 Y

1/5
◦4

+ Y
1/5
•1 Y

1/5
◦1 Y

2/5
◦2

Y
3/5
•2 Y

2/5
•3 Y

1/5
•4 Y

2/5
◦3 Y

1/5
◦4

+ Y
1/5
•1 Y

2/5
•2 Y

1/5
◦1 Y

2/5
◦2 Y

3/5
◦3

Y
2/5
•3 Y

1/5
•4 Y

1/5
◦4

+ Y
1/5
•1 Y

2/5
•2 Y

3/5
•3 Y

1/5
◦1 Y

2/5
◦2 Y

3/5
◦3 Y

4/5
◦4

Y
1/5
•4

, (8.9)

〈 ŵ5
ζ 〉 =

[
1

Y
1/5
•1 Y

2/5
•2 Y

3/5
•3 Y

4/5
•4 Y

1/5
◦1 Y

2/5
◦2 Y

3/5
◦3 Y

4/5
◦4

+ Y
1/5
•4 Y

1/5
◦4

Y
1/5
•1 Y

2/5
•2 Y

3/5
•3 Y

1/5
◦1 Y

2/5
◦2 Y

3/5
◦3

+ Y
2/5
•3 Y

1/5
•4 Y

2/5
◦3 Y

1/5
◦4

Y
1/5
•1 Y

2/5
•2 Y

1/5
◦1 Y

2/5
◦2

+ Y
3/5
•2 Y

2/5
•3 Y

1/5
•4 Y

3/5
◦2 Y

2/5
◦3 Y

1/5
◦4

Y
1/5
•1 Y

1/5
◦1

+ Y
4/5
•1 Y

3/5
•2 Y

2/5
•3 Y

1/5
•4 Y

4/5
◦1 Y

3/5
◦2 Y

2/5
◦3 Y

1/5
◦4

]
+ Y

1/5
◦4

Y
1/5
•1 Y

2/5
•2 Y

3/5
•3 Y

4/5
•4 Y

1/5
◦1 Y

2/5
◦2 Y

3/5
◦3

+ Y
1/5
•4 Y

2/5
◦3 Y

1/5
◦4

Y
1/5
•1 Y

2/5
•2 Y

3/5
•3 Y

1/5
◦1 Y

2/5
◦2

+ Y
2/5
•3 Y

1/5
•4 Y

3/5
◦2 Y

2/5
◦3 Y

1/5
◦4

Y
1/5
•1 Y

2/5
•2 Y

1/5
◦1

+ Y
3/5
•2 Y

2/5
•3 Y

1/5
•4 Y

4/5
◦1 Y

3/5
◦2 Y

2/5
◦3 Y

1/5
◦4

Y
1/5
•1

, (8.10)

〈 ŵ10
ζ 〉 =

[
1

Y
3/5

•1 Y
6/5

•2 Y
4/5

•3 Y
2/5

•4 Y
3/5

◦1 Y
6/5

◦2 Y
4/5

◦3 Y
2/5

◦4

+ 1
Y

3/5
•1 Y

1/5
•2 Y

4/5
•3 Y

2/5
•4 Y

3/5
◦1 Y

1/5
◦2 Y

4/5
◦3 Y

2/5
◦4

+ Y
2/5

•1 Y
2/5

◦1

Y
1/5

•2 Y
4/5

•3 Y
2/5

•4 Y
1/5

◦2 Y
4/5

◦3 Y
2/5

◦4

+ Y
1/5

•3 Y
1/5

◦3

Y
3/5

•1 Y
1/5

•2 Y
2/5

•4 Y
3/5

◦1 Y
1/5

◦2 Y
2/5

◦4

+ Y
2/5

•1 Y
1/5

•3 Y
2/5

◦1 Y
1/5

◦3

Y
1/5

•2 Y
2/5

•4 Y
1/5

◦2 Y
2/5

◦4

+ Y
1/5

•3 Y
3/5

•4 Y
1/5

◦3 Y
3/5

◦4

Y
3/5

•1 Y
1/5

•2 Y
3/5

◦1 Y
1/5

◦2

+ Y
2/5

•1 Y
1/5

•3 Y
3/5

•4 Y
2/5

◦1 Y
1/5

◦3 Y
3/5

◦4

Y
1/5

•2 Y
1/5

◦2

+ Y
2/5

•1 Y
4/5

•2 Y
1/5

•3 Y
2/5

◦1 Y
4/5

◦2 Y
1/5

◦3

Y
2/5

•4 Y
2/5

◦4

+ Y
2/5

•1 Y
4/5

•2 Y
1/5

•3 Y
3/5

•4 Y
2/5

◦1 Y
4/5

◦2 Y
1/5

◦3 Y
3/5

◦4

+ Y
2/5

•1 Y
4/5

•2 Y
6/5

•3 Y
3/5

•4 Y
2/5

◦1 Y
4/5

◦2 Y
6/5

◦3 Y
3/5

◦4

]
+ 1
Y

3/5
•1 Y

6/5
•2 Y

4/5
•3 Y

2/5
•4 Y

3/5
◦1 Y

1/5
◦2 Y

4/5
◦3 Y

2/5
◦4
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+ Y
2/5

◦1

Y
3/5

•1 Y
1/5

•2 Y
4/5

•3 Y
2/5

•4 Y
1/5

◦2 Y
4/5

◦3 Y
2/5

◦4

+ Y
1/5

◦3

Y
3/5

•1 Y
1/5

•2 Y
4/5

•3 Y
2/5

•4 Y
3/5

◦1 Y
1/5

◦2 Y
2/5

◦4

+ Y
2/5

◦1 Y
1/5

◦3

Y
3/5

•1 Y
1/5

•2 Y
4/5

•3 Y
2/5

•4 Y
1/5

◦2 Y
2/5

◦4

+ Y
2/5

•1 Y
2/5

◦1 Y
1/5

◦3

Y
1/5

•2 Y
4/5

•3 Y
2/5

•4 Y
1/5

◦2 Y
2/5

◦4

+ Y
1/5

•3 Y
2/5

◦1 Y
1/5

◦3

Y
3/5

•1 Y
1/5

•2 Y
2/5

•4 Y
1/5

◦2 Y
2/5

◦4

+ Y
2/5

•1 Y
1/5

•3 Y
2/5

◦1 Y
4/5

◦2 Y
1/5

◦3

Y
1/5

•2 Y
2/5

•4 Y
2/5

◦4

+ Y
1/5

•3 Y
1/5

◦3 Y
3/5

◦4

Y
3/5

•1 Y
1/5

•2 Y
2/5

•4 Y
3/5

◦1 Y
1/5

◦2

+ Y
1/5

•3 Y
2/5

◦1 Y
1/5

◦3 Y
3/5

◦4

Y
3/5

•1 Y
1/5

•2 Y
2/5

•4 Y
1/5

◦2

+ Y
2/5

•1 Y
1/5

•3 Y
2/5

◦1 Y
1/5

◦3 Y
3/5

◦4

Y
1/5

•2 Y
2/5

•4 Y
1/5

◦2

+ Y
1/5

•3 Y
3/5

•4 Y
2/5

◦1 Y
1/5

◦3 Y
3/5

◦4

Y
3/5

•1 Y
1/5

•2 Y
1/5
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•3 Y
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◦1 Y
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3/5
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◦1 Y
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◦4 , (8.11)

〈 ŵ10
ζ 〉 =
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1
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4/5
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◦4 . (8.12)

These polynomials are indeed invariant under the operation (8.4). From these expressions
we can read directly the core charges and therefore write down the corresponding framed
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BPS quivers

γ5 // ◦1

�� ��

•2 //oo ◦3

�� ��

•4oo

•1

\\

// ◦2

OOOO

•3oo // ◦4

OOOO
◦1

�� ��

•2 //oo ◦3

�� ��

•4oo // γ5̄

��
•1 // ◦2

OOOO

•3oo // ◦4

OOOO

γ10

��

◦1

�� ��

•2

]]

//oo ◦3

�� ��

•4oo

•1 // ◦2

OOOO

•3oo // ◦4

OOOO

γ10

��

◦1

�� ��

•2 //oo ◦3

AA

�� ��

•4oo

•1 // ◦2

OOOO

•3oo // ◦4

OOOO

.

(8.13)
It is easy to check that these are indeed the charges of the Wilson line operators and that
the above framed quivers have the expected properties under the sequence of mutations
corresponding to the transformation R(+) of (8.4).

As before we can now obtain all the other Wilson line defects by imposing the operator
product expansion relations

w24
ζ = w5

ζ ∗w5
ζ − 1 , (8.14)

w15
ζ = w5

ζ ∗w5
ζ −w10

ζ , (8.15)

w45
ζ = w10

ζ ∗w5
ζ −w5

ζ . (8.16)

For example

〈 ŵ15
ζ 〉 = 1
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8/5

•1 Y
6/5

•2 Y
4/5

•3 Y
2/5

•4 Y
8/5

◦1 Y
6/5

◦2 Y
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◦3 Y
2/5

◦4
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+ 2Y•1Y
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+ Y 2
•1
Y 2
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2
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Y◦2 + 2Y 2

•1
Y 2

◦1
Y◦2 + Y•1Y•2Y
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Y◦2

+ Y 2
•1
Y 2

◦1
Y 2

◦2
+ 2Y 2

•1
Y•2Y

2
◦1
Y 2

◦2
+ Y 2

•1
Y 2

•2
Y 2

◦1
Y 2

◦2
+ Y•1Y•2Y◦1Y◦2Y◦3 + Y•1Y•2Y•3Y◦1Y◦2Y◦3
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. (8.17)
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Note that this operator is manifestly strongly positive, and its core charge

γ15 = −8
5(γ•1 + γ◦1)− 6

5(γ•2 + γ◦2)− 4
5(γ•3 + γ◦3)− 2

5(γ•4 + γ◦4) (8.18)

indeed corresponds to the highest weight associated with the 15 irreducible representation
of su5. We stress that the positivity property of the generating functions (8.14)–(8.16)
is highly non trivial, since it is the consequence of delicate cancellations between very
complicated polynomials.

8.2 Dyonic defects

Again we can generate cluster families of defects starting from a set of elementary operators

〈 L̂ζ,f?1
〉 = 1

Y 4
◦1Y

3
◦2Y

2
◦3Y

1
◦4

, 〈 L̂ζ,f?2
〉 = 1

Y 3
◦1Y

6
◦2Y

4
◦3Y

2
◦4

, (8.19)

〈 L̂ζ,f?3
〉 = 1

Y 2
◦1Y

4
◦2Y

6
◦3Y

3
◦4

, 〈 L̂ζ,f?4
〉 = 1

Y 1
◦1Y

2
◦2Y

3
◦3Y

4
◦4

, (8.20)

〈 L̂ζ,f?5
〉 = Y 4

•1Y
3
•2Y

2
•3Y

1
•4 , 〈 L̂ζ,f?6

〉 = Y 3
•1Y

6
•2Y

4
•3Y

2
•4 , (8.21)

〈 L̂ζ,f?7
〉 = Y 2

•1Y
4
•2Y

6
•3Y

3
•4 , 〈 L̂ζ,f?8

〉 = Y•1Y
2
•2Y

3
•3Y

4
•4 . (8.22)

The computations are somewhat technical and the results rather lengthy; therefore instead
of writing down the full operators we will limit ourselves to listing only the core charges of
the defects of these families

γ
f

[n]
?1

=− 4nγ•1 − 3nγ•2 − 2nγ•3 − nγ•4

− 4(n+ 1)γ◦1 − 3(n+ 1)γ◦2 − 2(n+ 1)γ◦3 − (n+ 1)γ◦4 , (8.23)

γ
f

[n]
?2

=− 3nγ•1 − 6nγ•2 − 4nγ•3 − 2nγ•4

− 3(n+ 1)γ◦1 − 6(n+ 1)γ◦2 − 4(n+ 1)γ◦3 − 2(n+ 1)γ◦4 , (8.24)

γ
f

[n]
?3

=− 2nγ•1 − 4nγ•2 − 6nγ•3 − 3nγ•4

− 2(n+ 1)γ◦1 − 4(n+ 1)γ◦2 − 6(n+ 1)γ◦3 − 3(n+ 1)γ◦4 , (8.25)

γ
f

[n]
?4

=− nγ•1 − 2nγ•2 − 3nγ•3 − 4nγ•4

− (n+ 1)γ◦1 − 2(n+ 1)γ◦2 − 3(n+ 1)γ◦3 − 4(n+ 1)γ◦4 , (8.26)

γ
f

[n]
?5

=− 4(n− 1)γ•1 − 3(n− 1)γ•2 − 2(n− 1)γ•3 − (n− 1)γ•4

− 4nγ◦1 − 3nγ◦2 − 2nγ◦3 − nγ◦4 , (8.27)

γ
f

[n]
?6

=− 3(n− 1)γ•1 − 6(n− 1)γ•2 − 4(n− 1)γ•3 − 2(n− 1)γ•4

− 3nγ◦1 − 6nγ◦2 − 4nγ◦3 − 2nγ◦4 , (8.28)

γ
f

[n]
?7

=− 2(n− 1)γ•1 − 4(n− 1)γ•2 − 6(n− 1)γ•3 − 3(n− 1)γ•4

− 2nγ◦1 − 4nγ◦2 − 6nγ◦3 − 3nγ◦4 , (8.29)

γ
f

[n]
?8

=− (n− 1)γ•1 − 2(n− 1)γ•2 − 3(n− 1)γ•3 − 4(n− 1)γ•4

− nγ◦1 − 2nγ◦2 − 3nγ◦3 − 4nγ◦4 . (8.30)
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With our formalism we can compute explicitly the vev’s for each of these operators, the
only limit being computational power.

9 Conclusions and future directions

In this paper we have discussed a connection between line defects in N = 2 QFT and certain
discrete integrable systems. These systems arise naturally when studying the problem
with quiver methods. The existence of certain discrete symmetries for the theory without
defects is reflected in the presence of fractional quantum monodromies. These operators are
associated with Seiberg dualities of the supersymmetric quantum mechanics which describes
the effective dynamics of BPS particles. We have shown that all these statements have
a clear counterpart when the theory is defined in the presence of line defects. Fractional
monodromies naturally act on the set of line defects. This action identifies the Wilson lines
in asymptotically free theories with conserved charges of the Q-system, which arises from
the interplay between TBA coordinates on the Hitchin moduli space and cluster algebras.
For other kind of defects, our methods allow to compute explicitly infinite series of vevs
just by iteration of certain rational transformations.

Notably our formalism is powerful enough to distinguish theories which have the
same local description but inequivalent sets of line defects. The action of the appropriate
monodromy operator descends to the framed quiver and to the corresponding line operator
vev and maps the set of line operators of the same theory into itself. The physical reason
for this is that the existence of fractional monodromies is a consequence of unbroken
R-symmetries which can distinguish quantum field theories based on different gauge groups
via global effects, such as the periodicity of the θ-angles or the lattice of instanton charges.

A forthcoming paper will address these issue in more detail in the case of SCFT. A
natural open problem is to clarify the relation between our formalism and the S-duality of
N = 2 QFT. In this case particular sequences of mutations relate different quiver SQM char-
acterizations of S-dual systems [17, 24, 29, 101]. For an explicit example, see the discussion
about the first historical example of Argyres-Seiberg duality in [17]. From the perspective
of our formalism these sequences of mutations now can be lifted to transformations acting
on the space of BPS line defects. In the part II of this work we plan to investigate in depth
these actions. Of course for theories of class S we expect to find a matching among them
and the modular transformations of the UV curve [102]. Also, extending this analysis to a
more broad class of defects for the N = 2 theory would be interesting. A natural question,
for instance, is about the action of the broken discrete symmetries as well as S-dualties on
the space of surface defects, perhaps along the lines of [103].
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A Mutation of the Cordova-Neitzke superpotential

Though very appealing and natural from the point of view of an analogous problem in
quantum gravity [59, 60], in [58] at the level of the Wilson lines of pure SU(2) SYM
it was noticed an apparent paradox. Let us proceed by explaining it: the framed BPS
degeneracies for a Wilson line in the n-dimensional representation of SU(2) computed using
the Coulomb branch [65–71] of the corresponding quiver SQM do not agree with those
computed quantizing [11, 104] the SQM Higgs branch moduli spaces for n > 2.

Now, whenever a given quiver has non-trivial loops, the corresponding quiver SQM
admits superpotential terms. There are quivers which admit several distinct superpotentials
which are not equivalent, each corresponding to a different physics. For reproducing
correctly the physics of a given model, it is of crucial importance to choose the correct
superpotential, which is a subtle point. The generic superpotential proposed in [58] for the
SQM describing a Wilson line in the n-dimensional representation is mutation equivalent to
the null superpotential on the same quiver for all n > 2, and therefore it is not DWZ-generic.
We believe that this explains the paradox discussed in [58]. Of course, the choice of a correct
superpotential must reconcile the Higgs branch analysis with the Coulomb branch one.

The BPS quiver for pure SU(2) SYM with a Wilson line in the N dimensional repre-
sentation of SU(2) is [58]

•
Bj

&& ∗

Cj
xx◦

A1

OO

A2

OO

j = 1, . . . , N. (A.1)

The superpotential proposed in equation (5.41) of [58] is

W =
N∑
j=1

CjBjA1 +
N∑
j=1

λjCjBjA2. (A.2)

Mutating the above quiver on •, we obtain:
•

A∗1

��

A∗2

��

mm B∗j

∗

Cj
ww◦ [BjAi]

HH j = 1, . . . , N, i = 1, 2, (A.3)
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with

µ̃•W =
N∑
j=1

Cj [BjA1] +
N∑
j=1

λjCj [BjA2] +
N∑
j=1

2∑
i=1

[BjAi]A∗iB∗j . (A.4)

Notice that

∂[BjA1]µ•W = Cj +A∗1B
∗
j = 0 (A.5)

∂[BjA2]µ•W = λjCj +A∗2B
∗
j = 0. (A.6)

Therefore, integrating out the fields which appear quadratically in the superpotential, as
we are instructed to do by the definition of mutation [75], we obtain

µ•W = −
N∑
j=1

A∗1B
∗
j [BjA1]−

N∑
j=1

A∗2B
∗
j [BjA2] +

N∑
j=1

2∑
i=1

[BjAi]A∗iB∗j (A.7)

= 0 (A.8)

by cyclicity and linearity of the trace. Therefore, the superpotential is not DWZ-generic.

B SU(2) Wilson lines and cyclic modules

Consider the case of a Wilson line in the Adjoint representation of SU(2). Let us first
consider the superpotential

W2,1 = β1α1A+ β2α2B, (B.1)

with relations
β1α1 = α1A = Aβ1 = β2α2 = α2B = Bβ2 = 0. (B.2)

In this case the skeleton diagram of eq. (4.41) reduces to

β1v
B // Bβ1v

α1 // α1Bβ1v = bv · · ·

v

β1
==

β2 !!

β2v
A // Aβ2v

α2 // α2Aβ2v = av · · ·

(B.3)

However,
aβ2v = β2α2Aβ2v = 0 bβ1v = β1α1Bβ1v = 0 (B.4)

Therefore, if β1v (resp. β2v) is nonzero, a = 0 (resp. b = 0),

α1Bβ1v = 0 and α2Aβ2v = 0, (B.5)

and the skeleton diagram reduces to an A5 Dynkin graph:

β1v
B // Bβ1v

v

β1
==

β2 !!

β2v
A // Aβ2v

(B.6)
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Let us proceed by determining the allowed cyclic modules. Let us first consider the case
in which both arrows A and B are zero. There are three options to be considered: 1.)
0 = β1v = β2v: this correspond to the trivial cyclic module; 2.) 0 6= β1v 6= β2v: this
correspond to a rigid representation with dimension vector (1, 2, 0), indeed in this case
dimX◦ = 2 and we can choose its basis to set β1 = (1, 0)t and β2 = (0, 1)t; 3.) 0 6= β1v = β2v:
in this case dimX◦ = 1, and we obtain the minimal imaginary root of the Kronecker quiver
obtained by folding the above skeleton diagram according to the identification β1v = β2v,
it has a P1 moduli space. Let us now consider the case in which the arrows A and B are
nonzero. This rules out automatically options 1.) and 3.) above: indeed, if β1v = β2v, we
have that Aβ2v = Aβ1v = 0 by the e.o.m., and Bβ1v = Bβ2v = 0. We are left with option
2.) above plus the two options: 0 = β1v 6= β2v and 0 = β2v 6= β1v. These two options are
special points of the P1 moduli space of solutions of 3.) that play an interesting role here.
In this case we obtain two representations:

β1v
B // Bβ1v

v

β1
==

β2 !!
0 A // 0

and

0 B // 0

v

β1
==

β2 !!

β2v
A // Aβ2v

(B.7)

Both representations are rigid and give rise to the dimension vector (1, 1, 1). Notice that
the superpotential W2,1 has a discrete symmetry S2 that acts only on the arrows of the
quiver leaving the nodes invariant:

S2 : (A,α1, β1)←→ (B,α2, β2). (B.8)

As remarked in [19] this is a crucial property of this system: it introduces a superselection
rule on the Hilbert space of the SQM. We claim that the ground states correctly capturing
the framed BPS excitations lie in the singlet subsector of the Hilbert space. With this
caveat in mind it is clear that the two representations above are indistinguishable and give
rise to a single S2 symmetric ground state. Let us consider now option 2.). We have two
cases: 2a.) Aβ2v = Bβ1v, and 2b.) Aβ2v 6= Bβ1v. In case 2a.) by folding the skeleton
diagram according to the identification Aβ2v = Bβ1v we obtain an affine Â(2, 2) quiver,
and the corresponding dimension vector is again the minimal imaginary root: we obtain
again a representation with a P1 moduli space with dimension vector (1, 2, 1). In case
2b.) we obtain again a rigid representation with dimension vector (1, 2, 2) corresponding
to the root (1, 1, 1, 1, 1) of the A5 Dynkin graph. Therefore, we are lead to claim that the
superpotential W2,1 correctly reproduces the framed BPS excitations to the adjoint Wilson
line of SU(2), indeed we obtain:

〈W3〉 = 1
Y◦Y•

(1 + 2Y◦ + Y 2
◦ + Y◦Y• + 2Y 2

◦ Y• + Y 2
◦ Y

2
• )

= 1
Y◦Y•

+ 2
Y•

+ Y◦
Y•

+ 1 + 2Y◦ + Y◦Y•

=
[ 1
Y◦Y•

+ 1 + Y◦Y•

]
+ 2
Y•

+ Y◦
Y•

+ 2Y◦.

(B.9)
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This result agrees with the Coulomb branch computation carried over in [58]: the discrete
S2 symmetry is crucial to obtain c11 = 1.

Let us now exclude the other superpotential:

W2,2 = (β1α1 + β2α2)A (B.10)

with relations
Aβ1 = Aβ2 = α1A = α2A = 0 = β1α1 + β2α2. (B.11)

The corresponding skeleton diagram is

α1Bβ1v = b11v · · ·

β1v // Bβ1v

77

// α2Bβ1v = b21v · · ·

v

==

!!

β2v // Bβ2v //

''

α1Bβ2v = b12v · · ·

α2Bβ2v = b22v · · ·

(B.12)

For α1 and α2 generic we obtain the relations:

b11β1v + b21β2v = 0 b12β1v + b22β2v = 0, (B.13)

these needs to be modified according to the relations at nongeneric values for α1 or α2.
Notice that whenever the dimension of X◦ equals 2, α1 = α2 = 0, as there are no linear
relations in between β1v and β2v. Therefore the modules with dimension vectors (1, 2, 0),
(1, 2, 1) and (1, 2, 2) have the same skeleton diagram as in the previous case (up to relabeling
some arrows). Similarly for the modules with dimX• = 0: the modules with dimensions
(1, 0, 0), (1, 1, 0) are also equivalent. We are left with only one case to consider: the
module with dimension vector (1, 1, 1). Before doing that let us notice that the SQM
with superpotential W2,2 has an S2 discrete symmetry too: it acts by switching α1 ↔ α2
and β1 ↔ β2 simultaneously. In this case, by gauge fixing away β1 and B, we obtain the
following representation:

C
α

xx −αβ
xxC

β
&&

1

&&

C

1

OO

0

OO (B.14)
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Instead, by gauge fixing away β2 and B, we obtain the following representation:

C
−αβ

xx
α

xxC

1
&&

β

&&

C

1

OO

0

OO (B.15)

these two combine into an S2 singlet that clearly has c11 6= 1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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