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Abstract
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Mechanics to Artificial Intelligence. Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology 2177. 75 pp. Uppsala: Acta
Universitatis Upsaliensis. ISBN 978-91-513-1571-3.

Batteries have become an irreplaceable technology in human life as society becomes
progressively more dependent on electricity. The demand for novel battery technologies has
increased fast, especially with the popularisation of different portable devices. However,
the current battery industry relies heavily on non-renewable resources that are also prone
to provoke environmental harm. Among the possible candidates for the next generation of
batteries, organic electroactive materials (OEMs) have become attractive due to a series of
advantages: vastly accessible from renewable raw materials; highly versatile due to the possible
functionalisation mechanisms; possibly lower production costs; reduced environmental impacts;
etc. Nevertheless, some drawbacks need to be overcome before OEMs become competitive.
Issues with energy density, rate capability and cycling stability hinder their final technological
application. This thesis thereby discusses fundamental aspects of OEMs and proposes novel
techniques to accelerate the materials discovery process.

The first part of this thesis presents a pathway to systematically investigate organic
materials by combining quantum mechanics calculations and crystal structure predictions.
An evolutionary algorithm predicts the crystal structure of several OEMs, enabling an initial
assessment of the electronic structure and the thermodynamics of the ionic insertion mechanism
in these compounds. Furthermore, this first part also suggests an approach to tailor OEMs,
identifying their charge storage limits and the possible occurrence of metastable phases during
the ion insertion process. However, the presented strategy, while accurate, is seriously limited
by its high computational demands, which are unrealistic for high-throughput screening of novel
materials.

Since organic materials represent a possibly limitless universe of compounds, alternative
techniques are needed. Thus, the second part of this thesis combines quantum mechanics
and artificial intelligence (AI), rendering a powerful platform to aid this task. An “AI-
\textit{kernel}” was employed to analyse millions of organic compounds, discovering novel
possible organic battery materials. Moreover, the AI accurately identified common functional
groups associated with higher-voltage electrodes and suggested features that may aid future
materials design. Furthermore, the kernel can also identify materials suitable for Na- and K-ion
batteries and anticipate their redox stability.

In conclusion, this thesis has focused on investigating fundamental properties of organic
electroactive materials, particularly the ionic insertion process in batteries. Furthermore, AI-
driven methodologies have also been proposed, accurately evaluating OEMs and enabling fast
access to the gigantic organic realm when searching for novel battery electrode materials.

Keywords: Batteries, Artificial Intelligence, Organic electrodes, High-voltage cathode
materials, Machine learning, Materials discovery, High throughput screening

Rodrigo P. Carvalho, Department of Physics and Astronomy, Materials Theory, Box 516,
Uppsala University, SE-751 20 Uppsala, Sweden. Department of Chemistry - Ångström,
Structural Chemistry, Box 538, Uppsala University, SE-751 21 Uppsala, Sweden.

© Rodrigo P. Carvalho 2022

ISSN 1651-6214
ISBN 978-91-513-1571-3
URN urn:nbn:se:uu:diva-481583 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-481583)



"Thus, the task is not so much to see what no one has yet seen, but to think
what nobody has yet thought concerning that which everybody sees"

Arthur Schopenhauer
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1. Introduction

Energy is one of the most important aspects of human society nowadays and is
not only a matter of production but also of storage and distribution. It directly
affects the economy, society and the environment. Moreover, the modern hu-
man way of life is remarkably dependent on electrical energy, especially with
the advent of highly connected devices and electrical vehicles where energy
storage and portability have been playing a central role. On top of this, the
harsh environmental changes that the planet is facing[1] imposes an urgent de-
mand for alternative technologies that must be aligned with sustainable and
environment-oriented philosophies. In this regard, the current ion-based bat-
tery industry still has a lot of room for improvement. A battery is composed
of several components, from which the positive and negative electrodes are
of utmost importance for the overall energy storage performance. During the
battery operation, the cation (Li+, Na+, K+, etc.) is transferred between the
electrodes in a process controlled by several properties. Among them, the
electrode’s structure and chemistries.

Figure 1.1 shows a simplified sketch of this mechanism, illustrating
only a few components of a battery. When an external power supply (load)
is connected to the battery electrodes, electrons and ions are transferred from
the cathode (anode) to the anode (cathode). In general, the mainstream state-
of-the-art technology for Li-ion batteries (LIBs), for example, is based on
graphite and transition metal oxides (TMOs) for the negative and positive elec-
trodes, respectively. These are usually extracted from mining processes, thus
a non-renewable resource. Furthermore, the processing steps during the bat-
tery life-cycle, i.e., from TMO mining to an uncertain recycling at the battery
end-of-life, raise several environmental and economical concerns.[2] Hence, a
next-generation of battery technologies is a genuine requirement.
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Figure 1.1. A simplified overview of a battery and the charge transfer processes during
charge/discharge operations.

In this direction, organic materials have been arising as promising can-
didates. This class of compounds present numerous advantages:[3,4] a) they
can be renewably produced from abundant raw materials like biomass; b) they
present versatile synthesis routes by following well-established methodologies
of organic chemistry; c) they allow tunable properties due to the numerous tai-
loring possibilities through functionalisation; to mention a few. In addition,
the end-of-life treatment for organic battery materials may follow an easier
path than inorganics, for example, by low-temperature combustion into syn-
thesis precursors, which results in a closed life-cycle loop.[5]

When it comes to the battery operation, organics electrode materials
generally function in a similar way to their inorganic counterparts, i.e., fol-
lowing the same general principles of redox reactions and ion insertion mech-
anisms. However, the electrodes’ active materials are comprised of small
molecules or polymers that often include a redox-active functionalisation.
While the former usually offer higher energy densities due to their lower
molecular weight,[6] the latter can often present superior rate capabilities due
to the faster kinetics of, for example, radical polymers[7–9] or the higher electri-
cal conductivity of conducting polymers.[7,10,11] The general low energy den-
sity of conventional electrically conductive polymers can be addressed by dif-
ferent functionalisation techniques or, alternatively, using different forms of
organosulfur compounds.[12,13] This latter class of materials, however, usually
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relies on reversible bond breaking and recombination processes, often result-
ing in lower rate capabilities due to poor kinetics.

Figure 1.2. A simple example of the redox mechanisms of typical organic electroac-
tive materials for battery electrodes.

Conjugated carbonyl compounds,[4] on the other hand, are a good ex-
ample of low Mw molecules for battery materials with versatile chemistry.
They have been vastly investigated since their electrochemistry was first report
in 1969[14] with several examples in recent scientific literature. In general, the
reaction mechanism in these compounds relies on the reversible reduction of
the double-bonded oxygen of the carbonyl groups, which classify them as n-
type materials. Figure 1.2 exemplifies the redox mechanisms for some of these
classes of compounds. Overall, OEMs can be categorised into three types de-
pending on how their charge state changes during the redox reactions:

1. p-type: the OEM is electrochemically active when it is oxidized from
the neutral state.

2. n-type: the OEM is electrochemically active when it is reduced from the
neutral state.

3. bipolar: both positively and negatively charged states are electrochemi-
cally active.

This is a material-intrinsic characteristic, also connected with its un-
derlying electronic structure. Additionally, this further affects the so-called
redox-active center, which is the spatial region where the charge tends to
localise after the oxidation/reduction reaction.[13,15] During the last decade,
several organic electroactive materials (OEMs) have been proposed as alter-
natives in LIBs. For example, dilithium terephthalate (Li2TP) has received
special attention after the pioneering work of Tarascon and co-workers.[16]

This OEM can be straightly obtained by recycling the polyethylene tereph-
thalate (PET) plastic, displaying a reversible capacity of 300 mAh/g and a
lithiation potential of about 0.8 V vs. Li+/Li.[16] Alternatively, higher-voltage
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electrodes have also been suggested, like the quinone derivative dilithium-oxy-
terephthalate with a lithiation voltage of about 2.5 V vs. Li+/Li,[17] further
increased to about 3.5 V vs. Li+/Li after engineering the molecule with Mg2+

ions. It is also worth to mention the radical polymer poly(2,2,5,5-tetramethyl-
3-oxiranyl-3-pyrrolin-1-oxyl ehtylene oxide) (PTMA), which contains the
tetramethylpiperidine-1-oxyl (TEMPO) stable nitroxyl radical. This OEM
presents a fast electrochemical process due to the radical polymer nature and
an open-circuit voltage of about 3.5 V vs. Li+/Li.[18,19]

Nonetheless, further improvements need to be done until OEM could
be economically explored for LIBs. This class of materials still present a
few drawbacks, most related to cyclability issues and lower energy
densities. In general, the electrochemical performance of these compounds
can be engineered by a molecular design approach. Different electron do-
nating/withdrawing groups can be employed to functionalize the material,
with the effect of decreasing/increasing the open-circuit voltage.[20] These
groups can modify the de/localisation of charges upon the redox reaction,
thus tweaking the material’s electronic structure and, consequently, the redox-
active center[Paper III]. Tuning aromaticity and conjugation in these materials
can also affect their electrochemical performance, with significant changes in
voltages and conductivity.[21] Polymerization of small molecules, often solu-
ble in typical liquid electrolytes, can also be employed to achieve better cycla-
bility, in exchange for lower capacities.[13] Most of these approaches, however,
still suffer from some disadvantages. Therefore, the discovery of novel mate-
rials could offer a new paradigm in this scenario and introduce technological
breakthroughs.

In this regard, this thesis first presents a systematic approach to deepen
the understanding about fundamental aspects of the electrochemical process
for ionic insertion into organic compounds. In Section 3.1, an initial investi-
gation on the molecular level is carried out demonstrating the maximum elec-
tronic storage of these molecular reservoirs. This initial assessment introduces
the novel charge derivative analysis, which sheds light on the “superlithiation”
phenomenon reported in the literature.[22] However, a sole molecular analysis
may be insufficient to reasonably describe the electrode’s chemical environ-
ment “seen” by the inserted ion during the battery operation. Thus, a more
accurate approach is necessary. This has been achieved by a combination be-
tween quantum mechanics calculations, by the means of Density Functional
Theory (DFT), and different approaches to assess the crystal structure of the
desired compound, such as evolutionary algorithms predictions and metastable
phases analysis. Hence, this methodology has enabled the evaluation of key
structure-property features, e.g., the electronic structure, thermodynamics of
the ion insertion reaction and the structural changes induced by it – thereby
systematically improving the overall knowledge of OEMs.
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Despite being a powerful method, the evolutionary algorithm strategy
still suffers from a severe drawback: the demanded computational efforts. The
evolution process (described in Section 3.2) requires an impressive number of
calculations to correctly predict the crystal structure for the energy global min-
imum. On the other hand, faster methods as the metastable phases analysis,
proposed in this thesis through a novel software called Mapion, may be in-
adequate to describe the battery system when global minimum structures are
required. This novel method is further discussed in Section 3.2. Therefore,
substantial limitations exist when aiming for a high-throughput screening for
novel materials. The universe of organic molecules, particularly, offers an al-
most limitless number of compounds.[23,24] To just give an idea of how gigan-
tic the organic realm is, 166 billion of small organic molecules have recently
been enumerated by just considering possible combinations of elements like
C, N, O, S and halogens with up to 17 atoms.[25] This is an impressive number
that imposes several limitations to be accessed, both experimentally and the-
oretically through quantum mechanics. As a comparison, it is estimated that
there are 100 billion stars in the Milky Way, from which 1.3 billion have re-
cently been mapped by the Gaia mission.[26] Figure 1.3 displays a comparison
between these numbers, with a closer zoom at a smaller range in this scale to
reveal the Sigma-Aldrich ‘in-stock’ 14 million compounds from the Aldrich
Market Select Chemistry Services.[27]

Figure 1.3. Illustration comparing the “size” of representative domains.

When facing this problem, the development of new methodologies is
required to explore this vast universe and accelerate the discovery of novel
materials with potentially enhanced properties for batteries. Naturally, data-
driven approaches may offer interesting strategies for fulfilling this task. Re-
cently, these statistically-based methodologies have been receiving a lot of
attention due to modern revolutions in the field of data science, especially
in processing and storing data. In particular, machine learning and artificial
intelligence have been playing a major role in this scenario due to recent pop-
ularisations of these techniques, greatly fuelled by the release of open-source
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frameworks from companies like Google and Facebook. Nevertheless, a lot
of work is necessary to correctly apply a data-driven approach, like machine
learning, in accessing the organic realm before it could be used to boost ma-
terials discovery. In this regard, this thesis has delved into this discussion in
order to propose an innovative methodology based on machine learning and
backed by quantum mechanics. Firstly, a database comprised of unique or-
ganic molecules has been developed with more than 41800 moieties. For each
entry, a list of electronic properties extracted from quantum mechanics calcu-
lations has been included, also considering the oxidized and reduced moiety
states.

Simultaneously, a data processing and machine learning software has
been developed and released together with the database on an open-source
basis. Finally, the framework has shown the capability of predicting the elec-
trochemical performance of the Li+ insertion reaction in organic materials.
Thereafter, a high-throughput screening has been done on 20 million unique
molecules, rendering a set of possible cathode candidates for LIBs – a task ac-
complished in a matter of hours by using a personal computer, but that would
require years if attempted by means of quantum mechanics calculations car-
ried out on supercomputers. A detailed discussion on all the construction as-
pects of this machinery, here named the “AI-kernel”, is presented in the Sec-
tion 4.1 of this thesis.

In accordance with the requirements needed to explore the huge space
of organic materials, the constructed AI-kernel request solely a molecular
SMILES string as input in order to evaluate its possible lithiation potential. In-
terestingly, the AI was capable to correctly associate high-voltage compounds
with well-known functional groups used as voltage enhancers – a knowledge
acquired independently during the learning process. Moreover, the AI has
suggested an interesting combination of electron-withdrawing and electron-
donating groups on the same molecule as possible cathode candidates. An
effect that could, in principle, lead to a better localisation of the redox-active
center on organic electroactive materials.

Furthermore, the AI-kernel was expanded to also predict the ion-
insertion voltages of Na- and K-ion based batteries and likewise employed in
high-throughput screening 40 million molecules in searching for high-voltage
cathodes. However, predicting the performance of millions of OEMs by means
of lithiation potentials alone, without evaluating their chemical stability, is far
from ideal. These molecules can often show different degradation mecha-
nisms during redox reactions taking place within the battery operation. There-
fore, redox stability is a straightforward feature to analyse; here defined as the
molecule’s ability to maintain its overall structure after an oxidation/reduction
step, i.e., to not degrade after an electron transfer process. In this direction,
an additional AI-powered methodology has been developed to tap into the
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complex matter of the stability analysis of organic compounds. With this new
functionality, the AI-kernel can predict the redox stability of organic electroac-
tive compounds for Li-, Na- and K-ion batteries, presenting a more complete
design platform.

In light of these, the AI-kernel may be considered a powerful addition
to the arsenal of technologies at our disposal to enable straightforward access
into the organic realm, thus accelerating the materials discovery process.
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2. Theoretical Framework

In the past century, a large set of theories have been developed to solve the
Schrödinger equation (Equation 2.1) for molecular and solid-state systems in
a combined effort of quantum chemistry and solid-state physics. More specif-
ically, the problem of solving the Schrödinger equation for such systems is a
many-body problem by definition and, thus, a challenging task. Several meth-
ods have arisen in the past years attempting to fulfil this quest and it may be an
understatement that DFT drastically changed the stage in this regard. Based
on the Hohenberg and Kohn theorems,[28] DFT arises as a formidable frame-
work to back computational efforts in solving the Schrödinger equation for
many-body systems. Furthermore, DFT can be processed with a much lower
computational cost than techniques based on wavefunctions, e.g., Hartree -
Fock,[29] Møller - Plesset,[30] configuration interaction,[31] etc.

HΨ(r1,r2, . . . ,rN) = EΨ(r1,r2, . . . ,rN) (2.1)

In this thesis, DFT is the main framework adopted for ab initio calcula-
tions in both molecules and solids, thus this section is partially dedicated for a
brief explanation of it. The main computational software packages employed
for calculations was the Vienna Ab initio Simulation Package (VASP)[32–34]

and the Gaussian series of electronic structure programs.[35]

Even presenting an accurate framework with lower computational ef-
fort than other ab initio approaches, the use of DFT as a mean to explore
and develop novel materials is still handicapped by computational limitations.
Thereby, secondary methodologies are necessary. In this sense, the technical
revolutions staged by computational science, both by the means of data pro-
cessing and data storage, has been turning data-driven methods more available
and more accurate. Nowadays, the use of supercomputing facilities to pro-
cess a large number of systems has become quite popular and initiatives like
the Materials Project[36] and the Open Quantum Materials Database[37] have
alternatively presented a solution to store information regarding many mate-
rials. On top of this, there is a recent demand for the development of novel
frameworks capable of processing these huge quantities of data and in turn
learning structure-property relationships in order to promote breakthrough in-
novations in Materials Science. In this sense, Machine Learning is emerging
as an interesting ally beyond conventional approaches like DFT[38] and molec-
ular dynamics[39] to assess several properties of materials.[40–43] In this thesis,
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an Artificial Intelligence alternative has been proposed by the means of Neural
Networks and Deep Learning to design novel materials for organic batteries.
Therefore, a short description of these methods will also be provided in this
chapter.

2.1 Density Functional Theory
As stated before, the problem of solving the Schrödinger equation for
molecules and solids constitutes a many-body problem. In general, when deal-
ing with such systems the Hamiltonian in the Equation 2.1 should represent a
system of interacting electrons and nuclei, illustrated, in atomic units, as:

H =−1
2 ∑

i
∇2

i −
1
2 ∑

A
∇2

A +
1
2 ∑

i�= j

1
ri j
− 1

2 ∑
i�=A

ZA

riA
+

1
2 ∑

A�=B

ZAZB

RAB
, (2.2)

where the lower (upper) case subscripts run over electrons (nuclei) and ri j,
riA, RAB and Z are, respectively, the electron-electron, electron-nucleus and
nucleus-nucleus distances and the atomic number. The first two terms account
for the kinetic energy of electrons and nuclei while the remaining terms de-
scribe the electrostatic interaction between electron-electron, electron-nucleus
and nucleus-nucleus, respectively. Hence, a clear challenging many-body sys-
tem to be addressed. This sort of problem is not exclusive from quantum
mechanics. In fact, Poincaré[44] pointed out in the nineteenth century that just
a few classical mechanics problems can be solved analytically, mainly due to
the famous three (or more) body problem. Therefore, approximations need to
be made when dealing with Equation 2.2.

A first approximation is the simple, yet elegant, adiabatic (or Born -
Oppenheimer) approximation[45] in which the nuclear motions are neglected,
thus decoupling the electron-nucleus complex dynamical problem. In short,
the absence of nuclear motion implies that no heat is exchanged with the out-
side environment. Therefore, the Hamiltonian now can be written as:

H = Te +Vee(r)+VeN(r,R), (2.3)

where T and V stand for the kinetic and electrostatic terms, respectively, and
the indexes e and N for electron and nucleus. The adiabatic approximation
relies on the assumption that the electron dynamics occur in a much faster way
than the nuclear one due to the expressive mass difference between them, thus
justifying the decoupling. Henceforth, the problem is reduced to the electronic
motion in an external potential, exerted by the nuclei. Although the nuclear
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positions now enter in Equation 2.3 as parameters, the many-body problem
remains. In wavefunction-based methods, the eigenfunctions of Equation 2.1
are represented as a combination of some basis function – regardless of other
approximations – and the problem is solved following the Rayleigh - Ritz
variational principle.

In 1927, Thomas suggested a simple concept of using the electronic
density as a basic variable and expressing the potential as a functional of
this density, instead of orbitals, thus introducing the notion of density func-
tional theory.[46] His first efforts in this direction – combined with the work of
Fermi[47] – derived the Thomas - Fermi model. For being based on the assump-
tion that a uniform electron gas could be the solution of the Equation 2.1, the
model failed in representing simple molecular and solid systems for not con-
sidering other intrinsic effects. Furthermore, there was no proof of the density
functionals existence and the uniqueness of solutions. In 1964 the Hohenberg
- Kohn theorems emerge as the basis of the density functional theory, allowing
the solution of the electronic problem in terms of the electronic density.[28]

Such theorems are stated as:

THEOREM 1: Given the problem of interacting particles in an external
potential, there is a one-to-one correspondence between this potential and the
electronic density of the ground state ρ(r).

This first theorem ensures that the external potential, and thus the Hamil-
tonian ground state, can be uniquely constructed by the electron density. There-
fore, all the system information on the ground state is included in the density
and the expectation value of a physical observable O can be written as a den-
sity functional. For the total energy:

E = 〈Ψ|E|Ψ〉= E[ρ(r)], (2.4)

where the electron density should sum to the total number N of electrons on
the system, such as:

∫
ρ(r)dr = N (2.5)

THEOREM 2: It is always possible to establish a universal total energy
functional of the electronic density for any given external potential acting in
an interacting system. The global minimum of this functional and the corre-
sponding electronic density are, respectively, the exact total energy and density
of the system ground-state. The total energy functional may be written as:
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E[ρ(r)] = FHK [ρ(r)]+
∫

Vext(r)ρ(r)dr, (2.6)

with FHK being the Hohenberg - Kohn functional, defined as:

FHK [ρ(r)] = T [ρ(r)]+Vee[ρ(r)] (2.7)

It is worth to emphasize that FHK is independent of any information
about nuclei, thus it is a universal functional for the electronic system. The
second theorem offers a variational ansatz in determining the ground-state
electronic density of the system since the functional in Equation 2.6 has a
global minimum that is the exact ground-state total energy, i.e.,

δ (E−μρ(r)) = 0, (2.8)

where μ is a Lagrangian multiplier. This leads to the following relationship:

Vext(r)+
δFHK

δρ(r)
= μ (2.9)

Although the huge advance in solving the many-body problem, the
functionals T and Vee appearing in FHK remains unknown. Kohn and Sham[48]

proposed a methodology to solve the Equation 2.9 by introducing orbitals in
a fashion to compute the kinetic energy, presenting some similarities with
the Hartree - Fock approach.[49] By introducing an auxiliary system of non-
interacting electrons, in which the density is the same electron density of the
interacting system, they proposed an accurate approximation to calculate the
kinetic energy as:

TS[ρ] =−1
2

N

∑
i
〈φi|∇2

i |φi〉 , (2.10)

where φ are the wavefunctions of the non-interacting auxiliary system. The
HK functional can now be written as:

FHK [ρ] = TS[ρ]+ J[ρ]+EXC[ρ], (2.11)
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with J[ρ] representing the classic Coulomb interaction,

J[ρ] =
1
2

∫ ∫ ρ(r)ρ(r′)
|r− r′| drdr′, (2.12)

and EXC[ρ] the so-called exchange-correlation functional, which contains ev-
erything that is unknown and may arise from the approximations made so
far. Moreover, they are quantum and many-body effects due to the nature of
the real interacting electronic motion. The exchange effect, also known as
the Fermi correlation, is due to the fermionic nature of electrons, i.e., elec-
trons possessing parallel spin affect the motion of each other. The correlation
energy, or the Coulomb correlation, arises from the collective effect of the
electronic motion due to the intractable many-body Coulomb interaction, not
taken into account by the auxiliary non-interacting system. In practice, the
form of EXC[ρ] is unknown and must be approximated. The HK Equation 2.9
can now be written as:

Ve f f (r)+
δTS

δρ(r)
= μ, (2.13)

with the instruction of the effective potential:

Ve f f (r) =Vext(r)+
δJ

δρ(r)
+

δEXC

δρ(r)

=Vext(r)+
∫ ρ(r)
|r− r′|dr′+VXC(r),

(2.14)

where VXC stands for the exchange-correlation potential that should also be
interpreted as a second external potential (apart from the nuclear one) acting
on the auxiliary non-interacting system. Following the variation principle in
order to minimise the energy functional, one can obtain a Schrödinger-like
equation as a condition for the existence of extremes:

(
−1

2
∇2 +Ve f f (r)

)
φi = εiφi, (2.15)

which is a set of one-electron Kohn-Sham equations to be solved iteratively in
a similar fashion to the Hartree or Hartree-Fock equations, e.g., by following

23



the self-consistent Roothaan approach.[29] The Lagrangian multiplier μ intro-
duced here brings a curious interpretation, landed by Parr et. al..[50] First, by
fixing the external potential, μ can be written as:

μ =

(
∂E
∂N

)
Vext

, (2.16)

which immensely resembles the thermodynamic chemical potential of an el-
ement i with ni moles in a macroscopic system at given temperature T and
pressure P:

μ =

(
∂G
∂ni

)
P,T,n j( j �=i)

(2.17)

The relationship presented in Equation 2.16 indicates the escaping ten-
dency of electrons from the system at equilibrium, which is an opposite con-
cept to the electronegativity χ . Kohn, Parr and Becke underlined this analogy
in 1996.[51] Furthermore, this definition of electronegativity can be expanded
as an average of the ionization potential (I) and the electron affinity (A) by
using finite differences:

χ =−μ =−
(

∂E
∂N

)
=

1
2
(I +A), (2.18)

which is a useful interpretation in the batteries context.

Turning our attention back to the exchange and correlation functional
EXC[ρ], several approximations have been proposed in the past years. Here,
the most widespread Local Density Approximation (LDA) and Generalized
Gradient Approximation (GGA) are going to be briefly described. On the
former, a simple and clever local approximation to the homogeneous electron
gas (HEG) of density ρ(r) is introduced as a way to model the exchange and
correlation effects. Thus, the LDA functional can be written, in terms of the
HEG exchange-correlation energy density εHEG

XC , as:

ELDA
XC [ρ(r)] =

∫
ρ(r)εHEG

XC [ρ]dr (2.19)

The exchange part of ELDA
XC may also be defined as:
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ELDA
XC =−3

4

(
3
π

) 1
3 ∫

drρ4/3(r), (2.20)

which was proposed by Dirac in 1930 as a way to add the exchange energy in
the Thomas-Fermi model, becoming the first exchange functional of the elec-
tron density.[52] Nonetheless, the analytical form of the correlation part is still
unknown and must be parametrised. For being based on the HEG, the LDA
is better suited for slowly varying electron densities. A correction scheme to
this functional was first proposed by von Weizsäcker by using the gradient of
the electron density, thus recognized as the first gradient approximation.[53]

The use of gradient-based corrections is a clever attempt to enhance the LDA
functional as it could better capture the variations of the electron density. Sim-
ilarly, the generalized gradient approximation (GGA) adds a term FXC(ρ,∇ρ)
responsible to capture fluctuations on the electron density as:

EGGA
XC [ρ(r)] =

∫
ρ(r)εHEG

X [ρ]FXC(ρ,∇ρ)dr (2.21)

GGA is, in fact, a class of functionals with several ways to represent
FXC. Throughout this thesis, the approximation presented by Perdew, Burke
and Enzerhof (PBE)[54] has been widely adopted. Despite their overall suc-
cess, LDA and GGA still present the non-physical self-interacting problem.[55]

While many approaches trying to address this issue do exist, here the well-
known hybrid functionals are going to be used. In this scheme, a portion
of the exact Hartree-Fock exchange is mixed with the exchange-correlation
from LDA/GGA. The B3LYP functional, which mix the exchange proposed
by Becke[56] and the correlation from Lee–Yang-Parr[57] with the HF exchange
in a three-parameter equation, has been applied in this thesis for molecular
systems when using the Gaussian series of software. For solid-state systems,
the Heyd-Scuseria-Ernzerhof (HSE06) is going to be used.[58] In this func-
tional, the short-range HF exact exchange is mixed with the short-range PBE
exchange while the long-range exchange and correlation contributions come
solely from PBE.

The van der Waals forces are another problematic poorly represented
by these functionals. This weak interaction, proportional to 1/r6, arises from
dipole-induced interactions and are of fundamental importance in molecular
systems where dipoles may be permanent, induced or even a momentaneous
consequence of random quantum fluctuations. As it is possible to foresee,
these interactions are critical for organic molecular crystals and, thus, a nec-
essary addition. Although there are many methodologies to treat the van der
Waals interactions, in this thesis the Grimme-D2 scheme will be adopted.[59]
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Furthermore, these corrections are switched off for the insertion ion specie
when dealing with battery electrodes, i.e., for lithium and sodium ions, as the
increasing amount of them in the reduced phases may lead to an error accu-
mulation due to fundamental limitations of the DFT-D approach.

In practice, after defining the exchange-correlation functional, the wave-
functions on the KS one-electron equations (Equation 2.15) can be expanded
in a basis set ϕμ with coefficients ci,μ of the kind

φi = ∑
μ

ci,μϕμ , (2.22)

and, therefore, transforming the KS equation into a matrix equation following
the Roothaan method.[29] This Kohn-Sham-Roothaan equation can be written
in a matrix form as:

FKSCi = εiSCi, (2.23)

and thus efficiently calculated self-consistently. Here, the FKS represents the
Kohn-Sham functional, Ci the set of coefficients to be obtained and S the over-
lap matrix. In this thesis, the ϕ functions were represented by a linear com-
bination of Gaussian functions, namely the contracted Gaussian Functions,[60]

employed in the Gaussian software for dealing with molecules. Alternatively,
Plane-Waves (PW) was adopted when dealing with periodic systems, i.e.,
solids in the VASP software.

Although the PW introduces several facilities when dealing with solids,
it also presents a new issue: the quick oscillations of the wavefunctions near
the nuclei requires an alarming number of PW basis to be properly described,
therefore imposing computational hindrances. In this regard, the Projected
Augmented Wave (PAW) method[33,34] proposed the ingenious approach of
mapping the real wavefunction (φ) into an auxiliary pseudo wavefunction (φ̃)
that should reproduce the same results while being less computationally de-
manding. The scheme starts by dividing the crystal into a non-overlapping
augmented region Ω around nuclei (core) and an interstitial residual region
elsewhere. In this interstitial space, the pseudo wavefunction should corre-
spond to the real wavefunction, thus PW may be used. However, inside the
augmented region the wavefunction is represented as a set of partial waves as
the use of PW shall be avoided. These partial waves are chosen to be atom
centered localised functions, e.g, spherical Bessel functions. With this basic
concept, the PAW method circumvents the high oscillations of the true wave-
function near core regions while presenting a highly efficient way to solve
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the KS equations. When referred to calculations regarding crystals by using
VASP, this method is implicitly being used through this thesis.

2.2 Artificial Intelligence
Data-driven methods based on statistical theories is not a novelty in the world
of science. The use of statistical analysis has been aiding scientists for decades
into proving and probing all sort of scientific hypothesis and into predict-
ing new concepts. Nonetheless, the past years witnessed numerous techni-
cal revolutions in how efficiently computer sciences store and process in-
formation, turning data-driven approaches as attractive as it was never be-
fore. As an example, a quick search on the Google Scholar platform for the
keyword “artificial neural networks” rendered about 700000 results between
the years 2000 and 2020. Correspondingly, Material Science also served
as a stage for the uprising use of data-driven techniques, especially by the
means of machine learning (ML) applications for both designing and under-
standing novel materials. ML has appeared in science through several dif-
ferent methodologies, e.g., linear and logistic regressions, support vector ma-
chines (SVMs), k-nearest neighbours (kNN), linear and quadratic discrimi-
nant analysis (LDA/QDA), decision trees, foresting models and artificial neu-
ral networks (NNs). Nevertheless, only recently that the latter experienced
a surge in popularity, greatly due to open-source and accessible frameworks
like TensorFlow[61,62] and PyTorch.[63,64] Furthermore, neural networks have
established a path to access a field named Deep Learning (DL),[65] where the
machines can achieve a profound knowledge about some given issue. In Mate-
rial Sciences, NNs and DL have recently been emerging as a powerful tool to
predict several properties of materials and to even by-pass quantum mechanics
equations, aiding in the decisive task of designing novel materials. With this in
mind, NNs are going to be the main ML approach explored through this thesis
to uncover novel organic compounds for batteries and, therefore, this section
will be dedicated to briefly describe them. Machine learning is considered a
sub-domain of artificial intelligence (AI), in which the idea is to use the first
in a fashion way to intelligently execute tasks. Thereby, the term AI and NNs
will be constantly interchanged throughout this thesis when referring to the
final framework developed.

In general, neural networks are described as a non-linear algorithm in-
spired by how the human brain is architectured. It is able to represent any kind
of function with high fidelity, and thus capable to learn intrinsic correlation in
a given dataset. The basic construction of NNs lies around the neuron (or per-
ceptron), that is, a single unit of the network that represents a linear operation
between input and output values. By stacking neurons in a layer-like structure
these linear operations can be executed in an efficient matrix form, in which
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each neuron i is represented by a wi weight parameter. Likewise, stacking the
layers in a network-like architecture renders the foundation of a general NN.
So far, simply combining neurons (linear) will produce a limited linear model,
therefore activation functions are introduced in the output of each layer to in-
corporate non-linearities. These activation functions may be of many different
kinds and among the most famous one can find the sigmoid functions, ReLUs
and tanh. A further revision on this topic can be seen on the reference.[66]

Figure 2.1. General architecture of a basic Neural Network. Circles represent neurons
and arrows indicate information being forwarded through the network.

Figure 2.1 brings the general concept of a neural network, where each
circle represents a neuron and arrows indicate information being transmitted
between layers, i.e., being forwarded among neurons of different layers. For a
simple neuron i, this input-output operation is represented, omitting the acti-
vation function, by:

[output]i = wi[input]+bi, (2.24)

which is a simple linear equation, also known as the perceptron model when
considering the activation function. For the complete network, the Equation
2.25 summarizes this forward process in the matrix form:

z(L) = σ
(

W(L)z(L−1) +b(L)
)
, (2.25)

where z(L), W(L) and b(L) are the output, the weight matrix and the bias of the
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L-th layer and z(L−1) the output of the previous layer. The W matrix contains
all the i-th weight parameters of its respective layer – these are the ones to be
adjusted during the learning process along with the b-th bias terms. The linear
operation inside parentheses, then, passes through the activation function σ ,
responsible for adding the desired non-linear behaviour before forwarding the
information to the next layer.

During the model training, i.e., the learning process, a forward op-
eration is carried out to compose a loss function comparing the NN output
z(L) = yNN with the training examples y. A common loss function in regres-
sion problems is the mean absolute error (MAE or L1-loss):

LossMAE =
1
n ∑

m,n
|yNN

m,n− ym,n| (2.26)

where m and n stand for the output vector dimension and number of data ex-
amples, respectively. The actual learning occurs when the w(L)

i and b(L)i pa-
rameters start to be updated in order to reduce the loss function value. A usual
pathway to update the weights is to follow a simple gradient descent algo-
rithm:

W(L)
t+1 = W(L)

t −λ∇(Loss)
W(L)

t

b(L)
t+1 = b(L)

t −λ∇(Loss)
b(L)t

,
(2.27)

being λ a learning rate parameter controlling the step-size. Due to the im-
mense amount of data generally employed in this process, the usual approach
involves a stochastic gradient descent technique, dividing the number of exam-
ples used for each update in small batches. Likewise, an epoch occurs when
all batches are used. Nonetheless, the calculation of the gradients follows a
backward chain rule procedure, layer-by-layer, often called backpropagation.

Nowadays, neural networks have different forms and operability. The
model described so far is known as the Fully Connected (or Dense) Neu-
ral Network (FCNN os NN). However, when several neurons are connected
through a sharing of wi, often reducing the number of operations, the outcome
is a Convolutional Neural Network (CNN).[65] The forward step now involves
a series of convolutions, in which the dimensionality of the input data plays
a major role. Alternatively, Recurrent Neural Networks (RNNs) introduces a
more sophisticated way of understanding the sequential meaning in temporal-
like data. The RNN keeps a hidden internal state vector as a memory of the
previous elements on the sequence that, together with wi, try to capture the
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knowledge behind data ordering. For a deeper revision on RNNs the works of
Medsker and Jain[67] and Lipton et al.[68] are suggested.

Another issue that needs to be addressed when dealing with data-driven
methods is how the input data should be supplied to the model. Several ap-
proaches have appeared in the past years, especially around the fields of com-
putational physics, cheminformatics and bioinformatics when regarding ma-
terial sciences. In general, structures like molecules and solids have to be
translated into something more meaningful for the machine, i.e., representa-
tions (or fingerprints) capturing relevant structure-property information. The
development of fingerprints is an active research field to date, thereby just a
short description of four alternatives are going to be presented here.

COULOMB MATRIX (CM):[69,70] This fingerprint uses a pair matrix to
encode the Coulomb interaction between atoms in a molecule, thus, it is better
suited for non-periodic systems. The idea is summarized by the following
equation:

CMi j =

{
0.5Z2.4

i for i = j
ZiZ j

|Ri−R| j for i �= j,
(2.28)

in which Zi and Ri are the atomic number and position vector of atom i. The
diagonal elements are represented by a fitting of atomic energies to their re-
spective atomic number. The CM can be unfolded in three different sub-
representation: a common matrix, a one-dimensional reshape of it or its eigen-
values.

MANY-BODY TENSOR REPRESENTATION (MBTR):[71] In this finger-
print, a set of many-body like aspects are encoded in a tensor format, which is
suitable for both molecules and solids. The MBTR is defined by the following
equation:

fk(x,z) =
Na

∑
i=1

wk(i)D(x,gk(i))
k

∏
j=1

Cz j,Zi j
(2.29)

where the index i ∈ {1, . . . ,Na}k runs over the k-group of Na atoms with
z ∈ Nk

a atomic numbers that are being represented by the k-body function
gk, wk a weighting function and D a smoothing probability distribution. For
k = 1,2,3,4-body relationships, gk may be used to describe the respective
number of atom species, inverse distances, angles and dihedral angles. The x
acts as a real-space axis where the encoding happens.
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SMILES: Simplified Molecular-Input Line-Entry System (SMILES) is
one of the simplest ways to represent a molecule. Based on a text representa-
tion, the molecular characteristics are translated on a string-like sequence of
characters encoding atom species, bonds, branches and rings. Atom species
are represented by their respective chemical symbols; single bonds are omit-
ted while double and triple bonds are described by “=” and “#”; branches are
encapsulated by parentheses “()”; rings are enclosed by numbers, where the
first/second number appearance on the sequence means opening/closing the
ring. Additionally, special cases can be represented by brackets “[]”, e.g., an
explicit charged specie [N+]. As a text-based fingerprint, SMILES often needs
to be treated by using Natural Language Processing (NLP).[72]

MOLECULAR GRAPHS: Graph is a mathematical concept that repre-
sents pairwise connections between different elements. These elements and
connections are the so-called graph nodes and edges, respectively. As molec-
ular representations, graphs are useful as it offers a systematic way to encode
information about atoms, as nodes, and chemical bonds, as edges. In gen-
eral, a molecular graph is an identical representation of a given molecule, with
nodes encoding information about atomic species and edges encoding bonding
features.

Overall, graphs represent a special type of structured data, i.e., the way
nodes and edges are organized also represents important information. There-
fore, a special type of neural network is necessary when working with them:
the Graph Neural Networks (GNNs).[73] These are designed to be compatible
with graphs as inputs for the network and can also work with other architec-
tures of neural networks. GNNs depend on a message passing (or neighbour-
hood aggregation) scheme that works by convoluting information from graph
nodes and edges. In this way, the neural network’s data processing for a given
input node also depends on neighbour nodes, i.e., the network follows edge
connections. The following Equation summarizes this message passing pro-
cess:

x(l)i = φ (l)
(

x(l−1)
i ,∇ j∈N(i)ψ(l)

(
x(l−1)

i ,x(l−1)
j ,e j,i

))
, (2.30)

where x(l)i are features of the node i in the l-layer, e j,i are features of the edge
connecting the nodes j and i, φ and ψ are differentiable functions, often a
subclass of neural networks like a FCNN, and ∇ represents an aggregation
operation, e.g., a sum or a mean considering the N(i) neighbours of the i-th
node.
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3. Thermodynamics assessment

3.1 The ion insertion process
During the battery cycling, two simultaneous redox reactions are happening
at both electrodes while the process of lithium-ion de/insertion is occurring.
While discharging, Li-ions leave the anode (lower potential vs. Li+/Li) and
are transferred to the cathode (higher potential vs. Li+/Li). This reaction
mechanism can be summarised, referenced to the lithium metal electrode, as:

Lix0H+(x1− x0)Li −−⇀↽−− Lix1H,

in which the host material H is receiving x1− x0 Li-ions. The battery voltage
V (x) at each equilibrium step of this process can be evaluated by a direct
thermodynamic assessment of the reaction Gibbs free-energy (ΔrG) and the
Nernst equation as:

V (x) =−ΔrG(x)
nF

(3.1)

with

ΔrG(x) =− 1
nH

∂G(x)
∂x

, (3.2)

where nH is the number of moles of H, F the Faraday constant, G(x) the
Gibbs free-energy of the system at the step x and n the number of electrons
transferred in the process. The Gibbs free-energy in this equation is often
approximated in solid-state by using the electronic total energy of the system
at each step, which is expected to be the dominant term of the reaction free-
energy at equilibrium, leading to:

V (x) =−ΔrG
nF

=−E(Lix1H)−E(Lix0H)− (x1− x0)E(Li)
(x1− x0)F

(3.3)

Additionally, the redox potentials for a given molecular unit M – elec-
troactive material of interest in this thesis – can be further investigated ther-
modynamically by breaking down the redox process into the oxidation and
reduction reactions:[74]
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M−−→ M++ e−
M+ e− −−→ M−

And following the Nernst equation:

E0
Oxi =

−ΔGr

nF
=
−(GX −GX+)

nF

E0
Red =

−ΔGr

nF
=
−(GX− −GX)

nF
.

(3.4)

In the gas phase, the Gibbs free-energy is given by:

G = H−T (Svib +Strans +Srot), (3.5)

where

H = Eelect +EZPE +Uvib +Utrans +Urot +PV, (3.6)

and Eelect is the electronic energy and EZPE the zero-point energy. The sub-
scripts vib, trans and rot stand for the vibrational, translational and rotational
thermal contributions for the internal energy U and entropy S. The PV is the
pressure-volume product. In solution, however, the Gibbs free-energy may
be obtained by following the Born-Harber thermodynamic cycle, described in
Figure 3.1. This procedure is shown in the following equation:

ΔG(solvent)(Red) =ΔG(gas)(Red)+ΔGsolvation(Red)

−ΔGsolvation(Ox),
(3.7)

where the subscripts gas and solvent represent the molecule in gas and solvated
phases while ΔGsolvation is the solvation energy of the respective state.
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Figure 3.1. The Born-Harber thermodynamic cycle for the redox reaction described as
M −−→ M++ e−. The subscripts gas and solvent describe, respectively, the moiety
M in gas phase and in solution.

Furthermore, the compound’s formation energy for a given concentra-
tion (x) of the inserted ion can be expressed following the Equation 3.8, below,
with respect to the initial (xi) and final (xi) electrode compositions. This for-
mation energy is often used to evaluate the stability of alloys,[75] as its depen-
dency on the alloy composition draws a convex hull that could suggest stable
phases.

EF = E(LixH|M)− (x− xi)E(Lix f H|M)+(x f − x)E(LixiH|M)

x f − xi
(3.8)

Finally, the Li-ion in the presented methodology can be easily exchanged
by Na+, K+ or other desired insertion ion.

3.1.1 Case 01: “Superlithiation” – Understanding the energy
storage limits of OEMs

In this Case, based on Paper I, a novel analysis is proposed to aid the inves-
tigation of the ion insertion reaction thermodynamics. This new tool, driven
by the charge derivative of the organic moiety as a function of the inserted
ion concentration, provides a new understanding of the charge storage mech-
anism in OEMs. Furthermore, it offers a simple reasoning for the “super-
lithiation” phenomenon. In this, some molecules are capable of storing more
charge than what is initially anticipated from their possible redox-active cen-
ters, which results in a higher charge storage capacity for the OEM. Paper I
demonstrates that to assess this phenomenon a voltage analysis alone may not
suffice. However, when coupled with the charge derivative analysis, experi-
mental results from the literature are accurately reproduced. This is shown for
a set of carbonyl-based molecules, namely, dilithium acetylene-dicarboxylate
(Li2ADC), dilithium tolane-dicarboxylate (Li2TODC), dilithium thiophene-
dicarboxylate (Li2TDC), dilithium terephthalate (Li2TP), dilithium benzene-
diacrylate (Li2BDA) and dilithium benzene-dipropiolate (Li2BDP).
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To back this analysis, a “melting-quenching” approach was employed
to generate the molecular structures for all the investigated compounds at dif-
ferent lithiation phases. This method allows, during the melting stage, the ex-
amination of the molecule’s configurational space as it is carried out through
a high-temperature Born-Oppenheimer molecular dynamics simulation. Sev-
eral snapshots are taken from this ab initio molecular dynamics (AIMD), fol-
lowed by a structural relaxation (within the DFT framework) in order to find
the minimum energy geometry. This last process representing the quenching
stage. This way, the reaction thermodynamics can be evaluated by employing
the minimum energy structure of different lithiation phases. Furthermore, the
electronic charge distribution in each phase can also be assessed.

The charge derivative follows the idea that the organic moiety functions
as a charge reservoir, accommodating the inserted electron at each reduction
step during the ion insertion reaction. Thus, evaluating changes in the moiety’s
charge state can reveal its electronic storage limits. For example, the charge
variation upon lithiation is going to be negative when the moiety has accom-
modated an inserted electron, and positive otherwise. This can be summarised
in the following equation:

∂Q(n)
∂n

< 0, (3.9)

where Q is the total molecular charge in units of e, excluding inserted ions,
and n the reaction step. Hence, this derivative will be ≥ 0 at the limit where
the molecule fails in accommodating additional electrons. Equivalently, the
moiety reduction starts to become less favourable than the inserted ion’s re-
duction, which would lead to the electron being transferred to the Li+ and,
thus, the formation of metallic Li.

Figure 3.2 (a) presents the average charge per atom (excluding Li) as a
function of the number of Li-ions. The zero-charge level refers to the pristine
compound. Equation 3.9 directly correlates with the slope at different lithia-
tion reaction steps in these plots. That is, a downward slope means a negative
derivative while an upward slope represents a positive one, i.e., the molecule
failing to accommodate extra electrons. The Li2BDP compound, for instance,
shows a steady decrease in charge up to the Li14BDP phase, which agrees
with the experimental finding that this moiety can be successfully lithiated up
till Li13.5BDP.[22] Conversely, the Li2TP displays an ascending slope after the
Li6TP phase indicating that this would be its limit, which also agrees with
reported experimental results.[76] Figure 3.2 (b-g) shows the charge deriva-
tive following two possible reaction pathways for all the compounds. These
reaction pathways were defined by considering the allowed reaction thermo-
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dynamics, i.e.,

∂V (n)
∂n

≤ 0, (3.10)

and the formation energies according to Equation 3.8.

Figure 3.2. a) Average charge per atom (excluding Li) as a function of the number of
Li-ions and referred to the pristine phase. The charge derivatives for the b) Li2ADC,
c) Li2TODC, d) Li2TDC, e) Li2TP, f) Li2BDA and g) Li2BDP compounds. Reprinted
from Paper I.
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3.2 Evolutionary algorithm, Potential Mapping and
crystal structure predictions

In order to evaluate the thermodynamics in the solid-state level, the crystal
structure of the organic molecular crystal and its respective lithiated phases
are required. These structures may be obtained experimentally by, for exam-
ple, X-Ray Diffraction (XRD) techniques. This is, in general, very difficult
for the lithiated phases as operando spectroscopy techniques might be neces-
sary. Therefore, the first-principles structure predictions are very important
contribution to unveil the ion insertion reaction mechanism. In the past years,
several different methodologies have been proposed as a way to predict the
crystal structure of a solid, e.g., metadynamics,[77] simulated annealing[78] and
basin hopping.[79] In this thesis, a particularly successful approach based on
the interplay between DFT and an evolutionary algorithm (EA) has been used.
This methodology is implemented on the software USPEX[80–82] and work in
conjunction with VASP. The evolutionary algorithm works by evolving a set of
possible solutions, i.e., different crystals of a given composition, by applying a
series of genetic operations. First, an initial population of structure-candidates
for the selected compound is randomly created from a list of possible group
symmetries. In the case of molecular crystals, this process can be immensely
optimised by supplying the molecule as a whole unit. For each candidate, a
full geometry optimisation is carried out within DFT/VASP and the final en-
ergies collected. Afterwards, the population goes under a set of evolutionary
operations, such as heredity, mutation and permutation, in order to compose
a new generation. Using energies as the “survival of the fittest” criteria, the
heredity, as in nature, creates new structures by mixing two parenting candi-
dates. This ensures that structures with the smallest energy minima are going
to pass their characteristics for the next generation. Mutation creates a new
child by mutating some aspect of a single parenting structure, e.g., by apply-
ing a strain on the lattice vectors or a random perturbation on atom positions.
Permutation swaps two atoms in a selected structure to create a new child.

Following the evolution operations, the new generation is created and
the optimisation process is then repeated, composing others generations in
sequence. This evolution process stops when a certain convergence criterion
is achieved with the, hopefully, global minimum energy structure for the given
compound. Thereafter, the reduced phases of the compound after the added
insertion ion can also be predicted through this method. Assuming each of
the predicted structure phases as the respective equilibrium step, the reaction
voltage can be calculated by using the Equation 3.3.

In general, the EA approach is more likely to find a global energy min-
imum structure in the configurational space as it is essentially an algorithm
designed for this purpose. However, metastable phases may happen in differ-
ent stages of the ion insertion process, affecting the overall battery operation.
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Therefore, a different strategy is necessary to evaluate metastability in these
organic compounds. A novel computational methodology has been developed
in this thesis to address this issue. This new approach, hereafter named Poten-
tial Mapping (or MAP), relies on a successive mapping of the potential energy
surface (PES) within the compound’s crystal structure to introduce “educated
guesses” on the inserted ion’s position. As a drawback, MAP requires an ini-
tial crystal structure (commonly the pristine phase) to start the process. This
initial phase can be obtained either through the EA or different experimental
methods. Overall, the PES can be assessed by employing DFT, for example,
and the ion position can be guessed after considering the ion’s charge state.
For cations, like Li+ or Na+, the logical guess would be the PES maximum.
Nonetheless, this initial educated guess must be further improved by consid-
ering the interactions between the inserted ion and the host system, e.g., other
atoms. This can be amended by carrying out a DFT geometry optimization
after the insertion, relaxing the structure to a local energy minimum. Option-
ally, the PES can be re-evaluated for this new relaxed structure containing the
inserted ion and used in sequence to guess the position of a new ion being
inserted. The process can be repeated as many times as necessary to represent
the desired insertion reaction steps. Figure 3.3 shows a workflow summaris-
ing the entire mechanism. This novel methodology was also implemented in a
new software package coded in the python language and named Mapion; it is
freely distributed on an open-source basis at GitLab and further discussed in
Paper IV.

Figure 3.3. Workflow illustrating the potential mapping mechanism. PES = potential
energy surface. Reprinted from Paper IV. Copyright 2022, John Wiley & Sons, Inc.
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3.2.1 Case 02: Predicting the crystal structure of organic
electrodes

This section is based on Paper II, in which a successful use of the evolution-
ary approach aforementioned rendered the prediction of the crystal structure
for the Na2BDA compound with an excellent match with the experimentally
resolved structure. Figure 3.4 (a) shows two different views of the experi-
mental and theoretically predicted structures. For the former, the structure
was obtained by using the 3D Electron Diffraction (3DED) technique com-
bined with a powder X-ray diffraction (PXRD). As for the latter, the structure
was predicted by following the evolutionary process of two benzene diacrylate
units and four Li atoms. Both experimental and predicted structures possess
the same P21/c space group, with the former exhibiting the lattice parameters
a = 14.49 Å, b = 5.50 Å, c = 7.21 Å, 90.7o, 101.1o and 89.6o while the latter
a = 13.77 Å, b = 5.34 Å, c = 6.89 Å, 90.01o, 97.31o and 89.95o.

Figure 3.4. a) Comparative split of the experimental (blue shade) and theoretically
predicted crystal structures of the Na2BDA. The colour code for the atoms is: red for
oxygen, brown for carbon, white for hydrogen and yellow for sodium. b) Calculated
powder-XRD diffractogram for both experimental and predicted structures. Reprinted
from Paper II. Copyright 2021, Royal Society of Chemistry.
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In Figure 3.4 (b), the calculated XRD diffractogram further illustrate
the similarities between the crystals. The evolutionary step was carried out as
explained in the Paper II, having VASP as the software handling the underly-
ing DFT calculations by the means of GGA-PBE functional, including the D2
correction scheme as presented in the Theoretical Framework section, and the
PAW method. Furthermore, the outstanding agreement between theory and
experiment demonstrates how powerful this theoretical methodology is when
predicting molecular crystals and corroborates with its use to access the so-
diated phases of the Na2BDA compound. Experimentally resolving these re-
duced phases is a challenging task to achieve, requiring the implementation of
sophisticated in-operando techniques. Therefore, the evolutionary approach
emerges as a promising alternative. Figure 3.5 shows the crystal structure for
the sodiated Na3BDA and Na4BDA phases. By accessing such structures, dis-
tortions in the lattice may be evaluated in more details. The first sodiation
leads to a loss of symmetry in the crystal structure, with the new crystal space
group being P1. This is reverted when the second sodium is inserted, turning
the crystal back to the P21/c group. Moreover, while the first added Na+ ap-
pears to interact more with the carboxylic units the second Na+ insertion leads
to a stronger interaction with the acrylate arms.

Figure 3.5. Predicted crystal structures for the de/sodiated phases of the Na2BDA.
Atom colours as Figure 3.4. Reprinted from Paper II. Copyright 2021, Royal Society
of Chemistry.

The thermodynamics of the sodiation reaction can, now, be evaluated
by following the Equation 3.3. Prior to it, an additional single-point calcula-
tion has been carried out for each system with the HSE06 functional in order

40



to improve the electronic structure description. Figure 3.6 present the sodia-
tion voltage for each reaction step by using PBE (a) and HSE06 (b) function-
als. Although the average voltage for the two-step reaction (dashed line) of
both methods are relatively close, 0.69 V vs. Na/Na+ (GGA) and 0.63 V vs.
Na/Na+ (HSE06), the latter shows a better agreement with the experimentally
reported value of 0.6 V vs. Na/Na+.[83] Figure 3.6 (c) present the formation
energy of the first sodiated phase with respect to Na2BDA and Na4BDA as
calculated by following the Equation 3.8. The HSE06 functional indicates
that the Na3BDA phase is energetically unfavourable, which would reveal a
disproportionation during the sodiation that could directly stabilize Na4BDA
phase in a two-step process. As a matter of fact, the experimental result re-
ported in the reference further support this conclusion when showing a single
plateau in the battery charge/discharge curve.[83]

Figure 3.6. Potential profile of the Na-ion insertion process for the Na2BDA as ob-
tained with the GGA-PBE a) and HSE06 b) functionals. c) Formation energy of the
Na3BDA as referred to the Na2BDA and Na4BDA. Reprinted from Paper II. Copy-
right 2021, Royal Society of Chemistry.

The crystal structure for the Li2BDA and its first two lithiated phases
have also been predicted by following the same methodology. Figure 3.7
briefly summarises the collected data. In Figure 3.7 (a), the total and the
segment-projected density of states (DOS) unveil the electronic structure of
Li2BDA. A particularly interesting feature to analyse is the first unoccupied

41



band. Among other characteristics, the band composition could reveal the
redox-active center as this first unoccupied band will be populated by the addi-
tional electrons during the electrochemical reaction. In the presented case, the
band shows a reasonably fair composition by the molecular fragments, which
suggests an electronic delocalisation upon reduction. This fact is further il-
lustrated by Figure 3.7 (b), where the charge distribution for the two extra
electrons in Li4BDA is presented. The formation energy for the Li3BDA with
respect to the Li2BDA and Li4BDA is displayed in Figure 3.7 (c). Once more,
the results obtained with the HSE06 functional suggests the two-electron pro-
cess with the Li3BDA being energetically unfavourable, in stark contrast with
the PBE functional. The lithiation voltage has been evaluated by using the
Equation 3.3, presenting a two-electron reaction of 1.12 V vs. Li+/Li in good
agreement with the 1.2 V vs. Li+/Li reported experimentally.[84]

Figure 3.7. a) The fragment-projected density of states (DOS) for Li2BDA and b) the
charge density for the extra two electrons received upon two consecutive lithiation.
c) Formation energy of the Li3BDA referred to Li2BDA and Li4BDA. Colour code
for the atoms: red for oxygen, brown for carbon, white for hydrogen and green for
lithium. Reprinted from Paper II. Copyright 2021, Royal Society of Chemistry.

3.2.2 Case 03: Tailoring organic cathodes
This Case is based on the Paper III. With the evolutionary algorithm approach
accomplishing an excellent agreement with the experimental findings, as de-
scribed in the previous Case, here a step further has been taken. The EA
framework has been employed to tailor three basic molecular compounds with
anodic characteristics: the dilithium terephthalate (Li2TP), the dilithium thio-
phene dicarboxylate (Li2TDC) and the dilithium benzodithiophene dicarboxy-
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late (Li2BDTDC). By being functionalised with the nitro (NO2) group, these
molecules displayed a significant change in their lithiation potentials, thus
shifting to a cathodic character. The Scheme 3.1 present the Lewis structures
of these molecules.

Scheme 3.1. The Lewis structures of the investigated compounds a) dilithium
terephthalate (Li2TP), b) dilithium thiophene-dicarboxylate (Li2TDC), c) dilithium
benzodithiophene-dicarboxylate (Li2BDTDC), d) dilithium nitro-terephethalate
(Li2NO2TP), e) dilithium nitro-thiophene-dicarboxylate (Li2NO2TDC) and f)
dilithium dinitro-benzodithione-dicarboxylate (Li2(NO2)2BDTDC). Reprinted from
Paper III. Copyright 2020, John Wiley & Sons, Inc.

Figure 3.8 (a) exhibit the average bond length deviation (AD) for atoms
composing the organic ring in the respective molecular unit. The AD has
been calculated by averaging the absolute differences between bond lengths
di and the mean bond length d of the considered ring. An AD close to zero
means very similar bonds around the ring, which is a signature of the benzene.
Therefore, the variation of AD upon lithiation quantifies geometric changes
in the molecular ring. In this sense, it can be seen from Figure 3.8 (a) that
the NO2 presence improves the structural stability of the rings upon lithiation,
except for the TP. This effect is connected with the charge localisation and
redox centers discussed ahead.

Δ =
∑n

i |di− d̄|
n

(3.11)

The average voltage for the two-step lithiation reaction is shown in Fig-
ure 3.8 (b). The two-step LixH+ 2Li −−→ Lix+2H reaction is suitable to
compare the overall performance of each compound and the electrochemical
effects induced by the NO2 group. In general, the functional group has shifted
the lithiation potential of all compounds to a higher value, with the most ex-
pressive change occurring for the Li2(NO2)2BDTDC with an increase from
0.92 V vs. Li+/Li to 2.66 V vs. Li+/Li. This difference represents a shift of
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1.8 V, enough to change the electrode character from the one of an anode to a
cathode.

Figure 3.8. a) The average bond length deviation for the molecular ring of the com-
pounds as a function of the lithiation step. b) Calculated average voltage for the two-
electron process for each investigated compound. Reprinted from Paper III. Copyright
2020, John Wiley & Sons, Inc.

The changes on the voltage could be better understood on the light
of the electronic structure. In this regard, Figure 3.9 presents the fragment-
projected density of states (DOS) for the Li2NO2TP (a), Li2NO2TDC (c) and
Li2(NO2)2BDTDC (e). One more time, the first unoccupied band indicates
the species that would be reduced upon lithiation, and, therefore, occupying
the referred band. For all the compounds, this band is dominated by the NO2,
which seems to be aligned with the fact that this group is known to be a strong
electron-withdrawing one. To further illustrate this, the Figure 3.9 also dis-
plays the charge density of the two extra electrons receive upon lithiation for
the Li4NO2TP (a), Li4NO2TDC (c) and Li4(NO2)2BDTDC (e). It is possi-
ble to note that the charge is mainly localised around the NO2, especially for
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the benzodithiophene. This charge localisation is a common feature of ca-
thodic materials, in which the redox-active center may be better defined.

Figure 3.9. HSE06 Density of states (DOS) and charge densities of the extra electron
received upon Li+ uptake for: a) Li2NO2TP and b) Li4NO2TP, c) Li2NO2TDC and
d) Li4NO2TDC, e) Li2(NO2)2BDTDC and f) Li4(NO2)2BDTDC. The colour code for
the atoms: red for oxygen, brown for carbon, yellow for sulfur, white for hydrogen,
blue nitrogen and green for lithium. Reprinted from Paper III. Copyright 2020, John
Wiley & Sons, Inc.

Finally, the Bader charge analysis can be a useful tool in unveiling the
charge transfer upon lithiation, pinpointing the charge localisation in specific
elements of the compound. The total electronic charge for every fragment
per lithiation phase can be compared with their respective delithiated charge.
This indicates the localisation of the extra electrons received in conjunction
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with the Li+ uptake. Figure 3.10 present this charge analysis for the pristine
(dashed-lines) and the functionalised (solid-lines) compounds.

Figure 3.10. Charge variation in each molecular fragment as a function of the lithiation
step provided by the Bader analysis. The solid (dashed) lines refer to substituted (non-
substituted) compounds. Reprinted from Paper III. Copyright 2020, John Wiley &
Sons, Inc.

For the non-substituted compounds, the charge is distributed over the
carboxylic units and the molecular ring. Conversely, the charge is sensibly
localised in the NO2 when it is present, thus better defining the redox-active
center. Thereby, these results reinforce that the NO2 group modifies the low-
potential anodic character of these compounds to the one of a high-potential
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cathode. Furthermore, the ring on the NO2TP seems to have a share of charge,
in contrast with NO2TDC and (NO2)2BDTDC where the charge is negligible.
This fact confirms the structural stabilisation of the ring proposed in Figure
3.10 (a), in which the TP still suffers from geometrical changes regardless of
the functional group presence.

3.2.3 Case 04: Exploring metastable phases during Li-ion
insertion processes

In the Paper IV, the lithiation mechanism in OEMs was further investigated
by considering not only the evolutionary algorithm scheme but also the novel
potential mapping (MAP) algorithm discussed in Section 3.2. These methods
were employed in obtaining the lithiated phases for the Li2DHT
compound.[17,85] EA and MAP proposed structurally different phases due to
how these prediction schemes are designed. The former is more suited to
find global minimum structures while the former is more prone to identify
metastable phases. Figure 3.11 (a) shows the Lewis structure of the Li2DHT
compound. Figure 3.11 (b) presents the average insertion voltage for the two-
step Li-insertion reaction from Li2DHT to Li4DHT considering three distinct
theory levels: PBE, HSE06-NO and HSE06-O. In PBE, GGA-PBE functional
is employed to relax the predicted structures and for final electronic calcu-
lations. In HSE06-NO, the structure is obtained as in PBE, but a final elec-
tronic calculation is carried with the HSE06 hybrid functional. Finally, in the
HSE06-O both structure relaxation and electronic calculation steps are per-
formed with the HSE06 functional. In this way, Figure 3.11 (b) compares not
only the EA and MAP methods but also the fundamental differences when ob-
taining the final relaxed structure by employing two different functionals. In
fact, when comparing these voltages with the experimentally reported value of
approximately 2.6 V vs. Li+/Li (dashed line), we see that MAP offers a better
agreement with experimental findings. Moreover, the hybrid functional fur-
ther improves the result. Overall, the exchange-correlation interactions play
an important role in molecular bonding and the improved description of this
interaction offered by the hybrid function may justify this outcome. Figure
3.11 (c) shows the electronic energy as a function of the lithiation step and
referred to the respective delithiated structure energy from different methods.
As expected, the EA presents the final phase (Li4DHT) with a lower energy
than MAP. However, as the latter offers a better agreement with experimen-
tal results, it is feasible to conclude that the lithiation is happening through
metastable phases for this compound.
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Figure 3.11. a) Lewis representation of the Li2DHT molecule. b) Average voltage of
the two-step reaction (vs. Li+/Li) for all the investigated prediction schemes and the-
ory levels. The dashed line represents the experimentally reported value.[17,85] c) The
electronic energy of each lithiated phase relative to the pristine Li2DHT. Reprinted
from Paper IV. Copyright 2022, John Wiley & Sons, Inc.

In fact, the cyclic voltammogram (CV) reported by Chem and
colleagues[85] shows a single oxidation peak at 2.7 V for the first cycle, which
disappears in the next cycle giving place to two peaks near 2.5 V and 2.6 V.
In their study, the Li4DHT phase was chemically synthesised to assemble the
battery cathode, which means that it is more likely to be close to the global
minimum structure and, therefore, the crystal structure obtained from the EA.
This is further supported by the fact that the EA insertion voltage is 2.71 V
(HSE06-O), in agreement with the CV first cycle 2.7 V peak. However, in the
next cycle the CV peaks of 2.5 V / 2.6 V agree with the 2.53 V from MAP.
Thereafter, it seems that the Li4DHT “as-synthesised” is not fully recovered
after the first cycle and the lithiation mechanism happens metastable phases.
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4. The data-driven approach

4.1 Case 05: AI-kernel – An AI-driven in-silico platform
to discover novel lithium-ion battery cathodes

Up to this point, the evolutionary algorithm (EA) has proven to be an accu-
rate and useful tool in investigating and engineering organic electrodes. How-
ever, this approach has a fateful drawback: the significant computational ef-
fort involved in the prediction scheme. The crystal structure evolution process
commonly requires hundreds, if not thousands, DFT calculations to correctly
predict the global minimum structure of the system. Therefore, applying this
methodology in the high-throughput screening of novel organic materials is
a challenging task. Moreover, the practical synthesis of billions of organic
compounds is an unreasonable deed to be accomplished, both humanly and
economically.

Nonetheless, the demand for novel energy storage technologies have
been rapidly increasing due to the energy consumption profile of our society.
To solve this dilemma, an alternative route to accelerate materials discovery
has been arising in the means of machine learning (ML) techniques. This
approach has already shown success in several tasks, e.g., accelerating ab-
initio molecular dynamics,[39] proposing new perovskites,[86] predicting sev-
eral properties of materials[40,41,43,87] and even helping to solve quantum me-
chanics equations.[38] This section, based on the Paper V, is going to present an
innovative framework based on Neural Networks (NNs) and backed by DFT
calculations in designing novel organic battery materials.

The idea behind this framework, summarised by Figure 4.1, is divided
into three development steps: (A) creating a small dataset of organic crys-
tals for Li-ion batteries by using the evolutionary algorithm; (B) generating
a database of organic molecules using DFT calculations; (C) the artificial in-
telligence machinery development combining data from A and B. This AI-
kernel relies only on the molecular structure as input to predict the battery
open-circuit voltages, completely by-passing the time-demanding DFT cal-
culations. Therefore, it enables a fast assessment of novel battery materials.
Additionally, Figure 4.1 also shows a possible feedback loop, responsible to
further expand the database.
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Figure 4.1. Flowchart illustrating the workflow of the proposed framework and how
the AI-kernel operates, enabling a fast access to the world of organics. OMEAD stands
for “Organic Materials for Energy Applications Database”. Reprinted from Paper V.
Copyright 2022, Elsevier.

Initially, the crystal structure for a set of carboxylate-based electrode
candidates and their respective lithiated phases was predicted by using the EA.
The lithiation voltage of these systems was calculated by following the Equa-
tion 3.3. Carboxylated structures tend to form stable crystals, usually present-
ing the organic part intercalated by a salt layer where Li-ions are surrounded
by the carboxylate oxygens. This characteristic contributes to the overall sta-
bility of the crystal structure in this type of compounds. Scheme 4.1 exhibit
the Lewis structures of the molecular units of this dataset (step A). Following
the step B development, more than 26000 unique small molecules with up to
17 heavy atoms like C, N, O, S and halogens have been extracted from the or-
ganic universe and systematically being calculated under DFT. These moieties
have been fully optimised without any structural constraints in their neutral,
oxidized and reduced phases. The database, here named Organic Molecules
for Energy Applications Database (OMEAD), is comprised of the respective
molecular entry and a list of properties extracted from the quantum mechanics
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calculations, including dielectric constants, HOMO-LUMO energies, redox
potentials, electronic affinities and ionization potentials. In order to complete
this step, more than 310000 DFT calculations had to be performed. Although
a number of organic molecules database exist in the literature, none of them
present a systematic calculation of the properties aimed here and with focus
on energy applications.

Scheme 4.1. The Lewis representation of the moieties composing the small dataset of
predicted crystal structures. Reprinted from Paper V. Copyright 2022, Elsevier.

As for step C, two distinct statistical learning models was developed: a
linear and a neural network models. The Linear Model (LM) follows a simple
ordinary least squares (OLS) regression to estimate the α and β parameters of
the linear function y = αx+β . In this, y is the open-circuit voltage (VOC) and
x the molecular reduction potential (PRed), here chosen as the molecular de-
scriptor after a careful statistical investigation of several molecular properties,
e.g., oxidation potential, HOMO and LUMO energies, etc. Figure 4.2 shows
the trained model’s equation and performance. In addition, new molecular ex-
amples extracted from the literature, represented by the green triangles, were
introduced to expand the Linear Model diversity and to enhance its prediction
effectiveness as these new entries are not based in carboxylates.
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Figure 4.2. The Linear Model connecting reduction potential and open-circuit volt-
ages. Above the plot, the equation obtained through the ordinary least squares (OLS)
regression. The numerical labels follow the ones in Scheme 4.1. Reprinted from Paper
V. Copyright 2022, Elsevier.

Now the task was to design the Neural Model to predict the molecu-
lar descriptors, thus suppressing any need for further DFT calculations. The
molecular descriptors predicted by the Neural Model, i.e., the reduction po-
tential, serve as input for the Linear Model in a joint artificial intelligence
machinery, the AI-kernel. In the development process, several combinations
of molecular fingerprints and NN architectures have been benchmarked to ren-
der the most efficient model. Figure 4.3 (a) present a simple schematic of the
final Neural Model. A molecule, represented by a SMILES string, is initially
converted into a sequence of embedding vectors where each string element
has a unique vector representation. Embedding is a powerful technique in nat-
ural language processing (NLP) and speech recognition that, combined with
NNs, enables the model to learn the underlying meaning of each embedded
element.[88] Thereafter, this sequence is fed to RNN layers, responsible to un-
derstand the knowledge behind the SMILES sequence, and finally to FCNN
layers, in charge to process the RNN output and translate it into the desired de-
scriptor. The database was divided into two sets: training, with 18528 samples
used on the learning process; testing, with 2290 samples employed to evaluate
the model performance. Figure 4.3 (b) exhibit the model performance on the
testing dataset for the reduction potential, with the mean absolute error (MAE)
of 0.24 V.

With Linear and Neural Models ready, the organic universe may now be
explored to uncover new possible high-potential cathodes for Li-ion batteries.
In this regard, a total of 20 million new molecules have been analysed and their
respective reduction potentials predicted by the Neural Model, serving in se-
quence as input for the Linear model in obtaining their voltages, referred here
as AI-VOC for simplification. Out of curiosity, the AI prediction step required
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about 40 minutes for all the 20 million molecules on a personal computer,
apart from the SMILES textual pre-processing. This task would require more
than 10 years when considering state-of-the-art supercomputing facilities if
quantum mechanics calculations were to be employed.

Figure 4.3. a) A simplified schematic of the Neural Model. As an example, the tereph-
thalic acid has its SMILES converted into a sequence of embedding vectors before
feeding the network layers. b) Neural Model performance in predicting reduction po-
tentials of the 2290 molecules in the test dataset. Reprinted from Paper V. Copyright
2022, Elsevier.

This huge library has passed through a simple voltage filters in order to
identify possible cathode candidates, with VOC higher than 2.9 V (vs. Li+/Li),
and anodes, with VOC between 0.0 V and 0.5 V (vs. Li+/Li). Furthermore, the
cathodes subset has been narrowed down by applying a theoretical capacity
filter, selecting compounds with capacities higher than 100 mAh/g. The theo-
retical capacity may be calculated by following the Equation 4.1, in which n is
the number of possible redox sites, F the Faraday constant and M the molecule
molar mass.

C =
nF

3.6M
(4.1)

The filtering process rendered 1001 cathodes and 6,014,051 anodes
candidates, from which 1500 were randomly selected. Out of the 20 million
moieties, only about 0.0050% were identified as possible cathodic materials.
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This further highlight the challenge to find novel high-potential organic elec-
trodes, thus the need for alternative approaches to accelerate materials discov-
ery. Following the selection step, new DFT calculations has been carried out
for all the 2501 molecules to evaluate their PRed and VOC. This step acts as
a third-layer filter, part of the high throughput workflow, to improve the list
of proposed molecules for production by cleaning the statistical noise offered
by data-driven methods. At the same time, these calculations can be used to
analyse the AI-kernel performance.

Figure 4.4. Reduction potentials and open-circuit voltages (VOC) probability density
functions for the selected anodes (a, c) and cathodes (b, d), respectively. Reprinted
from Paper V. Copyright 2022, Elsevier.

Figure 4.4 shows a collection of probability density functions (PDFs)
benchmarking AI and DFT results. These PDFs are a Gaussian fit to the data
distribution indicating the likelihood to find a certain outcome, i.e., a certain
value of PRed and VOC. In Figure 4.4 (a) and (b), the PDFs for the reduction
potentials of anodic and cathodic compounds, respectively. Similarly, Figure
4.4 (c) and (d), the PDFs for the VOC of anodes and cathodes, respectively.
DFT VOC was obtained by using the reduction potential from the DFT calcula-
tions together with the Linear Model to evaluated open-circuit voltages. From
these results, it is clear that the machinery is correctly predicting low and high
potential compounds, i.e., it can dissociate the two range of potentials. Small
deviations caused by outliers are mainly a result of the DFT calculation step,
in which these molecule-outliers went through significant structural changes
upon the redox process. These changes often result in very large/small unre-
alistic voltages that widen the PDFs.
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Scheme 4.2. Lewis representation for a small group of molecules extracted from the
cathode candidates and their respective lithiation voltages (VOC vs. Li+/Li) as pre-
dicted by the AI-kernel and evaluated by using the DFT reduction potential. Reprinted
from Paper V. Copyright 2022, Elsevier.
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The Scheme 4.2 displays a few molecules from the cathode list with
their respective AI/DFT voltages referred vs. Li+/Li. It is interesting to
note how the AI tends to accurately identify cathode candidates for molecules
containing electron-withdrawing groups, like nitrile −C≡N, carbonyl −C=O
and halogens. Due to their effect over the redox-active centers, these groups
have usually been applied as voltage elevators in organic electrodes for Li-ion
batteries.[13] Conversely, electron-donating groups, like the amino (−NH2),
hydroxy (−OH) and alkyl, are also present for a few molecules. This com-
bination of electron-withdrawing and electron-donating effects has been used
in organic optoelectronics and photovoltaics as it may lead to donor-acceptor-
like behaviour.[89–91] For Li-ion batteries, this effect may act as a mechanism
to improve the charge localisation over the redox-active center by engineering
the electronic structure of the compound, therefore enhancing the voltage upon
lithium insertion. In addition, the redox sites of the selected cathodes appear to
be dominated by carbonyls, nitro groups and double/triple bonding nitrogen,
which are commonly associated with high potential electrodes in organic bat-
teries. The combination of these results further corroborates the performance
of the AI-framework in predicting the lithiation voltage of organic electroac-
tive materials.

4.2 Case 06: Predicting the redox stability of OEMs with
the AI-kernel and the performance of [Li, Na, K]-
ion batteries

The AI-kernel was demonstrated in the previous section to be a powerful ally
in discovering novel organic materials for Li-ion batteries. However, the ker-
nel did not address an important issue regarding the screened materials: sta-
bility. Overall, stability is a complex topic that can lead to several discussions.
To start tapping into this issue, the redox stability was investigated in the Pa-
per VI, i.e., the stability of the molecule during redox reactions. Firstly, the
OMEAD database was expanded from approximately 26000 to 41800 unique
molecules following the same methodology described in the previous sec-
tion and Paper V. For all these molecules, the redox stability was evaluated
by analysing changes in the bond length of neighbouring atoms upon oxida-
tion/reduction reactions within the DFT scope. Considering a cutoff radius of
2.1 Å to identify neighbouring atoms, the compounds were classified as redox
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unstable (class no) if changes in the bond length were higher than 30%, and
redox stable otherwise (class yes).

With this classification method, a small dataset of redox stable/unstable
molecules was developed and used as training data for a new prediction layer
within the AI-kernel. This new layer, here named Redox Stability Neural
Model (RSNM) was based on molecular graphs as inputs and a combina-
tion of different Graph Neural Networks to predict the redox stability of a
given molecule, i.e., to classify the molecule as redox stable/unstable. In other
words, the RSNM answers with a “yes” or “no” the question: “is this molecule
redox stable?”

Additionally, the Linear Model (LM), presented in the previous section
and responsible for predicting the open-circuit voltage of Li-ion batteries from
the molecular reduction potential, was further developed to include Na- and
K-ion batteries. Now, the LM is subdivided in three models, [Li, Na, K]-
LM, that can predict the open-circuit voltage of the respective ion insertion
reaction, referred to the Li, Na and K reference electrode, respectively. Figure
4.5 (a) shows the new AI-kernel with its different layers and functionalities.
In summary:

• Redox Stability Layer: This layer runs the RSNM and is responsible to
identify, and filter-out, redox unstable molecules.

• Reduction Potential Layer: In this layer, the neural model discussed
in the previous section, predicts the reduction potential of the input
molecule.

• Ion Layer: With the redox stable molecules and their respective reduc-
tion potentials, this layer predicts the battery open-circuit voltage for
the desired ion insertion reaction.

The reduction potential is once more predicted by the neural model, dis-
cussed in the previous section, here named Reduction Potential Neural Model
(or RPNM) to avoid confusion with the redox stability model. Figure 4.5
(b) shows a general schematic of the RSNM, in which GC and ECC means
Graph Convolution and Edge-Conditioned Convolutions, respectively. The fi-
nal network architecture was obtained through an evolutionary approach, fol-
lowing a differential evolution mechanism.[92] Details about the different types
of graph neural networks and the RSNM development is further discussed in
Paper VI. After training, the model showed a prediction accuracy of 80% and
72% for the training and testing data, respectively. To avoid overfitting during
the learning process, early stopping was employed together with other tech-
niques. Otherwise, the training prediction accuracy would reach 99%, but the
test accuracy would drop to 68%. With all layers of the AI-kernel settled, a
high-throughput screening was performed on 45 million molecules to identify
high-potential cathodes for Li-, Na- and K-ion batteries.
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Figure 4.5. a) The AI-kernel summarized in a flowchart, showing the different sub-
layers and functionalities. b) Schematics showing the overall Redox Stability Neural
Model. Figure from Paper VI.

Similarly with the previous Case, a two-step selection process of volt-
ages → capacities was performed to filter potential candidates. The threshold
of 100 mAh/g was considered for capacities while for open-circuit voltages a
cutoff of 3.0 V for Li and 2.6 V for Na and K. The screening resulted in 4047,
860 and 874 cathodes candidates for the Li-, Na- and K-ions, respectively.
Thereafter, a DFT calculations round was carried out for all the selected can-
didates to better investigate molecular properties and to benchmark the kernel.
Once again, probability density functions were employed in the task of com-
paring AI and DFT outcomes.
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Figure 4.6. Probability density function (PDF) plots of reduction potentials for the a)
Na-, b) Li- and c) K-ion cases comparing AI and DFT results. Similarly, PDF plots of
open-circuit voltages for the d) Na, e) Li and f) K ion insertion reaction. Figure from
Paper VI.

Figure 4.6 (a), (b) and (c) shows a collection of these evaluations for
reduction potentials while Figure 4.6 (d), (e) and (f) for open-circuit voltages.
From these plots, it is possible to see that DFT and AI values are in close agree-
ment. However, DFT results show broader distributions and averages shifting
to lower potentials. This happens as molecular geometries can significantly
change after the DFT relaxation step, especially for reduced phases, largely
contributing to the broadening of PDF distributions and lowering potentials.
The AI, on the other hand, has no mechanisms to anticipate these molecu-
lar changes, which indeed requires a more sophisticated quantum mechanics-
based approach. Nevertheless, the kernel was able to correctly identify high-
potential electrodes for all three ions. Finally, the RSNM accuracy in predict-
ing the redox stability of the selected molecules was 74.4% when comparing
with the DFT findings, i.e., molecules that did degraded during the DFT reduc-
tion reaction simulation. This shows the kernel performance and, once more,
how it can be a powerful platform to accelerate materials discovery for battery
applications.
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5. Concluding remarks

As organic materials have the potential to positively impact the global En-
ergy scenario, both in production and storage, a deeper understanding of them
is necessary. In this sense, this thesis was divided into two interconnected
parts: (i) an initial investigation of organic-based materials suitable as battery
electrodes, uncovering structure-property relationships controlling the over-
all electrochemical performance of such compounds; (ii) the development of
a novel data-driven framework, backed by artificial intelligence and as accu-
rate as quantum mechanics calculations, to accelerate the discovery of novel
OEMs.

Initially, it has been demonstrated here how to evaluate the thermody-
namics of the ion insertion process, providing a way to understand and antici-
pate the electron transfer and storage mechanisms in molecules. Furthermore,
a simple charge analysis has been proposed to identify the charge storage lim-
its of OEMs, tapping into the “superlithiation” phenomenon, which is not en-
tirely understood by the scientific community so far. Thereafter, this thesis
shows a systematic way to predict the crystal structure of organic compounds
by combining an evolutionary algorithm (EA) and density functional theory
calculations. This methodology has correctly predicted the crystal structure
of the disodium benzenediacrylate (Na2BDA) with a good agreement with the
experimentally resolved structure. Both experiment and prediction agree with
the space group of the crystal structure, Na-ion coordination in the desodiated
phase and lattice parameters. Validated by this agreement, the evolutionary ap-
proach has been employed to assess the crystal structure of the sodiated phases
for Na2BDA and the de/lithiated phases for the analogous compound Li2BDA.
Thereafter, the thermodynamics of the Na+/Li+ insertion reactions have been
evaluated, displaying a good agreement with the experimentally reported elec-
trochemistry. More precisely, 0.63 (0.6) V vs. Na/Na+ for the Na-ion insertion
and 1.12 (1.2) V vs. Li+/Li for the Li-ion insertion as theoretically (experi-
mentally) determined. In addition, this investigation has shown that the use
of the correct theoretical formalism is essential to describe the thermodynam-
ics of these reactions. For instance, the GGA-PBE functional has suggested a
stepwise one-electron reaction for the ion insertion while the more robust hy-
brid functional HSE06 has indicated at two-step reaction of these compounds.
This also appears to be on par with the reported experimental findings.

An efficient use of the evolutionary algorithm into engineering organic
materials has also been demonstrated, with the tailoring of three anodic ma-
terials: dilithium terephthalate (Li2TP), dilithium thiophene (Li2TDC) and
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dilithium benzodithiophene (Li2BDTDC). By functionalisation with the nitro
(-NO2) group, these compounds have changed from a lower-potential anode to
a high-potential cathode, with the Li2BDTDC exhibiting the highest voltage
shift from 0.92 to 2.66 V vs. Li+/Li for the average lithiation voltage of the
two-step reaction. This effect has further been investigated and correlated with
the charge localisation induced by the NO2 unit, which contributes to a better
definition of the redox-active center (RAC) in these molecules. A well-defined
RAC is usually present in high-potential electrodes for Li-ion batteries, in con-
trast to low-potential counterparts where the charge tends to be delocalized
over the entire compound. This was also the case for the molecules without
NO2 present. An apparent structural stabilization of the molecular ring has
been suggested as another effect of the charge localisation. Accordingly, the
results here have shown that less charge is being shared within the ring as new
electrons of the reduced phases are being localised onto the nitro group.

In general, the evolutionary algorithm was designed to be a global min-
imum search approach. However, metastable phases can control the lithiation
mechanism in some battery electrodes. To tap into this, a new methodology
was developed to identify metastable phases during the ion insertion process.
Based on this novel method, here named MAP, the Li2DHT compound was
investigated and its lithiation mechanism uncovered, showing the contrasting
results between EA and MAP. For this material, the lithiation process seems to
be controlled by metastable phases. Therefore, this technique can be useful to
investigate the battery operation and, combined with the EA, uncover which
phases control the lithiation reaction. Overall, a valuable addition to battery
materials manufacturing. Additionally, the Mapion software, derived from the
development of this technique, was distributed on an open-source basis.

In the latter part of this thesis, the discussion about the possible upscal-
ing of this methodology for a larger number of materials has been introduced.
As the evolutionary algorithm requires a significant computational effort, al-
ternatives are required for an extensive screening of the organic universe. In
this sense, another pathway has been proposed by means of machine learn-
ing techniques. Backed by a substantial number of quantum mechanics cal-
culations, this novel approach rendered a powerful framework, the AI-kernel
capable of predicting the lithiation voltage of electrodes based solely on the
SMILES string of the molecule desired as the active unit. Firstly, for a small
set of predicted organic crystals, this investigation has shown that the reduc-
tion potential of the molecular units correlates with the lithiation voltages in
the solid-state, resulting in a linear model to assess the latter by only supply-
ing the former. Henceforth, a database, named Organic Materials for Energy
Applications Database (OMEAD), comprised of organic molecules has been
developed using DFT calculations, having several electronic and thermody-
namic properties extracted from the calculations.
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The AI-kernel was designed by combining two distinct models: (1) a
neural network architecture, trained on top of the OMEAD, capable of pre-
dicting the reduction potentials from molecular SMILES; (2) a linear model
responsible to predict battery open-circuit voltages (vs. Li+/Li) from molecu-
lar reduction potentials. In this manner, a molecule/SMILES has its reduction
potential evaluated in (1), which is used by (2) to predict the corresponding
open-circuit voltage. Thereafter, the AI has been employed to assess the lithi-
ation voltages of 20 million new molecules extracted from the organic uni-
verse in order to identify possible cathode candidates for organic batteries. It
is important to stress that this task would require several years to be accom-
plished by DFT calculations even if state-of-the-art supercomputing facilities
available to date were to be used, not to mention the challenging logistic to
store the data generated by the quantum mechanics calculations. Finally, the
AI predictions have been verified and endorsed by new DFT calculations car-
ried out for the suggested molecules, which has shown that the model was
capable of correctly locating anodic and cathodic range of potentials. More-
over, the AI has appeared to accurately understand the connection between
some functional groups and high voltage compounds. Interestingly, the pro-
posed molecules present an intriguing combination of electron-withdrawing
and electron-donating groups, which may lead to a donor-acceptor-like be-
haviour that could enhance the redox-active center, being one of the reasons
for the cathodic characteristics. Finally, the AI-kernel has been expanded to
include Na- and K-ion batteries. In this way, the kernel now can be employed
to screen the library of organic materials for different alkali batteries. Further-
more, a new model was included to predict the redox stability of the desired
molecular compound, i.e., to anticipate if the molecule would degrade under
redox reactions. This third model is based on graph neural networks and relies
on molecular graphs as inputs. The AI-kernel design demanded the devel-
opment of a novel machine learning platform, named ANIMA and coded in
python. ANIMA is distributed under an open-source license.

Aside from the advances introduced so far in understanding and de-
signing organic electroactive materials, additional efforts are still needed. In
this sense, it is a natural process that future works shall promote investiga-
tions of different phenomena regarding OEMs, such as interfacial effects, im-
provements of electronic and ionic conductivity, etc. Moreover, and albeit
the presented AI performance, an upscaling of this methodology shall also be
promoted to go even further into the organic realm.

In light of these outcomes, this thesis helps to move towards the realisa-
tion of a next generation of battery materials by means of organic compounds
– an alternative, greener and more sustainable solution to current technolo-
gies. Moreover, it provides an understanding of fundamental aspects of organ-
ics when working as battery materials by, for example, shedding light on the
lithiation mechanism and the underlying electronic changes upon the redox
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reactions for these materials. This knowledge is useful to overcome different
limitations of the OEMs known to date regarding energy storage performance
and cyclability. In addition, the AI-driven platform has addressed the bot-
tleneck of discovering novel suitable materials, providing an accelerated and
streamlined workflow capable of breaking through current state-of-the-art lim-
itations. Nevertheless, organics still have a long and challenging road ahead
before becoming a competitive technology and, in short, this thesis contributes
to solving some of these challenges.
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Popular Science Summary

It is undeniable that batteries are of utmost importance to our society. They
have become a cornerstone for different technologies, especially with the ad-
vent of portable devices, such as smartphones, wearables, computers, etc., and
electric vehicles. Furthermore, batteries must have desirable performances
to meet their application’s requirements. After all, no one wants to have a
“dead” smartphone by the end of the day. Overall, these facts have been driv-
ing a great deal of research from the materials science and industry in order
to design better batteries, with much attention given to the Li-ion battery tech-
nologies. However, this fundamentally depends on the underlying material
employed in battery manufacturing. Nowadays, when it comes to battery elec-
trodes, for example, state-of-the-art technology relies on inorganic materials.
In general, the negative electrode (or anode) is usually based on graphite while
the positive electrode (or cathode) uses transition metal oxides (TMOs), based
on cobalt, iron, aluminium, manganese, among others. These materials are
heavily dependent on mining processes, therefore a non-renewable resource.
On top of that, the mining and processing of these compounds result in se-
vere environmental hazards, with possible catastrophic impacts. In addition,
the actual low efficiency in recycling these batteries usually result in a linear
value chain.

Moving towards more sustainable alternatives, with less to no environ-
mental damage, this Thesis dives into an exploratory quest for organic-based
alternatives for these battery materials. Organics can offer a set of interesting
features, such as clean synthesis routes from renewable sources, tunable prop-
erties through molecular engineering and a closed life cycle, i.e., a closed loop
value chain, illustrated in Figure 5.1. In fact, several organic electrodes have
been proposed in the past with reasonable performance. However, these mate-
rials still presented some drawbacks that need to be addressed before an “Or-
ganic Battery” could be successfully proposed for production. For example,
some of these materials offer low energy densities, which means more times a
day with that smartphone plugged in. Discovering novel organic battery mate-
rials with enhanced properties is one path to address this issue. However, this
task can be exceptionally challenging if we consider how vast the universe of
organic compounds is. Possibly, a limitless number of molecules and poly-
mers are yet to be discovered, and synthesising all of them in a laboratory is
exceptionally impossible. Therefore, computational approaches are necessary.

64



Figure 5.1. The closed loop value chain of organic-based batteries brings sustainabil-
ity into the battery manufacturing value chain. The small illustrations in this Figure
were generated by an artificial intelligence algorithm found at craiyon.com.

In the first part of this Thesis, a computational quantum mechanics
framework is employed to investigate several organic electrode candidates.
From predicting the structure of these compounds to assessing their electronic
properties, the Thesis uncovers structure-property relationships controlling the
battery’s performance. These results are consistently backed by experimen-
tal findings whenever possible, ensuring the overall accuracy of the method.
From this part, it is possible to grasp what molecular properties affect desirable
battery features, like the open-circuit voltage and maximum energy storage ca-
pacity. Furthermore, it is shown alternative pathways to engineering organic
molecules to improve a given aspect of the battery, such as voltage and ca-
pacity. However, this quantum mechanics-based approach, although accurate,
is substantially demanding when aiming to screen the limitless library of or-
ganic materials. Thus, an alternative route backed by data-driven techniques
is discussed in the second part of the Thesis.

This data-driven method, based on artificial intelligence (AI), is devel-
oped on top of the aforementioned information. The AI learned from the quan-
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tum mechanics framework, deriving in a complex platform, here named AI-
kernel, capable of predicting battery properties such as open-circuit voltages
and assessing stability aspects of a given molecule or electrode candidate. This
framework completely bypasses the demanding computational quantum me-
chanics step, immensely accelerating the process of materials discovery. For
instance, the AI-kernel was employed in screening 45 million novel molecules,
searching for high-performance cathodes for Li-, Na and K-ion batteries. This
search was performed in a matter of hours, which would demand more than
two decades if following traditional computational quantum mechanics meth-
ods. This screening resulted in a shortlist of proposed organic electrode can-
didates with the potential to be future battery materials with not only desirable
performance but also offering the aimed sustainability for this class of energy
storage technology.
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Svensk Sammanfattning

Batterier är oförnekligen en nyckelkomponent i dagens samhälle. De har blivit
en förutsättning för dagens teknologi, särskilt med tillkomsten av bärbara
och portabla enheter, såsom smartphones, smartklockor, laptops, etc. samt
inte minst elfordon. Därmed ställs det höga krav på batteriers prestanda att
uppfylla dessa olika applikationers alla krav. När allt kommer omkring vill
ingen att ens smartphone ska ”dö” innan dagen är slut, och många vittnar
om laddningsångest när det gäller sina elfordon. Att utveckla batterier har
därför lett till mycket forskning inom akademisk materialvetenskap och till-
hörande industri, särskilt med avseende på litium-jonbatterier. Prestandan hos
dessa beror främst på de underliggande materialen som används i batterierna.
Dagens batterielektroder är baserade på främst oorganiska material. Exem-
pelvis är den negativa elektroden (eller anoden) vanligtvis baserad på grafit
medan den positiva elektroden (eller katoden) använder övergångsmetallox-
ider (TMO) baserade på bland annat kobolt, järn, aluminium och/eller man-
gan. Dessa resurser är icke-förnybara eftersom utvinningen sker ur gruvor,
och brytningen medför ofta allvarliga miljörisker. Dessutom är effektiviteten
vid återvinningen av dessa material låg, vilket leder till en linjär – och inte
cirkulär – värdekedja.

Denna avhandling har ett fokus på hållbara materialalternativ, där min-
dre eller inga miljöskador förekommer. Därmed strävar forskningen till att ut-
forska organiskt baserade alternativ som ersättning för dagens batterimaterial.
Organiska material uppvisar en löftesrik uppsättning egenskaper såsom rena
syntesvägar från förnybara källor, kontrollerbara egenskaper genom molekylär
ingenjörskonst, och en sluten livscykel. Med andra ord, en cirkulär materi-
alekonomi blir möjlig, vilket illustreras i Figur 5.2. Faktum är också att flera
organiska elektroder har uppvisat en rimlig prestanda avseende en eller flera
egenskaper som krävs av ett batteri. Dock uppvisar dessa material ett antal
problem som måste åtgärdas innan ett ”organiskt batteri” framgångsrikt tas i
produktion. Exempelvis innehar dessa material en låg energidensitet, vilket
kan översättas till att en telefon behöver laddas oftare eller är större.

Att upptäcka nya organiska material med förbättrade egenskaper är
därmed önskvärt för att lösa dessa problem. Denna uppgift kan dock vara ex-
ceptionellt utmanande, om vi tar hänsyn till hur stort universumet av organiska
föreningar är. Det existerar ett nästan obegränsat antal molekyler och poly-
merer som inte ens är upptäckta än, och det är osäkert om de kan syntetiseras
i ett laboratorium. Detta är också exceptionellt tidskrävande. Därmed är ma-
terialvetenskapliga beräkningsmetoder nödvändiga för att lösa denna uppgift.
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Figure 5.2. En cirkulär värdekedja för ekologiskt baserade batterier vilket möjliggör
en hållbar batteritillverkning. De små illustrationerna i denna figur genererades av en
artificiell intelligensalgoritm som finns på craiyon.com.

I den första delen av denna avhandling används kvantmekaniska metoder
för att undersöka vissa specifika organiska elektrodkandidater. Genom att
förutse strukturen hos dessa föreningar kan deras elektroniska egenskaper
avgöras, vilket avslöjar struktur-egenskapsförhållanden, vilket i sin tur styr
batteriets prestanda. Dessa beräkningsvetenskapliga resultat stöds av experi-
ment när detta är möjligt, vilket stärker metodernas övergripande noggrannhet.
Detta gör det möjligt att förstå vilka molekylära egenskaper som påverkar
önskvärda batteriegenskaper, som spänning och maximal laddningskapacitet.
Dessutom påvisas alternativa vägar till att konstruera organiska molekyler för
att förbättra en given aspekt av batteriet, såsom spänning och kapacitet.

Emellertid, även om detta beräkningsmässiga ramverk i princip är en
korrekt metod att använda, så kräver det en avsevärd mängd undersökningar av
den näst intill gränslösa floran av organiska material. Således utvecklades en
alternativ väg baserad på datadrivna metoder i den andra delen av avhandlin-
gen. Denna datadrivna metod, baserad på artificiell intelligens (AI), är utveck-
lad genom användandet av den tidigare nämnda informationen. AI:n utveck-
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lades därmed inom det kvantmekaniska ramverket, härlett från en sammansatt
plattform, vilket här kallas för en AI-kernel. Denna kan användas till att kunna
förutsäga batteriegenskaper såsom batterispänning eller stabilitetsaspekter hos
en given molekyl eller elektrodkandidat. Fördelen med detta ramverk är att det
förbigår det krävande kvantmekaniska steget i beräkningarna, vilket påskyn-
dar processen för att upptäcka nya material. Exempelvis användes denna AI-
kernel för att gå igenom hela 45 miljoner nya molekyler, för att bland dessa
söka efter högpresterande katoder för Li-, Na- och K-jonbatterier. Denna
undersökning utfördes av datorn på några timmar, men skulle kräva mer än
två decennier om traditionella kvantmekaniska beräkningsmetoder användes.
Detta resulterade i en kortare lista över föreslagna organiska elektrodkandi-
dater vilka har potential att bli framtida batterimaterial: inte bara med ön-
skvärd prestanda, utan också eftersträvandes hållbarhet.
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