
Brief report
IgE cross-linking induces activation of human
and mouse mast cell progenitors
Erika M�endez-Enr�ıquez, PhD,a Maya Salomonsson, PhD,a Jens Eriksson, PhD,b Christer Janson, MD, PhD,c

Andrei Malinovschi, MD, PhD,d Mikael E. Sellin, PhD,b and Jenny Hallgren, PhDa Uppsala, Sweden
Background: The concept of innate and adaptive effector cells
that are repleted by maturing inert progenitor cell populations
is changing. Mast cells develop from rare mast cell progenitors
populating peripheral tissues at homeostatic conditions, or as a
result of induced recruitment during inflammatory conditions.
Objective: Because FcεRI-expressing mast cell progenitors are
the dominating mast cell type during acute allergic lung
inflammation in vivo, we hypothesized that they are activated by
IgE cross-linking.
Methods: Mouse peritoneal and human peripheral blood cells
were sensitized and stimulated with antigen, or stimulated with
anti-IgE, and the mast cell progenitor population analyzed for
signs of activation by flow cytometry. Isolated peritoneal mast
cell progenitors were studied before and after anti-IgE
stimulation at single-cell level by time-lapse fluorescence
microscopy. Lung mast cell progenitors were analyzed for their
ability to produce IL-13 by intracellular flow cytometry in a
mouse model of ovalbumin-induced allergic airway
inflammation.
Results: Sensitized mouse peritoneal mast cell progenitors
demonstrate increased levels of phosphorylation of tyrosines on
intracellular proteins (total tyrosine phosphorylation), and
spleen tyrosine kinase (Syk) phosphorylation after antigen
exposure. Anti-IgE induced cell surface–associated lysomal-
associated membrane protein-1 (LAMP-1) in naive mast cell
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progenitors, and prompted loss of fluorescence signal and
altered morphology of isolated cells loaded with lysotracker. In
human mast cell progenitors, anti-IgE increased total tyrosine
phosphorylation, cell surface–associated LAMP-1, and CD63.
Lung mast cell progenitors from mice with ovalbumin-induced
allergic airway inflammation produce IL-13.
Conclusions: Mast cell progenitors become activated by IgE
cross-linking and may contribute to the pathology associated
with acute allergic airway inflammation. (J Allergy Clin
Immunol 2022;149:1458-63.)

Key words: Activation, allergic airway inflammation, IgE cross-
linking, mast cells, mast cell progenitors, phosphorylation

INTRODUCTION
Distinct immune cell types differ in life span and in periph-

eral differentiation stages, from the short-lived neutrophils that
mature in the bone marrow to the extremely long-lived mast
cells that mature in peripheral tissues. Hematopoietic pro-
genitors were previously considered an inert reservoir of
immune cells. Lately, they were demonstrated to express
functional Toll-like receptors,1,2 respond to cytokine signals
such as type I interferons,3 and produce cytokines on innate
immune stimulation.4

Mast cells reside in all vascularized tissues and are involved
in allergic reactions. IgE-mediated cross-linking of FcεRI recep-
tors induces mast cell activation and release of granule-
associated mediators, biogenesis, and release of lipid mediators,
as well as synthesis and release of cytokines. Mediator release is
triggered by a signaling cascade in which tyrosine residues on
intracellular proteins such as spleen tyrosine kinase (Syk)
become phosphorylated (pSyk).5 Mast cells develop from
mast cell progenitors (MCp), which during embryogenesis
appear in the yolk sac and seed the connective tissues. Later,
bone marrow–derived MCp develop mainly into mucosal mast
cells in the peripheral tissues.6,7 Mouse MCp have a typical pro-
genitor phenotype with a lymphocyte-like size and few gran-
ules.8 A similar human MCp population exists in the
peripheral blood and bone marrow.9,10 Both human and mouse
MCp are extremely rare cells that make up approximately
0.005 % of enriched mononuclear cells in the blood.

Acute allergic stimulation triggers the activation of mast
cells and the recruitment of FcεRI1 MCp to peripheral tis-
sues.11,12 Here, we investigated whether MCp from mouse
peritoneum or human peripheral blood can be activated by
IgE cross-linking ex vivo. Indeed, several hallmarks of activa-
tion could be detected early after incubation with IgE/antigen
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FIG 2. Isolated peritoneal MCp respond to anti-IgE stimulation. A, Representative May-Gr€unwald Giemsa

(left) or chloroacetate esterase (right)-stained FACS-isolated mouse peritoneal MCp andMC. Bars represent

10 mm. B-E, Isolated MCp were incubated with lysotracker and recorded by time-lapse microscopy 10 mi-

nutes before and after either vehicle or anti-IgE was added. B, Representative pictures of MCp before incu-

bation with anti-IgE or vehicle. C, The fluorescence signal over time recorded for each cell. D,Quantification

of the normalizedmean fluorescence after the addition of vehicle or anti-IgE. The deviation from 100% in the

vehicle is due to signal bleaching. The lowest data point in the vehicle group inD defined the cutoff. E,Donut

diagram illustrating the proportion of individual MCp responding to anti-IgE. The data are derived from 2

experiments using peritoneal cells from 5 to 6 mice per experiment. Statistical significance was tested by

Mann-Whitney U test (**P < .01). FACS, Fluorescence-activated cell sorting.
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immune progenitor cells to allergic inflammation is largely
unknown. An exception is CD341 IL-5Ra1 eosinophil
progenitors, described to be present along with mature eosino-
phils in the allergic inflamed lung in vivo.13 MCp equipped with
the high-affinity receptor for IgE (FceRI) are recruited to the
lung and dominate among the lung mast cell populations during
the acute phase in experimental in vivo models of antigen-
induced allergic lung inflammation.11,12 Thus, here we hypothe-
sized that MCp can participate actively in IgE-mediated
reactions.

To test our hypothesis, mouse peritoneal cells from OVA-
immunized mice were left untreated or stimulated with OVA (see
Fig E1, A, in this article’s Online Repository at www.jacionline.
org). MCp were distinguished as lineage (Lin)2/lo c-kithi SSClo

FSClo CD16/32int integrin b7hi cells and constituted approxi-
mately 0.024 % of the singlets, whereas mature mast cells were
distinguished as Lin2/lo c-kithi SSChi FSChi/int CD16/32hi integrin
b7lo/int cells (Fig E1, B).14 OVA stimulation induced an increased
level of tyrosine phosphorylation in both mast cell populations
(Fig 1, A and B), indicating that peritoneal MCp act like mature
mast cells on IgE-mediated activation. To corroborate these
data, peritoneal cells from naive mice were sensitized with mouse
anti-trinitrophenyl (TNP) IgE ex vivo before stimulation with
OVA-TNP (Fig E1, C). An increase in pSyk was demonstrated
in mast cells and their progenitors 30 seconds after stimulation
with OVA-TNP (Fig 1, C), a sign consistent with IgE-mediated
mast cell activation.15 Naive mouse peritoneal MCp and mast
cells express FcεRI and have IgE bound to the receptor (Fig 1,
D). Thus, peritoneal cells from naive mice were stimulated by
anti-IgE or vehicle before analyzing the cell surface presence of
lysosomal-membrane protein LAMP-1. The fusion of LAMP-1
with the plasma membrane is a reliable marker of mast cell acti-
vation.16 Anti-IgE resulted in a marked increase in surface-
associated LAMP-11 mast cells and MCp (Fig 1, E and F).

To ensure that the signaling events occurring in MCp after IgE
cross-linking conditions was not an effect of secondary mediators
from other peritoneal cells, a single-cell approach was chosen to
investigate whether IgE cross-linking induces a response in
isolated MCp. Peritoneal MCp isolated from naive mice by
fluorescence-activated cell sorting are smaller and much less
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FIG 3. IgE cross-linking induces activation of human peripheral blood MCp. A and B, The PBMCs were incu-

bated with anti-IgE antibody for 30 seconds (A and B) or 10 minutes (C and D) before the reaction was

stopped. In A and B, the gMFI for the total pTyr (A) or pSyk (B) in MCp was determined by intracellular

flow cytometry. Two representative histograms show the phosphorylation in comparison to an
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FIG 4. Lung MCp produce IL-13 after allergen challenge. A-C, Mice were sensitized on days 0 and 7 with

OVA/alum intraperitoneally and left untreated (controls) or challenged by OVA aerosol for 30 minutes per

day on days 17 to 19, before all were euthanized directly after the final challenge. Lung cells were left to

rest in IL-3 and brefeldin before they were analyzed for IL-13 by intracellular flow cytometry. A, Represen-

tative contour plots of IL-131 lung MCp (CD451 Lin2/lo c-kithi T1/ST21 FcεRI1 CD16/32int integrin b7hi cells)

from control mice (top) and OVA-challenged mice (down). B, The quantification of lung MCp in mice

with OVA-induced allergic airway inflammation and controls. C, The percentage of IL-131 lung MCp from

mice with OVA-induced allergic airway inflammation and controls from 3 independent experiments, each

labeled by color. The points represent a single sample of pooled lung cells from 5 to 7 control mice, or 3

OVA-challenged mice. Statistical significance was tested by an unpaired Student t test (**P < .01).
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granulated than the mature mast cells (Fig 2, A). Mast cell gran-
ules, and even lysosomal structures in T cells, have been success-
fully visualized using lysotracker.17,18 The peritoneal MCp were
incubated with lysotracker to visualize granular intracellular
compartments and the fluorescence imaged before and after addi-
tion of an anti-mouse IgE antibody, or vehicle. MostMCp became
activated almost instantly after addition of anti-IgE as shown by a
decrease in fluorescence and change in cellular morphology
compared with vehicle control cells or nonresponders (Fig 2, B-
E; see Videos E1-E6 in this article’s Online Repository at www.
jacionline.org). Collectively, these data suggest that mouse
MCp become activated by IgE cross-linking ex vivo.

To investigate whether human MCp also are activated by IgE
cross-linking, freshly prepared PBMCs were stimulated with an
anti-human IgE antibody, or left unstimulated. HumanMCp were
identified as CD42 CD82 CD192 CD142 CD34hi CD1171

FcεRI1 cells, and a population of CD42 CD82 CD192 CD142

CD342 CD1172 FcεRI1 cells, likely basophils and dendritic
cells, was used as positive control (see Fig E2 in this article’s On-
line Repository at www.jacionline.org). Morphologically, MCp
found in human blood have only few granules.9,10 The morpho-
logical difference between human blood MCp and mouse
unstimulated sample (gray) from the same donor usin

experiment. Most points represent cells from 1 donor, e

pooled. In C and D, the level of cell surface–associated C

etry. The data in A and B derive from 14 experiments (9

The data in C and D derive from 4 experiments using c

color reflects cells from a certain individual. Statistica

(*P < .05; **P < .01). gMFI, Geometric mean fluorescen

phosphorylation.
peritoneal MCp is not unexpected because peritoneal mast cell
turnover is extremely slow,19 which may allow more acidic com-
partments to develop, and thus the peritoneal MCp may be more
‘‘mature’’ in their phenotype. Despite that, human bloodMCp and
the CD1172 FcεRI1 positive control population both demon-
strated an increased total tyrosine phosphorylation 30 seconds af-
ter anti-IgE stimulation of PBMCs (Fig 3, A; not shown). The
rapid response appears to exclude MCp activation mediated by
bystander cells responding to IgE cross-linking. Thus, anti-IgE
has a direct activating effect on human MCp. However, quantifi-
cation of pSyk using a similar experimental approach revealed
increased pSyk in MCp and CD1172 FcεRI1 positive control
population only in the same 2 of 5 individuals (Fig 3, B; not
shown). These data suggest that MCp from some individuals
phosphorylate Syk, and that MCp from other individuals may
be ‘‘nonresponders’’ similar to basophils, which in a proportion
of donors are unable to respond to stimulation with anti-IgE.20

Alternatively, the kinetics of pSyk may differ between individ-
uals. Next, we tested whether anti-IgE could induce cell
surface–associated CD63 and LAMP-1 (CD107a). Indeed, MCp
from all 4 individuals tested responded with a higher level of
cell surface–associated CD63 and LAMP-1 after anti-IgE
g the same gating strategy. Each color represents 1

xcept for 3 points where PBMCs from 2 donors were

D63 (C) or LAMP-1 (D) was analyzed by flow cytom-

for pTyr and 5 pSyk) using cells from 17 individuals.

ells from the same 4 color-coded individuals. Each

l significance was tested by a paired Student t test

ce intensity; ns, nonsignificant; pTyr, total tyrosine
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treatment (Fig 3, C and D). Altogether, our data suggest that anti-
IgE stimulation induced activation of the human MCp.

Because IgE cross-linking induced MCp activation ex vivo, we
next asked whether MCp activation could be observed in vivo.
Because IL-13 is secreted by activated mast cells after IgE
cross-linking,21 we investigated whether MCp can produce IL-
13 in an allergic setting in vivo. Mice were subjected to acute
OVA-induced allergic airway inflammation, and the presence of
IL-131 MCp was analyzed by intracellular flow cytometry
(Fig 4, A; see Fig E3 in this article’s Online Repository at
www.jacionline.org). Lung MCp identified as CD451 Lin2/lo

c-kithi T1/ST21 FcεRI1 CD16/32int integrin b7hi cells from
OVA-sensitized and OVA-challenged mice were 6 times more
frequent than in the control mice, which were only intraperitone-
ally sensitized to OVA (Fig 4, B). On average, 19% 6 3% of the
lung MCp from mice with acute OVA-induced allergic airway
inflammation were positive for IL-13, corresponding to around
3% 6 0.1% of the IL-13–producing CD451 cells, whereas few
of the MCp from control mice showed a signal for IL-13 (Fig 4,
C). The IL-13 production in lung MCp could be due to OVA-
induced cross-linking of IgE, or due to in vivo activation by other
signals set off by the allergic inflammation. Recently, data from a
single-cell RNA sequencing project were reclustered on the basis
of cells expressing beta-tryptase. This reanalysis revealed 4 mast
cell clusters, 1 of which contained genes expressed in integrin
b7hi mouse lung mast cells, and the IL-13 gene.22 IL-13 is crucial
for the development of airway hyperresponsiveness and mucus
production in experimental models, and dupilumab, which
targets the IL-4 receptor alpha-chain and thereby both IL-4 and
IL-13 pathways, improves FEV1 and decreases exacerbations in
patients with asthma.23 Furthermore, human MCp are more
frequent in the blood circulation of patients with asthma with
reduced lung function.24 Thus, it appears likely that IL-13 pro-
duction by MCp may be biologically relevant in vivo. Although
we here demonstrate cytokine production by MCp in an allergic
setting, hypogranular mast cells in the mesenteric lymph nodes
with features resembling MCp have been described to produce
IL-4 and IL-6 after Trichinella Spiralis infection.25 This hints to-
ward a general contribution ofMCp to cytokine production across
settings.

In summary, we show that IgE cross-linking induces activation
of mouse and human MCp, and suggest that these cells play an
active role in allergic inflammation by producing cytokines such
as IL-13.

For detailed methods, please see the Methods section in this ar-
ticle’s Online Repository at www.jacionline.org.
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Key messages

d IgE cross-linking induces activation of mouse and human
mast cell progenitors.

d Lung mast cell progenitors from mice with experimental
asthma produce IL-13.
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