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Interplay of finite-energy and finite-momentum superconducting pairing
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Understanding the nature of Cooper pairs is essential to describe the properties of superconductors. The
original proposal of Bardeen, Cooper, and Schrieffer (BCS) was based on electrons pairing with same energy
and zero center-of-mass momentum. With the advent of new superconductors, different forms of pairing have
been discussed. In particular, Cooper pairs with finite center-of-mass momentum have received large interest.
Along with such finite-momentum pairs, pairing of electrons at different energies is also central to understanding
some superconductors. Here, we investigate the interplay of finite-momentum and finite-energy Cooper pairs
considering two different systems: a conventional s-wave superconductor under applied magnetic field and a
d-wave finite-momentum pairing state in the absence of magnetic field relevant to correlated superconductors.
Investigating both these systems, we find finite-energy pairs persisting independently of finite-momentum
pairing, and that they lead to odd-frequency superconducting correlations. We contrast this finding by showing
that the even-frequency correlations are predominantly driven by zero-energy pairs for most frequencies. We
further calculate the Meissner effect and find that odd-frequency correlations are essential for correctly describing
the Meissner effect.

DOI: 10.1103/PhysRevB.106.024511

I. INTRODUCTION

Many superconductors can be described by the famous
Bardeen, Cooper, and Schrieffer (BCS) theory [1]. The BCS
theory in its original form is based on the formation of
Cooper pairs of electrons near the Fermi level with oppo-
site momentum k and −k and opposite spins ↑ and ↓ in a
singlet configuration. In the presence of time-reversal sym-
metry, electrons with opposite momentum and spins have
equal energy in the band dispersion, leading to pairing be-
tween electrons with the same energy. However, BCS theory
is also applicable in the absence of time-reversal symme-
try, e.g., in the presence of an applied magnetic field. In
this case, the electrons forming the Cooper pairs are at dif-
ferent energies in the band dispersion, see Fig. 1(a). Such
pairs of electrons can aptly be called finite-energy Cooper
pairs. Finite-energy pairing has also recently been proposed
to intrinsically occur in monolayer transition-metal dichalco-
genides [2] and j = 3/2 superconductors [3]. Another known
variant of Cooper pairs is when electrons pair with momentum
different from opposite momenta. In this scenario, the total
center-of-mass momentum of the Cooper pairs is nonzero
and are hence commonly known as finite-momentum pairs.
Finite-momentum pairs have recently attracted renewed at-
tention due to their possible emergence in several intensively
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studied superconductors such as cuprates [4,5], transition-
metal dichalcogenides [6], iron-based superconductors [7],
and kagome metals [8]. Understanding the interplay between
both finite-energy and finite-momentum Cooper pairs will
likely both provide deeper insights into the pairing symmetry
of existing superconductors and open pathways to discover
future superconductors with exotic properties.

A simple example where both finite-energy and finite-
momentum Cooper pairs are present is a conventional
spin-singlet s-wave superconductor under an applied mag-
netic field. The Zeeman effect of the magnetic field splits the
Fermi surface of the ↑- and ↓-spin electrons, thereby straining
the singlet configuration of the Cooper pairs. However, the
condensation energy gain due to the formation of Cooper
pairs still enables superconductivity to survive weak mag-
netic fields. In this weak field regime, BCS spin-singlet pairs
(kF ↑,−kF ↓) are formed by electrons at different energies,
thus turning into finite-energy pairs, see Fig. 1(a), where kF

is the Fermi momentum. For higher magnetic fields, an inter-
play between the magnetization energy and the condensation
energy is known to result in the formation of finite-momentum
Cooper pairs (kF ↑,−kF + Q ↓). This phenomenon was orig-
inally illustrated independently by Fulde-Ferrell (FF) [9] and
Larkin-Ovchinnikov (LO) [10]. While FF proposed finite-
momentum Cooper pairs with Q-momentum modulations in
the phase factor of the superconducting (SC) order parameter,
LO suggested finite-momentum Cooper pairs with modula-
tions in the amplitude of the SC order parameter. Notably,
in the finite-momentum SC state (kF ↑,−kF + Q ↓) elec-
trons are no longer at different energies, as illustrated in
Fig. 1(a). This may give us the naive expectation that finite-
momentum pairs are always zero-energy pairs, such that
the finite-momentum pairing relievies the superconductor of

2469-9950/2022/106(2)/024511(12) 024511-1 Published by the American Physical Society

https://orcid.org/0000-0001-6065-4354
https://orcid.org/0000-0002-4726-5247
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.024511&domain=pdf&date_stamp=2022-07-18
https://doi.org/10.1103/PhysRevB.106.024511
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


CHAKRABORTY AND BLACK-SCHAFFER PHYSICAL REVIEW B 106, 024511 (2022)

(a) (b)

FIG. 1. Schematic showing finite-energy and finite-momentum
Cooper pairs in the presence of magnetic field B �= 0 (a) and in the
absence of magnetic field B = 0 (b). A typical 1D band dispersion for
↑-spin, ξk↑, and ↓-spin, ξk↓, electrons are shown. Black horizontal
line shows the Fermi level with kF being the Fermi momentum.
Q denotes the total center-of-mass momentum and �E denotes the
finite-energy of the Cooper pair.

finite-energy pairs. However, the schematic drawn in Fig. 1(a)
represents a one-dimensional (1D) band dispersion. If we
instead consider a system in 2D or 3D, kF lie either on a line or
a surface, thus giving the possibility of the (kF ↑,−kF + Q ↓)
electrons not being at same energies. This brings us to the first
concrete question we aim to answer in this work: Do finite-
energy Cooper pairs generally exist in a finite-momentum SC
state?

A finite-momentum SC state has recently been found ex-
perimentally in correlated electron systems [4,6,8], even in
the absence of applied magnetic field, often referred to as a
pair density wave state. This state is theoretically proposed
to be spontaneously formed due to the effects of electronic
correlations [11–15]. Such a state with (kF ↑,−kF + Q ↓)
pairs actually necessarily have finite-energy Cooper pairs,
since the ↑ and ↓ electrons are degenerate, for an illustration
see Fig. 1(b). This leads to the second question we aim to
address in this work: what is the nature of the finite-energy
pairs generated due to the presence of finite-momentum pairs
in the absence of applied magnetic field?

Till now we have only discussed Cooper pairs with un-
equal energy or unequal momentum, but still formed at equal
time. A different form of SC pairing can exist where two
electrons pair at unequal times. Such unequal time Cooper
pairs gives the possibility that the pair wave function becomes
odd under the exchange of the electron time coordinates
or, equivalently, odd in frequency [16–21]. Odd-frequency
pairing has been instrumental in understanding several nonin-
tuitive experimental findings in superconductor-ferromagnet
heterostructures [22–26] and is also proposed to exist in sev-
eral bulk superconductors [27–30], particularly in multiband
systems [31–36]. With time, frequency, and energy being
closely related in quantum systems, this begs a third question
we aim to address in this work: Do finite-energy, and also
finite-momentum, superconductors host odd-frequency SC
correlations?

Notably, the odd-frequency pairing discussed in the re-
cent literature mostly involves odd-frequency SC correlations,
which are distinct from the odd-frequency order parameter
originally proposed [16–19] in the context of odd-frequency
superconductivity. But, such intrinsic odd-frequency super-
conductivity may be thermodynamically unstable, [37] due

to a most often found paramagnetic, or negative, Meissner
response [22,38,39]. However, a diamagnetic Meissner effect
has been shown to be restored if odd-frequency pairs also have
finite-momentum [40,41]. This raises the fourth and last ques-
tion we aim to address in this work: How do odd-frequency SC
correlations affect the Meissner response in a superconductor
with finite-energy, or in combination with finite-momentum,
pairs?

To answer all these questions, we consider in this work
two different systems. The first system is a conventional
spin-singlet s-wave superconductor in the presence of ap-
plied magnetic field, where the magnetic field eventually give
rise to finite-momentum pairs. By self-consistently solving
the resulting Hamiltonian, we answer the first question by
showing that finite-energy Cooper pairs are the only pos-
sibility in the BCS phase, but also and clearly prevalent
in the finite-momentum FF phase. Moreover, we find that
odd-frequency SC correlations exist in both BCS and FF
phases and, notably, are only generated due to the presence
of finite-energy pairs. In contrast, we find that even-frequency
correlations are mainly dominated by (near) zero-energy pairs
for most frequencies. This shows both that odd-frequency
SC correlations are intricately linked to finite-energy pair-
ing and thus answers our third question. We also show the
importance of these odd-frequency SC correlations in the
Meissner effect by calculating the superfluid weight. While
we find that odd-frequency correlations give a negative con-
tribution to the superfluid weight, their inclusion is essential
to correctly describe the magnetic field evolution of the su-
perfluid weight and that in total the Meissner effect is still
diamagnetic. This provides a clear answer to our fourth
question. Finally, to generalize our results, we also study
finite-momentum pairing in the absence of magnetic fields.
We do this by studying an unconventional d-wave supercon-
ductor where we find a finite-momentum FF d-wave state
spontaneously formed by self-consistently solving a pair hop-
ping model proposed in the context of cuprates [14]. Also in
this finite-momentum system, we find coexisting finite-energy
pairing and odd-frequency correlations that are directly re-
lated to these finite-energy pairs. This both answers our
second question and, importantly, generalizes our other results
and conclusions derived from the conventional superconduc-
tor in a magnetic field.

We organize the rest of the paper in the following way. In
Sec. II, we discuss the case of a conventional superconductor
in the presence of an applied magnetic field. We first give the
details of the model Hamiltonian and discuss the procedure
of self-consistency to obtain the ground state in Sec. II A. We
then find the SC correlations in the ground state in Sec. II B 1
and then relate the obtained correlations to finite-energy and
finite-momentum Cooper pairs in Sec. II B 2. We then inves-
tigate the case of a spontaneously formed finite-momentum
d-wave FF state in the absence of magnetic field in Sec. III.
Here we first give the details of the model and procedure of the
self-consistency in Sec. III A and then show the obtained SC
correlations in Sec. III B. After that we discuss the effects of
SC correlations in the Meissner effect in Sec. IV. Finally, we
summarize our findings and also discuss the possible interplay
of finite-energy and finite-momentum pairing in other systems
in Sec. V.
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II. FINITE-ENERGY PAIRING IN THE PRESENCE
OF MAGNETIC FIELD

A. Model and ground state

In the anticipation that finite-momentum superconductivity
eventually appears in the presence of magnetic field, we start
with a generic mean-field Hamiltonian in 2D allowing for the
possibility of forming finite-momentum SC pairs:

HB =
∑
k,σ

(ξk +σB)c†
kσ

ckσ +
∑

k

(
�

Q
k c−k+Q/2↓ck+Q/2↑ + H.c.

)

+ constant. (1)

Here c†
kσ

(ckσ ) is the creation (annihilation) operator of an
electron with spin σ and momentum k, ξk is the electron band
dispersion, B is the applied magnetic field causing a Zeeman
splitting of the electron energies with the magnetic moment of
the electron μ0 taken to be unity, �Q

k is the spin-singlet s-wave
SC order parameter, and Q is the total center-of-mass mo-
mentum of the Cooper pairs. For simplicity, we set the band
dispersion ξk = −2t (cos(kx ) + cos(ky)) − μ, where t = 1 is
the energy unit, and tune μ such that the average density of
electrons ρ = ∑

k,σ 〈c†
kσ

ckσ 〉 is kept fixed to a general value of

0.7. �
Q
k is obtained by the self-consistency relation,

�
Q
k =

∑
k′

Vk,k′ 〈c†
k′+Q/2↑c†

−k′+Q/2↓〉, (2)

where Vk,k′ is the interaction strength driving the SC order.
In this section we only consider s-wave superconductors with
�

Q
k = �

Q
0 , and hence we set Vk,k′ = −V , a constant indepen-

dent of momentum. We achieve the BCS zero-momentum
superconductivity if Q = 0 and finite-momentum supercon-
ductivity if Q �= 0 [42]. We take V = 2.5 for obtaining a
large SC gap to make the analysis clear. We work with a
square lattice of size N = 1000 × 1000, a value large enough
to mimic the thermodynamic limit and capturing the relevant
values of Q.

The Hamiltonian in Eq. (1) can be written in a matrix form
using the basis �† = (c†

k+Q/2↑, c−k+Q/2↓) as

HB =
∑

k

�†ĤB� + constant, (3)

with

ĤB =
(

ξk+Q/2↑ �
Q
0

�
Q
0 −ξ−k+Q/2↓

)
, (4)

where now ξkσ = ξk + σB and �
Q
0 is taken to be real-valued

without any loss of generality. We diagonalize the Hamil-
tonian ĤB for a fixed Q and solve for the self-consistency
condition Eq. (2) iteratively using the eigenvalues and the
eigenvectors of Eq. (4). However, the self-consistent solutions
of �

Q
0 for a particular chosen Q does not guarantee a global

energy minimum. The global minimum, and thus the ground
state solution �

Q
0 , can only be obtained by calculating the

ground state energy E = ∑
k,σ ξkσ 〈c†

kσ
ckσ 〉 − (�Q

0 )2/V + μρ

as a function of Q, and finding the optimal Q that minimizes
E . We note that Q is a vector with two possible directions in
2D. Here we consider only uniaxial Q along the x-axis and
call it Qx = Q for notation simplicity. Since we consider only

s-wave superconductivity in this section, other directions of Q
are expected to give similar results.

We perform the above procedure of finding the ground state
solution �

Q
0 for different values of magnetic field to find the

phase diagram as a function of B. For B < Bc1 ≈ 0.35, we
find the Q = 0 solution to be the ground state, showing the
stability of the BCS phase in this range of B. In the range
Bc1 < B < Bc2 ≈ 0.58, we find that Q �= 0 instead gives the
global minimum in energy. Thus, in this intermediate range
of magnetic fields, finite-momentum SC state is stable. Since
we consider a single value of Q in Eq. (1), the SC order in
real space has modulations only in the phase factor and not in
the amplitude, i.e., it is an FF phase. To consider a LO phase
with modulations in the amplitude of the SC order parameter,
at least two Q need to be considered. However, to avoid any
complexity arising from emergent charge density wave orders
in the LO phase, we do not consider the LO phase in this work,
only focusing on the FF phase. Finally, for B > Bc2, there are
no nonzero solutions of �

Q
0 , which means that the system is

in normal, i.e., nonsuperconducting, state. To summarize, Bc1

demarcates the transition of the BCS state to the FF state and
Bc2 demarcates the transition of the FF state to the normal
state.

B. Superconducting correlations

1. Theoretical framework and analytical results

Having obtained the ground state of the Hamilto-
nian in Eq. (1), we next look at the SC pair corre-
lations. The SC pair correlator is given by Fk,−k (τ ) =
−〈Tτ c†

k+Q/2↑(τ )c†
−k+Q/2↓(0)〉, where τ is the imaginary time

and Tτ is the τ -ordering operator. We here choose to not
indicate the Q dependence in Fk,−k (τ ) for notational sim-
plicity. After Fourier transforming, Fk,−k (τ ) can be written
as Fk,−k (iω), where ω are fermionic Matsubara frequencies.
The SC pair correlator Fk,−k (iω) can be obtained directly
from the off-diagonal part of the Green’s function G, given
by G−1(iω) = iω − ĤB. Thus, by using the Hamiltonian in
Eq. (4), the Green’s function is obtained by inverting the 2 × 2
matrix G−1(iω) and the pair SC correlator is given by

Fk,−k (iω) = G12(iω) = F e
k,−k (iω) + F o

k,−k (iω), (5)

where

F e
k,−k (iω) = −�

Q
0

(
ξk+Q/2↑ξ−k+Q/2↓ + (

�
Q
0

)2 + ω2
)

D
, (6)

F o
k,−k (iω) = iω�

Q
0 (ξk+Q/2↑ − ξ−k+Q/2↓)

D
, (7)

D = (
ξk+Q/2↑ξ−k+Q/2↓ + (

�
Q
0

)2 + ω2
)2

+ω2(ξk+Q/2↑ − ξ−k+Q/2↓)2. (8)

We have here decomposed Fk,−k (iω) into its even- (F e
k,−k (iω))

and odd-frequency (F o
k,−k (iω)) components, as clearly

F e
k,−k (iω) and F o

k,−k (iω) have even and odd-frequency depen-
dence, respectively, in the nominator, while the denominator
D is an even function of frequency.

Already at this stage, we can relate the SC correlations
with finite-energy Cooper pairs. In the BCS phase, (k,↑) elec-
trons pair with (−k,↓) electrons and Q = 0. In the absence
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of magnetic field B and for inversion symmetric supercon-
ductors, ξk↑ = ξ−k↓. From Eq. (7), we then find F o

k,−k (iω) ∝
ξk↑ − ξ−k↓ = 0. Hence, in the absence of magnetic field, there
are no odd-frequency correlations, whereas F e

k,−k (iω) is still
finite, as seen from Eq. (6). In the presence of magnetic field,
but still in the BCS phase, (k,↑) electrons still pair with
(−k,↓) electrons and Q = 0, but now ξk↑ �= ξ−k↓. As a result,
it is electrons of different energies in the normal state that form
the Cooper pairs. In this case, F o

k,−k (iω) ∝ ξk↑ − ξ−k↓ �= 0 and
thus the odd-frequency correlations are proportional to the en-
ergy difference of the electrons pairing, or equivalently, to the
existence of finite-energy pairs. Finally, in the FF state, (k +
Q/2,↑) electrons pair with (−k + Q/2,↓) electrons with the
difference in their energies being ξk+Q/2↑ − ξ−k+Q/2↓. Also in
this case F o

k,−k (iω) ∝ ξk+Q/2↑ − ξ−k+Q/2↓, see Eq. (7), and the
odd-frequency correlations are still proportional to the energy
difference of the electrons pairing. The above analysis thus
shows that odd-frequency correlations necessarily require the
formation of finite-energy pairs in the ground state, whereas
even-frequency correlations exist even if only zero-energy
pairs are present. Already here, we thus answer the third
question posed in Sec. I by establishing a direct analytical
relation of odd-frequency SC correlations with finite-energy
Cooper pairs. A remarkable consequence of this result is that
the odd-frequency correlations act as a direct measure of
finite-energy Cooper pairs as these correlations are directly
proportional to the energy difference of the electrons forming
the Cooper pairs. In fact, we will use this feature in Sec. II B 2
to answer the first question on whether finite-energy pairs are
present in the finite-momentum state.

We next derive the spin properties of the pair correlation
functions. Due to the fact that a pair correlation function
should always satisfy the Fermi-Dirac statistics, the correla-
tion function under a joint operation of spin permutation (S),
momentum exchange or parity (P), and relative time permuta-
tion (T) of the individual electrons should satisfy SPT = −1.
From Eqs. (6) and (7), we find that under P F e

−k,k (iω) =
F e

k,−k (iω), while F o
−k,k (iω) = −F o

k,−k (iω). Next, spin-singlet
correlations are always odd under S, while spin-triplet are
even. So, in order to satisfy SPT = −1, the spin-singlet
component of the even-frequency pair correlations F e

s (k, iω)
can be obtained by taking an even combination of F e

−k,k (iω)
and F e

k,−k (iω), as even-frequency spin-singlet correlations
are required to be even under P. Likewise, the spin-triplet
component F e

t (k, iω) can be obtained by taking the odd
momentum combination. Following the same argument, the
spin-singlet F o

s (k, iω) and triplet F o
t (k, iω) components of the

odd-frequency pair correlations are obtained by considering
the odd and even combinations of F o

−k,k (iω) and F o
k,−k (iω),

respectively. Using the above analysis, we arrive at

F e
s (k, iω) = F e

k,−k (iω) + F e
−k,k (iω)

2
, (9)

F e
t (k, iω) = F e

k,−k (iω) − F e
−k,k (iω)

2
, (10)

F o
s (k, iω) = Im

(
F o

k,−k (iω) − F o
−k,k (iω)

2

)
, (11)

F o
t (k, iω) = Im

(
F o

k,−k (iω) + F o
−k,k (iω)

2

)
, (12)

where we have, for plotting purposes, taken the imaginary
part in the last two lines since F o

k,−k (iω) is purely imaginary,
see Eq. (7). In the BCS phase where Q = 0, using Eqs. (6)–
(12), we see that only spin-singlet even-frequency F e

s (k, iω)
and spin-triplet odd-frequency F o

t (k, iω) correlations persist,
whereas in the FF phase with finite Q, all the components in
Eqs. (9)–(12) are generally finite. Since our main focus is to
compare the BCS and the FF phases, in the rest of this section,
we primarily focus on F e

s (k, iω) and F o
t (k, iω), since they are

both finite in both the BCS and FF phases. We also note that
in the FF phase, the spin-singlet and -triplet components of
the even-frequency correlations have very similar magnitudes
and frequency dependence and the same is true for the spin-
singlet and -triplet components of odd-frequency correlations.
This gives additional good reason to only present our results
for F e

s (k, iω) and F o
t (k, iω). We further characterize the total

momentum contribution by defining the following two mo-
mentum sums:

F e/o
s/t (iω) =

∑
k

∣∣F e/o
s/t (k, iω)

∣∣, (13)

which quantifies the momentum-averaged absolute values and

F∗
e/o
s/t (iω) =

∑
k

F e/o
s/t (k, iω), (14)

which quantifies the momentum average with the sign of F e/o
s/t

being incorporated.

2. Numerical results

Based on the theoretical framework developed in
Sec. II B 1, we now evaluate the SC pair correlations numer-
ically. We first show the frequency dependence of the even-
and odd-frequency correlations for different Zeeman fields B
in Fig. 2. Figure 2(a) shows the even-frequency correlations
F e

s (iω) for both B < Bc1 (dashed lines) in the BCS phase
and B > Bc1 (solid lines) in the FF phase. In the BCS phase,
F e

s (iω) has a broad Gaussian-like frequency distribution with
its maximum F e

max at ω = 0. The BCS to FF transition at Bc1

results in a sharp change in the width of the distribution, since
F e

s (iω) has a sharp peak at ω = 0 and decays much faster with
ω in the FF phase than in the BCS phase. As seen in Fig. 2(b),
the odd-frequency correlations F o

t (iω) also show dramatic
change in the frequency dependence when the system goes
from the BCS to the FF phase. F o

t (iω) has its maximum value
F o

max at a finite frequency ωmax. Within each of the BCS phase
and the FF phase, ωmax changes minimally. However, ωmax

shows a sudden jump towards zero at Bc1. The difference in
the frequency dependence of odd-frequency correlations in
the BCS and the FF phases becomes even more apparent in
the inset of Fig. 2(b), where we plot F∗o

t (iω) which is the
total momentum sum considering also the sign of F o

t (k, iω), as
defined in Eq. (14). In the BCS phase, F∗o

t (iω) has a smooth
transition from negative to positive ω. In contrast, in the FF
phase F∗o

t (iω) has a discontinuity at ω = 0, which indicates a
1/ω frequency dependence. We here note that one of the defin-
ing feature of F o

t (iω), i.e., that it is zero at ω = 0, is not visible
in F o

t (iω) in the main panel, as we do not consider the ω = 0
precisely. An important distinction has to be made at this
point: ωmax marking the maximum of the SC pair correlations
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FIG. 2. Frequency dependence of the pair correlations at differ-
ent magnetic fields B. Momentum-averaged absolute values of the
even-frequency correlations F e

s (a) and odd-frequency correlations
F o

t (b). (Inset) Momentum-averaged F∗o
t . B < Bc1 = 0.35 leads to

BCS phase (dashed lines) and B > Bc1 = 0.35 leads to FF phase
(solid lines).

should not be confused with the energy difference of electrons
forming the finite-energy pairs. Still, the energy difference
of the finite-energy pairs can be estimated by looking at the
maximum values F o

max, as we show next.
Next we focus on the maximum values of the even- and

odd-frequency correlations and relate them to the formation of
finite-energy pairs. In Fig. 3, we plot the magnetic field depen-
dence of F e

max and F o
max, as well as the SC order parameter �

Q
0

since both the even- and odd-frequency correlations depend
on �

Q
0 , as is evident from Eqs. (6) and (7). First we note that

F o
max is zero at B = 0, verifying that odd-frequency correla-

tions are absent in the absence of magnetic field. In contrast,
F e

max is finite for B = 0, again verifying that even-frequency
correlations exist also in the absence of finite-energy pairs. In
fact, F e

max nearly equals �
Q
0 for B = 0, showing that there is no

distinction between the SC order parameter �
Q
0 and the (even-

frequency) SC pair correlations at B = 0. With increasing B,
both F o

max and F e
max increase throughout the BCS phase. This

increase conforms with the increase in the energy difference
of the Cooper pairs ξk↑ − ξ−k↓ = 2B with increasing B, given
�

Q
0 is constant in the BCS phase. Although both F e

max and F o
max

increase with increasing B, the absence of only F o
max at B = 0

clearly shows that F o
max and hence odd-frequency correlations

necessarily need finite-energy pairs. This result numerically
validate our earlier analytical findings in Sec. II B 1 that odd-
frequency correlations are directly related to finite-energy
pairs and answers our third question posed in Sec. I.
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FIG. 3. Maximum values of even- and odd-frequency correla-
tions, F e

max and F o
max, obtained from the main panels of Fig. 2 as

a function of magnetic field B. Note that F e
max and F o

max occur at
different frequencies. Ground state values of the SC order parameter
�

Q
0 is also plotted for comparison.

With further increasing B, the FF phase forms where
Cooper pairs obtain a finite-momentum Q. Here we can start
addressing the first question asked in Sec. I; whether finite-
energy pairs also exist in the finite-momentum FF phase. In
the FF phase, (k + Q/2,↑) electrons pair with (−k + Q/2,↓)
electrons. The energy difference between the pairing elec-
trons is then given by ξk+Q/2↑ − ξ−k+Q/2↓. In 2D, there are
only certain points of the Brillouin zone where ξk+Q/2↑ −
ξ−k+Q/2↓ = 0, but mostly often it is not. As shown in Eq. (7),
F o

k,−k (iω) ∝ ξk+Q/2↑ − ξ−k+Q/2↓. Hence, showing F o
max �= 0 is

actually enough to prove that the finite-energy pairs exist in
the FF phase. As seen in Fig. 3, clearly F o

max �= 0 in the FF
phase, which proves the presence of finite-energy pairs. We
here note that both F o

max and F e
max decrease with increasing

B in the FF phase. This reduction is due to the decrease of
�

Q
0 with increasing B, since F e

max and F o
max are both directly

proportional to �
Q
0 , see Eqs. (6) and (7). Finally, we also

note that close to the normal state at B = Bc2, there is a slight
increase in both F o

max and F e
max. We attribute this to a numerical

anomaly near B = Bc2 due to a large Q (which increases with
B) and small �

Q
0 . For fields beyond B = Bc2, the system is in

the normal phase with no SC correlations.
A more detailed understanding of the relation between the

finite-energy pairs and the SC pair correlations can be estab-
lished through looking at the momentum space structure of
the SC correlations. We first look at the momentum-resolved
SC correlations in the BCS phase. In the BCS phase for
B > 0, all the SC correlations are due to finite-energy pairs
as ξk↑ �= ξ−k↓. Hence, both even- and odd-frequency corre-
lations are necessarily coming from the finite-energy pairs.
In Fig. 4, we show the momentum-resolved SC correlations
|F e

s | [Eq. (9)] and |F o
t | [Eq. (12)] for a fixed frequency and

fixed B = 0.34 < Bc1. In BCS theory, the Cooper pairs are
formed of the states close to the Fermi surface. Thus we also
display the Fermi surface of ↑ and ↓ spins, i.e., the contours of
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(a) (b)

FIG. 4. Color density map of the absolute value of the even-
frequency |F e

s | (a) and odd-frequency |F o
t | (b) pair correlations in the

first Brillouin zone at a fixed ω = 0.2 in the BCS phase (B = 0.34).
Green lines are the Fermi surfaces of ↑ and ↓ spins, i.e., the contours
ξk↑ = 0 and ξ−k↑ = 0.

ξk↑ = 0 and ξk↓ = 0, as green lines in Fig. 4. We find that both
|F e

s | and |F o
t | are mainly restricted to the k points bounded by

the ξk↑ = 0 and ξk↓ = 0 contours.
We next turn our attention to the FF phase and its

momentum-resolved pair correlations. Here the two individ-
ual components F e/o

k,−k and F e/o
−k,k in Eqs. (9)–(12) can peak at

different parts of the Brillouin zone due to the presence of a
finite Q, in contrast to the BCS phase where they always peak
at the same regions. However, F e/o

k,−k and F e/o
−k,k are still mirror

reflections of each other about the kx = 0 line, as Q is only
along the x direction. Hence, to get a comprehensive picture,
we plot in Fig. 5 both the total contributions F e/o

s/t in (b) and (d)

together with one of the individual component F e/o
k,−k in (a) and

(c) for a fixed frequency ω = 0.2 where odd-frequency corre-
lations are considerable. There is also another important dis-
tinction between the BCS phase and the FF phase. In the BCS
phase, the SC correlations are restricted between the contours
of the Fermi surfaces ξk↑/↓ = 0, as also seen in Fig. 4. How-
ever, in the FF phase, (k + Q/2,↑) electrons pair with (−k +
Q/2,↓) electrons and as a result we expect the SC correlations
to be dominant near ξk+Q/2↑ = 0 and ξ−k+Q/2↓ = 0, instead of
ξk↑/↓ = 0. Hence, in Fig. 5, it is most illustrative to overlay
the contours of ξk+Q/2↑ = 0 and ξ−k+Q/2↓ = 0 as green lines.
As seen in (a) and (c), these two green lines are shifted in the x
direction due to the uniaxial nature of the optimum Q and only
nearly merge for a line of k points in a region kx < 0 satisfying
ξk+Q/2↑ ≈ ξ−k+Q/2↓. As a result, at these points there can be
no finite-energy pairs. As seen in Fig. 5(a), F e

k,−k has a clear
maximum exactly in this region where ξk+Q/2↑ ≈ ξ−k+Q/2↓.
This establishes that the total even-frequency correlations, as
also seen in (b), are largely dominated by zero-energy pairs.
In contrast, we show in Fig. 5(c) that F o

k,−k is zero in this
region where ξk+Q/2↑ ≈ ξ−k+Q/2↓. Instead, we find that F o

k,−k
is maximum in regions where the two green lines start devi-
ating from each other, i.e., in the regions where necessarily
ξk+Q/2↑ �= ξ−k+Q/2↓ but still with a proximity to low-energy
excitations indicated by ξk+Q/2↑ = 0 and ξ−k+Q/2↓ = 0. Thus
these momentum space findings show clearly that odd-
frequency correlations are only present for finite-energy pairs,
where ξk+Q/2↑ �= ξ−k+Q/2↓, while even-frequency correlations
are mainly driven by zero-energy pairs where ξk+Q/2↑ ≈
ξ−k+Q/2↓. The results of Fig. 5 are qualitatively similar for

(c)

(a)

(d)

(b)

FIG. 5. Color density map of the absolute value of the pair cor-
relations in the first Brillouin zone at a fixed ω = 0.2 in the FF phase
(B = 0.38) with optimal Q = (0.43, 0). Absolute value of F e

k,−k

(a) and total spin-singlet contribution of the even-frequency corre-
lations [Eq. (9)]. (b). Absolute value of Im(F o

k,−k ) (c) and the total
spin-triplet contribution of the odd-frequency correlations [Eq. (12)].
(d). Green lines in (a) and (c) show the contours of ξk+Q/2↑ = 0
and ξ−k+Q/2↓ = 0. Green lines in (b) and (d) additionally show the
contours ξk+Q/2↓ = 0 and ξ−k+Q/2↑ = 0.

frequencies other than ω = 0.2, except for very low ω where
even F e

k,−k is also generated by finite-energy pairs.
To summarize, in this section we provide answers to the

first and the third questions posed in Sec. I. In particular, we
find that the odd-frequency SC correlations are directly related
to finite-energy pairs by showing both momentum-averaged
and momentum-resolved correlations, while such a relation
is found to be absent for the even-frequency SC correlations
for most frequencies. Further, by using the unique analytical
relation of odd-frequency correlations and finite-energy pairs
in Eq. (7), we show that finite-energy pairs are also present
in a finite-momentum phase formed under applied magnetic
field. Thus the system relaxing into a finite-momentum FF
state with increasing magnetic field, does not remove the
finite-energy pairs nor the odd-frequency pairing.

III. FINITE-ENERGY PAIRING IN THE ABSENCE
OF MAGNETIC FIELD

Having established the existence of finite-energy and odd-
frequency SC pairs in a finite-momentum FF state driven by
an magnetic field in the previous Section, we next aim to
generalize these results by studying a finite-momentum state
without an applied magnetic field. As already explained in
Sec. I, in the absence of magnetic field or, equivalently, in the
absence of any spin-splitting of the Fermi surface, any finite-
momentum spin-singlet pairing state necessarily consists of
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finite-energy pairs. The aim here is therefore to answer the
second question posed in Sec. I, i.e., establish the nature
of finite-energy pairs in a finite-momentum phase generated
spontaneously in the absence of any applied magnetic field.
In order to investigate such a finite-momentum state, we first
need to set up a viable model where a finite-momentum phase
can be spontaneous generated.

A. Model and ground state

Finding microscopic models giving rise to a finite-
momentum SC state in the absence of magnetic fields
has been challenging. In the literature, most works have
been focused on the d-wave cuprate superconductors, where
finite-momentum superconductivity seems to explain several
mysterious experimental findings [43]. In the context of the
cuprate superconductors, finite-momentum superconductivity
is often referred to as a pair density wave state where the
superconducting order parameter modulates in real space even
in the absence of any applied magnetic field [11]. A pair den-
sity wave state can generate secondary charge density wave
modulations with a wave vector twice of the superconducting
modulation wave vector. However, a charge density wave
state, also discussed in the context of cuprate superconductors
[44], is distinct from a pair density wave state since it does not
necessarily lead to modulating superconducting order. Here,
we discuss the microscopic model pertaining to a pair density
wave like finite-momentum SC state and not a charge density
wave state. It has been shown that a finite-momentum SC
state can be obtained in a real space t-J Hamiltonian appro-
priate as a low-energy description for the high-temperature
cuprate superconductors, but only at very strong interactions
strengths [14,45]. In fact, the minimum interaction strength
required to obtain a ground state with finite-momentum su-
perconductivity in this model has been shown to be six times
the hopping amplitude, which is usually considered to be too
large [14]. However, more recently, it has been shown that a
finite-momentum SC state can in fact be obtained with more
reasonable interaction strengths, of the order of the hopping
amplitude, by considering a Hamiltonian with a real space
nearest-neighbor attraction as in the t-J model augmented
with periodically modulated longer range pair hopping [14].
Such pair hopping terms have quite often been proposed in
Hubbard-like models in different systems, including multi-
orbital systems [46,47]. In the context of cuprates, this pair
hopping can be directly motivated from the Josephson cou-
pling in the π -junctions formed near stripe domain walls [43].
The range and the period of the modulation in the pair hopping
interaction are then the same as the experimentally observed
stripe periods in the cuprates [48]. The resulting pair hopping
(PH) model on a 2D square lattice in momentum space can be
written as

HPH =
∑
k,σ

ξkc†
kσ

ckσ

+
∑
k,k′,q

Vk,k′,qc†
k+q/2↑c†

−k+q/2↓c−k′+q/2↓ck′+q/2↑, (15)

where the electron dispersion is now ξk = −2t (cos(kx ) +
cos(ky)) − 4t ′ cos(kx ) cos(ky) − μ with t = 1 still the energy

unit and an additional next nearest neighbor hopping t ′ =
−0.3 to mimic a prototype cuprate band structure [49]. We
further tune μ such that the average density of electrons ρ =∑

k,σ 〈c†
kσ

ckσ 〉 is fixed to 0.65, a value that is already known
to favor the finite-momentum state [14]. Following Ref. [14],
the pair hopping interaction coming from a nearest-neighbor
attraction is given by

Vk,k′,q = −V 
(q)(γ (k)γ (k′) + η(k)η(k′)), (16)

where γ (k) = cos(kx ) + cos(ky) and η(k) = cos(kx ) −
cos(ky) are the two form factors for nearest-neighbor
attraction on a square lattice and V is the constant attraction
strength. The aspect of longer range pair hopping is embedded
in the factor 
(q) given by


(q) = e
− (qx−Q̃)2

2κ2
x + e

− (qx+Q̃)2

2κ2
x , (17)

where κx denotes the range of the hopping with the limit
κx → ∞ meaning nearest-neighbor pair hopping. The mod-
ulation Q̃ = 2π/Px̂ is here introduced to mimic the presence
of stripe modulation, with P = 8 taken from experimental mo-
tivation of the modulation wave vector of stripes in cuprates
[48]. The choice of Q̃ breaks the rotational symmetry since
the modulation is only along x direction. In order to have
only finite-momentum pairing, the hopping range has to be
smaller than the modulation wave vector [14] and thus we
here consider κx = 0.2. A mean-field decomposition of the
Hamiltonian in Eq. (15) in the Cooper channel results in a
similar Hamiltonian as in Eq. (1), but now with zero magnetic
field and given by

HPH =
∑
k,σ

ξkc†
kσ

ckσ +
∑

k

(
�

Q
k c−k+Q/2↓ck+Q/2↑ + H.c.

)

+ constant, (18)

where �
Q
k is the spin-singlet SC order parameter obtained by

the self-consistency relation,

�
Q
k =

∑
k′

Vk,k′,Q〈c†
k′+Q/2↑c†

−k′+Q/2↓〉. (19)

This self-consistency relation is different from Eq. (2) because
of the explicit Q dependence in Vk,k′,Q, which favors finite-
momentum superconductivity, whereas the self-consistency
relation in Eq. (2) does not need an explicit Q dependence
in Vk,k′ due to the presence of the external magnetic field.
Furthermore, Vk,k′,Q also has an explicit k, k′ momentum
dependence as seen in Eq. (16). Due to the η(k) and γ (k) com-
ponents in Vk,k′,Q, we can decompose �

Q
k as �

Q
k = �

Q
d η(k) +

�Q
s γ (k), with �

Q
d being the d-wave SC order parameter and

�Q
s being the extended s-wave SC order parameter [50]. Be-

low we show results for V = 1.3, a value we have checked
to be close to the minimum interaction strength required to
obtain finite �

Q
k . We have also used other V , finding no

qualitative difference. We further work with the same sys-
tem size as in Sec. II A. We note here that the effects of
strong electronic correlations in cuprate superconductors are
not explicitly considered in this work. This is a reasonable ap-
proximation since we use a relatively small ρ = 0.65. When
approaching half-filling, the role of strong correlations is ex-
pected to increase. A finite-momentum superconducting state
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FIG. 6. Ground state energy as a function of Q in the pair hop-
ping model Eq. (18). Q is taken to be along the x axis and Qy = 0.
Minimum in energy is identified with arrow and corresponds to the
optimal Q∗.

obtained in the presence of magnetic field has been shown
to be stable when strong correlations are incorporated within
the Gutzwiller approximation [51]. We expect similar stability
of the finite-momentum state even in the absence of magnetic
field and hence the strong correlation effects present if moving
closer to half-filling will likely not change our results.

As in Sec. II A, the Hamiltonian in Eq. (18) can be writ-
ten in a matrix form ĤPH similar to Eq. (4), but now the
diagonal terms do not have a spin index, i.e., ξk+Q/2↑ will
be replaced by ξk+Q/2 and ξ−k+Q/2↓ by ξ−k+Q/2. We can
then follow the same self-consistency procedure discussed in
Sec. II A, but now with two self-consistent order parameters
�

Q
d and �Q

s , instead of only one �
Q
0 . In order to obtain

the global energy minimum, we here calculate the ground
state energy using E = ∑

k,σ ξk〈c†
kσ

ckσ 〉 − (�Q
d )2/(V 
(Q)) −

(�Q
s )2/(V 
(Q)) + μρ [14]. This expression for ground state

energy is equivalent to the one used in Sec. II A after appro-
priately including the momentum- and modulation-dependent
interaction strength given in Eq. (16). We find that the self-
consistent value of �Q

s is very small for all Q and negligible
compared to �

Q
d . In Fig. 6, we show the variation of E with Q.

We have considered only uniaxial values of Q along the x axis
to find the global energy minimum, since Q̃ in Eq. (17) is only
along x direction. As seen in Fig. 6, E forms a minima at an
optimal Q = Q∗. This obtained Q∗ matches well with the find-
ings of Ref. [14]. This result establishes that it is possible to
find a finite-momentum SC ground state with the pair hopping
Hamiltonian HPH for the parameters considered in this work.
Note that, again, since we only consider one Q and conse-
quently, the finite-momentum SC ground state correspond to
the FF state but now in the absence of a magnetic field.

B. Superconducting correlations

After finding the optimal value of Q = Q∗ and the self-
consistent order parameters �Q

s and �
Q
d of the ground state,

we next look at the SC correlations. Using the same proce-
dure as in Sec. II B, we first obtain the Green’s function G̃
by inverting the 2 × 2 matrix G̃−1(iω) = iω − ĤPH (in this

Section we use tilde to indicate quantities for the PH model).
The pair correlator F̃k,−k (iω) is then given by the off-diagonal
elements of the Green’s function, G̃12(iω). Since ĤPH and ĤB

have same matrix structure, F̃k,−k (iω) can also be decomposed
into even-frequency F̃ e

k,−k (iω) and odd-frequency F̃ o
k,−k (iω)

components and we find analytically,

F̃ e
k,−k (iω) = −�

Q
k

(
ξk+Q/2ξ−k+Q/2 + (

�
Q
k

)2 + ω2
)

D̃
, (20)

F̃ o
k,−k (iω) = iω�

Q
k (ξk+Q/2 − ξ−k+Q/2)

D̃
, (21)

where

D̃ = (
ξk+Q/2ξ−k+Q/2 + (

�
Q
k

)2 + ω2
)2

+ω2(ξk+Q/2 − ξ−k+Q/2)2. (22)

The functional forms of F̃ e
k,−k , F̃ o

k,−k , and D̃ are the same as
in Eqs. (6)–(8), only with the spin labels of ξk being removed
and �

Q
k with a momentum dependence. Thus, again, the odd-

frequency correlations, F̃ o
k,−k , is directly proportional to the

energy difference, ξk+Q/2 − ξ−k+Q/2, of the electrons forming
the Cooper pairs.

The spin symmetries of the SC pair correlations also follow
the same analysis as in Sec. II B. Noticing that under momen-
tum exchange F̃ e

−k,k = F̃ e
k,−k and F̃ o

−k,k = −F̃ o
k,−k , and from

Eqs. (9)–(12), we find that only the spin-singlet components
F̃ e/o

s (k, iω) of both odd- and even-frequency correlations per-
sist. This absence of spin-triplet components is a consequence
of the net spin polarization being zero in the absence of
an applied magnetic field. This is an important distinction
between the FF phase obtained here and the magnetic-field
induced FF phase studied in Sec. II A where both spin-singlet
and spin-triplet components are present. We here also de-
fine the momentum-averaged absolute values of even- and
odd-frequency correlations F̃ e/o

s (iω) in the same way as in
Eq. (13). We here do not show the momentum sums keeping
the signs of F̃ e/o

s (k, iω) as in Eq. (14), since we find it to give
very similar behavior to the momentum-averaged results.

To be able to gain detailed understanding we numerically
evaluate the SC correlations in Eqs. (20)–(22). In Fig. 7, we
show the frequency dependence of the momentum-averaged
absolute values, F̃ e

s and F̃ o
s . We find this frequency depen-

dence to be quite similar to the ones obtained in the FF
phase in the presence of magnetic field (solid lines in Fig. 2).
In particular, F̃ o

s is generally finite and has its maximum at
a frequency ω very close to zero. Since the odd-frequency
correlations are directly proportional to the finite-energy pairs
as seen in Eq. (21), this result directly verify the presence of
finite-energy pairs.

Since the ground state SC order parameter �k is found
to be mainly d-wave in nature, it generates the possibility
of finding unconventional momentum space structure of the
SC correlations. Hence, in Figs. 8(a) and 8(b), we show as
a color density plot the momentum-resolved F̃ e

s and F̃ o
s for

a fixed frequency ω = 0.1 where odd-frequency correlations
are considerable. As seen, F̃ e

s peaks near the anti-nodal region,
i.e., in the regions around (±π, 0) and (0,±π ), and displays a
clear d-wave signature with sign-changing values. In contrast,
F̃ o

s shows a sign-change between +kx and −kx, indicating
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FIG. 7. Frequency dependence of the pair correlations in the
pair hopping model, similar to Fig. 2 but here in the absence of
magnetic field. Momentum-averaged absolute values of the even- and
odd-frequency correlations, F̃ e

s and F̃ o
s , respectively.

that these correlations have p-wave character. The p-wave
character is also consistent with Eq. (11) when using the odd-
frequency SC correlations defined in Eq. (21). This finding
is remarkable in the sense that a d-wave finite-momentum
SC order parameter generates significant values of p-wave
odd-frequency pair correlations in the bulk. In the literature,
p-wave odd-frequency correlations have predominantly only

(a) (b)

(c) (d)

FIG. 8. Color density map of the even-frequency [(a) and (c)] and
odd-frequency [(b) and (d)] correlations in the first Brillouin zone at
a fixed ω = 0.1 in the pair hopping model for optimal Q = (0.75, 0).
Lower plots show absolute values of upper row. Green lines show the
contours of ξk+Q/2 = 0 and ξ−k+Q/2 = 0.

been discussed in the context of heterostructures [52–54].
Here, we do need any heterostructures, but the generation of
the p-wave correlations is due to the broken spatial parity in
the FF phase [14].

Finally, in order to connect the SC correlations with finite-
energy pairs, we also show the contours of ξk+Q/2 = 0 and
ξ−k+Q/2 = 0 as overlaid green lines in the color density map of
Fig. 8 in the same spirit as Fig. 5. As seen from the plot, ξk+Q/2

and ξ−k+Q/2 intersect only at two k-points. At these k-points
where ξk+Q/2 = ξ−k+Q/2, |F̃ e

s | in (c) is largest but |F̃ o
s | = 0

in (d). Hence, even-frequency correlations are mainly formed
by pairs close to zero energy and with no energy difference,
i.e., zero-energy pairs, whereas odd-frequency correlations re-
quires finite-energy pairs, the same as the findings as in Sec. II.
Additionally, |F̃ e

s | is also seen to be large near k ≈ (±π, 0).
Around these regions, |ξk+Q/2 − ξ−k+Q/2| ≈ 0, even though
ξk+Q/2 �= 0 and ξ−k+Q/2 �= 0 individually. Thus also the large
values of |F̃ e

s | near k ≈ (±π, 0) are driven by zero-energy
pairs. We note that similar regions with zero-energy pairs
away from the green contours of ξk+Q/2 = 0 and ξ−k+Q/2 = 0
does not occur in Sec. II due to the nature of the bands con-
sidered. For frequencies other than ω = 0.1, the qualitative
features are similar to Fig. 8, except for very low ω where
|F̃ e

s | turns out to also be generated by finite-energy pairs.
To summarize, our findings of this section show that a

spontaneously formed FF phase in the absence of magnetic
field gives a realistic example where finite-energy and finite-
momentum pairs co-exist instead of competing with each
other. We further show that the finite-energy pairs are also
intimately connected to the odd-frequency correlations, sim-
ilar to the findings of Sec. II. We additionally find that the
odd-frequency correlations have a momentum structure with
orthogonal orbital symmetries compared to the underlying
d-wave SC order parameter, which generates the correlations.
Overall, this clarifies the nature of the finite-energy pairs in an
FF state without an applied magnetic field and thus answers
the second question posed in Sec. I. Combined with the re-
sults in the previous section Sec. II, these findings establish
that finite-energy pairs exist generally in finite-momentum FF
phases and that they directly generate odd-frequency SC cor-
relations. This firmly answers the first three questions posed
for this work.

IV. MEISSNER EFFECT

Having understood the nature of the SC correlations in
different SC phases with finite-energy and finite-momentum
pairs, we calculate in this section the effect of these cor-
relations on the experimentally relevant Meissner effect in
order to address the fourth and final question. We choose the
Meissner effect as it is one of the defining features of a super-
conductor, measuring its expulsion of an external magnetic
field, a so-called diamagnetic Meissner effect. However, odd-
frequency correlations have historically been shown to instead
produce an unusual paramagnetic Meissner effect [39,55–57],
which would mean the superconductor attracts the magnetic
field and subsequently become unstable. It is thus highly in-
teresting to understand the Meissner effect in systems where
odd-frequency correlations are strong. We here primarily dis-
cuss the Meissner effect in the conventional superconductor in
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an applied magnetic field as studied in Sec. II, but comment
on the results for the pair hopping model discussed in Sec. III
towards the end.

The usual diamagnetic Meissner effect correspond to a
positive superfluid weight of a superconductor [58], whereas
a paramagnetic Meissner effect would indicate a negative
superfluid weight. Within Kubo linear response theory, the
superfluid weight Ds is given by [59]

Ds = 〈−kx〉 − �xx(qx = 0, qy → 0, iν = 0), (23)

where we have ignored the scaling factor e2π to avoid dealing
with very small numbers. We choose the response in the x
direction since the modulation wave vector in the FF state is
also chosen to be in the x direction and then 〈kx〉 is the kinetic
energy per site along the x direction. The transverse current-
current correlation function �xx is given by

�xx(q, iν) = 1

N

∫ 1/T

0
dτeiντ

〈
j p
x (q, τ ) j p

x (−q, 0)
〉
, (24)

where N is the system size, q is the bosonic momentum, and
ν = 2πmT (m is a positive integer) is the bosonic Matsubara
frequency with T being the temperature. For calculating the
superfluid weight in Eq. (23), we take the long wavelength
(qy → 0) and static (iν = 0) limit of �xx, while setting qx = 0
since we look at the response in the x direction [59]. The
current-current correlation �xx can be calculated using the
Green’s function G [40,60–62],

�xx(q, iν)

= −
∑
k,iω

Tr[G(k, iω)J (k)G(k + q, iω + iν)J (k + q)],

(25)

where

J (k) =
(

J1 0
0 J2

)
, (26)

with J1 = vk+Q/2, J2 = v−k+Q/2, and vk = ∂ξk/∂k [40]. Using
Eqs. (23) and (25), we arrive at a total superfluid weight given
by

Ds = 〈−kx〉 +
∑
k,iω

(
J2

1 G11G11 + J2
2 G22G22 + 2J1J2G12G21

)

= 〈−kx〉 +
∑
k,iω

(
J2

1 G11G11 + J2
2 G22G22

+2J1J2F e
k,−kF e

k,−k + 2J1J2F o
k,−kF o

k,−k

)
= Kn + Ke

a + Ko
a , (27)

where the first term Kn isolates the contribution of the normal
(diagonal) part of the Green’s function and the sum of the
last two terms Ka = Ke

a + Ko
a identifies the contribution of

the anomalous (off-diagonal) part of the Green’s function,
only present in the superconducting state. Here we have used
the fact that contributions being products of even- and odd-
frequency correlations after frequency summation identically
vanish.

We use the solutions for G11, G22, F e
k,−k , and F o

k,−k ob-
tained in Sec. II in Eqs. (6) and (7) to arrive at the superfluid
weight. First, in Fig. 9(a), we analyze the anomalous con-
tribution Ka and its even- and odd-frequency contributions,
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FIG. 9. Meissner effect as a function of magnetic field B.
(a) Contribution from the pair correlations to the superfluid weight
Ka and individual contributions from even-frequency Ke

a and odd-
frequency Ko

a correlations. (b) Total superfluid weight Ds, and the
contributions coming from diagonal part of the Green’s function Kn

and pair correlations Ka.

Ke
a and Ko

a , respectively, as a function of magnetic field B.
We find that Ke

a gives a positive contribution to the super-
fluid weight, whereas Ko

a gives a negative contribution for all
B < Bc2. This means that the even-frequency pair correlations
give a diamagnetic contribution to the Meissner effect, while
the odd-frequency correlations give a paramagnetic contribu-
tion. Ke

a is even found to increase with B in the BCS phase
(B < Bc1). The reason for this increase is the enhancement
in F e

max with B is the presence of finite-energy pairs and the
associated increase in the energy difference of these pairs
with increasing B, as seen in Fig. 3. At first glance, this
magnetic field dependence of Ke

a would seemingly suggest
that the superconductor increases its superfluid weight with
increasing B and hence the superconductor becomes more
stable in the magnetic field. However, this would be in sharp
contradiction to the established notion that a magnetic field
splits the spin Fermi surfaces and thus causes an energy cost in
a spin-singlet superconductor. Notably, Ko

a , even if it is nearly
three times smaller than Ke

a , exactly balances the increase in
Ke

a , thus keeping the total Ka unchanged for B < Bc1. Thus
appropriately including odd-frequency correlations is crucial
for obtaining the correct magnetic field dependence of the
superfluid weight in the presence of finite-energy pairs and
to understand the stability of the superconductor.

Moving on to higher magnetic fields, we find that the total
anomalous contribution Ka suffers a sudden reduction at the
BCS to FF transition at Bc1 due to the sudden jump in the SC
order parameter �

Q
0 , as seen in Fig. 3. Thus, in the FF phase,

the magnitude of Ko
a becomes more comparable to the magni-

tude of Ke
a , but still the total contribution Ka > 0. With further

increase in B, Ka further decreases and eventually reaches zero
at the FF to normal transition at Bc2, as is expected. Finally,
in Fig. 9(b), we show the evolution of the superfluid weight
Ds and its individual components Ka and Kn with varying
B. We find Ka ≈ Kn for all B. As a result, Ds has the same
B-dependence as Ka and our above analysis in Fig. 9(a) not
just applies to Ka but to the total superfluid weight.

The above analysis of the Meissner effect in the presence
magnetic field shows the importance of SC correlations in
experimental observables. In particular, we show that the odd-
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frequency correlations are essential to correctly describe the
magnetic field dependence of the Meissner effect, especially
when finite-energy pairs are present. It should here especially
be emphasized that the common notion that odd-frequency
correlations make the superconductor thermodynamically un-
stable due to a paramagnetic Meissner effect is thus not
applicable as the total Ka is never close to being negative. This
thus provides the answer to the fourth and final question posed
in Sec. I.

Finally we note that for the pair hopping model discussed
in Sec. III, the calculation of the Meissner effect becomes
much more involved. The main reason is that the current oper-
ator in the pair hopping model contains higher order terms due
to the modulating nature of the interaction [14]. These higher
order terms appear when the current operator is calculated
using the continuity equation. The current-current correlation
in Eq. (25) will thus involve many terms which substantially
add to the complexity. Still, we believe the dominant con-
tribution of the SC correlations to the superfluid weight is
from the lowest order terms of the current operator and hence
the Meissner effect in the pair hopping model should give
qualitatively similar results as in Fig. 9.

V. CONCLUSION AND DISCUSSION

In summary, in this work we first show that applying
magnetic field to a conventional spin-singlet s-wave su-
perconductor generates finite-energy Cooper pairs both in
the low-field BCS phase and high-field finite-momentum
FF phase. Our results thus illustrate that finite-energy pair-
ing exists even in the finite-momentum superconducting FF
state. Furthermore, we find a direct connection between
the odd-frequency SC correlations and finite-energy pairing
by showing analytically that finite-energy pairs necessarily
generate odd-frequency SC correlations. In contrast, even-
frequency correlations originate primarily from zero-energy
pairs for most frequencies, especially in the FF phase. We
then study the interplay of finite-energy and finite-momentum
Cooper pairs in a very different system, an unconventional
d-wave superconductor with a spontaneous finite-momentum
superconducting FF state driven by stripe formation even in
the absence of any applied magnetic field. Here we find very
similar relationships between odd-frequency SC correlations,
finite-energy, and finite-momentum paring as in the magnetic-
field driven FF state. These results establish that finite-energy
and odd-frequency pairing are intimately linked and both
prevalent in finite-momentum superconducting states. In par-
ticular, the formation of finite-momentum pairing does not
remove either finite-energy or odd-frequency pairing. Finally,
we investigate the experimental consequences of the interplay
between different variants of Cooper pairs by calculating the
Meissner effect. Focusing only on the conventional s-wave

superconductor under applied magnetic field, we show that
odd-frequency correlations are necessary to correctly describe
the magnetic field dependence of the superfluid weight or
equivalently the Meissner effect.

Our finding of a close connection between finite-energy
pairs and odd-frequency SC correlations raises the question
whether such a relation is also present in other systems where
odd-frequency SC correlations are known to be present, but
in the absence of finite-momentum superconductivity. Here
we comment on such possibilities. Odd-frequency pairing is
often discussed in the context of multiband superconductors
[31,35]. In multiband superconductors, odd-frequency corre-
lations can also be connected to finite-energy pairing. For
example, if we consider a two-band case with no intra-band
pairing, such that the two individual bands can still be treated
with individual normal state band dispersions ξa and ξb, the
interband odd-frequency pairing can be shown to be directly
proportional to the difference of the energies of pairing elec-
trons in the two bands, ξa-ξb [31]. Hence, also in multiband
superconductors, odd-frequency correlations are directly re-
lated to the energy difference of the pairing electrons. A
similar analogy can also be drawn for Ising superconductors.
In such systems it has been shown that finite-energy Cooper
pairs can be present in the ground state and odd-frequency
correlations are then only present for Cooper pairs with finite-
energy [2]. A close connection between finite-energy pairs
and odd-frequency SC correlations will likely also appear in
a finite-momentum superconducting phase of both multiband
and Ising superconductors. There exists for example already
experimental evidence of a finite-momentum superconduct-
ing phase in the multiband superconductor FeSe [7] at high
magnetic field. However, the additional presence of multiple
bands and spin-orbit coupling may give additional interest-
ing findings that can open new possible research directions.
Another possible future prospect is to find a model for a
finite-momentum pairing state in the absence of magnetic field
in these systems, which to the best of our knowledge is still
absent.
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