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Abstract

Inflammatory Bowel Disease (IBD) is a chronic and incurable condition that is increasing in
prevalence across the globe. This illness consist of two forms: Crohn’s Disease (CD) and
Ulcerative Colitis (UC). CD is characterised by a patch inflammation pattern across the gut and
a multitude of different factors, such as diet. Contemporary research has found a link between
gut dysbiosis and the development of IBD, suggesting that the microbial flora colonising the gut
have a vital part to play in the development of CD.

This paper aims to identify taxa associated with CD. This is done through the application of
machine learning algorithms as standard univariate statistical methods fail to apply in the highly
interdependent domain of the gut microbiome. The compositionally of the data and external
factors influencing variance in the data will be taken into account.

After applying a Center Log ratio transformation (CLR) to a MetaPhlAn3 taxonomic profile and
using a random forest classifier the following five taxa were identified as the most important in
the association to CD: Ruminococcaceae bacterium, Akkermansia muciniphila, Streptococcus
parasanguinis, Flavonifractor plautii and Bifidobacterium bifidum.
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1 Popularvetenskaplig sammanfattning

Den ménskliga kroppen innehaller mer 4n ett miljardtal mikroorganismer i tarmen som
utdvar vésentliga biologiska processer. Tarmikrobiomets komposition beror mycket pa
vad man dter, hur man lever och vilka gener man har. Crohns sjukdom &r en tarminflam-
mation som beror delvis pa en dysbios, en fordndring i1 tarmflorans komposition som
paverkar hdlsan negativt. Crohns sjukdom &r kronisk och kan inte botas. Sjukdomen
ir inte dodlig men har en negativ paverkan pd livskvalitén och kan leda till tarmcancer.
Symptomen av Crohns sjukdom inkluderar diarré¢, magknip och blod i avforingen. For
att utveckla botemedel mot denna sjukdom ar det vésentligt att kéinna till vilka mikrober
som orsakar denna dysbios. Men mikrobiom-data har egenskaper som man behover
kdnna till innan man kan dra négra slutsatser.

Vanliga statistiska metoder kan inte anvindas ndr man utforskar vilka mikrober paverkar
Crohns sjukdom. Detta beror bdde pa vilka instrument som anvénds for att sekvensera
fekala prover, externa faktorer och de komplexa relationerna inom mikrobiomet. Kom-
positionell data kallas den data som skapas av sekvenseringsmaskiner och kan beskrivas
som att man studerar en del av en helhet. Problemet med kompositionella data ar att en-
dast prediktioner inom vad som har observerats gar att tolka. For att kunna tolka predik-
tioner utanfor detta sa maste den kompositionella datan transformeras. Den méanskliga
kroppen dr komplex. Det finns ménga olika faktorer som kan padverka mikrobiomet data
som &r oberoende av Crohns sjukdom, till exempel om négon roker kan detta paverka
tarmmikrobiomet. Dessa faktorer behdver identifieras och faktorer med storst paverkan
behover behandlas. Detta gors genom att jamfora observationer som haller dessa fak-
torer konstant, t.ex. att man jamfor endast icke-rokande patienter mot varandra.

Vanliga statistiska metoder jaimfor observationer fran experiment med kdnda sanno-
likhetsfordelningar. Dessvidrre dr det inte lika létt att jamfora observationer frén
mikrober. Flera olika mikrober kan paverka varandra och detta fenomen modelleras
inte av kdnda sannolikhetsfordelningar. I s fall finns det mer komplexa och anvancerade
metoder som kan ta hdnsyn till detta. I detta projekt anvéindes maskininldrningsmetoder.
Flera olika maskininldarningsmetoder finns och det &r inte alltid uppenbart vilken metod
som ska anvéndas i vilken kontext, utan metoder behover jimforas med varandra. Efter
att ha tagit hdnsyn till externa faktorer och funnit en optimal maskininldrningsmetod kan
det visas att mikrober som associeras framst med en hélsosam tarm &r de mikrober som
ar avgorande 1 en prognos av Crohns sjukdom.
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2 Abbreviations

Abbreviations
Additive Log-Ratio ALR
Area Under the Curve PR AUCPR
Area Under the Curve ROC AUCROC
Canadian Dollars CDN
Centered Log-Ratio CLR
Crohn’s Disease CD
Center for Translational Microbiome Research CTMR
Cyclooxygenase COX
False Negative FN
False Positive FP
False Positive Rate FPR
Inflammatory Bowel Disease IBD
Isometric Log-Ratio ILR
K-Nearest Neighbor KNN
Last Common Ancestor LCA
Leave-one-out cross-validation LOOCV
Logistic Regression LR
Machine Learning ML
Muramyl Dipeptide MDP
Neural Networks NN
Nucleotide Binding Oligomerization Domain containing 2~ NOD2
Nonsteroidal Anti-inflammatory Drugs NSAIDs
Pairwise Log-Ratio PWLR
Polymerase Chain Reaction PCR
Precision-Recall PR
Random Forest RF
Receiver Operator Characteristic ROC
Ribosomal RNA rRNA
Short Chain Fatty Acids SCFAs
Support Vector Machines SVM
True Negative TN
True Positive TP
True Positive Rate TPR
Ulcerative Colitis UC
United Sates of America USA

United Sates of America Dollars USD



3 Introduction

This project aims to investigate differences between the microbiomes of individuals suf-
fering from Crohn’s Disease (CD), which is a form of inflammation in the gut, and
healthy individuals. Symptoms of CD can be varied but a few common symptoms in-
clude the following: fatigue, weight loss, loose stool and rectal bleeding. CD is a chronic
and incurable disease, though remissions can occur in some cases (Kaplan 2015; Zhang
& Li2014). CD is characterized by damaged areas in the gastrointestinal tract, dispersed
in a ”patchy” fashion, where the inflammation may reach through multiple layers of the
gastrointestinal tract (Kaplan 2015; Zhang & Li 2014). Since the 1950s, Inflammatory
Bowel Disease, which CD is a form of, has increased in prevalence across the western
world. Currently, healthcare costs to treat the 2-3 million European patients every year,
are around €4-6 million (Kaplan 2015). These costs are covered by healthcare services
but omit the costs of lowered productivity and life quality for patients suffering from
IBD. By characterising IBD, new diagnostic techniques and biomarkers could be de-
veloped for easier diagnosis as well as “personalised medicine” for patients (Lacroix
et al. 2021). Previous work on this topic has been performed, identifying changes in
microbiota composition as well as metabolites but the aetiology of IBD still needs fur-
ther investigation (Lacroix ef al. 2021; Zhang & Li 2014). CD has a plethora of in-
ter playing factors which could cause it to manifest, increasing the complexity of CD
pathogenesis. Three distinct sets of factors play a role in development of CD: genetics,
environmental factors and the patients microbiota, which will be further elaborated on.
Children whose parents suffer from CD have a 2-14% chance of developing CD and
there are specific loci, 163, linked to IBD development, that have been discovered thus
far (Zhang & Li 2014; Ananthakrishnan 2015). A less diverse microbiome has been
associated with increased risk of developing IBD as well. Presence of certain microbes,
such as Escherichia coli (AIEC), is also associated with an increased risk of develop-
ing CD. Finally environmental factors play a role in the development of IBD; smoking,
usage of antibiotics in early childhood and a diet with low fiber intake are such factors
(Zhang & Li 2014; Ananthakrishnan 2015).



4 Background

4.1 The human microbiome

Being the most densely populated microbe communities on earth the microbes in the
human gut live in a symbiotic relationship with their human hosts (Loyd-Price et al.
2016). Microbes form dynamic ecosystems on or in the human body with a variety of
microbes which fluctuate in compositions depending on external factors such as diet,
lifestyle and antibiotic usage as well as internal dynamics within said microbiome com-
munity (A Gilbert ef al. 2018; Loyd-Price et al. 2016). Colonization of the gut begins
right after birth, with ca 103 to 10*® microbes colonizing the human gut within a year of
birth while becoming more firmly established as a human ages. Once established these
communities are resilient to change and alterations, relative to when the human body is
first colonized (G. Albenberg ef al. 2012; A Gilbert et al. 2018).

What can be said about a humans gut microbiome, is that it can have a drastic effect
on the human hosts health (Loyd-Price et al. 2016; A Gilbert et al. 2018). Dysbiosis
can be considered a disorder in the microbial community that can prolong, exacerbate
or induce detrimental effects on someones health. Dysbiosis in the human gut has been
observed, though no causality has been proven for some illnesses, to be associated with
the development of:

e Autism

* Obesity

Clostridium difficile infection

+ IBD and many other diseases

Given the intricacy of the human gut, it is hard to define what a “healthy human gut mi-
crobiome” would look like and, in turn, what is considered ”dysbiosis” as development
of a humans microbiome is highly personalized and depends on multiple factors (Loyd-
Price et al. 2016). Loyd-Price et al. in 2016 present an alternative hypothesis that there
is a “functional core” that can define a healthy microbiome (Loyd-Price et al. 2016).
Central to this alternative hypothesis is that the microbiome present in an environment
have to full fill certain metabolic functions in order for someone to have a ’healthy” gut.



While the functional human genome can be regarded as immense, with ca 22,000
genes present, it is dwarfed by the 3.3 million genes present in the human gut micro-
biome (Ursell ef al. 2012). Through the gut microbiome humans are able to perform
metabolic functions which they can not perform naturally, such as fermentation of in-
digestible carbohydrates into short chain fatty acids, synthesis of certain vitamins and
bio-transformation of conjugated bile acids (G. Albenberg et al. 2012). Another service
which the gut microbiome provides is the ability to moderate an individuals immune
response, reducing the risk of the host developing allergies. In return the human gut
provides an optimal environment for the microbes to flourish by producing a physical
barrier between the world and the microbes while granting regular sustenance to the mi-
crobes (G. Albenberg et al. 2012). Another service which is provided by the gut micro-
biome is granting resistance towards pathogenic colonisation; commensal gut bacteria
occupy niches within the gut ecology, limiting the opportunities which pathogens can
exploit. Commensal gut bacteria also compete for sustenance against pathogens making
colonisation even more difficult (Martin et al. 2013).

Furthermore, there are multiple gut-organ axes, with the ability of changing organ dy-
namics. Such axes include: the gut-brain axis, the gut-skin axis and the gut-heart axis,
to name a few. The gut-brain axis is bifacial, meaning that the gut can influence the
brain while the brain has the same ability to influence the gut (Ahlawat et al. 2020).
This can occur through a direct link from the central nervous system to the gut, called
the vagus nerve, as well as humoral and endocrine pathways. Dysbiosis of the gut has
been associated with different neurological illnesses, such as Alzheimer’s disease and
Autism (Ahlawat et al. 2020). The gut-skin axis is not well understood to this day but
is hypothesized to involve communication though metabolites, neurons and endocrines
between the skin and microbiome. Gut disorders have been associated with cutaneous
manifestations (Ahlawat et al. 2020). A gut-heart axis exists as well. Patients who
experience heart related problems are at higher risk of having gut microbiome related
problems, such as dysbiosis and lower levels of microbiome diversity. These problems
can include, but are not limited to, coronary heart disease and heart failure (Ahlawat
et al. 2020).

42 1BD

IBD is a chronic and incurable disease which is composed of two major forms: CD
and UC. Both illnesses share symptoms but are different; CD is defined has having
a “’patchy” inflammation pattern across the gut while UC has a more “consistent” in-
flammation usually limited to the colon specifically. CD is also associated with more
complications, such as the development of abscess and strictures of the colon, unlike



UC, which in turn increase the chances of requiring medical attention or care (Kaplan
2015). Symptoms of each illness include but are not limited to; fatigue, diarrhea, blood
in stool and abdominal pain. While not a deadly disease, IBD has a detrimental effect
on a patients well being and has been associated as a precursor to more server diseases,
such as colon cancer (Kaplan 2015).

IBD has been increasing in prevalence across the globe since the 1950s as regions across
the globe industrialise, such as Asia, the Middle East and South America. Currently
more than 3.5 million individuals world wide are suffering from this illness which incurs
a cost to the society as a whole (Kaplan 2015). In 2004 ca more than 1 million individuals
in the United States of America (USA) suffered from IBD which accumulated medical
costs exceeding $6 billion United Sates Dollars (USD). In Canada, during the same year,
ca 200,000 individuals suffered from IBD with total direct medical costs tallying to $
1.2 billion Canadian Dollars (CDN) (Kaplan 2015). In Europe the effects of IBD had
a similar effect of healthcare costs; 2.5-3.5 million patients totaling a direct-healthcare
cost of ca 4.6-5.6 billion Euros annually. While these costs capture a larger societal costs
of IBD, they fail to consider the impact of IBD on an individual level; a decreased quality
of life. In turn such an effect could have indirect costs, for example loss of productivity,
which costs are much more difficult to measure (Kaplan 2015; Lloyd-Price et al. 2019).

IBD is a disease that is complicated to study as there are multiple factors that play a role
in developing either CD or UC. Such factors include; microbial factors, environmental
factors, genetics and nutrition (Zhang & Li2014). These factors will be further explained
below.

4.2.1 The Microbiome and IBD

The microbiome, as previously mentioned, plays an important role in homeostasis of
the gut. Both UC and CD is associated with a dysbiosis in the gut microbiome and
a reduction in biodiversity, though this effect is more pronounced in CD compared to
UC. Another hallmark of IBD is a fluctuation of the dominating taxa in the gut; a more
unstable microbiome (Zhang & Li 2014; Ananthakrishnan 2015). To further tie in the
importance of the gut microbiome in development of IBD, the age at which IBD is most
likely to be diagnosed reflects natural changes within the microbiome. Early onset IBD
usually occurs around the age of 10, when the microbiome is still changing due to pu-
berty, alterations in diet and illness. Late onset IBD occurs around the age of 60+, at that
age there is a marked increase in instability within the microbiome (Zhang & Li 2014;
Ananthakrishnan 2015; D.Kostic et al. 2014).

Additionally, both CD and UC is associated with a specific reduction in abundance of
specific taxon and an increase in other non-commensal taxa. An example of a pathogenic
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taxon which has been associated with IBD is adherent-invasive Escherichia coli (E. coli
(AIEC))(Zhang & Li 2014). It has been observed in control populations that ca 6.2 % of
a population has this bacteria in their gut but for patients suffering from CD this relative
abundance has increased to 22 % (Zhang & Li 2014; Ananthakrishnan 2015). E. coli
(AIEC) has the ability to not only evade macrophages but also has the ability to invade
the epithelium, which has two layers of mucus protecting it from direct contact with mi-
crobes (Zhang & Li 2014; Ananthakrishnan 2015; D.Kostic ef al. 2014). This gives E.
coli a natural fitness against the hosts immune systems as well as possibilities to carve
out new niches. Another group of bacteria that is correlated with an IBD diagnosis is
the Fusobacteria group. Much like E. coli (AIEC) Fusobacteria have the ability to pen-
etrate the epithelium’s protective layers. Fusobacteria do exist in the oral microbiome
of humans naturally but for patients suffering from UC this group of bacteria are also
present in the gut. It has been shown that human derived Fusobacteria in mouse mod-
els shows colonic mucosal erosion. Fusobacteria are also involved in tumorigenesis of
colon cancer in mouse models, suggesting a link between IBD and colon cancer (Zhang
& Li 2014; Ananthakrishnan 2015; D.Kostic et al. 2014).

It has to be mentioned that while there are pathogenic taxa associated with IBD, commen-
sal taxa present in the gut have protective attributes against IBD. Simply by occupying
niches within the gut environment, commensal taxa hinder pathogens from colonizing
the gut by outcompeting them. Commensal taxa also help to protect against inflamma-
tion of the gut through different biosynthesis pathways. Bacteria in the genera of Bifi-
dobacterium, Lactobacillicus and Faecalibacterium help their human host against IBD
by down-regulating pro-inflammatory cytokines while up-regulating anti-inflammatory
cytokines, such as interleukin 10 (Zhang & Li 2014; Ananthakrishnan 2015). Faecal-
ibacterium prausnitzii is such a bacterium; patients with lower abundance of F. praus-
nitzii in their gut have a higher chance of recurring CD and conversely patients who
have managed to regain F. prausnitzii after a relapse are correlated with maintaining a
remission status of UC. Several commensal taxa are able to ferment dietary fiber pro-
duce Short Chain Fatty Acids (SCFAs) which have multiple benefits to the human host
such as: providing an energy source for epithelial cells, maintenance of intestinal barrier
integrity and mucus production (Zhang & Li 2014; Ananthakrishnan 2015). Epithelial
cells in turn allow for the production of T cells in the colon. Reduction in taxa digesting
these dietary fibers also correlates with IBD, specifically Odoribacter and Leuconosto-
caceae for UC and Phascolarctobacterium and Roseburia for CD (Zhang & Li 2014;
Ananthakrishnan 2015; D.Kostic et al. 2014).



4.2.2 Environmental Factors and IBD

One of the most widely studied risk factors correlated with the development of IBD is
smoking tobacco. There is currently no robust relationship with tobacco usage and IBD
as smoking has a divergent effect on CD and UC (Zhang & Li 2014; Ananthakrishnan
2015). Smoking is usually correlated with a CD diagnosis and a more aggressive diag-
nosis, with requirements of surgery and immunosuppression in some cases, and higher
odds to relapse. On the other hand smokers with UC experience a less aggressive version
of UC with less stringent requirements of surgery or the usage of medication (Zhang &
Li 2014; Ananthakrishnan 2015). If these UC patients were to stop smoking then there
is an elevated risk of them developing UC after 2-5 years of quitting. This elevated
risk remains up to 20 years after ending the habit. Another reason as to why there is an
unclear connection between IBD and smoking is the complex genetic interactions with
smoking. Genetic polymorphisms contribute to nicotine metabolism which might mod-
ify susceptibility to IBD. There many interpersonal factors which impact the effect of
smoking and illness, such as gender, suggesting adding another layer of complexity in
the relationship between smoking and IBD (Zhang & Li 2014; Ananthakrishnan 2015).

Antibiotics and other medication usage are also tied to an IBD diagnosis. During the
early years of someones life their gut microbiome is highly volatile in its composition.
A case-control analysis from the University of Manitoba showed that pediatric patients
who suffered from IBD were more likely to have used antibiotics within the first year
of their lives (58 %) compare to controls, where only 39 % had used antibiotics in the
same time frame (N. Ananthakrishnan 2013; Ananthakrishnan 2015). This association
with IBD and antibiotics has been observed across all classes of antibiotics and is dose
dependent. However, it is also difficult to ascertain if this link between IBD and an-
tibiotics is causal or not. Populations in Asia, who have a more exposure to microbes
in their youth due in part to their less sanitary living conditions compared to western
populations, experience a protective effect from antibiotics (N. Ananthakrishnan 2013;
Ananthakrishnan 2015).

Other than antibiotics there are more medications that are associated with an IBD di-
agnosis. Two examples would be aspirin and Nonsteroidal Anti-inflammatory Drugs
(NSAIDs). Using NSAIDs in a higher dosage and for a longer time had a direct correla-
tion to the odds of developing either CD or UC (N. Ananthakrishnan 2013; Ananthakr-
ishnan 2015). Up to a third of patients relapses might be triggered by NSAIDs usage. A
hypothesised reason as to why this may be the case is that NSAIDs are nonspecific in
their inhibiting effect on Cyclooxygenase (COX) enzymes as specific COX-2 inhibitors
are associated with a reduced rate of relapse. The connection between asprin and IBD
is not as clear; previous studies have both found a increased chance of developing IBD
while other have come to the opposite conclusion, that no association between dosage,



duration of usage and frequency of usage correlated with an increased risk of developing
IBD (N. Ananthakrishnan 2013; Ananthakrishnan 2015; Zhang & Li 2014).

4.2.3 Genetics and IBD

Currently, 163 gene loci have been identified to be associated with IBD; 110 overlap
between CD and UC while 30 are strictly associated with CD and 23 strictly associated
with UC. These genes can be broadly divided into multiple classes of genes involved in
the following metabolic processes: innate immune response, adaptive immune response,
autophagy, maintenance of the epithelial barrier and more. No single gene can be de-
scribed as causal for IBD but simply a key point in a much larger picture (Zhang & Li
2014; Ananthakrishnan 2015).

Nucleotide binding Oligomerization Domain containing 2 (NOD?2) is a gene strongly
correlated with CD and involves recognizing Muramyl Dipeptide (MDP) which is a con-
served motif present in the peptidoglycan across both gram positive and gram negative
bacteria. NOD2 was the first gene associated with CD, and it was characterized in 2001.
Stimulation of MDP induces autophagy (N. Ananthakrishnan 2013; Ananthakrishnan
2015). Autophagy in turn is vital for intracellular homeostasis by aiding in infection
defense and microbial digestion. Homozygosity at the NOD2 locus is correlated with
a 20-40 fold increase in risk of developing CD. Being heterozygous at this loci reduces
this to a 2-4 fold increase in the risk of developing CD. However other autophagy-related
genes, such as Immunity Related GTPase M, are also related to IBD development (Zhang
& Li 2014; Ananthakrishnan 2015).

Family history plays a role in the development of IBD. If a child has two parents, both
of which have had or are suffering from IBD, the chance of said child developing IBD
before the age of 30 is 33 % (Ananthakrishnan 2015). If a child has a family history
of IBD, their odds of developing CD is between 2-14 % while 8-14 % chance to de-
velop UC (Ananthakrishnan 2015). While a critical connection in the development of
IBD, genetic factors do not account for more than 20-25 % of the heritability of IBD,
suggesting a strong environmental effect of the development of IBD (Zhang & Li 2014;
Ananthakrishnan 2015). This phenomena, known as the ’genetic vacuum”, is not unique
for IBD but has been observed in other polygenetic diseases. A suggested reason for this
relatively low level of inheritance is that interactions between genes and interactions be-
tween the products of genes could account for more of the inheritance than the genes
themselves (Zhang & Li 2014; Ananthakrishnan 2015).



4.2.4 Nutrition and IBD

The diet of an individual has a vital impact upon which microbes colonize their gut and
in turn which functionalities are present in said individual. For example microbial genes
encoding for genes involved in synthesis of carbohydrates and amino acids will vary
depending on if the gut microbiome is exposed to a carnivorous diet or a herbivore diet.
Long-term dietary changes have a pronounced effect on the gut microbiomes composi-
tion. (G. Albenberg et al. 2012; A Gilbert et al. 2018).

Fiber intake from fruits and vegetables have been inversely correlated with developing
CD, while having a less pronounced effect on UC. Pediatric patients who have devel-
oped CD have a lower intake of fruits and vegetables. Intake of fruits and high fiber
food stuffs is negatively associated with developing CD. Conversely risks for develop-
ing UC were mitigated by consuming high amount of vegetables (N. Ananthakrishnan
2013; Ananthakrishnan 2015; G. Albenberg et al. 2012). Intake of vitamin D has also
been associated with development of IBD as vitamin D has a immunological role in
the body. Mouse models have shown that inhibition of vitamin D receptors or a defi-
ciency in vitamin D increases the odds of developing UC. Amelioration of said defi-
ciency suppresses expression of pro-inflammatory genes. Furthermore individuals have
an increased chance of suffering from IBD if they lack vitamin D intake (N. Ananthakr-
ishnan 2013; Ananthakrishnan 2015).

Diets involving a high intake of polyunsaturated fats, omega-6 fatty acids and meat as-
sociate with a higher risk of developing CD and UC. (G. Albenberg et al. 2012). IBD,
specifically CD, has also been associated with intake of ultra-processed-foods. Ultra-
processed-foods, according to the NOVA classification system, are ready-to-eat food
items which have been extensively pre-processed before consumption (Lo et al. 2021).
Additionally; emulsifiers, sweeteners, preservatives and other substances are added to
these foodstuffs for additional qualities. Consumption of these items is associated with
an increase in the risk for developing CD with a hazard ratio of 1.18. This is speculated to
be due to the presence of substances such as salt, artificial sweeteners and nanoparticles
which are associated with developing inflammation and expansion of pro-inflammatory
taxa (Lo et al. 2021).

From the above description of IBD it becomes clear that to get a better and nuanced
understanding of this disease a multi-omics approach must be made as each causal factor
is interdependent on one another. However due to limitations in time and resources only
the microbiome will be considered in this thesis.



4.3 Machine Learning

Broadly speaking Machine Learning (ML) is a subset of Artificial Intelligence technol-
ogy which involves identifying patterns in data. ML can be divided into two separate
approaches, supervised machine learning and unsupervised machine learning. The lat-
ter visualises general trends and patterns in data while the former tries to predict future
observations by “’learning” from previous observations of a specific phenomena (Helm
et al. 2020; Wei Khor & Yuan Ngiam 2019). Supervised approaches can be further
divided into classification approaches, dealing with discrete data, and regression ap-
proaches, dealing with continuous data. More specific and niche definitions and char-
acterizations of ML algorithms do exist, such as whether or not batch data is used or
continuously streamed data is used, but for the purposes of this thesis going into more
detail is not required. There are multiple available methods for each approach with no
”golden rule”’; no one method is given to outperform another method for the given prob-
lem (Helm et al. 2020; Wei Khor & Yuan Ngiam 2019; Holzinger 2018; Zhou et al.
2017).

4.3.1 Machine Learning algorithms

In this project five classification algorithms have been used. These are Random Forests
(RF), K-Nearest Neighbor (KNN), Support Vector Machines (SVM), Logistic Regres-
sion (LR) and Neural Networks (NN).

RF methods can be applied to both regression and classification problems. RF methods
work as an ensemble of decision trees, where each tree is trained on a random subset of
the training data. Each decision trees partitions the data into smaller and smaller parts,
and at each partition making the resulting partitions more homogeneous with respect to
their class. When a new observation is presented to the RF model all decision trees in
the forest then vote on which class it belongs to, where the majority vote wins (Breiman
2001; Cutler et al. 2007).

KNN algorithms can be summarised with the proverb “birds of a feather flock together”.
The algorithm works by computing the distance between an unknown observation to K
known samples. Whichever majority class is represented within the K-nearest neighbors,
will then be applied to the unknown sample. This algorithm can be tuned using different
distance metrics as well as different values of K. Generally speaking very small values
of K, say 1, gives way to over fitting while larger values can cause under fitting (Kramer
2013; Mucherino et al. 2009).

Much like RF algorithms, SVMs can be applied to both classification and regression



problems. In the case of classification applications SVMs attempt to divide a data set,
as well as possible, into two separate classes using a hyperplane, where the hyperplane
is modeled using the closest, but separate, observations which are called the support
vectors. The hyperplane is then the average distance between all support vectors. If the
current dimensions do not allow for such a separation the algorithm will consider data
in higher and higher dimensions until it is possible to separate the two classes. Future
observations will then be able to be classified using a decision function which is derived
from an optimal hyperplane (Hearst ef al. 1998; Meyer 2015).

LR can be regarded as a form of linear regression but of discrete data. Unlike linear
regression, which tries to find a line-of-best-fit” through available data points in order
to predict future observations, LR tries model the probability of an observation belonging
to a class given a set of independent parameters. A LR model will look like the following:

In(P(Y = 1)) = Bo + b1 * X1+ ... + B x Xy

Where X is a independent feature from an observation, f;...5, are weights for each
feature and f3, is the intercept term. Y signifies the class which is of interest. These
terms are tuned in order to get a better fit (LaValley 2008).

NN can be considered analogous to biological neurons where a signal is propagated
through a series of neurons in order for an action to occur. A NN is divided into many
layers, with each layer having a number of neurons and a bias neuron connected to it.
There is a input layer, where each input feature has its own neuron, and an output layer,
where a number of neurons exist, each representing a different class. At each neuron,
the weighted input from neurons from the previous layer is summed up ta value. This
value is then parsed to a activation function which determines if the current neuron shall
send a signal to the next layer or not. How a NN learns is by tuning each weight and
bias from one layer to the next (Bishop 1994).

While ML approaches show promise when applied in practical problems as well as aid-
ing researchers in their respective fields of research, ML is not a “silver bullet”; large
quantities of data are required for good performance, extensive computer resources are
needed (such as HPC clusters) and each method takes time to train. Certain problems do
not even need ML approaches even though they can be phrased as classification or re-
gression problems. Such an example would be allosome determination in ancient DNA
samples where pre-existing methods solve this problem by comparing fractions of DNA
sampled that stem from an allosome, even though this problem can be phrased as a binary
classification problem (de Flamingh et al. 2020). ML algorithms are also at the mercy of
human error as the data used can still be parsed incorrectly by humans or mislabeled, in
the case of classification problems. It is also the case that certain classifications and la-
bels might not be relevant in the future as new knowledge or revised perspectives creates
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the need to update current ML models. These errors can severely impact how well a ML
algorithm performs on a given task (Wei Khor & Yuan Ngiam 2019; Holzinger 2018;
Zhou et al. 2017). Finally some ML approaches are difficult to interpret as they can
come to conclusions in dimensions that humans find difficult to visualise or understand,
as dimensions beyond 3 become difficult to visualise. This can make the conclusions
drawn my ML approaches opaque and difficult to understand (Wei Khor & Yuan Ngiam
2019; Holzinger 2018; Zhou et al. 2017).

4.3.2 Assessment of Machine Learning algorithms performance

In order to compare different ML methods to one another techniques to asses a models
performance have to be used. One such technique is to plot a models False Positive
Rate (FPR) against the models True Positive Rate (TPR), a so called Receiver Operat-
ing Characteristic (ROC) curve to classify any given observation correctly (Ball et al.
2004). This curve compares a models classification capabilities to random chance; is
the model better at distinguishing two classes than a simple coin toss? The FPR is equal
to 1-specificity. Specificity is the proportion of the “negative” class that are correctly
identified as such. A negative” class could for example be the proportion of patients
who are classified as healthy when a model tries to predict a disease as a “’positive” class.
Mathematically specificity is presented as a fraction of the True Negative (TN) counts
divided by the sum of False Positive (FP) and TN counts: TN/(TN+FP). TPR is equal to
a models sensitivity. Sensitivity is the proportion of observations correctly assigned to
the ”positive” class. Sensitivity is represented as the fraction of TP divided by the sum of
TN and (TP): TP/(TP+TN). A perfect classifier would be able to classify all "positive”
observations correctly without making any mistakes. A terrible classifier would be no
better than a coin toss to classify an observation, that is it has a 50 % chance to classify
any given observation correctly (Ball ez al. 2004).

In order to get a quantifiable metric from the ROC curves, that does not involve manually
inspecting two curves against one another which is prone to human error, the Area Under
the Curve (AUC) of a ROC curve can be calculated. Using the AUROC, two separate
ML methods can be directly compared to each other. The AUROC of a "perfect” method
would be equal to 1 while the AUROC of a poor method would be equal to, or less than,
0.5, since it is no better than a coin toss in assigning the correct class (Ball ef al. 2004).

An alternative approach to measuring the performance of a ML algorithm is to consider
the algorithms Precision Recall (PR) performance. This can be done through plotting
an algorithms precision against its recall. Precision is a measurement on how many of
the predicted ”positive” observations were truly positive and is defined as the following:
TP/(TP+FP). Recall is a measurement on how many total “’positive” observations were
identified (Cook & Ramadas 2020). Recall is defined as follows: TP/(TP+FN). A perfect
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PR curve would be, much like a mirrored ROC curve, start at the coordinates (1,0) and
move straight to (1,1). A model that can perfectly predict the number of positive classes
independent of how many positive observations were identified. On the other hand a
poor PR curve would be a straight line from (0.5, 0) to (0.5, 1) as this would mean the
algorithm guesses on the class label for a given observation even though the algorithm
succeeds in identifying more positive observations (Cook & Ramadas 2020).

Much like with Area Under the Curve ROC (AUCROC), a quantifiable metric can be
found by computing the Area Under the Curve PR (AUCPR). This metric allows direct
comparisons between different kinds of ML approaches. Both AUCPR and AUCROC
can be used when comparing ML models performances where one can be used as a sec-
ond opinion to the other. Such an approach is utilised in this project where the AUCROC
and AUCPR will be considered in said order.

4.3.3 Curse of Dimensionality

The microbiome data used in this project is inherently high dimensional. High dimen-
sional data is data that contains more features than observations. In the case of this
project, each patient has up to 461 taxa associated to them but only 180 patients were
used for analysis; thus the data becomes high dimensional.

The ”curse of dimensionality” is a phenomena where previously thought of truths in
data analysis fail to hold up in higher dimensions. Standard statistical methods have
been designed to work on 2-or-3 dimensional spaces which humans are able to visualise.
These methods are also based on intuition in these dimensions (Verleysen & Frangois
2005; Li 2015). However when more dimensions are added these intuitions fail to hold
and it becomes difficult for humans to visualise and understand what kind of effect occurs
in dimensions exceeding 3. Furthermore high dimensional data breaks apart given truths
in lower dimensional spaces. An example would be a Gaussian distribution, in which a
majority of the volume falls to the tails of the distribution as it approaches 30 dimensions.
When working with high dimensional data these features have to be considered in order
not to draw erroneous conclusions. Preferably these dimensions should be reduced in
order to mitigate these problems (Verleysen & Francois 2005; Li 2015).

4.4 The KOLBIBAKT cohort

The data used for this project is taken from a much larger gastrointestinal cohort avail-
able at Center for Translational Microbiome Research (CTMR). Between 2016 and 2019,
2395 random patients at Danderyds Hospital, who were to undergo a colonoscopy, were
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Figure 1: Overview of datasets available from the KOLBIBAKT cohort and from where the
datasets are derieved. From the provided blood samples the following datasets were derived:
bile acid profile, lipid profile, SCFA profile, amino acid profile, leaky gut marker profile and a
lipid profile. From the biopsy and fecal samples both a metagenomic and functional profile were
derived. A dietary diary and clinical records are also available. Figure was produced using
Biorender

asked if they wished to participate in the study. Out of these 1259 patients agreed to
participate. Furthermore 1165 submitted a stool sample, 1253 submitted a biopsy and a
blood sample and 1247 completed a questionnaire on health, diet habits as well as med-
ication usage. These results are compiled into the KOBLIBAKT cohort. Each patient
was assigned a diagnosis depending on the outcome of their colonoscopy. These diag-
noses included: Diverticulosis, Present cancer, Former cancer, IBD, Polyps and Clean
colon. Relevant to this projects are the IBD and Clean colon sub-cohorts.

Colonoscopy
finding

Gender Abx Any

M/F >3mon | medication | Corisone PPI

N % Age (SD)

Diverticulosis | 403 | 321 = 66.2(9.6) |213/190 | 61(15.1) | 357 (88.6) | 41(102) | 111(27.5)

Present cancer | 14 1.1 67.1(8.1) 9/5 2(14.3) 13 (92.9) 3(21.4) 2(14.3)

Former cancer | 97 7.7  683(10.4) | 56/41 6 (6.2) 87 (89.7) 12(12.4) | 15(155)

IBD 279 | 222  48.8(16.1) | 1631116 | 35(12.5) | 265(95.0) | 74(26.5) | 42(15.1)

Polyps 595 | 47.3  65.6(10.7) | 314/281 | 65(10.9) | 512(86.1) | 62(10.4) | 140 (23.5)

Cleancolon | 214 | 17.0  56.6(15.0) | 941120 | 40(18.7) | 166(77.6) | 22(10.3) | 23(10.7)

Figure 2: Overview of illnesses covered in the KOLBIBAKT cohort and meta data concerning
each illness. Note IBD and Clean colon cohorts are highlited

The Clean Colon cohort is a reference cohort, where no infection or illness was found
during the colonoscopy. The IBD cohort contains two sub-cohorts: CD and UC cohort.
These cohorts can also be further divided into active and remission cohorts. In this
project only the CD cohort was considered.
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4.5 Microbiome data

4.5.1 Sequencing microbiome samples

There are two general ways in which microbe communities can be sequenced; through a
targeted (amplicon) and a shotgun (untargeted) approach. Each approach differs from se-
quencing to post-processing analysis which makes the decision to choose which method
to use a non-trivial one. Amplicon sequencing works by sequencing specific marker
gene(s) present in the genomes of interest, this could be the 16S Ribosomal RNA (rRNA)
region in prokaryotic and archea for example, which has a highly ubiquitous distribu-
tion and is a relatively stable. It codes for the small subunit in prokaryotic ribosomes
(J. Sharpton 2014). Results from the sequencing are reads specifically tailored to match
sequences of interest. These reads are then used to determine which taxa are present
in said sample as well as how abundant each taxa is. Since only a specific portion of
the genome is sequenced during this procedure, all other genomic information is lost.
This includes genomic reads which could be used to infer biological function making
amplicon sequencing less applicable if a functional profile is desired. Another limitation
to amplicon sequencing is that the technology often only reaches a genus-level resolu-
tion of the present sample, unless several regions of 16S are sequenced (Bai ef al. 2021;
J. Sharpton 2014).

Shotgun sequencing does not limit the sequencing of samples to a specific genetic marker
sequence(s). Instead all DNA present in the sample is sequenced, after being sheared,
and available for post processing. Through shotgun sequencing both genetic markers
and whole genome sequences are available, if sequenced deeply enough, for downstream
analysis which, in turn, allows for inference of biological functions available to the sam-
ple as well as deeper characterization of the microbiome complexity (J. Sharpton 2014;
Laudadio ef al. 2018). However shotgun sequencing is not without flaws. A few limi-
tations of shotgun sequencing would include:

* Presence of DNA not from microbe community

* More sequencing data required for analysis

* Not trivial to determine from which taxa individual reads originate from

Once sequenced, there are a few processes from which shotgun data can be transformed
into taxanomic abundance profiles: binning, marker-based annotation methods, k-mer-
based annotation methods and assembly of reads into genomes. Marker-based annota-
tion methods compare generated reads to a reference database where reads are annotated
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depending on their similarity to said markers. Markers used can be anything from pro-
tein coding genes to rRNA genes, but they need to be specific in order to work (Bai
et al. 2021). Marker based approaches also limit what can be seen in the sample as
novel genomes, without any known markers, would not be detected. Choice of marker
database is vital as well since databases curated for a particular kind of source would
be more proficient at detecting microbes from said source and less useful when working
with microbes from different sources. For example some parts of the human body are
more well suited for obligate anaerobes, such as the gut, while other parts are not, such
as the skin. Thus if a database derived from skin samples were to be used during the
taxanomic profiling of fecal samples, some taxa would not be detected which should be
there (J. Sharpton 2014; Laudadio ef al. 2018; Bai et al. 2021).

K-mer methods are another metagenomic approach to produce a taxanomic profile.
Kraken is such an approach. Kraken has an internal database that matches k-mers to
a Last Common Ancestor (LCA). Once a sample has been sequenced Kraken creates a
classification tree with the LCA at the root. Each branch contains a specific taxon, and
its ancestors. Each node then has a weight assigned to it which equals to the amount
of k-mers that supports said taxon. Each root-to-leaf path is then scored by the cumu-
lative weights of all nodes in said path. The leaf-node from the highest scoring path is
then the predicted taxa (Wood & Salzberg 2014). Problems with k-mer approaches are,
much like a marker-based approach, that k-mers that do not exist in the software internal
database will not be detected. K-mer approaches are also susceptible to over predicting
taxa which are not present in the sample (J. Sharpton 2014; Bai et al. 2021).

Two other processes used to acquire taxanomic abundance from shotgun sequencing
include binning and assembly. Binning comprise of methods grouping reads on their in-
trinsic features, such as grouping reads based on GC content. Binning allows for reduc-
tion in data complexity, allowing further analysis to be performed on bins of interest, and
can detect novel genomes. Limitations to binning approaches include limitations sur-
rounding convergent evolution characteristics, such as horizontal gene transfer events,
would cause type 1 errors whilst grouping reads. Additionally there exists a trade-off be-
tween the amount of reads binned and the taxanomic specificity of each bin (J. Sharpton
2014; Bai et al. 2021).

Lastly an assembly approach is available for taxonomic profiling. Assembly approaches
work by trying to reconstruct the genomes of all taxa from the underlying sample by
merging reads into a single continuous sequence. Performing an assembly of reads could
be beneficial for downstream analysis however it is biased towards more abundant taxa
present in the sample as these taxa are easier to reconstruct than others (J. Sharpton
2014). Assembly approaches also susceptible to chimeric reads, artificial contigs gener-
ated by similarities between different reads from different genomes during Polymerase
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Chain reaction (PCR) as they incorrectly align to each other. Users of this approach must
also bear in mind to keep track of coverage, amount of reads that align to the average
base in the contig, and depth, average number of times a given base has been covered
by sequencing, in order to verify the integrity of a final assembled genome (J. Sharpton
2014).

4.5.2 Compositional data and challenges

Compositional data is regarded as data that only displays a portion of a whole due to
an arbitrary limit. Microbiome data is such an example; inherent to the sequencing
technology applied there is a maximum capacity of reads that can be sequenced, thus the
reads generated by a machine are not an absolute representation of the microbes present
in a sample but only a glimpse of the whole. In strict mathematical terms; compositional
data is defined as a vector with an uninformative sum and with strictly positive real
numbers (Gloor et al. 2017):

x = (21,9, .., x,);2; > 0,7 € {1,..,n} (D

These limitations reflect a Dirichlet distribution which is difficult to work with; Dirichlet
fail to model variability of data within said distribution. Another detrimental aspect is the
distributions built-in interdependence to its definition that it becomes an inconvenient
class to model compositional data. Due to these limitations of working within a Dirichlet
distribution, standard methods in statistical analysis can not be used with compositional
data (Gloor et al. 2017; Calle 2019).

In order to make compositional data more applicable to standard statistical methodolo-
gies it has to be transformed. Ratio transformations allow compositional data to be used
in standard statistical models as it captures relationships between the features in a dataset
and breaks free from the Dirichlet distribution into a real-space distribution(Gloor et al.
2017).

There are different transformations available, each more or less suited for a given prob-
lem. Below, 4 example logratio transformations are presented, which at one time or
another were relevant to this project (Tolosana-Delgado et al. 2019), the Centered Log-
Ratio, Pairwise Log-Ratio, Isometric Log-Ratio and the Addative Log-Ratio, each trying
to ameliorate said limitation of a Dirichlet distribution:
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Ratio transformations alleviate problems caused by compositional data. However, it is
vital to keep in mind that transformations only make the data easier to work with but
do not fundamentally change the data from being compositional to absolute, and thus
limiting which conclusions can be drawn from the data.

4.5.3 Covariates analysis

Before using abundance data for the purpose of training ML algorithms, covariates have
to be determined. If this is not performed further analysis will be biased by said co-
variates. Covariate determination was performed by performing a PERMANOVA test.
PERMANOVA is a non-parametric multivariate analysis of variance test. The test de-
termines how much a given measurement of the data influences the variation in the
data (Anderson 2017). PERMANOVA has been previously used to find statistically sig-
nificant covariates as well as their effect on the data set in other microbiome studies
(Fazlollahi ef al. 2018; Al Alam et al. 2020). The dissimilarity measure chosen for the
PERMANOVA analysis was the Bray-Curtis dissimilarity. The Bray-Curtis dissimilar-
ity can be expressed as follows (Calle 2019):

k )
d _ D om1 |P1i—D24]
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Where p1 = (pi11,...,p1x) and ps = (pa1, ..., p2x) denote the relative abundance of
species between two different sites. The Bray-Curtis is a common dissimilarity measure
and it is a measure on how different species are between two different sites. It scales
from 0, the sites are identical, and 1, the sites are completely different (Calle 2019).

5 Methods and materials

The data for this project is derived from the KOLBIBAKT gastrointestinal cohort. Each
patient also provided a detailed dietary diary, a stool sample collected prior to bowel
preparation for the colonoscopy and filled in a questionnaire concerning information
about their lifestyle. Medical records and clinical data were also available, detailing
other medical conditions and medication usage. This provided us with large amounts
of metadata for each patient. All patient’s stool samples were sequenced using MGI
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DNBSEQ-T7 machines with a minimum read length setting of 100 base pairs and a with
the mean number of reads for all samples being 102.1386 Million reads.

After sequencing all samples were demultiplexed using an in-house script and further
processed using Stag-mwc, a pipeline written in SnakeMake, developed by the CTMR
to analyse metagenomic samples (Boulund 2018). Stag-mwc performs adapter removal
and read quality filtering using fastp. Reads aligning to the human genome (version)
using Kraken2 (Wood et al. 2019) are removed. STAG-mwc can perform other kinds
of data processing, such as binning, but relevant to this project are its ability to produce
taxanomic and functional profiles from raw reads, using MetaPhlAn3 or Kraken2. For
this project it was decided upon to use MetaPhlAn3 (Beghini et al. 2021) for the tax-
anomic profiling after reviewing a benchmarking paper (Ye et al. 2019). MetaPhlan3
is a marker-based method while Krakren2 uses a k-mer approach to determine relative
abundance. Kraken2 tended to overpredict the pressence of taxa as a function of se-
quencing depth, i.e. the more you sequenced the more taxa would be predicted, even
though certain taxons were not present in the original sample. MetaPhlAn3 did not have
this problem, although it was limited to its database. Another benefit to MetaPhlAn3
was the possibility to use HUMANN3 to produce a functional profile.

MetaPhlAn3 used the "mpa v30 CHOCOPhIAn 201901” database and was run with
the following commands "—unknown_estimation —index latest”. All other parameters
were left as default. HUMANN3 had the following settings: “community” as the nor-
malization mode and “cpm” as the normalization scheme. The following database was
used for the HUMANN3 profiling: “uniref90 201901b_full.dmnd”. All other parame-
ters were left as default

Before performing any form of analyses on the data it was filtered on two criteria. In
order for a species to be kept for further analysis it had to:

* Be present in at least two samples

» Have an abundance of more than 0.0001 %

These parameters reduced the amount of taxa present from 845 to 461. It was discovered
that more stringent filtering, either increasing abundance requirements or presence in
number of samples or both, only resulted in removing marginal amounts of taxa. Thus
no more stringent parameters were chosen as it would have diminishing returns in terms
of filtering away redundant abundances.

Covariate analysis was performed using the adonis function in the ”Vegan” R-package,
version 2.5-7 using a Bray-Curtis dissimilarity matrix. The ALR transformation was
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created from the “alr()” method using the R-package “Compositions” v. 2.0-4. CLR
transformation was performed with the package MixOmics v 6.18.1. All ML algorithms
were implemented using the R-package caret v. 6.0-91. The following ML algorithms
were called:

* ’rf”: A random forest algoritm

* "LR”: A Linear Regression algorithm

* ’knn”: A K-nearest-neighbor algorithm

* ”svmRadial”: A support vector machine algorithm

» ”pcaNNet”: A Neural Network algorithm

A balanced dataset, 90 healthy individuals and 90 ill individuals, was split randomly
into either a train set and a test set. The data set came from the CD sub-cohort. 70 % of
the data became the training set and 30 % of the data was used for the test set. The 30
% would later be used to validate the models performances on novel data. The pipeline
ran using both an ALR and CLR transformation of the microbiome data. Splitting of the
data was performed after a transformation. The models used a Leave-One-Out Cross-
Validation (LOOCYV) during their training in order for the models to be tuned during
their training. Each transformation output was compared to one another. Which ever
model had the highest AUCROC score was used for further testing.

Once a satisfactory model had been found it was selected for further tuning. The “rf”
implementation of the random forest algorithm was discovered to be satisfactory in this
case; outperforming all other algorithms on the test set data. The ”rf” model was then
further tuned by adjusting the following parameters until a model with the highest AU-
CROC value had been found:

* Test training data split: 70/30, 75/25, 80/20, 85/15 were tested

* Number of trees: 2501, 5001, 7501, 10001, 12501 were tested

» Node sizes: 1, 3, 5, 10, 15 were tested

» Sample sizes: 1, 3, 5, 10, 15 were tested

* Random and Grid search settings were used to tune the “mtry” parameter.
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Each iteration was tested using repeated CV, 10 repeats and a K value which divides
each fold to an equivalent size of the test set. Furthermore the top 54 taxa were chosen
for further work, in order to reduce the dimensions of the data. This was done without
performing a new transformation; the most significant features were extracted from an
already transformed dataframe. These results are then later compared to contemporary
literature, to see if any novel taxa have been discovered by said algorithms.

6 Results

6.1 Covariate analysis

Figure 3 presents the most significant covariates which PERMANOVA identified. It is
clear that the diagnosis of a patient has a large impact on the observed variations be-
tween healthy and sick individuals. A cut of point was made at ca 1/3 of the R2 score
of diagnosis in order to reduce the number of covariates considered. After discussion
with clinical partners it was determined that the only confounding effect present in the
data was age, and thus this factor has to be matched before using ML algorithms. All
other factors were related to or consequences of an IBD diagnosis and would be expected
to rank highly. These factors include Diagnosis, Medscore, Bristol categories, Child-
hood environment, Education and Years of IBD. Lane ID is associated with which
plate on the MGI machine the samples were sequenced on. These results do show a
batch effect but it is not significant and when investigated further it is not seen, suggest-
ing that it can be disregarded. When looking into the positive controls present on each
plate no mishaps were noticed, the machine managed to sequence all positive controls
correctly. Furthermore a NMDS plot was performed on all samples, accounting for their
sequencing plates. No outliers were detected and there was a great amount of overlap
between all samples suggesting a lack of batch effect. Finally a chi-square test was per-
formed which concluded that there was no statistically significant correlation between
the Lane ID and diagnosis. between the plate Please refer to the appendix ”Analysis of
Batch Effect” for plots and tables.
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Figure 3: Results of PERMANOVA analysis. On the Y-axis covariates of interest are presented.
On the X-axis the R2 value is displayed, how much each covariate explains the variance in
the data. Significant covariates, p < 0.05, are displayed in orange. Non-significant covariets

displayed in dark yellow.

6.2 Spearman results

The Spearman test showed clear signs of inter dependencies between a majority of the
taxa. From these results it could be inferred that uni variate statistical methods will not be
applicable and instead multivariate methods, such as machine learning must be applied.
Refer to Figure 12 for a larger heatmap of the results.
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Figure 4: Spearman analysis heatmap. Red signifies a positive correlation while blue signifies
a negative correlation. In each axis all 461 taxa are compared against one another.

6.3 Machine learning algorithms performance

Initial performance showed that the transformation of compositional data had a small
effect on the performance of algorithms trained on the different data. Figure 5 shows
three barplots of all five algorithms results after being run on either a ALR or a CLR
transformed dataset, and their respective AUCROC, sensitivity and specificity scores.
For further work the CLR was chosen as it was easier to interpret and had the same
effect as ALR. It became clear that the RF algorithm performed better than the other
algorithms on the test data. Due to this observation it was decided upon to further tune
the RF algorithm to increase its classification ability.
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Algorithm | CLR | ALR

SVM 0.62 | 0.62
PLR 0.59 | 0.62
NN 0.57 | 0.58
KNN 0.54 | 0.51
RF 0.78 | 0.86

Table 1: Resulting AUCROC values for each algorithm from a CLR and ALR transformation.
It becomes apparent that RF method outperforms all others. This test was performed on the
training dataset.
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Figure 5: ALR and CLR results compared to each other. Note these results are from the train
set and using K-fold cross validation as an example.

After both transformations had been assessed, the most important taxa for each model
was assessed to determine if certain taxa could be removed from further analysis. Re-
moving taxa would reduce the dimensionality of the data as well as improve the speed
of the RF algorithm. Importance is measured by scaling the prediction accuracy when
a feature is removed from sampling when producing a RF classifier. If a feature has
high importance it has a larger impact on the classification ability of the model than
a feature with low importance. Features below and at an importance threshold of 40
were removed. This threshold was decided upon since there was asymptote around the
importance value of 40, meaning a lot of features had a relatively similar effect on the
classification ability of the RF classifier. After filtering away taxa at or below the im-
portance threshold of 40, the ALR transformation had 62 features remaining while the
CLR transformation had 68 features remaining. To further reduce the dimensionality of
the data, the intersecting taxa between both transformation was used to produce the final
RF model, as this decreased the number of features to only 54.
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Figure 6: ALR and CLR importance compared to each other. Note in both plots there is an
asymptote around the importance value of 40.
6.3.1 Random Forest Performance

After testing, the following values for each hyper parameter created a RF model with
the best performance ability: node size: 3, sample size: 10, data split: 85% train, 15%
test, K-fold value of 6, 54 out of the initial 461 taxa kept and an mtry value of 52.
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Train/Test split ‘ K-value ‘ Number of trees | Node Size | Sample Size

70/30 2 2501 1 1

75/25 3 5001 3 3

80/20 4 7501 5

85/15 6 10001 10 10
- - 12501 15 15

Table 2: A table summarising the different kinds of hyperparameters tested during tuning. Values
which resulted in the best performance are highlighted. The 1st column displays which data
split was used for the training and testing respectively. 2nd column displays which K value was
used during the K-fold cross validation. 3rd column displays the number of trees present in
the ensemble. 4th column displays the maximum size of the nodes at each decision tree. 5th
column displays how many samples were used to construct each tree in the ensemble.

The number of trees had little impact on the classification performance. The parameters
which had a larger impact were the node sizes, the split of test and training data, sample
sizes and which K value was used for cross validation. For more information please
refer to appendix 6.3 for further information. These optimal parameters resulted in an
RF classifier that had an AUCROC value of 0.82 on testing data and a AUCPR value of
0.79 on testing data. These curves are displayed in Figure 7, and Figure 8 respectively.
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Figure 7: ROC curve. AUC is 0.82 Figure 8: PR curve. AUC is 0.79

6.4 Taxa associated with IBD

In Figure 9 the most important taxa are ranked in a descending order. These results are
from the optimal RF algorithm model presented in the section above "Random Forest
Performance”. It is not apparent from these results which taxa is associated with which
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class, i.e. is a lower abundance of Akkermansia muciniphila associated with a healthy or
a sick individual? This has to be verified. For further discussion, the top 5 taxa will be
considered: Ruminococcaceae bacterium DS, Akkermansia muciniphila, Streptococcus
parasanguinis, Flavonifractor plautii and Bifidobacterium bifidum.
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Figure 9: Taxa ranked by importance from the best performing ML algorithm.

26



Control cohort CD cohort

Bifidobacterium_bifdum - &(}—% Bifidobacterium_bifidum - [N

6 4 -2 0 2 4 6 8 10 12 14 16 18 20 6 -4 2 0 2 a 12 14 15 18 20
CLR normalised abundance CLR normalised abundance

Figure 10: The relative abundances of the top 5 taxa from the sick and healthy cohort respect-
fully. Mean relative-abundance is displayed as a small diamond in each plot. From these plots it
is visible that B. bifidum is more present in the CD cohort compatre to the control (healthy) cohort.
This is true for F. plautii and S. parasanguinis. R. bacterium D5 and A. muciniphila abundances
are reduced in the CD cohort while having more presence in the healthy cohort.

7/ Discussion

7.1 Choice of Compositional Data Transformation

A prerequisite to work with compositional data is to perform a logratio transformation
of it. CLR and ALR transformations were chosen as these were already established
in the field of microbiome research (Gloor ef al. 2017). Tolosana-Delgado et al. in
their Conference Paper ”On machine learning algorithms and compositional data” pre-
sented PWLRs as the best performing transformation in the application of Random For-
est ML techniques, only tied with a combination of PWLRs, raw data, ILRs, and CLRs
(Tolosana-Delgado et al. 2019). While this is a promising case for PWLRs it has to be
noted that only Random Forest classifiers were used in the assessment and that other
transformations did perform amicably for an increase in size of dataset used in training.
When practically working with PWLR transformed data in R it became apparent that the
dataset became to large for R to work with. From 460 features to 106,030 features, when
training algorithms on this dataset Stack Overflow became a common problem and the
dimensionality of the data was substantially increased. No convenient solution to this
problem could be found in a timely manner, thus this transformation was not assessed.
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ILR transformation has been argued for being the theoretically correct way to handle
compositional data analysis as they have mathematically interesting features, such as
forming orthonormal basis of the compositional data vectors (Greenacre & Grunsky
2019). However a key fault of ILR is that, while it has mathematically interesting prop-
erties, it is hard to practically evaluate what it means to apply such a transformation
as alternative transformations do exist which manage to capture similar trends as ILRs
but are easier to interpret. Furthermore ILRs can present erroneous correlations in data;
either correlations that do not exist or correlations that should not exist (Greenacre &
Grunsky 2019).

Due to the fact that the CLR has been recommended by microbiome literature (Gloor
et al. 2017) and that the ALR was simpler to implement and to understand, compared to
PWLR and ILR respectively, these transformations were chosen for benchmarking.

7.2 Relevant Taxa

Clooney et al. in 2021 performed a similar study to this project where the objective
was to investigate how different lifestyle factors and environmental factors impacted the
compositionality of the gut microbiome in IBD patients (Clooney ef al. 2021). Clooney
et al. study cohort had a total of 303 CD patients, 228 UC patients and 161 controls
in it. Each patient had been diagnosed by conventional and investigative criteria and
provide a sample at 3 time points ca 16 weeks apart. 283 of the patients came from
Cork, Ireland while the remaining 409 were from Manitoba, Canada (Clooney et al.
2021). Clooney et al. further used PERMANOVA to determine the effect of external
factors, such as geography drug usage and diet, on of the fecal microbiota composition.
In their methodology Clooney et al. used 16s sequencing and applied the ”XGBoost”
algorithm to classify patients into either healthy or sick. Comparing the taxa, which
they concluded was associated with CD specifically, to the results produced by the RF
algorithm there were a total of 18 taxa which intersected. These are displayed in table
3.
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Taxa RF Importance Abundance

Flavonifractor plautii 89.10069 Increased in CD
Bifidobacterium bifidum 84.97957 Increased in CD
Coprococcus eutactus 81.38829 Decreased in CD
Clostridium spiroforme 77.29859 Decreased in CD
Intestinimonas butyriciproducens 68.75818 Increased in CD
Collinsella aerofaciens 63.00948 Increased in CD
Bacteroides fragilis 58.49208 Increased in CD
Gemmiger formicilis 54.84827 Decreased in CD
Coprococcus catus 52.61209 Decreased in CD
Bacteroides ovatus 38.48099 Increased in CD
Ruminococcus gnavus 38.21020 Increased in CD
Rothia mucilaginosa 37.64197 Decreased in CD
Alistipes shahii 32.69517 Increased in CD
Clostridium innocuum 30.52067 Increased in CD
Bifidobacterium longum 26.21996 Increased in CD
Bacteroides xylanisolvens 25.24975 Decreased in CD
Roseburia inulinivorans 20.96199 Increased in CD
Bilophila wadsworthia 20.62030 Increased in CD

Table 3: Table summarising results from Cloony et al. and taxa which the optimal RF algorithm
predicted was important. In the first column the taxons name is displayed. In the second col-
umn the importance from the RF algorithm is shown. In the third column it is showed whether
presence of said taxon is associated with an increased risk of developing CD or a decreased
risk, based on Clooney et al. results. Clooney et al. determined that a given taxon is associated
with CD by using a metagonmic seq analysis to determine which taxa are deferentially abundant
between the two classes.

Clooney et al. found a total of 101 species to be associated with CD (Clooney ef al.
2021); either increasing or decreasing the odds of developing CD. While these results
do not mirror those of this report entirely, only 54 taxa were deemed to be associated
with CD and only 18 taxa were identified to be associated with CD in both reports, this
does show credence to the methodology applied in this project; by applying ML methods
to microbiome data while taking into account covariates and confounders which could
bias the results. Differences in the importance of taxa between this report and Clooney
et al. could attributed to multiple sources. These sources would include:
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+ Different sequencing technologies used: Illumina technologies compared to MGI
technologies

* Different sequencing technique used: amplicon sequencing compared to shotgun
sequencing

Different ML algorithm used: XGBoost compared to RF

Different cohort and study design

A review by Lacroix et al. in 2021 was performed to characterize the taxonomic compo-
sition of patients suffering from CD. In this review Lacroix et al. identified a total of 12
taxa associated with CD, these results are presented in the table 4 (Lacroix et al. 2021):

Taxa Abundance After FS Before FS
Faecalibacterium prausnitzii  Decreased in CD v
Bifidobacterium adolescentis Decreased in CD v

Dialister invisus Decreased in CD v
Roseburia inulinivorans Decreased in CD v v
Clostridium XIVa Decreased in CD
Ruminococcus torques Decreased in CD v
Clostridium lavalense Decreased in CD v
Bacteroides uniformis Decreased in CD v v
Clostridium coccoides Decreased in CD
Clostridium leptum Decreased in CD v
Escherichia coli Increased in CD v
Ruminococcus gnavus Increased in CD v v

Table 4: Table summarising results from Lacroix et al. and how their results compare to this
project. In the first column the name of the taxa is displayed. In the second column Lacroix et
al. results are displayed showing if the presence of said taxa increases or decreases for a CD
diagnosis. In the third column it is displayed if said taxa made it past the feature selection step
performed in this project. The final fourth column shows if said taxa was present in the initial
461 taxa used in this project. FS: Feature Selection.

Three of the taxa Lacroix et al. identified are in agreement with the results of this project.
These are R. inulinivorans, R. gnavus and B. uniformis. 7 more were present in the sam-
ple used for the initial RF runs but were not deemed important enough for further classi-
fication as they were equal to or below the importance threshold set up. R. inulinivorans
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has an importance of 13.048814 while R. gnavus and B. uniformis have importance val-
ues of 17.694902 and 20.440685 respectively. These importance values suggest that,
while these taxa were not filtered away in the initial feature selection, these taxa are not
particularly important in the RF models ability to discriminate between CD and healthy
observations.

R. gnavus has been previously characterised to have a “’robust association” with CD
(Henke ef al. 2019). R. gnavus is a gram positive, anerobic commensal taxa that usually
has a relative abundance of ca 0.1%. During sever flares of CD this abundance can in-
crease up to 69%. R. gnavus not only produces an inflammatory glucorhamnan polysac-
charide that in turn cause dendritic cells to produce TNF «, which is an inflammatory
cytokine, but also colonises the mucosal layer of the epithelium. Here it uses sialic acid
from mucin glycans as a carbon source thus damaging gut-barrier functionality (Henke
et al. 2019).

The taxa within the Bacteroides genus are known for their probiotic capabilities. These
taxa are bile resistant, gram negative anerobic commensal taxa. Members with probiotic
effects include B. fragilis, which produces polysaccharide A that play a role in activating
T cells, and B. acidifaciens, which aids in protection against obesity by promoting ac-
tivation within certain metabolomic pathways. B. uniformis has been know to alleviate
immunological dysfunctions and metabolic disorders related to obese mice. However
no exact mechanism has been proposed (Dahiya et al. 2019).

R. inulinivorans is a gram negative anaerobic taxon which is a part of the Roseburia
genus (KELLERMAYER 2019). This genus is associated with a healthy gut microbiome
as members are capable to produce not only butyrate but also propinate, a different kind
of SCFA. Presence of R. inulinivorans has been associated with remission for patients
with CD and UC as well as regulating cell cycle control, perhaps performing some form
of tumor suppresion. Furthermore R. inulinivorans, when patients are treated with fecal
microbiota transplantation, has been positively correlated with a successful outcome of
a fecal microbiota transplantation (KELLERMAYER 2019).

The top 5 most important taxa predicted by the random forest algorithm were: Ru-
minococcaceae bacterium D5, Akkermansia muciniphila, Streptococcus parasanguinis,
Flavonifractor plautii and Bifidobacterium bifidum.

The genus Ruminococcaceae are gram-positive, anaerobic microbes whose members an
be found as commensal bacteria in the gut. It has been previously identified that Ru-
minococcaceae are less abundant in patients suffering from IBD (Lo Presti et al. 2019).
Due to their ability to produce SCFAs, such as butyrate, it has been hypothesised that
Ruminococcaceae have a protective effect against inflammation. As mentioned before
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SCFAs have a multitude of different health benefits to the gut, such as being an energy
source to the epithelial cells (Maukonen et al. 2015; Lo Presti ef al. 2019).

A. muciniphila is a commensal, gram-negative anaerobic bacteria that has been pre-
viously identified to have inverse correlation to a multitude of illnesses relative to its
abundance. These illnesses include obesity, diabetes, inflammation and other metabolic
disorders where lower abundances of the taxon has been observed. 4. muciniphila has
been described as common in the human gut, with it representing ca 3-5% of the mi-
crobial community, and the exact mechanisms behind A. muciniphila health effect is
currently unknown. A hypothesis is that A. muciniphila helps regulate the mucus layer
around epithelial cells, making it harder for noxious agents and pathogens from reaching
the epithelial cells. Ironically A. muciniphila uses mucin, a key component of the mucus
layer, as its primary energy source. By digesting older mucin A. muciniphila frees up
SCFA for the synthesis of new mucus, thus decreasing the turnover rate of new mucus
production. In turn abundance of A. muciniphila is correlated by a lower presence of
serum LPS, an indicator of gut permeability. Additionally presence of Bifidobacterium
animalis as also been correlated with an increase of A. muciniphila in fecal matter in
mouse models (Zhou 2017).

S. parasanguinis is a gram-positive bacterium that is commensal in the oral microbiome.
It is associated with a healthy oral microbiome as it protects against caries and periodon-
topathogens by producing hydrogen peroxide (Chen et al. 2019; Corby et al. 2005). It
has also been identified to be an early colonizer of the human gut, as it is present in
breast milk, where it tunes and matures the infants immune system (Chen et al. 2019).
However presence of S. parasanguinis in the gut has also been associated with cardio-
vascular disease, such as unstable angina, and promotion of oral cavities, suggesting S.
parasanguinis could behave as a opportunistic pathogen (Liu et al. 2022).

F. plautii is a anaerobic, rod-shaped gram positive bacteria. Due to the fact that F. plautii
is difficult to 1solate there is currently not a lot of data concerning its clinical significance
(Berger et al. 2018). It has been reported that F. plautii facilitates the metabolism of
catechins, a set of antioxidants, in the human gut. A study by Mikami et al. showed
that in mouse models, which were exposed to catechins orally, an increased intake of
catechins correlated with an increased abundance of F. plautii in the stool of the mice.
Moreover, mice which expressed IBD-symptoms had their symptoms alleviated once
they were fed catechins. This suggests that F. plautii has a protective element against
IBD. It has been hypothesised that F. plautii has a multitude of abilities that gives it a
protective role against IBD. The taxon can produce butyrate, a for of SCFA, which in
turn can be utilised by other taxa or used in the production of new mucus for the gut.
F. plautii mediates IL-17, a pro-inflammatory cytokine, which can damage the mucosal
layer of the gut if over expressed (Mikami et al. 2021).
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B. bifidum is a commensal, rod-shaped, gram positive bacteria that is highly abundant
in the gut in infancy but decreases while aging. B. bifidum has been described as tuning
the immune system of infants by promoting a pro-inflammatory response while down
regulating certain cytokines and other elements. Once in adulthood B. bifidum acts in a
similar fashion to 4. muciniphila, by using mucin as its primary energy source, thus pro-
moting production of more mucus making the epithelium thicker, increasing its protec-
tive ability. In mouse models, B. bifidum has been shown to have a plethora of probiotic
effects. In mouse models B. bifidum has been shown to down regulate certain families of
miRNA which are linked with colitis. Moreover B. bifidum also alliveate the severity of
colitis in mice and can do so post hoc by regulating the expression of pro-inflammatory
cytokines such as IL-1. as well as increasing the colon length, a symptom of colitis (Din
et al. 2020; Turroni et al. 2014).

7.3 Possible improvements

Feature selection, also known as variable elimination, is a data wrangling technique in
which features are screened before using machine learning algorithms in order to reduce
the dimensionality of the data used as well as finding features which improve prediction
performance. Reducing features also improves computation time as well as reducing the
noise of the data (Chandrashekar & Sahin 2014).

The feature selection that was applied in the current project was the following:

1. Run all algorithms
2. Select algorithm that has performed the best

3. Rank all features taxa in descending order and select those features above an
asymptotic threshold

4. Use said features for further analysis with the best performing algorithm

While straight forward and easy to implement no comparisons were made to other al-
ternative approaches. Performing a filtration step before classification before could be
an approach; ranking each feature by utilising methods such as Pearson correlation co-
efficient tests in order to filter away less informative features could be an alternative
approach. Alternatively wrapper methods could be used. These methods attempt to find
the best features by suing optimisation algorithms, such as particle swarm optimisation,
after training a method. Features that succeed in reducing a models objective function
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are then selected as being more informative ones (Chandrashekar & Sahin 2014). There
are also stochastic ML feature selection methodologies available which have also proven
to be good in discriminating useful features from less informative ones. MCEFS is such an
method, which bases a features importance depending on how well multiple randomly
constructed decision trees perform when said feature is present in them (Draminski et al.
2007). Feature selection methodologies should be investigated in future applications as
it could alleviate the curse of dimensionality.

Applying “clear-box” ML algorithms would be another approach to this project; apply-
ing algorithms in which it becomes apparent how the algorithm thinks” in order to come
to its conclusions. All approaches in this paper were “black-box”; as users of these mod-
els, it can not be said how the algorithms came to their conclusions, only that they did.
”Clear-box” approaches might lend more insight as to how different taxa might correlate
to each other, perhaps an increase in abundance of one taxon could inversely relate to
the abundance of another and thus be negatively correlated with IBD.

It must be mentioned that only prokaryotes were considered in this project. No attempt
was made to characterise either fungal or viruses that are associated with Crohn’s Dis-
ease. These microbes could have interactions between the presented prokaryotes in this
project.

7.4 Future work

These results are specifically for the CD form of IBD and do not take into account UC.
Future work will need to be performed on the UC cohort in order to determine which
taxa are associated with UC. Furthermore, patients with remission should be compared
to controls, for both the UC and CD cohort, in order to infer whether or not there are taxa
associated with IBD remission. No distinction was made in this work between patients
with remission or active CD.

Given the highly personalized nature of the gut microbiome, it could be the case that
viewing CD through a taxonomic lens severely limits which conclusions can be made
about the disease, as some taxa could share similar roles in the biome of the gut. This
would not be apparent by looking at a taxonomic profile alone. Casimiro-Soriguer et
al. used an explainable Al model to predict colorectal cancer in patients. In their work
they discovered that by using a functional profile of their data, instead of a taxonomic
profile, the machine could distinguish between colorectal cancer and adenoma, a form of
precursor to a tumor. They concluded that their results suggest that what is changing in
the microbiomes functional profile is more indicative of tumor formation than the taxa
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present. The functional profile was also more interpretable according to the authors since
“features are informative by themselves”. Taxanomic features have to be determined
posteriori while functional features by themselves are simpler to interpret (Casimiro-
Soriguer et al. 2022). These results suggest credence to Loyd-Price et al. hypothesis
that a core of functions available in a microbiome is a more correct manner to describe
a healthy microbiome, rather than the taxa present (Loyd-Price et al. 2016). Analysing
the functional profile of both CD and UC could perhaps gain more insights to what kind
of pathways in the microbiome could be associated with CD and UC. Perhaps, in the
long future, these functional profiles could be used as targets for a more personalized
healthcare approach.

Since IBD is a complicated disease, with many environmental, genetic and biological
factors at play, it is relevant to try and contextualise these results with other data sets
available from the KOLBIBAKT cohort. Relevant data sets to compare to could be per-
haps the Olink inflammation panel results or SCFAs analysis results. Combined these
results might reveal more indepth and detailed associations between IBD and the multi-
tude of factors which can cause it.

Finally it can be said that investigating ensemble ML techniques could create models
with better discriminatory ability than the current RF model. Ensemble ML techniques
work by combining multiple ML techniques into one classifier. For example an ensem-
ble technique could be the combination of a NN classifier, a RF classifier and a KNN
classifier. Each classifier is trained on the same data and each classifier ”votes” on which
class a new observation would belong to (Ardabili ez al. 2020; Hosni et al. 2019). This
is the general methodology of an ensemble algorithm. These algorithms can outperform
standard ML approaches using only a single ML algorithm, which is the intended goal
of an ensemble approach, however ensemble techniques do take longer time to train than
a single model (Ganaie ef al. 2021).

8 Acknowledgements

I would like to wholeheartedly thank my supervisor, Stefanie Prast-Nielsen for this
unique and wonderful opportunity as well as her guidance during this project. I would
also wish to thank Sergi Sayols who provided insightful commentary of my work and
conclusions. Finally I would like to thank the CTMR bioinformatics team for aiding me
through this project.

35



9 Appendix

9.1 Batch effect analysis

P-value Statistic Groups

0.615 10989 CD-remvs CC
0.447  13.002 CD-actvs CC
0426  13.284 UC-remvs CC
0478  12.612 UC-actvs CC

Table 5: Chi-square test results comparing the Lane_ID to the different diagnoses in the IBD
cohort. Note that no relationship is considered significant.
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Figure 11: NMDS plot of IBD cohort with 95% confidence interval displayed as as ellipses. Color

refers to which plate the samples were sequenced on- Note the large amount of overlap between
the plates, suggesting that all plates are very similar.
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9.2 Hyper parameter tuning results
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“ntrees: 10001 nodesize: 1 sampSize 157 0.61 0.54
b ize: 1 sampSize 157 0.61 0.54
ampSize 15" 0.58 0.52
sampSize 15” 0.58 0.52
sampSize 157 0.58 0.52
3 sampSize 15 0.58 0.52
ampSize 15" 0.58 0.52
ampSize 15" 0.61 0.54
sampSize 157 0.61 0.54
sampSize 15” 0.61 0.54
“ntrees: 10001 nodesize: 5 sampSize 157 0.61 0.54
“ntrees: 12501 nodesize: 5 15" 0.61 0.54
“ntrees: 2501 nodesize: 10 sampSize 157 0.63 0.56
ize 157 0.63 0.56
10 sampSize 157 0.63 0.56
0 sampSize 15" 0.63 0.56
0 sampSize 15" 0.63 0.56
15 sampSize 15” 0.59 0.54
15 sampSize 157 0.59 0.54
15 sampSize 157 0.59 0.54
5 sampSize 157 0.59 0.54
“ntrees: 12501 nodesize: 15 sampSize 157 0.59 0.54

Table 6: Results from a 70/30 data spé't7with grid tuning of the Mtry parameter



“H; . "AUC-ROC” “AUC-PR”

“ntrees: 2501 nodesize: 1 sampSize 1™ 0.61 0.53

“ntrees: 5001 nodesize: 1 sampSize 1” 0.61 0.53

“ntrees: 7501 nodesize: 1 0.61 0.53

0.61 0.53

0.61 0.53

“ntrees: 2501 nodesize: 3 sampSize 17 0.61 0.53

“ntrees: 5001 nodesize: 3 sampSize 1” 0.61 0.53

1 : 3 sampSize 17 0.61 0.53

) : ze: 3 sampSize 17 0.61 0.53

ntm,s 12501 nodesize: 3 sampSize 1™ 0.61 0.53
“ntrees: 2501 nodesize: 5 sampSize 1”

“ntrees: 5001 nodesize: 5 sampSize 1” 0.61 0.53
“ntrees: 7501 nodesize: 5 sampSize 17

: 5 sampSize 17 0.61 0.53

5 sampSize 17 0.61 0.53

0 sampSize 17 0.61 0.53

0 sampSize 17 0.61 0.53

0 sampSize 17 0.61 0.53

: 10 sampSize 17 0.61 0.53

: 10 sampSize 17 0.61 0.53

: 15 sampSize 17 0.61 0.53

5 sampSize 17 0.61 0.53

: 5 sampSize 17 0.61 0.53

“ntrees: 10001 nodcsxzc: 15 sampSize 1” 0.61 0.53

ntrees: 12501 nodesize: 15 sampSize 1” 0.61 0.53

“ntrees: 2501 nodesize: 1 sampSize 3" 0.63 0.56

“ntrees: 5001 nodesize: 1 sampSize 37 0.63 0.56

“ntrees: 7501 nodesize: 1 sampSize 3” 0.63 0.56

“ntrees: 10001 nodesize: 1 sampSize 3” 0.63 0.56

mreei 12501 nodesize: 1 sampSize 3” 0.63 0.56

“ntrees: 2501 nodesize: 3 sampSize 37 0.63 0.56

“ntrees: 5001 nodesize: 3 sampSize 3” 0.63 0.56

”mrccs: 7501 nodesize: 3 sampSize 3" 0.63 0.56

“ntrees: 10001 nodesize: 3 sampSize 3” 0.63 0.56

“ntrees: 12501 nodeilze 3 sampSize 3" 0.63 0.56

R : 5 sampSize 3 0.67 0.58

5 sampSi; 0.67 0.58

e: 5 sampSize 37 0.67 0.58

5 sampSize 37 0.67 0.58

5 sampSize 37 0.67 0.58

0 sampSize 3” 0.67 0.58

0 sampSize 3" 0.67 0.58

0 sampSize 3” 0.67 0.58

“ntrees: 10001 nodesize: 10 sampSize 37 0.67 0.58

“ntrees: 12501 nodesize: 10 sampSize 37 0.67 0.58

“ntrees: 2501 nodesize: 15 sampSize 3” 0.67 0.58

“ntrees: 5001 nodesize: 15 sampSize 3" 0.67 0.58

ntrees: 7501 nodesize: 15 sampSize 3” 0.67 0.58

"ntrees: 10001 nodesize: 15 sampSize 3”7 0.67 0.58

"ntrees: 12501 nodesize: 15 sampSize 3 0.67 0.58

“ntrees: 2501 nodesize: 1 sampSi: 0.66 0.59

“ntrees: 5001 nodesize: 1 sampSize 5™ 0.66 0.59

ize: | sampSize 57 0.66 0.59

1 sampSize 5” 0.66 0.59

nlrees 12501 nodesize: 1 sampSize 57 0.66 0.59

“ntrees: 2501 nodesize: 3 sampSize 57 0.65 0.58

“ntrees: 5001 nodesize: 3 sampSize 5" 0.65 0.58

"ntrees: 7501 nodesize: 3 sampSize 57 0.65 0.58

3 sampSize 57 0.65 0.58

3 sampSize 57 0.65 0.58

“ntrees: 2501 nodesize: 5 sampSize 57 0.65 0.58

“ntrees: 5001 nodesize: 5 sampSize 5" 0.65 0.58

: 5 sampSize 57 0.65 0.58

5 sampSize 57 0.65 0.58

5 sampSize 57 0.65 0.58

0 sampSize 57 0.62 .55

0 sampSize 57 0.62 0.55

0 sampSize 57 0.62 0.55

“ntrees: 10001 nodesue 10 sampSize 5" 0.62 0.55

“ntrees: 12501 nodesize: 10 sampSize 5” 0.62 0.55

5 sampSize 57 0.62 0.55

5 sampSize 57 0.62 0.55

5 sampSize 57 0.62 0.55

15 sampSize 5" 0.62 0.55

15 sampSize 57 0.62 0.55

sampSize 10” 0.63 0.55

sampSWe 107 0.63 0.55

: 107 0.63 0.55

: 1 sampS:zc 10” 0.63 0.55

1 sampSize 10” 0.63 .55

sampSize 10” 0.66 0.58

sampSize 107 0.66 0.58

sampSize 10” 0.66 0.58

e: 3 sampSize 107 0.66 0.58

3 sampSize 10” 0.66 0.58

sampSize 107 0.63 0.56

sampSize 10” 0.63 0.56

sampSize 10” 0.63 0.56

“ntrees: 10001 nodesize: 5 sampSize 10” 0.63 0.56

“ntrees: 12501 nodeilze: 5 sampSize 10” 0.63 0.56

“ntrees: 2501 nodesize: 10 sampSize 107 0.61 0.55

: 10 sampSize 10” 0.61 0.55

10 sampSize 10” 0.61 0.55

0 sampSize 10" 0.61 0.55

0.61 0.55

0.62 0.55

15 sampSize 10" 0.62 0.55

15 sampSize 10” 0.62 0.55

5 sampSize 10" 0.62 0.55

5 sampSize 10” 0.62 0.55

sampSize 15" 0.65 0.59

sampSize 15" 0.65 0.59

: sampSize 157 0.65 0.59

“ntrees: 10001 nodeilze 1 sampSlze 15" 0.65 0.59

“ntrees: 12501 nodesize: 1 sampSize 157 0.65 0.59

: 0.61 0.55

0.61 0.55

0.61 0.55

3 sampSize 157 0.61 0.55

: 3 sampSize 157 0.61 0.55

sampSize 15" 0.59 0.51

ampSize 15" 0.59 0.51

0.59 0.51

“ntrees: 10001 nodesize: 0.59 0.51

nlrees 12501 nodesize 0.59 0.51

ces: 0.59 0.54

0.59 0.54

0.59 0.54

0.59 0.54

0.59 0.54

ntres 0.6 0.55

mree§ 5001 nodesiz 0.6 0.55

“ntrees: 7501 nodesize: 15 sampSize 157 0.6 0.55

’nlrees: 10001 node: 5 sampSize 15" 0.6 0.55

“ntrees: 12501 nodesize: 15 sampSize 15™ 0.6 0.55

Table 7: Results from a 70/30 data split with random tuning of the Mtry parameter
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“H; " “AUC-ROC” “AUC-PR”
“ntrees: 2501 nodesize: 1 sampSize 1™ 0.79 0.66
“ntrees: 5001 nodesize: 1 sampSize 1” 0.79 0.66
“ntrees: 7501 nodesize: ize 17

0.79 0.66
0.79 0.66
“ntrees: 2501 nodesize: 0.79 0.66
“ntrees: 5001 nodesize: 0.79 0.66
“ntrees: 7501 nodesize: 0.79 0.66
“ntrees: 10001 nodesiz 0.79 0.66
“ntrees: 12501 nodesize: 0.79 0.66
“ntrees: 2501 nodesize: .79 0.6
“ntrees: 5001 nodesize: 5 0.79 0.66
“ntrees: 7501 nodesize: .79 0.6
: 0.79 0.66
5 sampSize 17 0.79 0.66
0 sampSize 17 0.79 0.66
0 sampSize 17 0.79 0.66
0 sampSize 17 0.79 0.66

: 10 sampSize 17 0.79 0.66

: 10 sampSize 17 0.79 0.66

: 15 sampSize 17 0.79 0.66

5 sampSize 17 0.79 0.66

: ze: 15 sampSize 17 0.79 0.66
“ntrees: 10001 nodesize: 15 sampSize 17 0.79 0.66
“ntrees: 12501 nodesize: 15 sampSize 1™ 0.79 0.66
“ntrees: 2501 nodesize: 1 sampSize 3" 0.81 0.74
“ntrees: 5001 nodesize: 1 sampSize 37 0.81 0.74
“ntrees: 7501 nodesize: 1 sampSize 3” 0.81 0.74
“ntrees: 10001 nodesize: 1 sampSize 3” 0.81 0.74
“ntrees: 12501 nodesize: 1 sampSize 3" 0.81 0.74
“ntrees: 2501 nodesize: 3 sampSize 37 0.76 0.69
“ntrees: 5001 nodesize: 3 sampSize 3” 0.76 0.69
“ntrees: 7501 nodesize: 3 sampSize 3” 0.76 0.69
“ntrees: 10001 nodesize: 3 sampSize 3” 0.76 0.69
“ntrees: 12501 nodesize: 3 sampSize 3 0.76 0.69
R : 5 sampSize 37 0.8 0.73
5 sampSize 37 0.8 0.73

e: 5 sampSize 37 0.8 0.73

5 sampSize 37 0.8 0.73

5 sampSize 37 0.8 0.73

0 sampSize 3” 0.8 0.73

0 sampSize 3" 0.8 0.73

0 sampSize 3” 0.8 0.73

: 10 sampSize 3" 0.8 0.73

: 10 sampSize 37 0.8 0.73

5 sampSize 3” 0.8 0.73

5 sampSize 3” 0.8 0.73

5 sampSize 37 0.8 0.73

: 15 sampSize 37 0.8 0.73

: 15 sampSize 37 0.8 0.73

1 sampSize 5" 0.79 0.71

e: 1 sampSize 57 0.79 0.71

1 sampSize 5" 0.79 0.71

1 sampSize 5” 0.79 0.71

“ntrees: 12501 nodesize: 1 sampSize 5" 0.79 0.71
“ntrees: 2501 nodesize: 3 sampSize 57 0.79 0.71
“ntrees: 5001 nodesize: 3 sampSize 5” 0.79 0.71
“ntrees: 7501 nodesize: 3 sampSize 5" 0.79 0.71
3 sampSize 57 0.79 0.71

3 sampSize 57 0.79 0.71

5 sampSize 57 0.75 0.67

: 5 sampSize 57 0.75 0.67

: 5 sampSize 57 0.75 0.67

5 sampSize 57 0.75 0.67

5 sampSize 57 0.75 0.67

0 sampSize 57 0.76 0.67

0 sampSize 57 0.76 0.67

0 sampSize 57 0.76 0.67

10 sampSize 5" 0.76 0.67

: 10 sampSize 57 0.76 0.67

5 sampSize 5” 0.76 0.67

5 sampSize 57 0.76 0.67

5 sampSize 57 0.76 0.67

15 sampSize 5" 0.76 0.67

15 sampSize 57 0.76 0.67

sampSize 10” 0.8 0.7

sampSize 107 0.8 0.7

: 1 sampSize 10” 0.8 0.7

: 1 sampSize 10” 0.8 0.7

1 sampSize 10” 0.8 0.7

sampSize 10” 0.78 0.69

sampSize 107 0.78 0.69

sampSize 10” 0.78 0.69

3 sampSize 10" 0.78 0.69

3 sampSize 10" 0.78 0.69

sampSize 107 0.79 0.7

sampSize 10” 0.79 0.7

sampSize 10” 0.79 0.7

: 5 sampSize 10" 0.79 0.7

“ntrees: 12501 nodesize: 5 sampSize 107 0.79 0.7
“ntrees: 2501 nodesize: 10 sampSize 107 0.79 0.69
1 : 10 sampSize 10” 0.79 0.69
10 sampSize 10” 0.79 0.69

0 sampSize 10" 0.79 0.69

0 sampSize 10” 0.79 0.69

s 15 sampSize 10” 0.78 0.7
1 15 sampSize 10” 0.78 0.7
" 15 sampSize 10” 0.78 0.7
5 sampSize 10" 0.78 0.7

1 5 sampSize 10” 0.78 0.7
iz 0.78 0.66

i 0.78 0.66

0.78 0.66

0.78 0.66

0.78 0.66

0.78 0.67

0.78 0.67

0.78 0.67

3 sampSize 157 0.78 0.67

: 3 sampSize 157 0.78 0.67

sampSize . X

1 pSize 157 0.77 0.65
1 0.77 0.65
) 0.77 0.65
“ntrees: 10001 nodesize: 0.77 0.65
“ntrees: 12501 nodesize: 0.77 0.65
ces: 2 0.78 0.69
0.78 0.69

0.78 0.69

0.78 0.69

0.78 0.69

0.79 0.7

nodesize: 15 sampSize 157 0.79 0.7

“ntrees: 7501 nodesize: 15 sampSize 157 0.79 0.7
“ntrees: 10001 node: 5 sampSize 15" 0.79 0.7
“ntrees: 12501 nodesize: 15 sampSize 15™ 0.79 0.7

Table 8: Results from a 75/25 data split with grid tuning of the Mtry parameter
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“H; . "AUC-ROC” “AUC-PR”

“ntrees: 2501 nodesize: 1 sampSize 1™ 0.73 0.69
“ntrees: 5001 nodesize: 1 sampSize 1” 0.73 0.69
“ntrees: 7501 nodesize: 1 0.73 0.69
0.73 0.69
0.73 0.69

“ntrees: 2501 nodesize: 3 sampSize 17 0.73 0.69
“ntrees: 5001 nodesize: 3 sampSize 1” 0.73 0.69
" : 3 sampSize 17 0.73 0.69
) ze: 3 sampSize 17 0.73 0.69
ntm,s 12501 nodesize: 3 sampSize 1™ 0.73 0.69
“ntrees: 2501 nodesize: 5 sampSize 1” 0.73 .69
“ntrees: 5001 nodesize: 5 sampSize 1” 0.73 0.69
“ntrees: 7501 nodesize: 5 sampSize 1 0.73 0.69
: 0.73 0.69

5 sampSize 17 0.73 0.69

0 sampSize 17 0.73 0.69

0 sampSize 17 0.73 0.69

0 sampSize 17 0.73 0.69

: 10 sampSize 17 0.73 0.69

: 10 sampSize 17 0.73 0.69

: 15 sampSize 17 0.73 0.69

5 sampSize 17 0.73 0.69

: 5 sampSize 17 0.73 0.69
“ntrees: 10001 nodcsxzc: 15 sampSize 1” 0.73 0.69
ntrees: 12501 nodesize: 15 sampSize 1” 0.73 0.69
“ntrees: 2501 nodesize: 1 sampSize 3" 0.81 0.72
“ntrees: 5001 nodesize: 1 sampSize 37 0.81 0.72
“ntrees: 7501 nodesize: 1 sampSize 3” 0.81 0.72
“ntrees: 10001 nodesize: 1 sampSize 3” 0.81 0.72
mreei 12501 nodesize: 1 sampSize 3” 0.81 0.72
“ntrees: 2501 nodesize: 3 sampSize 37 0.78 0.66
“ntrees: 5001 nodesize: 3 sampSize 3” 0.78 0.66
”mrccs: 7501 nodesize: 3 sampSize 3" 0.78 0.66
“ntrees: 10001 nodesize: 3 sampSize 3” 0.78 0.66
“ntrees: 12501 nodeilze 3 sampSize 3" 0.78 0.66
R : 5 sampSize 3 0.8 0.68
5 sampSi; 0.8 0.68

e: 5 sampSize 37 0.8 0.68

5 sampSize 37 0.8 0.68

5 sampSize 37 0.8 0.68

0 sampSize 3” 0.8 0.68

0 sampSize 3" 0.8 0.68

0 sampSize 3” 0.8 0.68

“ntrees: 10001 nodesize: 10 sampSize 37 0.8 0.68
“ntrees: 12501 nodesize: 10 sampSize 37 0.8 0.68
“ntrees: 2501 nodesize: 15 sampSize 3” 0.8 0.68
“ntrees: 5001 nodesize: 15 sampSize 3" 0.8 0.68
ntrees: 7501 nodesize: 15 sampSize 3” 0.8 0.68
"ntrees: 10001 nodesize: 15 sampSize 3”7 0.8 0.68
"ntrees: 12501 nodesize: 15 sampSize 3 0.8 0.68
“ntrees: 2501 nodesize: 1 sampSi: 0.78 0.67
“ntrees: 5001 nodesize: 1 sampSize 5™ 0.78 0.67
ize: | sampSize 57 0.78 0.67

1 sampSize 5” 0.78 0.67

nlrees 12501 nodesize: 1 sampSize 57 0.78 0.67
“ntrees: 2501 nodesize: 3 sampSize 57 0.78 0.68
“ntrees: 5001 nodesize: 3 sampSize 5" 0.78 0.68
"ntrees: 7501 nodesize: 3 sampSize 57 0.78 0.68
3 sampSize 57 0.78 0.68

3 sampSize 57 0.78 0.68

“ntrees: 2501 nodesize: 5 sampSize 57 0.79 0.69
“ntrees: 5001 nodesize: 5 sampSize 5" 0.79 0.69

: 5 sampSize 57 0.79 0.69

5 sampSize 57 0.79 0.69

5 sampSize 57 0.79 0.69

0 sampSize 57 0.77 .69

0 sampSize 57 0.77 0.69

0 sampSize 57 0.77 0.69

“ntrees: 10001 nodesue 10 sampSize 5" 0.77 0.69
“ntrees: 12501 nodesize: 10 sampSize 5” 0.77 0.69
5 sampSize 5” 0.77 0.69

5 sampSize 57 0.77 0.69

5 sampSize 57 0.77 0.69

15 sampSize 5" 0.77 0.69

15 sampSize 57 0.77 0.69

sampSize 10” 0.77 0.69

sampSWe 107 0.77 0.69

: 107 0.77 0.69

: 1 sampS:zc 10” 0.77 0.69

1 sampSize 10” 0.77 .69

sampSize 10” 0.78 0.67

sampSize 107 0.78 0.67

sampSize 10” 0.78 0.67

e: 3 sampSize 107 0.78 0.67

3 sampSize 10” 0.78 0.67

sampSize 107 0.79 0.69

sampSize 10” 0.79 0.69

sampSize 10” 0.79 0.69

“ntrees: 10001 nodesize: 5 sampSize 10” 0.79 0.69
“ntrees: 12501 nodeilze: 5 sampSize 10” 0.79 0.69
“ntrees: 2501 nodesize: 10 sampSize 107 0.8 0.7
: 10 sampSize 10” 0.8 0.7

10 sampSize 10” 0.8 0.7

0 sampSize 10” 0.8 0.7

0.8 0.7

0.79 0.69

15 sampSize 10" 0.79 0.69

15 sampSize 10” 0.79 0.69

5 sampSize 10” 0.79 0.69

5 sampSize 10” 0.79 0.69

sampSize 15" 0.79 0.68

sampSize 15" 0.79 0.68

: sampSize 157 0.79 0.68
“ntrees: 10001 nodeilze 1 sampSlze 15" 0.79 0.68
“ntrees: 12501 nodesize: 1 sampSize 157 0.79 0.68
: 0.79 0.67

0.79 0.67

0.79 0.67

3 sampSize 157 0.79 0.67

: 3 sampSize 157 0.79 0.67

sampSize 15" 0.78 0.67

ampSize 15" 0.78 0.67

0.78 0.67

“ntrees: 10001 nodesize: 0.78 0.67
nlrees 12501 nodesize 0.78 0.67
ces: 0.76 0.65
0.76 0.65

0.76 0.65

0.76 0.65

0.76 0.65

ntres 0.77 0.66
mree§ 5001 nodesiz 0.77 0.66
“ntrees: 7501 nodesize: 15 sampSize 157 0.77 0.66
’nlrees: 10001 node: 5 sampSize 15" 0.77 0.66
“ntrees: 12501 nodesize: 15 sampSize 15™ 0.77 0.66

Table 9: Results from a 75/25 data split with random tuning of the Mtry parameter
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“ntrees: 2501 nodesize: 1 sampSize 1™ 0.79 0.72

“ntrees: 5001 nodesize: 1 sampSize 1” 0.79 0.72

“ntrees: 7501 nodesize: 1 0.79 0.72

0.79 0.72

0.79 0.72

“ntrees: 2501 nodesize: 3 sampSize 17 0.79 0.72

“ntrees: 5001 nodesize: 3 sampSize 1” 0.79 0.72

1 : 3 sampSize 17 0.79 0.72

) : ze: 3 sampSize 17 0.79 0.72

ntm,s 12501 nodesize: 3 sampSize 1™ 0.79 0.72

“ntrees: 2501 nodesize: 5 sampSize 1” 0.79 0.72

“ntrees: 5001 nodesize: 5 sampSize 1” 0.79 0.72
“ntrees: 7501 nodesize: 5 sampSize 17

: 5 sampSize 17 0.79 0.72

5 sampSize 17 0.79 0.72

0 sampSize 17 0.79 0.72

0 sampSize 17 0.79 0.72

0 sampSize 17 0.79 0.72

: 10 sampSize 17 0.79 0.72

: 10 sampSize 17 0.79 0.72

: 15 sampSize 17 0.79 0.72

5 sampSize 17 0.79 0.72

: 5 sampSize 17 0.79 0.72

“ntrees: 10001 nodcsxzc: 15 sampSize 1” 0.79 0.72

ntrees: 12501 nodesize: 15 sampSize 1” 0.79 0.72

“ntrees: 2501 nodesize: 1 sampSize 3" 0.77 0.69

“ntrees: 5001 nodesize: 1 sampSize 37 0.77 0.69

“ntrees: 7501 nodesize: 1 sampSize 3” 0.77 0.69

“ntrees: 10001 nodesize: 1 sampSize 3” 0.77 0.69

mreei 12501 nodesize: 1 sampSize 3” 0.77 0.69

“ntrees: 2501 nodesize: 3 sampSize 37 0.77 0.69

“ntrees: 5001 nodesize: 3 sampSize 3” 0.77 0.69

”mrccs: 7501 nodesize: 3 sampSize 3" 0.77 0.69

“ntrees: 10001 nodesize: 3 sampSize 3” 0.77 0.69

“ntrees: 12501 nodeilze 3 sampSize 3" 0.77 0.69

R : 5 sampSize 3 0.77 0.67

5 sampSi; 0.77 0.67

e: 5 sampSize 37 0.77 0.67

5 sampSize 37 0.77 0.67

5 sampSize 37 0.77 0.67

0 sampSize 3” 0.77 0.67

0 sampSize 3" 0.77 0.67

0 sampSize 3” 0.77 0.67

“ntrees: 10001 nodesize: 10 sampSize 37 0.77 0.67

“ntrees: 12501 nodesize: 10 sampSize 37 0.77 0.67

“ntrees: 2501 nodesize: 15 sampSize 3” 0.77 0.67

“ntrees: 5001 nodesize: 15 sampSize 3" 0.77 0.67

"n(rcci. 7501 nodesize: 15 sampSize 3” 0.77 0.67

"ntrees: 10001 nodesize: 15 sampSize 3”7 0.77 0.67

"ntrees: 12501 nodesize: 15 sampSize 3 0.77 0.67

“ntrees: 2501 nodesize: 1 sampSi: 0.82 0.71

“ntrees: 5001 nodesize: 1 sampSize 5™ 0.82 0.71

o " ize: 1 sampSize 57 0.82 0.71

1 sampSize 5” 0.82 0.71

nlrees 12501 nodesize: 1 sampSize 57 0.82 0.71

“ntrees: 2501 nodesize: 3 sampSize 57 0.78 0.68

“ntrees: 5001 nodesize: 3 sampSize 5" 0.78 0.68

"ntrees: 7501 nodesize: 3 sampSize 57 0.78 0.68

3 sampSize 57 0.78 0.68

3 sampSize 57 78 0.68

“ntrees: 2501 nodesize: 5 sampSize 57 .8 0.67

“ntrees: 5001 nodesize: 5 sampSize 5" .8 0.67

: 5 sampSize 57 .8 0.67

5 sampSize 57 .8 0.67

5 sampSize 57 8 0.67

0 sampSize 5" 0.72

0 sampSize 57 0.72

0 sampSize 57 0.72

“ntrees: 10001 nodesue 10 sampSize 5" 0.72

“ntrees: 12501 nodesize: 10 sampSize 5” 0.72

5 sampSize 5" 0.72

5 sampSize 57 0.72

5 sampSize 57 0.72

15 sampSize 5" 0.72

15 sampSize 57 0.72

sampSize 10” 0.68

sampSWe 107 0.68

: 107 0.68

: 1 sampS:zc 10” 0.68

1 sampSize 10” 0.68

sampSize 10” 0.65

sampSize 107 .65

sampSize 10” 0.65

e: 3 sampSize 107 0.65

3 sampSize 10”
sampSize 10”
sampSize 10”
sampSize 10”
“ntrees: 10001 nodesize: 5 sampSize 10”
“ntrees: 12501 nodeilze: 5 sampSize 10”
“ntrees: 2501 nodesize: 10 sampSize 107
: 10 sampSize 10”
10 sampSize 10”
0 sampSize 10”

15 sampSize 10
15 sampSize 10”
5 sampSize 107

“ntrees: 10001 nodesize:

1 sampSlze 15
“nirees: 12501 nodesi e 157

1 sampSi

3 sampSize 157
: 3 sampSize 157
sampSize 15"
ampSize 157

“ntrees: 10001 nodesize:
nlrees 12501 nodesize

ntre

mree§ 5001 nodesiz
ntrees: 7501 nodesi
Tntrees: 10001 node:
"ntrees: 12501 nodesiz
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Table 10: Results from a 80/20 data split with grid tuning of the Mtry parameter
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“H; . "AUC-ROC” “AUC-PR”

“ntrees: 2501 nodesize: 1 sampSize 1™ 0.73 0.69
“ntrees: 5001 nodesize: 1 sampSize 1” 0.73 0.69
“ntrees: 7501 nodesize: 1 0.73 0.69
0.73 0.69
0.73 0.69

“ntrees: 2501 nodesize: 3 sampSize 17 0.73 0.69
“ntrees: 5001 nodesize: 3 sampSize 1” 0.73 0.69
" : 3 sampSize 17 0.73 0.69
) ze: 3 sampSize 17 0.73 0.69
ntm,s 12501 nodesize: 3 sampSize 1™ 0.73 0.69
“ntrees: 2501 nodesize: 5 sampSize 1” 0.73 .69
“ntrees: 5001 nodesize: 5 sampSize 1” 0.73 0.69
“ntrees: 7501 nodesize: 5 sampSize 1 0.73 0.69
: 0.73 0.69

5 sampSize 17 0.73 0.69

0 sampSize 17 0.73 0.69

0 sampSize 17 0.73 0.69

0 sampSize 17 0.73 0.69

: 10 sampSize 17 0.73 0.69

: 10 sampSize 17 0.73 0.69

: 15 sampSize 17 0.73 0.69

5 sampSize 17 0.73 0.69

: 5 sampSize 17 0.73 0.69
“ntrees: 10001 nodcsxzc: 15 sampSize 1” 0.73 0.69
ntrees: 12501 nodesize: 15 sampSize 1” 0.73 0.69
“ntrees: 2501 nodesize: 1 sampSize 3" 0.81 0.72
“ntrees: 5001 nodesize: 1 sampSize 37 0.81 0.72
“ntrees: 7501 nodesize: 1 sampSize 3” 0.81 0.72
“ntrees: 10001 nodesize: 1 sampSize 3” 0.81 0.72
mreei 12501 nodesize: 1 sampSize 3” 0.81 0.72
“ntrees: 2501 nodesize: 3 sampSize 37 0.78 0.66
“ntrees: 5001 nodesize: 3 sampSize 3” 0.78 0.66
”mrccs: 7501 nodesize: 3 sampSize 3" 0.78 0.66
“ntrees: 10001 nodesize: 3 sampSize 3” 0.78 0.66
“ntrees: 12501 nodeilze 3 sampSize 3" 0.78 0.66
R : 5 sampSize 3 0.8 0.68
5 sampSi; 0.8 0.68

e: 5 sampSize 37 0.8 0.68

5 sampSize 37 0.8 0.68

5 sampSize 37 0.8 0.68

0 sampSize 3” 0.8 0.68

0 sampSize 3" 0.8 0.68

0 sampSize 3” 0.8 0.68

“ntrees: 10001 nodesize: 10 sampSize 37 0.8 0.68
“ntrees: 12501 nodesize: 10 sampSize 37 0.8 0.68
“ntrees: 2501 nodesize: 15 sampSize 3” 0.8 0.68
“ntrees: 5001 nodesize: 15 sampSize 3" 0.8 0.68
ntrees: 7501 nodesize: 15 sampSize 3” 0.8 0.68
"ntrees: 10001 nodesize: 15 sampSize 3”7 0.8 0.68
"ntrees: 12501 nodesize: 15 sampSize 3 0.8 0.68
“ntrees: 2501 nodesize: 1 sampSi: 0.78 0.67
“ntrees: 5001 nodesize: 1 sampSize 5™ 0.78 0.67
ize: | sampSize 57 0.78 0.67

1 sampSize 5” 0.78 0.67

nlrees 12501 nodesize: 1 sampSize 57 0.78 0.67
“ntrees: 2501 nodesize: 3 sampSize 57 0.78 0.68
“ntrees: 5001 nodesize: 3 sampSize 5" 0.78 0.68
"ntrees: 7501 nodesize: 3 sampSize 57 0.78 0.68
3 sampSize 57 0.78 0.68

3 sampSize 57 0.78 0.68

“ntrees: 2501 nodesize: 5 sampSize 57 0.79 0.69
“ntrees: 5001 nodesize: 5 sampSize 5" 0.79 0.69

: 5 sampSize 57 0.79 0.69

5 sampSize 57 0.79 0.69

5 sampSize 57 0.79 0.69

0 sampSize 57 0.77 .69

0 sampSize 57 0.77 0.69

0 sampSize 57 0.77 0.69

“ntrees: 10001 nodesue 10 sampSize 5" 0.77 0.69
“ntrees: 12501 nodesize: 10 sampSize 5” 0.77 0.69
5 sampSize 5” 0.77 0.69

5 sampSize 57 0.77 0.69

5 sampSize 57 0.77 0.69

15 sampSize 5" 0.77 0.69

15 sampSize 57 0.77 0.69

sampSize 10” 0.77 0.69

sampSWe 107 0.77 0.69

: 107 0.77 0.69

: 1 sampS:zc 10” 0.77 0.69

1 sampSize 10” 0.77 .69

sampSize 10” 0.78 0.67

sampSize 107 0.78 0.67

sampSize 10” 0.78 0.67

e: 3 sampSize 107 0.78 0.67

3 sampSize 10” 0.78 0.67

sampSize 107 0.79 0.69

sampSize 10” 0.79 0.69

sampSize 10” 0.79 0.69

“ntrees: 10001 nodesize: 5 sampSize 10” 0.79 0.69
“ntrees: 12501 nodeilze: 5 sampSize 10” 0.79 0.69
“ntrees: 2501 nodesize: 10 sampSize 107 0.8 0.7
: 10 sampSize 10” 0.8 0.7

10 sampSize 10” 0.8 0.7

0 sampSize 10” 0.8 0.7

0.8 0.7

0.79 0.69

15 sampSize 10" 0.79 0.69

15 sampSize 10” 0.79 0.69

5 sampSize 10” 0.79 0.69

5 sampSize 10” 0.79 0.69

sampSize 15" 0.79 0.68

sampSize 15" 0.79 0.68

: sampSize 157 0.79 0.68
“ntrees: 10001 nodeilze 1 sampSlze 15" 0.79 0.68
“ntrees: 12501 nodesize: 1 sampSize 157 0.79 0.68
: 0.79 0.67

0.79 0.67

0.79 0.67

3 sampSize 157 0.79 0.67

: 3 sampSize 157 0.79 0.67

sampSize 15" 0.78 0.67

ampSize 15" 0.78 0.67

0.78 0.67

“ntrees: 10001 nodesize: 0.78 0.67
nlrees 12501 nodesize 0.78 0.67
ces: 0.76 0.65
0.76 0.65

0.76 0.65

0.76 0.65

0.76 0.65

ntres 0.77 0.66
mree§ 5001 nodesiz 0.77 0.66
“ntrees: 7501 nodesize: 15 sampSize 157 0.77 0.66
’nlrees: 10001 node: 5 sampSize 15" 0.77 0.66
“ntrees: 12501 nodesize: 15 sampSize 15™ 0.77 0.66

Table 11: Results from a 80/20 data split with random tuning of the Mtry parameter
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“H; . "AUC-ROC” “AUC-PR”

“ntrees: 2501 nodesize: 1 sampSize 1™ 0.63 0.64
“ntrees: 5001 nodesize: 1 sampSize 1” 0.63 0.64
“ntrees: 7501 nodesize: 1 0.63 0.64
0.63 0.64
0.63 0.64

“ntrees: 2501 nodesize: 3 sampSize 17 3 0.64
“ntrees: 5001 nodesize: 3 sampSize 1” 3 0.64
" : 3 sampSize 17 0.64
) ze: 3 sampSize 17 3 0.64
ntm,s 12501 nodesize: 3 sampSize 1™ 3 0.64
“ntrees: 2501 nodesize: 5 sampSize 1” 3 .64
“ntrees: 5001 nodesize: 5 sampSize 1” 3 0.64
“ntrees: 7501 nodesize: 5 sampSize 1 3 0.64
: 3 0.64
5 sampSize 17 3 0.64
0 sampSize 17 3 0.64
0 sampSize 17 3 0.64
0 sampSize 17 3 0.64
: 10 sampSize 17 3 0.64
: 10 sampSize 17 3 0.64
: 15 sampSize 17 3 0.64
5 sampSize 17 3 0.64
: 5 sampSize 17 3 0.64
“ntrees: 10001 nodcsxzc: 15 sampSize 1” 3 0.64
ntrees: 12501 nodesize: 15 sampSize 1” 3 0.64
“ntrees: 2501 nodesize: 1 sampSize 3” 3 0.57
“ntrees: 5001 nodesize: 1 sampSize 37 8 0.57
“ntrees: 7501 nodesize: 1 sampSize 3” 8 0.57
“ntrees: 10001 nodesize: 1 sampSize 3” 8 0.57
mreei 12501 nodesize: 1 sampSize 3” 8 0.57
“ntrees: 2501 nodesize: 3 sampSize 37 8 0.57
“ntrees: 5001 nodesize: 3 sampSize 3” 8 0.57
”mrccs: 7501 nodesize: 3 sampSize 3" 8 0.57
“ntrees: 10001 nodesize: 3 sampSize 3” 8 0.57

“ntrees: 12501 nodeilze 3 sampSize 3" 8 0.

’ 5 sampSize 3" 0.

5 sampSi; 0.

¢ 5 :dmpSlZL‘3’ 0.

5 sampSize 3" 0.

5 sampSize 37 0

0 sampSize 3” 0.

0 sampSize 3" 0.

0 sampSize 3" 0.

“ntrees: 10001 nodesize: 10 sampSize 37 0.

"ntrees: 12501 nodesize: 10 sampSize 3”
5 sampSize 3"
5 sampSize 3"
: s 5 sampSize 3"
“ntrees: 10001 nodesize: 15 sampSize 37
“ntrees: 12501 nodesize: 15 sampSize 3”
‘ntrees: 2501 nodesize: 1 sampSi
“ntrees: 5001 nodesize: 1 sampSize 5™
ize: 1 sampSize 57

1 sampSize 5”
nlrees 12501 nodesize: 1 sampSize 57
“ntrees: 2501 nodesize: 3 sampSize 57

“ntrees: 5001 nodesize: 3 sampSize 5

"ntrees: 7501 nodesize: 3 sampSize 57
3 sampSize 5”

3 sampSize 57
“ntrees: 2501 nodesize: 5 sampSize 57
“ntrees: 5001 nodesize: 5 sampSize 5

5 sampSize 5
5 sampSize 5”
0 sampSize 5"
0 sampSize 5"
0 sampSize 5”
“ntrees: 10001 nodesue 10 sampSize 5"
“ntrees: 12501 nodesize: 10 sampSize 5"
5 sampSize 5”

sampSize 10"
sampSWe o

: 1 sampS:zc 10
1 sampSize 10”
sampSize 10”
sampSize 10”
sampSize 10”
1 3 sampSize 10”
3 sampSize 10”
sampSize 10”
sampSize 10”
sampSize 10”
“ntrees: 10001 nodesize: 5 sampSize 10”
“ntrees: 12501 nodeilze: 5 sampSize 10”
“ntrees: 2501 nodesize: 10 sampSize 107
: 10 sampSize 10”
10 sampSize 10”
0 sampSize 10”

15 sampSize 10
15 sampSize 10”
5 sampSize 107

“ntrees: 10001 nodesize:

1 sampSlze 15
“nirees: 12501 nodesi e 157

1 sampSi

3 sampSize 157
: 3 sampSize 157
sampSize 15"
ampSize 157

“ntrees: 10001 nodesize:
nlrees 12501 nodesize

ntre

mree§ 5001 nodesiz
ntrees: 7501 nodesi
Tntrees: 10001 node:
"ntrees: 12501 nodesiz

15 sampSize 157
5 sampSize 15"
15 sampSize 15"
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Table 12: Results from a 85/15 data split with grid tuning of the Mtry parameter
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“H; " “AUC-ROC” “AUC-PR”
“ntrees: 2501 nodesize: 1 sampSize 1™ 0.75 0.66
“ntrees: 5001 nodesize: 1 sampSize 1” 0.75 0.66
“ntrees: 7501 nodesize: ize 17

0.75 0.66
0.75 0.66
“ntrees: 2501 nodesize: 0.75 0.66
“ntrees: 5001 nodesize: 0.75 0.66
“ntrees: 7501 nodesize: 0.75 0.66
“ntrees: 10001 nodesiz 0.75 0.66
“ntrees: 12501 nodesize: 0.75 0.66
“ntrees: 2501 nodesize: 0.6
“ntrees: 5001 nodesize: 5 0.75 0.66
“ntrees: 7501 nodesize: 0.6
: 0.75 0.66
5 sampSize 17 0.75 0.66
0 sampSize 17 0.75 0.66
0 sampSize 17 0.75 0.66
0 sampSize 17 0.75 0.66
: 10 sampSize 17 0.75 0.66
: 10 sampSize 17 0.75 0.66
: 15 sampSize 17 0.75 0.66
5 sampSize 17 0.75 0.66
: ze: 15 sampSize 17 0.75 0.66
“ntrees: 10001 nodesize: 15 sampSize 17 0.75 0.66
“ntrees: 12501 nodesize: 15 sampSize 1™ 0.75
“ntrees: 2501 nodesize: 1 sampSize 3" 0.69
“ntrees: 5001 nodesize: 1 sampSize 37 0.69
“ntrees: 7501 nodesize: 1 sampSize 3” 0.69
“ntrees: 10001 nodesize: 1 sampSize 3” 0.69
“ntrees: 12501 nodesize: 1 sampSize 3" 0.69
“ntrees: 2501 nodesize: 3 sampSize 37 0.69
“ntrees: 5001 nodesize: 3 sampSize 3” 0.69
“ntrees: 7501 nodesize: 3 sampSize 3” 0.69
“ntrees: 10001 nodesize: 3 sampSize 3” 0.69
“ntrees: 12501 nodesize: 3 sampSize 3 0.69
! : 5 sampSize 37 0.69
5 sampSize 3” 0.69
e: 5 sampSize 37 0.69
5 sampSize 37 0.69
5 sampSize 37 0.69
0 sampSize 3” 0.69
0 sampSize 3" 0.69
0 sampSize 3” 0.69
: 10 sampSize 3" 0.69
: 10 sampSize 37 0.69
5 sampSize 3” 0.69
5 sampSize 3” 0.69
5 sampSize 37 0.69
: 15 sampSize 37 0.69
: 15 sampSize 37 0.69
1 sampSize 5" 0.69
e: | sampSize 57 0.69
1 sampSize 5” 0.69
1 sampSize 5” 0.69
“ntrees: 12501 nodesize: 1 sampSize 5" 0.69
“ntrees: 2501 nodesize: 3 sampSize 57 0.78
“ntrees: 5001 nodesize: 3 sampSize 5” 0.78
“ntrees: 7501 nodesize: 3 sampSize 5" 0.78
3 sampSize 57 0.78
3 sampSize 57 0.78

5 sampSize 3"
© 5 sampSize 57

5 sampSize 5
5 sampSize 5”
0 sampSize 5"
0 sampSize 5"
0 sampSize 5”
10 sampSize 5"
* 10 sampSize 57
5 sampSize 5”

sampSize 10"
sampSize 10”
ize 107

: 1 samp!
: 1 sampSize 10”
1 sampSize 10”
sampSize 10”
sampSize 107
sampSize 10”
3 sampSize 10"
3 sampSize 10"
sampSize 107
sampSize 10”
sampSize 10”
:’5 sampSize 10”
“ntrees: 12501 nodesize: 5 sampSize 107
“ntrees: 2501 nodesize: 10 sampSize 107
) : 10 sampSize 10”
10 sampSize 10”
0 sampSize 10"
0 sampSize 10”
15 sampSize 10”
15 sampSize 10"
15 sampSize 10”
5 sampSize 107

3 sampSize 157
: 3 sampSize 157
sampSize 15"

“ntrees: 10001 nodesize:
“ntrees: %2501 nodesize:
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ntrees: 7501 nodesi
“ntrees: 10001 node:
"ntrees: 12501 nodesiz

15 sampSize 15”
15 sampSize 157
5 sampSize 15"
15 sampSize 15"
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Table 13: Results from a 85/15 data split with random tuning of the Mtry parameter
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Figure 12: Spearman analysis heatmap. Red signifies a positive correlation while blue signifies
a negative correlation. In each axis all 461 taxa are compared against one another.
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