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I

Abstract

Geometric Quantum Computation (GQC) is one of the effective methods to realize
quantum computation [1]. By using geometric phases, it shows robustness to certain
errors. This thesis aims to develop a new systematic technique for implementing GQC,
especially in non-adiabatic systems. First, we examine the nature of the geometric phase
with differential geometry. Then, we give a general theoretical method to realize a given
quantum gate with a geometric phase through reverse engineering. We examine the
method in the constant frequency quantum system with 2 or 3 energy levels. Finally, we

analyze the non-Abelian case where some of the frequencies are degenerate.
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Abstrakt

Geometrisk kvantberdkning (GQC) &r en av de effektiva metoderna for att forverkliga
kvantberdkningar[1]. Genom att anvdnda geometriska faser visar den sig vara robust
mot vissa fel. Syftet med denna avhandling ar att utveckla en ny systematisk teknik
for att genomfora GQC, sarskilt i icke-adiabatiska system. Forst undersoker vi den
geometriska fasens natur. med hjélp av differentiell geometri. Darefter ger vi en allmén
teoretisk metod for att realisera en given kvantgrind med en geometrisk fas genom
reverse engineering. Vi undersoker metoden i kvantsystemet med konstant frekvens
och med 2 eller 3 energinivaer. Slutligen analyserar vi det icke-Abeliska fallet ddr vissa
av frekvenserna dr degenererade.
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Introduction 1

1 Introduction

The idea of quantum computing is to use some special phenomena of quantum systems
such as interference and entanglement, to perform computation. Although most of
today’s quantum computing experiments are still simulations on classical computers,
quantum computation shows great potential and is worthy of research since traditional
approaches on improving computer technology are beginning to run up against practical
limitations on equipment’s size. More important, quantum computation provides means

for efficient solution of some computationally hard problems.

It is easy to begin the construction of quantum computing from the analogy of classical
computing. Using quantum gates instead of traditional gates, one needs to build a
circuit with inputs, outputs, and logic gates to carry out a given computation. However,
this circuit-like quantum computation has an important problem to solve. It depends
on the ability to perform a universal set of quantum gate operations on a set of qubits;
it needs the quantum gates in practice to be resilient to certain kinds of errors. At the
same time, the quantum gates are too fragile to keep unaffected by the environment. A
possible solution is to use Geometric Quantum Computation (GQC) [2], also termed as
Holonomic Quantum computation(HQC) [3]. It allows building more robust quantum
gates in a universal set by using geometric phases [4], which are also called 'Berry phases’

[5].

The basic idea of GQC is to realize a given set of quantum gates by transport of state
vectors around loops [3]. For a quantum system with parameter dependent Hamiltonian,
one can consider quantum gates as unitary operators. The geometric phase is the dif-
ference between the beginning and the end of the loop. Therefore, we can also say that
GQC is the idea to geometric phase to perform the computing process. For computation
on a single qubit, we can also imagine the process as a rotation of vector on Bloch sphere.

This work presents a more detailed explanation of how this process works in theory
and develops a new technique to realize quantum computing with GQC. In Chapter
2, we focus on understanding GQC from a perspective of differential geometry. Then
we study the possible forms of GQC evolution, as arising in adiabatic or non-adiabatic
as well as, Abelian or non-Abelian. Among these situations, we use a non-adiabatic
system as our example to develop a new technique of performing given quantum gates
using GQC with reverse engineering, which is the central part of chapter 3. We apply
our new method to two simple systems and implicitly modify these systems to perform
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Introduction 2

our expected function. This chapter deduces each step to build a specific quantum gate

with a geometric phase.
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Theory of quantum geometric phase 3

2 Theory of quantum geometric phase

2.1 Mathematical preparation

The idea of geometry quantum computation (GQC) is based on a specific quantum phe-
nomenon, the geometric phase [6]. Therefore we first need to understand the derivation
and property of geometric phase both in physics and mathematical perspective. Then
we can find detailed methods of applying geometric phase in quantum computing

The origin of geometric phase is differential geometry features of the state space cor-
responding to a given quantum system. Hence it is necessary to begin at learning
some knowledge of differential geometry, which will be quite useful in describing and

reconsidering the process of quantum computing in the geometric language.

2.1.1 Topology, differentiable manifold and diffeomorphism

To understand the more complicated concept, we first need to get familiar with some
basic research objects in differential geometry.

The most fundamental object is topology [7]. In a short word, a topology, or a topological
space, is an open set, denoted as X, and can be considered as a collection of open subsets
of X, denoted as 7, T = {U;|i € I}. T should meet the following requirements:

e The empty set @ and universal set X are in 7.
e The intersection of any subsets in 7 is still in 7.
e The union of any subsets in 7 is still in 7.

We can build a map for two given topologies.One may see that IR" is a topological space.
Hence specially, we can select one open set U; in a general topology U and define a map
f from Uj to another open set U/ in R™. If f : U; — U/ is continuous and has an inverse
f~1:U! — U;, the map f is called a homeomorphsim [7].

Then we can define the differentiable manifold. Consider a topological space M. It has a
family of pairs between open sets U; and homeomorphsim ¢, like { (U;, ¢;) }. If given
two open sets U; and U; with U; N U; # @, we can build a map ;; from ¢;(U; N U;) to

(P,‘(Ui N u]'> and l/)l']' =¢; 0 4);1
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Theory of quantum geometric phase 4

If this map ¢;; is inifinitely differential, then the topology M is a differentiable manifold.

The homeomorphsim ¢;, ¢; are also called coordinate functions.

As a result, if we have a map f : M — N from m-dimensional manifold M to another
manifold N with n-dimensions, we can represent the map in the space R" and R" with
coordinate functions. Assuming the coordinate function of M is ¢ and the coordinate

function of N is ¢, then we can rewrite the map f as:
f—>g@ofoyp . (2.1)
Denote the new map as x
x=g¢ofop l:R" — R" (2.2)
and assume it has the inverse function y '

X l=ypoflog™h 2.3)

If both x and x ! are infinitely differentiable, the map f is a diffeomorphism.

2.1.2 Connection and holonomy

From the definition of manifold we know that a manifold is locally like R". Hence we
can also define a vector with the differentiable structure of the manifold.

Given a manifold M, the vector is a tangent vector to a curve in M. Then we need to
select a curve ¢(t) and a function f : M — R, Furthermore, we define the vector as
a directional derivative of f(c(t)) the tangent vector at t = 0 we can write the tangent

vector clearly as:
df(c(t))
dt

With the coordinate function ¢ of M, we can continue reducing it into

|t=0- (2.4)

aagﬁt W’t—o = X”(%) = X[f] (2.5)
where: y ] e e(t)
X=X (X =—3) (2.6)

If V[M] is smooth to any point of M, it is a vector field, denoted as Z'[M].

However, a manifold can also carry a more complex structure if it admits a specific
metric tensor. For the manifold as tensor field, the vector field cannot directly arise
without an extra structure called connection.The connection gives that how tensors are

© Uppsala University Zijin Wu



Theory of quantum geometric phase 5

transported along a curve [7]. Therefore it also allows us to compare vectors in different

points of a manifold. For a manifold M and its vector field X, a connection is a map V
V:ZM] x Z[M| — Z[M]. (2.7)

Now we can use the connection to define a set of special transformations. Consider a
m-dimensional manifold (M, g) with a Riemann metric tensor ¢ and a connection V. We
pick a point p in (M, g), and draw a set of closed loops at p:

{e(H]0 < £21,¢(0) = (1) = p}. 8)

If we take a vector X at p, from the definition of vector, we know that the vector is in
the tangent space T, M at p. Then we perform a parallel transportation to X along the
loop ¢(t), which means moving the vector without rotation. We will return to p and get
anew vector X also in the tangent space T, M. From the definition of connection, that it
gives how a tensor moves along a curve, we know that we can use the connection and
the loop to describe our operation. Actually we induce a map:

The map is a series of transformation along closed loops. It meets the requirements of

group. It is called a holonomy group [7] and denoted as H(p).

2.1.3 Fiber bundle

We now introduce the concept of fiber bundle to complete our mathematical preparation
of describing the process of GQC. A fiber bundle consist of the following elements [7]:

e A differentiable manifold E called the total space.
e A differentiable manifold M called the base space.
e A differentiable manifold F called the fiber.

e A surjection 7t : E — M called the projection. The inverse image of a given point
p, that 7-1(p) = F, = F is called the fiber at p.

e A Lie group G,which acts on the left of F, called the structure group.

e A map ¢; called trivialization. Given a set of open covering {(U;)} of M with a
diffeomorphism ¢;: U; x F — 7t~ 1(U;) such that 7t o ¢;(p, f) = p.

e A map t;; called the transition function: If we write ¢;(p, f) = ¢; ,(f), the new map
¢i,p is another diffeomorphism, which works as F — F,,. We define t;; = 4);; oPjp

© Uppsala University Zijin Wu



Theory of quantum geometric phase 6

and require that When U; N Uj # @, t;; = (p;pl o ¢;p: F — F be an element of G.
Then we build a smooth map ¢;; : U; N U; — G which relates ¢; and ¢; by:

oi(p, f) = ¢i(p,tii(p)f)- (2.10)

In general, the role of fiber bundles is it provide a tool to makes a topology look like a
direct product of two topological space. With the term of fiber bundles, we can naturally
describe the map from Hilbert space to state space, which is important in understanding

the geometric phase.

2.2 Derivation of geometric phase

The fundamental concept of quantum computing is the qubit, built upon an analogous
concept of classical computation. In physics, a qubit means a two-level quantum system.
Performing a ‘computation” on a qubit is naturally performing a unitary operator to the

state.

The state is also a vector in state space, a topological space. Recalling the formerly
defined holonomy group, we may wonder whether there is a kind of operator in the
holonomy group that performs parallel transportation of the state vector. Moreover, we

also wonder what will happen after the state transports along a loop.

2.2.1 Fibers of a quantum mechanic system

Given a quantum system with Hamiltonian H (A+). The parameter vector A; is time-
dependent. Consider a state |¢) of the system . Assume |i) is in the nth eigenstate of

this system at t = 0, which means

(0)) = |n,4:(0)) (2.11)

Denote the state vector at later time t as |¢(t)). Obviously, |¢(t)) belongs to an (N+1)-
dimensional complex vector space with the null vector subtracted, that is

[w(t)) € ¥ — {0} (212)
We can decompose | (t)) as
lp(t)) ={Zi(t)},i=1,2,3..N. (2.13)
Each Z; is a complex parameter. The normalization condition

=N Zi(t)Zi(t) =1 (2.14)
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Theory of quantum geometric phase 7

defines a sphere S>N*1. Therefore a normalized state will be further limited into the

space of sphere S2N+1,

However the state vector |i(t)) is not enough to represent a physical state. The physical
state is a ray. The ray is a one-dimensional subspace of the state space. Its components
are linked by U(1) group. If [p)’ = ¢ |¢p), the two state vectors are in the same ray or the
same subspace.The subspace is a equivalence class, which we denoted as S>N*1/U(1).
All these equivalence classes form the space of physical states:

- G2N+1 _ CN+1 _ {0}

P(CNt1) = U = {0} (2.15)

We can also use N-dimensional projective space CPN [8] to describe the space of physical

states.

Recalling our definition of fiber bundle before, we can represent the parallel transporta-
tion process in the terms of differential geometry. The total space E here is the space of
normalizable state vectors CN*1 — {0}. The base space M is the space of physical states
P(CN+1). The fiber is a set of all normalized vectors from the same ray. The projection ¢
is the association of the normalized vector |i(t)) to the operator | (t)) (¢ (f)| [9]. The
structure group acting on the fiber is U(1) .

The time evolution of the state vector produces a path in the total space CN*! — {0}
[9]. With the fiber bundles we can first build the corresponding path in the base space
P(CN*1) and map it into the total space. Under parallel transportation of a physical
state, around a closed loop, the inverse projection 1 gives rise to a open path in total
space. This means the final state vector has an overall phase difference from the initial
one. Part of the overall phase is independent of time it takes to traverse the loop and

relies on the geometric structure of the fiber bundle.

2.2.2 The generation of geometric phase

Given a closed curve |¢(x)) in base space M, in differential geometry, |@(x)) provides a
continuous map from a patch U in base space into the fibers above. If we change the
curve | @) to a different curve |@(x)’), it can be seen as changing the local section to a

new one. We can describe this process the with structure group U(1)

[p(x)) =™ p(x)), (2.16)

where 0(x) is a real function of coordinates X* on M [9].

© Uppsala University Zijin Wu



Theory of quantum geometric phase 8

The closed curve will also map a closed path into total space E, which denoted as |¢(t)).

Then the corresponding transforming process in E is

¢/ () =D |g(t)). (2.17)

To keep the closure we need to regain:

[¢(T)) = [¢(0)), (2.18)
6(T) =6(0) 4 27tn. (2.19)

We called this type of transformation gauge transformation.

Then we want to find what will happen if we do a "horizontal’ lift to a closed curve in M.
We denote the horizontal lifted path in total space E as |®(t)), which is an open curve
but comes from the closed loop |¢(t))

(1) =" g(h)). (2.20)

It implies that:
|®(T)) = /D70 |0(0)). (2.21)

As the definition, the tangent vectors of the lift should be "horizontal’.To find the require-
ments of horizontal movement, we decompose the tangent vectors field |®(t)) of it into

vertical and horizontal parts:

|[D(£)) = (D(H) | (1)) |(F)) + |ha(£)) (222)

The vertical component is (®(#)|®(t)) |®(¢)) and the horizontal component is |hg(t)).
This decomposition is independent with the selection of fiber element. To make the
vertical part vanish

(®(t)|D(t)) = 0. (2.23)
Apply the expression of |®(t)) in terms of |¢(t)) yields:
(p(He TW1if (1) D]g(t)) + (g(t)e D] g(1)) = 0, (2.24)

which implies
fFB)=ilo®)lo(t). (2.25)
Integrate both sides from t =0 to t = T, and denote = f(T) — f(0), we find

T
p=i [ (o(lg(t)dt. 2.26)

© Uppsala University Zijin Wu



Theory of quantum geometric phase 9

To calculate |¢(t)), we decompose the operator § along vertical and horizontal direction:

d .o L, O
— =0 B
T 689 + X X7 (2.27)

and substitute $ |¢(t)) into (2.25)

T T, ) . d
=1 — [ _—
p=i [ atl6{o|5|o0) + 2 (000|555 0] (2.25)
An infinitesimal U(1) transformation on ¢(t) implies
|9(8)) 6,100 = [9(£))g, +160]9(t))y, - (2:29)
By comparing with its Taylor expansion
d|e(t
19())ayrs0 = 19(1))g, + 002 12L) 230
6o
we find for an arbitrary 6 that
d|o(t)) :
G| = ie0h (231)
0
Therefore also with (¢(t)|¢(t)) = 1 we can simplify (2.27)
N P d
Let us define 5
Ay =i o) 555 o)) 2.33)
and
A= A,dXx" (2.34)

so that the second part of the integral of the right-hand side of Eq.(2.32) becomes

T e 2

From Eq.(2.19), we know the first part of Eq.(2.32) equals

(p(t)> - 7{ A (2.35)

T
/ 6dt = 27tn (2.36)
0

thus implying
B =2mn+ 7{ A. (2.37)

© Uppsala University Zijin Wu



Theory of quantum geometric phase 10

For the horizontal lifting transformation ¢!, we have thus found

exp|iB] = exp[27tn + ]éfi] = exp[iz‘i] (2.38)

Hence, we can consider the phase 8 as

B= 74 A. (2.39)

The phase B is right the standard geometric phase we want to find.

2.3 Properties of geometric phase

The geometric phase has some special physics features that become significant advan-
tages in applying it in quantum computation from its mathematical property. Its essential
characteristics mainly include gauge invariance, and it is decided by geometric struc-
tures, which gives the quantum computation using geometric phase good performance
in robustness.

2.3.1 Gauge invariance
To prove the gauge invariance of the geometric phase, we consider two different lifts
[@(1)) =1V |g(t) (2.40)
(1)) = 20 |g(t)). (241)
For the period T, their corresponding overall phase are
a1 = f1(T) — f1(0) (242)

and

Ny = fz(T) — f2(0) (243)

These two lifts are connected by a gauge transformation V(t)
@) = V() |®(t)). (244)
From the Schrodinger equation, we know
0 = ~ K
2 1B () = H (1) B(1) (2.45)
Use (2.41), the Schrodinger equation becomes

— ()P0 [p() +ie2 W (1)) = H(t) |D(1)). (2.46)

© Uppsala University Zijin Wu



Theory of quantum geometric phase 11

Perform (®(t)| = e~ (¢(t)| on both sides

— fa(t) +i{p(B)]@(t)) = (D) H(t)|D(H)) . (2.47)
Rearrange
fa(t) = i{p(H)] (1)) — (D(t)[H(H)|D(t)) . (2.48)
Integrate bothe sides,then we get the representation of a; [10]:
T T ~ ~ ~
= [ fdar= [ dlite®lp@) - @OIAOBE).  @49)
Same for aq
T T
a1 = /0 f(t)dt = /O dtfi ((t)[@(t)) — (P()[H(t)|D(t))]. (2.50)

Comparing a; and ap, we find that the first part of the integrals are same. Recalling
(2.25), the first part of each integral is the geometric phase p we have derived. Hence,
the geometric phase keeps unchanged under the gauge transformation. It also means
the geometric phase is system independent, which gives its more robustness.

2.3.2 Geometric interpretation

The mathematical explanation to the time-independence of geometric phase is that it
is decided by the geometric structure of the fiber bundles for a given quantum system.
Actually the geometric phase equals the integral of connection form along a specific

curve.

A general tangent vector is produced by the operator . In the usual way, the operator

can be decomposed into two components [9]

d_,9
dt 06

where D), is called the covariant derivative. We can define it in the base space CPN [9]

+B'D,, (2.51)

_ 9 0
~oxr - Moe
where I' = I',d X" is the connection of the base space.

D, X e cpN (2.52)

By applying it to a vector |¢(t)) in total space E, we find the corresponding to tangent

vector 3
[#()) = azg|9(t)) + B Dy [¢(t)), (2.53)

© Uppsala University Zijin Wu



Theory of quantum geometric phase 12

where B is a coefficient, representing the component in horizontal bias. The tangent

vector itself can be decomposed along vertical and horizontal direction

[9(8)) = () |¢(1)) [9(2)) + |y (t))- (2.54)
The vertical part [¢(f)) and horizontal part |hy(t)) satisfy the orthogonality relation
(¢(t)|hy(t)) = 0. (2.55)

By comparing with Eq.(2.53) we find

9 .
wsz (1)) = (9(1)) ¢(1) [9(t)),

B Dy |9 (1) = Iy (1)) (256)

By using the orthogonality Eq.(2.55), we can obtain

(@(t)|hg(t)) = (p(t)[B*Dylhy(t)) = 0. (2.57)
Since Eq.(2.57) holds, for any B¥, it follows that

(¢(t)|Dylg(t)) = 0. (2.58)

By substituting Eq.(2.52) into Eq.(2.58), implies

(06| 55ztot0) ) + (o0

0
L35 #(0)) =0,

d d
r{000)] g o)) = = (00 555 o)) 259)
Substitute Eq.(2.31) into the left side of (2.59)
d ,
L 9l0)| 3500 ) =T (o0l 260

Assume the vector state is normalized, which means (¢(t)|$(t)) = 1, thus

£, =i g0) 555 o)) @.61)

The connection form I becomes

[=T,dX" = i<¢<t)}a§’(y

0 >dX”. (2.62)

Recalling (2.33), (2.34) and (2.39), we find that A, equals to T',. Therefore the expression
of geometric phase meets the integral of the connection form along a closed curve. Then

we give the independence of run time a geometric description. The connection form is

© Uppsala University Zijin Wu



Theory of quantum geometric phase 13

only decided by the geometric structure of a manifold and the geometric structure will

not change along the evolution of quantum system. So as the geometric phase.

© Uppsala University Zijin Wu



A method to implement quantum gates with geometric phase 14

3 A method to implement quantum gates
with geometric phase

To build the interconnected system of a given quantum state, we utilize the idea of
reverse engineering. In short, reverse engineering analyzes the existing system to find its
core characteristics and then reproduce a new system. Therefore in designing a quantum
computation system, we assume a system satisfies the requirements of performing the
function of the given geometric phase, and we analyze its features, in theory, to find how

to build a new one.

3.1 Introduction

The goal of our work is to design a system with a specific geometric phase, which
generally reflects in the form of the evolution operator. The process can be divided into

two parts.

First we transfer the requirements of parallel transportation into the limitations of gauge
transformation operators. As we see in the Eq.(2.49) and Eq.(2.50), the overall phase
includes two parts. While the geometric phase is invariant under the gauge transfor-
mation, the second part, called dynamical phase will change. It will show below that
how we can use the gauge transformation to eliminate the dynamical phase, which add
more limitation to the gauge transformation operator by an additional equation. This
equation will be called parallel transportation, for it also makes the state vector do a

parallel transformation.

The second part is to define Hamiltonian with known evolution operators. In this process,
we choose to use reverse engineering, which allows us to calculate the corresponding
Hamiltonian from the given evolution operator. With this Hamiltonian we obtained
from reverse engineering, it becomes possible to build a system in experiments to realize
the specific geometric phase and then perform the corresponding quantum gate.

We will elaborate our method with an example, a non-adiabatic system.

© Uppsala University Zijin Wu



A method to implement quantum gates with geometric phase 15

3.2 Parallel transportation equation

We have calculated the overall phase « for the system H(t) in section 2.3.1:

T T
w= [ F)dt= [ dtli(o(t)|o(t) — (@()[H(DIS()] @)

We hope to keep the first part, the geometric phase and annihilate the second part, the
dynamical phase [11]. The dynamical phase also equals to the vertical component of the

tangent vector [9]. Thus we have
(@(1)|D(t)) = — (®(t)[H(t)|P(t)) = 0. (3.2)

This equation is also called the parallel transport equation, for in the geometric interpre-
tation, it describes a parallel transformation of a vector from a tangent vector space to
another[7].

Consider a computational basis {|k(0)),k=1,2,...,d} [12], then we can write |®(t)) as
[13]:

(1)) =) [D(t))- (3.3)
k
For each k, we require
(@i (1) Dk (1)) = 0. (3.4)
Then Eq.(3.2) will hold. To keep
H(t) |®x(t)) = Ex|[Pr(t)), (3.5)
we define [14]:
[Pk (t)) = V(t)[k(0)). (3.6)

V(t) is a unitary operator. Substitute it into Eq.(3.4), we find

i(k(0)| VI(H)V(t) [k(0)) =0. (3.7)

3.3 Reverse engineering method for a non-adiabatic system
Consider a state vector |®(t)) in a non-adiabatic system [14]:
|[@(#)) = U(t) |@(0)). (38)

U(t) is the time evolution operator, and it is unitary. |®(t)) satisfies the Schrédinger
equation:

2 1@(1)) = H(1) (1) (39)

© Uppsala University Zijin Wu



A method to implement quantum gates with geometric phase 16

Substitute Eq.(3.8) into Eq.(3.9)

.0

i U(t) |@(0)) = H(H)U(t) [$(0)) .- (3.10)
Act U*(t) from the right for the both sides of the equation, we find

iaatu(f)w(f) |®(0)) = H(t) [®(0)), (3.11)

so that
H(t) =il(Hu'(t). (3.12)

Eq.(3.12) gives the relation between the unitary operator and Hamiltonian. For the
non-adiabatic system U(t) takes this form:

—

U(t) = V(A)D(@H) VT (AL). (3.13)

where diag[D(&(t)] = [e~“,ei«?t, e '?it], with wy is the frequency of the system.
Hence, after we define V(t) with the limitations from Eq.(3.7), we can calculate the
Hamiltonian we need.

However, there is an inequivalence in this process. To derive U(t) from H(t), suppose:
H(t) =) iV (1) [k(0)) (k(0)| V(). (3.14)
k

Then [14]:
U(t) = Te~ Jo H)ds (3.15)

It is different from Eq.(3.13).
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4 Examples

We select two non-abadiatic quantum systems with different number of energy levels
to demonstrate and examine the method introduced in Chapter 3. One is the 2-level

non-abadiatic system and the other is 3-level.

4.1 The geometric phase gate system with 2 energy levels

First we write down the parallel transport equation of the non-abadiatic 2-level system,
with V(A}) as the evolution operator for the state vector

PO} = (kI3 Ailk) = @)

We need to calculate the Hermitian adjoint of V(A;) and the derivative of V(A;). For the
system has two energy levels, V (t) is an SU(2) element. To calculate its Hermitian adjoint
and derivative, we have to represent it clearly with some parameters. We introduce unit
quaternion representation of SU(2).

Given a unit quaternion
qg= x11 + x21 + xg,f—i— xsk 4.2)

where
X2+ x5+ x4 x=1. (4.3)

It can be mapped to a complex matrix M

X1+ Xl X3+ Xy4i
M(q) = . . (4.4)
—X3+ X301 X1 — Xo1
which is an SU(2) element. This map is an isomorphism[15].Therefore we can let
A= [a,b,c,d]. 4.5)

a,b,c,d are functions of . We can just denote the quaternion corresponding to A; as A.

Then
a+bi c+di

V(A) = , ,
—c+di a-—bi

: (4.6)
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where A = al + bi + ¢j + dk.

The Hermitian adjoint of V(A;) is V(1) where A is the conjugate of A, that

A=al—bi—cj— dk. 4.7)

So the VT(A) is
a—bi —c—di

4.8
c—di a-+bi (48)

vhQA) = [

Then we calculate the derivative. Derive V(A;) on ¢

. V(A d

Calculate each component of the derivative of V(A;)
V(M) = [“ (.)] @10)
0 a
: ib 0
V() = . 4.11
(A2) [0 —ib] (4.11)
V() = [0. C] (4.12)
—¢ 0
: 0 id
Vdg) = | ., . 4.13
(A4) [id 0] (4.13)
where d
=%, yefabea). (4.14)
Finally the derivative of V(M) is
py= | AT i) (4.15)
—¢+41id a—ib

Left multiply VT(A), we get a new matrix. We denote the new matrix as G(A) for

convenience ‘ . B g
G\ = [“ I I R @16
c—di a+bi —Cc+id a—ib
G(A) equals to
(a—ib)(a+ib) + (—c —id)(id — ¢) (—c —id)(a —ib) + (a —ib)(¢ + id) 4.17)
(c—id)(a+ib)+ (a+bi)(id—¢)  (a+bi)(a—ib)+ (c —id)(¢+id) | '
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The meaning of G(A) = 0 is that the diagonal elements of G(A) are zero. So when it acts a vector,
the vector will vanish. The diagonal elements of the matrix are

(a—ib)(a+ib) + (—c —id)(—¢ + id) (4.18)
and
(a+ib)(a—ib) + (c —id) (¢ + id). (4.19)
Then we obtain
— ibd + ad + iab + bb + id¢ + c¢ — icd +dd =0 (4.20)
iba + aia — iab + bb — id¢ + c¢ + icd + dd = 0 (4.21)
From (4.3) we know
2+ +d?=1. (4.22)
Deriving on both side, we have
ad +bb+cc+dd =0. (4.23)
So we can simplify (4.19) and (4.20).
i(ba —ab +cd — dc¢) =0 (4.24)
Therefore we need
bi —ab+cd — d¢ =0. (4.25)

Recalling (3.19) we decide U(t)

u(t) = v(A)D(@HV'(Ay)

(c+di)(c —id)e™ ™2t + (a + bi)(a — ib)e ™t (a+ bi)(—c —id)e™ "1t + (a + bi)(c + di)e 2!
(a—ib)(c —id)e™ ™t + (id — c)(a — ib)e ™t (id — ¢)(—c — id)e™ "t 4 (a + bi)(a — ib)e ™2t |

(4.26)
We calculate the derivative of U(t)
(t) = V(T)D@HVI (1) + V(X)D@) V(X)) + V(AND@HVH (K. (427)
The first part V(A;)D(@t) VT () is
(a—ib)e ™1t (a +ib) + (c —id)e @2t (¢ +id) (—c —id)e 1t (a +ib) + (a +ib)e~"w2! (¢ + id) (4.28)
(c —id)e ™2t (a — ib) 4 (a — ib)e™ ™1t (id — ¢) (a4 ib)e ™2t (a —ib) + (—c — id)e~ 1t (id — ¢) )

The second part V (A;)D(@t)VF(A}) is

—iwy (a+ib)(a — ib)e 1t —iwy(c +id)(c — id)e w2 (c+id) (ib — iwpae~@2t) — iy (a +ib)(—c — id)e "1
—iwy (—c+id)(a — ib)e 1t —iwy(a —ib)(c —id)e ™2t (a—ib)(ib — iwpae™ 2! —iwy (—c +id)(—c — id)e~ w1t

(4.29)
The third part V(A;)D(@t)V(Ay) is
[(a +ib)e it (4 — ib) + (c + id)e 2t (¢ —id)  (c + id)e 2! (4 + ib) + (a + ib)e i1t (—¢ — z'd')} (430)
(id — c)e ™1t (4 — ib) + (a — ib)e @2t (¢ —id) (a —ib)e"2(a + ib) + (id — c)e™ "1t (—¢ —id) | ’
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Sum these three parts, we find each component of U(¢):

Uy =ae™ (24 4 wy (b — ia)) — be ™1 (=2b + wy (a + ib))
+ e~ W2t (¢(2¢ — icwy) + dws) — d(cws — 2d + idw,))

Up=—(c+ id)eiiwlt(d + Zb) +(c+ id)eiith({i i lb)
_ (a + ib)eﬂ‘wlt(é 4 ld) + (a + ib)eiiwzt(é —l—id)
+iwy (a4 ib)(c +id)e ™1t 4-i(c 4 id) (b — woae™"w2)
Uy = — (c —id)e "1 (a — ib) + (c — id) (—iwyt) (a — ib)
— (a—ib)e™ (¢ — id) + (a — ib)e~"2! (¢ — id)
+wi(c —id) (b + ia)e 1" — iwy(a — ib)(c — id)e 2!
Upy =2aae™ 2 4 b(ia 4 2be™“?! +b) — bwyae !
— iwpale ™2t o™it (2¢ — jcwy — dewy)
+ (Ulcdefiwlt 4 2dde~ it _ iwleE%cult

Using (3.24), we reversely define the Hamiltonian H

Hyy =i[(a + bi)2e 1t — (2 + d?)e 2| {ge 1t
24 + w1 (b — ai)] — be™ "1 [—2b 4 w (a + ib)

+ el e(2¢ — icwn + dawp) — e d(cwp — 2d +idwn)]}

Hyp =i(c+id)[(a + ib)e'r* + (a — ib)e '“?!)
[(—c+id)(a+ib)e 1" + (c+id)(a + ib)e "2
— (a+ib) (¢ + id)e ™1 + (a + ib) (¢ + id)e 2!
+iwy (a+ib)(c +id)e” "1t +i(c+id) (b — wyae~“2)]
Hpy =i(—c +id)[(a + ib)e ™t + (a — ib)e~"“2!]
[—(c —id)e™ 2" (a = ib)] + (c —id)e™ " (a — ib)
— (a —ib)e™1(¢ — id) + (a — ib)e ™! (¢ — id)
+ wi(c —id) (b +ia)e 1" —iwy(a —ib)(c — id)e™"']
Hop = — 2iaa[—(a — ib)%e~ 92! 4 c2e~ /@1t 4 d2ew1t]e—w2!
+ [b(—a + 2ibe "2t + ib) — igbwoe?t + aPwye~ 2t
+ ce 1t (2i¢ + cwy — idwy) + icdw e 1t

+ 2idde 1t 4+ @2 et

We know that from (4.3) and (4.25),we find two constraint of parameters {a,b,c,d}, that

4+ +dr=1

ab—ab+¢d —cd =0.

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

These constraints implies a set of possible solutions of the parameter functions: a(t), b(t), c(t)

and d(t). So the solutions of Hamiltonian will also be a set of selections, whose elements share

some common property. In conclusion, we finally develop a series of systems with specific
property. Yy P Y p
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relations of parameters.

4.2 The geometric phase gate system with 3 energy levels

The procedure of designing 3-level non-abadiatic system is similar to 2-level. Instead the repre-
sentation of V(A}) is an element from SU(3).

To decompose an SU(3) matrix, we use Gell-Mann matrices,which are generators of SU(3) [16].
That for a U(&) in SU(3), there has

8
. 1
Uu) = exp{z iajTj} (4.41)
]:
Assuming A = 1d, we get
8
V(Ar) =exp{i}_ AT;} (4.42)
j=1

where T] is the set of Gell-Mann matrice.

[0 1 0 0 —i 0 1 0 0
Th=11 0 0 Th=1i 0 0 Tz3=10 -1 0
0 0 0 0 0 O 0O 0 O
[0 0 0] 00 —i 00 0
Ty=10 0 —i Ts=1(0 0 O Te=10 0 1 (4.43)
0 i 0] i 0 0 010
[0 0 0] L [roo
T; =0 0 —i Tg=—10 1 0
0 7 0] V3 00 -2
The Hermitian adjoint of V(A}) is
g . 8
V(AL = V(=Ay) :exp{—l;/\jT]-}. (4.44)
j=
We can further reduce the representation into [17]
V(Xt) — el')\l T3 ei/\z T2 ei/\3T3 ei/\4T5 ei/\5T3 ei)\ﬁTz ei)\7T3 ei)\g Tg (445)
V‘l'(Xt) — e—i)tl Tae_i)Lsze_i/\3Tse_i/\4T5e_i/\sTSe_iA6T26_iA7T3€_i/\8T8. (446)

This type of decomposition is also called Euler angle decomposition. We can first expand the
matrix exponential of T;_7 into a matrix polynomial [18]:

exp(i0T;) = I — iTjsinA; + T} (cosA; — 1). (4.47)
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where 0 is a parameter. We obtain

COS/\]' sin)\]- 0

exp(iAjTa) = | —sinA; cosAj 0 (4.48)
0 0 1
M0 0

exp(iMT3) =1 0 e 0 (4.49)
0 0 1

cosAy 0 sinAy
exp(irgT5) = 0 1 0o 1. (4.50)
—sinAgy 0 cosAy

where j € {2,6} and k € {1,3,5,7} Specifically the matrix exponential of iAgTg is

eMs/V3 0
0 eits/V3 0 . (4.51)
0 0 e 2M/V3

The elements of V' can be simply obtained through replacing A; with —A;.Same as the two-state
system, the corresponding time evolution operator U(t) equals to

U(t) = VD(&(t)) VT, (4.52)

Now to find the limitation of parameters, use the corresponding parallel transport equation of

this system
9 -
+
—~ Vi =0. 4.
14 o VA =0 (4.53)
where )\j is the derivative of A; respect to time t. The left of the equation is a new matrix. Denote
the new matrix as M. Like what we do to G(A), we need the diagonal elements of M equal to

zero, that
My = V1+1V11 + VlJer21 + Vl-fSVB‘l =0 (4.54)
My = V2+1 V12 + V2+2 sz + V;3V32 =0 (4.55)
Mzz = Vi Viz 4+ Vi Vg + Vi Va3 = 0 (4.56)

We give three equations to limit the parameter vector At A group of possible solutions for each
parameter function can be obtained from these equations. With the relation between V(A;) and
u(t):

U(t) = VD(&(t) VT, (4.57)

we can rebuild the unitary operator U(t). Then recall the expression of Hamiltonian,
H=ilut(t). (4.58)

By using the Eq.(4.57), we can also find the corresponding set of Hamiltonians of three state
systems, like what we do in the situation of two state system.
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The change of the system’s geometric structure, or additional conditions will reflect in the time
evolution operator. Like, there are some energy states are degenerated [19]. In another word,
some of the frequencies in D are identical. We assume w; = wj # w3. Then each element of U(t)
is

2iAg
Vi

iA+idg—ids—idy— iwyt

1 p2ity

iM —idg—ids—iwnt

Uyp =sin® A4 cos Ay cos Age

(eMHidsFits—iontgin Ao cos Ay + e sinAp cosAgcosAy)
(sinAg cos Ay cos ApeM T35 1 gin A sin Aot~ iAs) (4.59)

+ (ePMHAFiAS 005 A5 cos Ay cos Ag — €M7 75 5in A sin Ag)

(cos Ay cos Aycos Age M TIAs TSI i )5 sin A ge M HiAsTiAs ity
. . . . 2i\. .
. . iAM+idg—ids+idy— 28 —itw
Ujp = — sinAgsin? AgcosAge 13T ST s T2
+ &2V (—em Ml TiAs it o5 )5 cos Ay sinAg — e M TS HASTIWIEGin ) ) cos Ag)
(—sinApsin Age™ =375 1 cos A cos Ag cos AgeiM T3 HIAS) (4.60)

+ (eM 3715 6in Ay cos Ag 4 €M A A sin A ¢ cos Ao cos Ay
i)\]+i/\3+i)\5*itéd2 _ l)\l 71’/\371’/\571’&0] )

(cosApcosAge sin A, sinAg cos Age

. . iAg -
1—iA3—iAy+ l—g —itwy

iA+idz—itwy SiII/\Z Sin/\4€i)\ V3

Uj3 =sinAgcos Ay cosAge
iAM—iA3—ils o iM+ids+ils o e
(e sinAp cosAg + e sinAgcosAycosAy) — sinAgcosAy (4.61)

71’/\171’)\3%*1‘/\7*‘1”‘/\*8*1}(4}1 iA+idg+iAd IAN —IAr—IAs .+ .
e V3 (e TBTIS cog Ay cos Ay cos Ag — €1 T TS gin A, sinAg)

—iAy+idg—ids—iy— % Zitwy

Uy = —sinAy sin? AgcosAre
+ (—e~MHAH A5 gin Ay cos Ay cos Ag — e M T35 5in A cos Ay)
(cos A cos Ay cos Age M TiAsiAs =it _gin )\, sin Age M HAsHiAs it (4.62)

+ e—2z/\7 (ezA1+lA3+lA5—zw1tCOS AycosAg + 61A1—1A3—1A5—1w1tsin)\2 sinAg COS)\4)
(—sinAycos Agcos Age MHATIAS | gin A cos Ape M A3 TIAs)

. . . . 2iA .
. . . —iA iy —ids+idy— 228 —itw
Uy =sinApsinAgsin® Age 13 ST 2

+ ¥V (—emMHAHAS 6in A cos Ay cos Ag — e~ M T3S gin A cos A)

i1 _ sin Ag cos A cos Age M TiAsiAs it (4.63)

i/\l 7i)\3 7i/\5 7iw2t

(—sin Ay cos Age M HiAs A=

+ (eMFitatids—int sinApsinAgcosAy)

—iM+ida+ids)

COSApycosAg — e

(cos Ay cos Age ™ M~A37iAs _gin ) sin A cos Age

iA —iAgdidy+ ’A—g ity

—ihtids—itwr _gin A, cosAge V3

Upz = — sinApsin Agcos A4e

(—e~MFAs TN 6in Ay cos Agcos Ag — e~ M TS 5in A cos M)
e 69

. . 1 —1 —1 — — LW
—sinApsinAge b T

(e~ M =As=iA5 005 Ay cos Ag — e~ M AT gin ) sin A cos A4)

U31 =sinA4cos A4 cos Aée*’AS*l)‘f“@)‘S*”“’z — e 727 6in Agsin Ay

(sin Ay cos Ay cos Age!™ A3 =iAsitw2 4 gin )¢ cos ApetM HiAstHiAs —itwr) (4.65)
— e sin A4 cosAg (cos Ay cosAycos Age ™M —irs—ids—itw

—sin )\2 sin A6e—i)L1 +i/\3+i/\5—itw1)
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U3y = — sinA4sinAg cos )\4671)‘5“)‘7*“/5/\8*”“’2 — M5t 2A76in Ay cos Mg
(—sin Ay cos Age~MHiAsFiAs—itor _gin )\ cos Ay cos Age M T TiAs it (4.66)
— 5 sin Ay sin A (cos Ap cos AgelM TiAaHiAs it
— sin Ay sin Ag cos AgeiM A3 iAs it )
Uss :sinz A4COSAyCOS /\66—1/\1—1/\3+1)\5+z)\7+1\/§/\8—1tw1 + e itwr COSZ Ag. (4.67)

The reverse engineering method also works for a partly degenerated system. We cannot use
this method for a fully degenerated system, like w; = wy = w3. Because then U(t) will become
trivial. When the time evolution operator is simplified, the arbitrary form of Hamiltonian is still
very complicated. The geometric phase will have a more complex representing form depending
on the Hamiltonian.

4.3 Discussion and analysis

From the process shown above, we explain each step of how to use reverse engineering to of
set up the Hamiltonian of non-adiabatic system with two or three energy states. These specific
modified systems will only have the geometric phases.

Furthermore, because therein principle exists a method to decompose SU(N) element with
several parameters [17] in theoretical it is possible to define the Hamiltonian of a quantum
system with any number of energy state. However, when there are more than two energy states,
the calculation will be somewhat messy and difficult due to introducing too many parameters. It
is also hard to do some analysis with the results of three energy state systems. However, we can
still do some discussion on two energy state systems.

The limitations we established for two energy state system is a group of ordinary differential
equations:
PP+ 4d =1 (4.68)

ab—ab+¢d—cd=0. (4.69)

It might be difficult to find analytic expressions of c,d with a,b. However, in practice, we can
work out the relations among these four parameters by adding more conditions and explicitly
expressing H. For exampleif we chose ab — ab = 0 and ¢d — cd = 0, that means 3 and § are all
constants independence of time. The number of parameters reduces to two. Changing these
constants will also produce an array of Hamiltonians.
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5 Conclusion

In this thesis, we introduced a theoretical method to realize quantum computation, which relies
on the geometric properties of the given quantum system. After explaining the procedure of
building a quantum system, we examine it by deciding the limitations of two non-adiabatic
systems. First, we studied the evolution of a quantum system from a geometric perspective.
We build a relation between the space of physics states and the space of state vectors with fiber
bundles. We give the evolution process of a physics state a differential geometric interpretation.
Through studying the geometric structures of these two space and their relations, we find the
parallel transport in base space, the space of physics state will cause a phase transition for the con-
dition in total space, the space of state vectors. The phase is divided into two parts: the dynamic
and the geometric phases. Meanwhile, the geometric phase is the connection of the manifold
corresponding to vector state space, which means it only depends on the system itself at any time.

Then we developed a general method to realize a specific quantum gate with a quantum system.
The problem is to find a way to design the quantum system with a special Hamiltonian that
only has a geometric phase. This requirement can be satisfied by deliberately defining the time
evolution matrix U(t) to vanish the dynamic phase. Hence we use the idea of reverse engineering
to define U(t) and H. This method is that at the beginning, we parameterize the matrix U(t)
and assuming the U(t) satisfies the parallel transport equation, we study the characteristics of
the parameters. We will obtain some limitations of these parameters. Next, we use the idea of
reverse engineering again to build a Hamiltonian with U(¢). Combining with the limitations, we
obtained before, finally, we defined a set of Hamiltonian, which gives us a series of quantum
systems.

Finally, we selected two examples to calculate to examine our method and analyze these geomet-
ric phase quantum systems. Mainly we focused on the non-adiabatic systems. We separately
calculated the limitations of two energy states and three energy systems and decided on their
corresponding Hamiltonian. We also analyzed these systems while some of their frequencies are
identical.

Through our calculation and analysis, we found that reverse engineering is a practical and
helpful method for the more straightforward system. However, the reverse engineering method
will produce detailed results for the system with many energy states, especially for non-adiabatic
systems. The limitation of the three-energy state system is that a set of complex ordinary
differential equations might be hard to find a definitive solution. Therefore future work will
improve this method for non-adiabatic systems with more than three energy states. It is possible
to utilize popular technology like machine learning in future research. Some generated machine
learning models can be trained to generate Hamiltonian for a given geometric phase.

© Uppsala University Zijin Wu



Literature 26

Literature

[1]

(2]

3]

[4]

[5]

[6]

[7]
8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press, 2010.

A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J. A. Jones, D. K. L. Oj, and V. Vedral,
“Geometric quantum computation,” Journal of Modern Optics, vol. 47, no. 14-15,
pp- 2501-2513, November 2000.

E. Sjoqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, and K. Singh,
“Non-adiabatic holonomic quantum computation,” New Journal of Physics, vol. 14, no. 10,
p- 103035, October 2012.

F. Wilczek and A. Zee, “Appearance of gauge structure in simple dynamical systems,”
Phys. Rev. Lett., vol. 52, pp. 2111-2114, 24 Jun. 1984.

J. J. Sakurai and ]. Napolitano, Modern Quantum Mechanics, 2nd ed. Cambridge University
Press, 2017.

M. V. Berry, “Quantal Phase Factors Accompanying Adiabatic Changes,” Proceedings of the
Royal Society of London Series A, vol. 392, no. 1802, pp. 45-57, March 1984.

M. Nakahara, Geometry, Topology and Physics, Third Edition. Taylor & Francis, 2023.

R. Karle and J. Pachos, “Geometrical phases for the g(4,2) grassmannian manifold,”
Journal of Mathematical Physics, vol. 44, no. 6, p. 2463, 2003.

A. Bohm, L. J. Boya, and B. Kendrick, “Derivation of the geometrical phase,” Phys. Rev. A,
vol. 43, pp. 1206-1210, 3 February 1991.

Y. Aharonov and J. Anandan, “Phase change during a cyclic quantum evolution,” Phys.
Rev. Lett., vol. 58, pp. 1593-1596, 16 April 1987.

L.-M. Duan, J. I. Cirac, and P. Zoller, “Geometric manipulation of trapped ions for
quantum computation,” Science, vol. 292, no. 5522, pp. 1695-1697, Jun. 2001.

J. Zhang, T. Kyaw, D. Tong, E. Sjoqvist, and L. Kwek, “Fast non-abelian geometric gates
via transitionless quantum driving,” Scientific Reports, vol. 5, p. 18 414, December 2015.

M. V. Berry, “Transitionless quantum driving,” Journal of Physics A: Mathematical and
Theoretical, vol. 42, no. 36, p. 365303, August 2009.

J. Anandan and L. Stodolsky, “Some geometrical considerations of berry’s phase,”
Physical review D: Particles and fields, vol. 35, pp. 2597-2600, May 1987.

J. Gallier, “The quaternions and the spaces s3, su(2), so(3), and p3,” in Geometric Methods
and Applications: For Computer Science and Engineering. New York, NY: Springer New York,
2001, pp. 248-266.

© Uppsala University Zijin Wu



Literature 27

[16]

[17]

(18]

[19]

S. Scherer and M. Schindler, A Chiral Perturbation Theory Primer. Jul. 2005, vol. 830.

M. Byrd, “Differential geometry on su(3) with applications to three state systems,” Journal
of Mathematical Physics, vol. 39, no. 11, pp. 6125-6136, 1998. eprint:
https://doi.org/10.1063/1.532618.

T. L. Curtright and C. K. Zachos, “Elementary results for the fundamental representation
of su(3),” Reports on Mathematical Physics, vol. 76, no. 3, pp. 401-404, 2015.

K. Singh, D. Tong, K. Basu, J. Chen, and ]. Du, “Geometric phases for nondegenerate and
degenerate mixed states,” Physical Review. A, vol. 67, March 2003.

© Uppsala University Zijin Wu


https://doi.org/10.1063/1.532618

	Abstract
	Abstrakt
	Acknowledgements
	Introduction
	Theory of quantum geometric phase
	Mathematical preparation
	Topology, differentiable manifold and diffeomorphism
	Connection and holonomy
	Fiber bundle

	Derivation of geometric phase
	Fibers of a quantum mechanic system
	The generation of geometric phase

	Properties of geometric phase
	Gauge invariance
	Geometric interpretation


	A method to implement quantum gates with geometric phase
	Introduction
	Parallel transportation equation
	Reverse engineering method for a non-adiabatic system

	Examples
	The geometric phase gate system with 2 energy levels
	The geometric phase gate system with 3 energy levels
	Discussion and analysis

	Conclusion
	Literature

