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Abstract

Quasicrystals are systems that are ordered but not periodic. They do how-
ever still have long-range order and well-defined diffraction peaks. This leads
to interesting properties, like critical states which are neither extended nor lo-
calized, and to topological invariants and edge states. We study how these
peculiar properties impact superconductivity in an SNS-junction, by attaching
superconducting leads to a quasicrystal nanowire. We choose to investigate
proximitzed superconductivity in Fibonacci quasicrystals, since their normal
state has been thoroughly studied and understood. Using the Bogoliubov-de
Gennes method and solving the order parameter self-consistently, we calculate
the proximity effect as well as the Josephson current. We find that quasicrys-
tals can enhance the proximity effect and significantly enhance the Josephson
currents.
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1 Popularvetenskaplig sammanfattning

Kvasikristaller ar system som ar ordnade men som saknar periodicitet. Trots detta sa
ar de ordnade over langa avstand och har véldefinierade diffraktionsmonster. Detta
ger upphov till intressanta egenskaper som skiljer sig fran de hos kristallina, peri-
odiska, material och amorfa, oordnade, material. Bland annat sa kan de ha sa kallade
topologiska egenskaper, som gor materialets egenskaper robusta mot vissa sorters
storningar. Detta ar spannande eftersom denna sortens egenskaper annars bara
gar att finna i periodiska system av hogre dimension. Ett exempel pa kvasikristal-
lina strukturer ar Penrosemonster, se Figur En endimensionell kvasikristall ar
Fibonacci-kvasikristallen, som baseras pa Fibonaccis talfoljd. Fibonaccis talfoljd &ar
en rekursiv talfoljd dar varje nytt tal &r summan av de tva foregaende talen i talfolj-
den. En Fibonacci-kvasikristall kan konstrueras pa ett liknande satt, dar varje ny
Fibonaccikedja bildas genom att sammanfoga de tva féregaende kedjorna.

I detta masterarbete undersoker vi hur kvasikristallers unika egenskaper samverkar
med ett ordnat tillstand sa som supraledning. Supraledning ar ett tillstand som ex-
isterar i vissa material vid tillrackligt laga temperaturer och karaktariseras av tva
fenomen. Det forsta fenomenet ar perfekt elektrisk ledningsformaga, vilket innebéar
att resistiviteten i materialet gar ner till noll. Det andra fenomenet ar perfekt dia-
magnetism, aven kallat Meissnereffekten. Detta innebar att alla magnetfalt kastas ut
ur materialet.

Vi underscker hur kvasikristallers speciella karaktérsdrag paverkar supraledningen
i sa kallade Josephsondvergangar, eller mer specifikt SNS-Overgangar, hybridsys-
tem som innehaller tva supraledare med en normal metall emellan. Dessa utfor-
mas genom att fista tva supraledare pa dndarna av en endimensionell Fibonacci-
kvasikristall. Vi studerar tva fenomen som uppstar i SNS-Overgangar, proximitetsef-
fekten samt Josephsonstrommen. Proximitetseffekten beskriver hur mycket supraled-
ningen ”lacker in” in normaldelen fran supraledaren. I SNS-6vergangar kan man dven
ha sa kallade Josephsonstrommar, vilket ar superstrommar fran den ena supraledaren
till den andra genom normaldelen, trots att normaldelen i sig inte ar supraledande.
Genom att gora numeriska berdkningar fann vi att kvasikristaller kan forbattra prox-
imitetseffekten nagot, men framfor allt sa kan de markbart forbattra Josephson-
strommen.



2 Introduction

Quasicrystals are ordered structures that lack
periodicity. They fall somewhere in the realm
between periodic crystals and disordered amor-
phous materials, which gives them interesting
properties, some of which can otherwise only
be found in periodic systems of higher dimen-
sion. Since they first were discovered in the
1980s, quasicrystals have gained a lot of re-
search interest mainly because of their elec-
tronic properties. Mathematicians discovered
aperiodic tilings already in the 1960s, with the
Penrose tilings |1] being some of the more well-
known, but it took 20 more years until they
made their way into crystallography. In the be-
ginning of the 1980s, Alan L. Mackay [2| made predictions for the crystallography of
quasicrystals and the first experimental findings of quasicrystals were made by Dan
Shechtman [3]. In 2011, Shechtman was awarded the Nobel Prize in Chemistry for
this discovery.

Figure 1: A Penrose tiling

With advances in nanotechnology, it is becoming more and more feasible to fabricate
and study quasicrystals, even with single-atom precision . Since they first were
discovered, the normal state of quasicrystals have been thoroughly studied, while the
impact of ordered states in quasicrystals is not as well understood. Although efforts
have been made to study superconductivity in quasicrystals, very few experiments
have been able to detect intrinsic superconductivity in quasicrystals . An adjacent
research area that has remained relatively unexplored is that of proximitized supercon-
ductivity in quasicrystals. A theoretical study made on superconductor-quasicrystal
hybrid rings @], found that the quasiperiodicity in some cases could enhance the
proximity effect, compared to a periodic chain.

This master thesis aims to expand on that work by studying quasicrystal SNS-
junctions, in which we not only verify qualitatively the results for the proximity effect
but also study the Josephson current. SNS-junctions are hybrid systems consisting
of two superconductors with a normal metal in between, and have many applica-
tions, e.g. in SQUIDs and quantum computing. In this thesis we replace the usually
periodic normal metal with a Fibonacci quasicrystal. We find that although the prox-
imity effect can only be seen to be somewhat larger for certain quasiperiodic chains,
the Josephson current can be significantly enhanced by quasiperiodicity, in particu-
lar when the transmission between the superconductors and the quasicrystal is not
perfect.



This thesis is outlined as follows: Theory on quasicrystals, with the 1D Fibonacci
quasicrystal in focus, is discussed in Section [3] Theory on superconductivity and the
Bogoliuobov-de Gennes method are reviewed in Section [d], as well as some details
around how to solve the self-consistent gap equation. Section [5| discusses the physics
of SNS-junctions, the proximity effect and Josephson currents. The results are pre-
sented and discussed in Section [6] and lastly we have Section [7] with conclusions and
outlook.



3 Quasicrystals

Quasicrystals are structures that are ordered, but unlike regular crystals, they lack
translational symmetry. They do however still exhibit discrete rotational symmetry,
long-range order and scale invariance. The rotational symmetries found in quasicrys-
tals differ from those found in crystals, as they prohibit periodicity in the material.
Similarly to periodic crystals, and unlike amorphous materials, quasicrystalline ma-
terials have sharp diffraction patterns made up of Bragg peaks. For a periodic crystal
of the spatial dimension d, the number of reciprocal lattice vectors that are required
to index the Bragg peaks are equal to d. For a quasicrystal however, the number of
reciprocal lattice vectors D needed to index the Bragg peaks is larger than the spatial
dimension d [7].

Quasicrystals exhibit many different interesting behaviours such as multifractal en-
ergy spectra and critical states, i.e. states that are neither extended nor localized.
They also provide a platform to study topology and edge states, as they are topolog-
ical invariants |7].

In this thesis we study the one-dimensional Fibonacci quasicrystal, as it is one of
the most researched and well-understood quasiperiodic systems. Sections [3.1] and
describe ways in which a Fibonacci chain can be constructed, while Section
details a tight-binding Fibonacci model and Section [3.1.3] shortly discusses the
topological properties of the Fibonacci quasicrystal.

3.1 The Fibonacci chain

One example of a 1D quasicrystal is the Fibonacci chain. The Fibonacci numbers
form a sequence in which each Fibonacci number, F),, is the sum of the two previous
numbers in the sequence, i.e. following the recursion relation Fj,, = F,,_1 + F},_, with
Fy = 0 and F; = 1. The Fibonacci chain can be generated in a similar way, but
instead we use the letters A and B, and concatenate the two previous chains to form
the next chain, C),, in the following way [7]:

with Cy = B and C} = A. (), is a finite approximant of an infinite Fibonacci chain,
which can be obtained by letting n — oo. The length of the n:th approximant is
equal to the Fibonacci number F;,. The first few Fibonacci approximants can be seen
in Tab. [I] and a physical interpretation of such an approximant can be seen in Fig.
2l If one takes the ratio between two consecutive Fibonacci numbers and then let
n — 0o, the ratio will go towards the golden mean, 7 = (1 +/5)/2 [7]:

Fn—l
= Tn,
Fn o (2)
lim 7, =7,
n—oo



n C, F,
0 B 1

1 A 1

2 AB 2
3 ABA 3
4 ABAAB 5
5 ABAABABA 8
6 ABAABABAABAAB 13
7

ABAABABAABAABABAABABA 21

Table 1: The first eight Fibonacci approximants. Each new chain C, is constructed
by concatenating the previous two chains, C,,_; and C,_5. The length of the n:th
approximant C, is equal to the Fibonacci number F),.

A B A A B

Figure 2: The 4:th Fibonacci approximant. In a physical system, the quasiperiodicity
can be realised by for example having two different distances between the atoms in a
lattice. Here A corresponds to the shorter distance (red) and B corresponds to the
longer distance (blue).

with 7,, being rational approximants of the golden mean, 7.

3.1.1 The characteristic function

Another way of constructing a Fibonacci chain is using the characteristic function [7],
[8], where the j:th letter of the chain is given by

X; = sgnfcos (2mjT " 4 ¢o) — cos(w7 )], (3)

where j = 1,2,3,... and x; = —1 corresponds to the letter A and x; = 1 to the
letter B. For the Fibonacci chain, 7 = (1 +v/5)/2 is the golden mean and ¢y = 77
[6]. If the chain is ended at the length F,,, it will correspond to the n:th Fibonacci
approximant C,,. The advantage of constructing the Fibonacci chain in this way is
that ¢g can be replaced by 0 < ¢ < 27, and as ¢ is varied phason flips occur, always
one flip at a time. By varying the phason angle ¢ one can then generate a family of
(F,, + 1) chains of length F),. From here on out we will use

x; = sgnfcos(2mjT " + @) — cos(n7 )], (4)

with the following parametrization ¢ = (¢ — ¢,) mod 2w, where ¢, = (F,, + 1)7r L.
Figure |3|illustrates how the phason flips occur in the chain.
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Figure 3: Phason flips in the 4:th Fibonacci approximant, red corresponds to the
letter A and blue to the letter B. As the phason angle ¢ is varied single flips arise,
altering the chain with a periodicity of 27 (left). Ilustration of how the chains look
corresponding to different values of ¢ (right).

3.1.2 Tight-binding Fibonacci models

Tight-binding models are often used in condensed matter physics, e.g. for quasicrys-
tals, or as is discussed in Section [£.1.0] for superconductors. The theory of tight-
binding models is explained further in that section. Fibonacci chains are often studied
using tight-binding models of the following form

H = Z €nchcp — (tncjlﬂcn + H.c.), (5)

where ¢, is the on-site energy at the n:th site and ¢,, is the hopping between sites n
and n + 1. The modulations, i.e. the variations of A and B in the chain, described
previously can be incorporated into the tight-binding Hamiltonian in different ways.
The two simplest Fibonacci models are the diagonal Fibonacci model, in which the
modulations are placed in the on-site energies €,, and the off-diagonal Fibonacci
model, in which the quasiperiodicity is put in the hopping energies ¢, [7]. In this
report we focus on the latter case, letting the hopping energies t,, take one of two
values t4 and tp according to the modulations of a Fibonacci chain. The on-site
energies €, are taken to be constant, i.e. ¢, = ¢, which allows us to drop the on-site
energy term and leaves us with the following Hamiltonian:

H=-> tulh cn+He (6)

By using tp as the unit of energy we are left with the ratio p = t4/tg, where p = 11is
the periodic case, as the only parameter, allowing us to adiabatically switch on the
quasiperiodicity. One can then either just look at a single Fibonacci approximant C,,,
or construct a quasiperiodic chain by using the approximant C,, as a sublattice, and
then repeat the sublattice N number of times to get the whole lattice.
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Figure 4: The upper figure illustrates the lattice for the 4:th Fibonacci approximant.
For some systems it can be relevant to use the approximant as a sublattice in a longer
chain. Then the last hopping of the approximant chain couples to the subsequent
approximant sublattice. This is illustrated in the lower figure.

Such structures, with repeated sublat-
tices of a Fibonacci approximant, occur
naturally in 3-dimensional icosahedral
and dodecagonal quasicrystals. This
has for example been shown in exper-
iments using STM imaging of copper
adatoms deposited on an icosahedral
AIPdMn quasicrystal [9]. Figure [ illus-
trates the lattice for the 4:th Fibonacci
approximant.

3.1.3 The gap labeling theorem
and topological indices

As one goes from a periodic system to a
quasiperiodic system, gaps will open up
in the energy spectra. One of the few
known exact results for the electronic
properties of quasicrystals is the gap la-
beling theorem [10], which gives con-
straints on what values the integrated
density of states (IDOS) can take within
a spectral gap. The IDOS at an energy
E is defined as the fraction of the en-
ergy states which are below the energy
E, or in other words, idos(FE) is calcu-
lated by integrating the normalized den-
sity of states up to the energy E.

2.0

15

0.5

0.0

-15 -1.0 -05 00 05 10 15

Elts

IDOS

Figure 5: Density of states (upper) and in-
tegrated density of states (lower) for Fi-
bonacci approximant n = 10, with 90 sites
and t4/tg = 0.5, with the largest gaps
marked with their gap label q.
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Figure 6: The energy spectra as a function of ¢4 /tp for three different approximants,
repeated so that the chains are of similar length for all three systems. The upper
row displays the full spectra, while the lower row shows it zoomed in around £ = 0.
(a) The 2:nd approximant (repeated N = 150 times). (b) The 5:th approximant
(repeated N = 40 times). (c) The 8:th approximant (repeated N = 10 times). As
the modulation strength is increased /decreased from |t4/tp| = 1 (which corresponds
to a periodic chain), the system becomes quasicrystalline and gaps open up in the
energy spectra. In the zoomed in plots one may also note that there are flat bands
at zero energy.

The definition of density of states and integrated density of states, and how these
quantities are calculated using Bogoliubov-de Gennes formalism, is described in a

later section, see Eq. and Eq. (36).

In the spectral gap, the IDOS is constant, and this constant value is decided by the
gap labeling theorem. For the special case of the Fibonacci chain the theorem states
that [11]

idos(E € gap) = Ti mod 1 (7)
where ¢ is the gap label. It has been shown that this theorem applies not only in the
quasiperiodic limit, i.e. when n — oo, but also to the approximants [11], with the
caveat that some of the gaps in the approximants are transient, meaning they only
appear for some of the approximants but do not exist for the full infinite Fibonacci
chain. Other gaps are however stable, meaning they stay open in the quasiperiodic
limit. It turns out that the transient gaps are always the ones with the highest gap
label.

Incidentally, the gap label also has a physical meaning, as it is associated to a topo-

10
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Figure 7: The lower part of the energy spectra as a function of the phason angle,
for an open Fibonacci chain, n = 10, with 90 sites. The hopping ratio is set to
ta/tg = 0.5. Each gap can be given a label, a winding number, that corresponds to
the number of crossings over that gap.

logical quantity. Mappings have been done between the 1D Fibonacci quasicrystal
and a 2D quantum Hall system , , that show that the gap label ¢ is in fact a
Chern winding number inherited from the parent 2D model. These edge modes are
thus topologically protected against local perturbations, e.g. disorder, as long as the
symmetry is preserved.

The Fibonacci model has been shown to be topologically equivalent to the Harper
model , which in turn has been shown to be topologically nontrivial. In the Fi-
bonacci crystal there will thus exist edge modes and these can be tuned by varying
the phason angle ¢, which we introduced in Eq. (EI) As ¢ is varied the energy levels
will remain flat until a phason flip occurs. The gap label ¢, which we now know is a
Chern winding number, corresponds to the number of crossings over that gap. This
can be seen in Fig. [7], which shows the lower part of the energy spectra as a function
of the phason angle for the 10:th Fibonacci approximant. The phason angle then
adds a second dimension to the system needed for the topological properties.

Experiments using polaritonic cavity modes have been able to confirm that the gap
label ¢ is a winding number , . The experiments have studied the off-diagonal
model by placing nearest neighbour cavities so that they would have either a strong
or a weak coupling, depending on the distance to the neighbour. The modulation
of the spacing would then follow a given Fibonacci sequence. According to the gap

11



label ¢ of a certain gap, they then observed that the edge mode would cross the gap ¢
times, verifying that the gap label ¢ is a winding number. Whether ¢ has a negative
or positive sign depends on whether the crossing occurs from the lower to the upper
edge of the gap or vice versa.

The topological properties of the Fibonacci model remain rather unexplored in solid
state systems, as it requires the construction of an individual crystal for each value
of the phason angle. It has been suggested that another way to probe the topological
properties of the Fibonacci quasicrystal could be by measuring the charge density
[15]. As it becomes easier to probe the topological properties of solid state Fibonacci
quasicrystals, it is interesting to investigate how those properties interact with other
ordered states, e.g. superconductivity.

3.1.4 Critical states

It has been shown that 1D quasiperiodic chains, e.g. Fibonacci chains, have critical
states [16], i.e. states that are neither extended nor localized. Periodic crystals can
be understood using Bloch states, 1, (r) = ug(r)e?*", where u is a periodic function.
This does however not apply to quasicrystals, but the wave function for £ = 0 have
an exact solution for the hopping model on 1D (and some 2D) quasiperiodic tilings,
which employs a recursive construction. It was proposed that these quasiperiodic
Hamiltonians have ground states (E = 0) that can be written as [17]

(i) = C(i)e™, (8)

where i is the site and & is a real constant. C(i) is a prefactor that depends on the
local environment around the site ¢ and h is the height field, which is the integral of
a quasiperiodic function.

For the Fibonacci chain there are two independent E = 0 solutions, corresponding
to two sublattices, which are equivalent in the limit of the infininte Fibonacci chain.
We will now consider the solution for sites ¢ = 2m. The solution can written on the
recursive form [16]

Y(m) = (=1)"e™ 0, (9)

where £k = In(ta/tg) and h(m) = > " A(j). The function A(j) is defined by the
configuration between sites 57 and j + 1,

+1 (AB)
A(j) =4 -1 (BA) (10)
0 (AA)

These states, in Eq. (9)), can be shown to be critical states [16].
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4 Superconductivity

Superconductivity is typically charac-
terised by perfect conductivity and per-
fect diamagnetism [18]. In a normal
metal the resistivity will decrease to a
finite value as the temperature goes to
zero. In a superconductor however, the
resistivity drops to zero below a critical
temperature T, see Fig. The second
thing that happens when the tempera-
ture goes below T, is that the supercon-
ductor will expel any magnetic field from
its interior. This is called the Meiss-
ner effect and is illustrated in Fig. [9]
However, if one applies a strong enough
magnetic field the superconducting state
will be destroyed. Figure shows the
phase diagram for temperature 7' versus
applied magnetic field H. Superconduc-

p

normal metal

«—— superconductor

0 T, T

Figure 8: The first hallmark of supercon-
ductivity is perfect conductivity, i.e. that
the resistivity drops to zero as the temper-

ature goes below the critical temperature
T..

tors can be separated into two classes depending on their magnetic properties. Type [
superconductors |18] exhibit a complete Meissner effect below the critical temperature
T, and the critical external magnetic field H,, and for H > H,, the superconductivity
will disappear. Type II superconductors [18] will also exhibit a complete Meissner
effect below a critical magnetic field H.,; < H., but will also have a phase with a
mixed state for magnetic fields stronger than H.; but weaker than H.,. In this inter-
mediate state, the magnetic field is no longer completely expelled from the material,
but will feature a mix of normal and superconducting properties, with the forma-
tion of magnetic field vortices. For external magnetic fields stronger than H.,, bulk

superconductivity breaks down.

T>T, [
B

Figure 9: The second hallmark of superconductivity is perfect diamagnetism. As
the temperature drops below the superconducting transition temperature 7., any
magnetic field inside the material is expelled.
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0 . T

Figure 10: Phase diagram
versus external magnetic field
H and temperature 7', for a
Type I superconductor.

The first microscopic theory on superconductivity was
BCS-theory [19], [20], which describes superconduc-
tivity as the condensation of Cooper pairs. Below a
critical temperature, electrons at the Fermi surface
form Cooper pairs, which are bosonic quasiparticles
that are allowed (unlike fermions) to condensate. For
the electrons to pair up, there has to be some at-
tractive interaction between them, for example due
to phonons, i.e. lattice vibrations. As the Cooper
pairs form, a gap opens up at the Fermi surface, of-
ten referred to as the superconducting gap, A. It can
also be referred to as the pairing potential, or the or-
der parameter, since it provides a way of quantifying
the superconductivity.

The superconducting gap can have different symme-
tries and structures depending on the material. Su-

perconductors that have uniform gaps on the Fermi surface are said to have s-wave
pairing symmetry, see Fig. [[I] Another common type of superconductors are d—wave

superconductors.

Another way in which superconductors are cat-

egorised is by whether they

superconductors or unconventional superconduc-
tors. There are two ways of defining what consti-
tutes a conventional superconductor [21]. These
often coincide but are not equivalent. The first is
that a conventional superconductor has a super-
conducting state which breaks U(1) symmetry.
The second one is that in a conventional super-
conductor, phonons are the main cause of the at-
tractive interaction between the electrons.

In this thesis we are not interested in the mag-

are conventional L
MUY

netic properties, but rather the electronic proper-

ties of superconductivity. We study superconduc-
tivity using the Bogoliubov-de Gennes method,
which is an extension to BCS-theory, and is de-

Figure 11: Electrons at the Fermi
surface, with opposite spin and
momentum, form Cooper pairs.

tailed in Section .1l The order parameter was This opens up the superconduct-

calculated self-consistently, for this a convergence

ing gap, A.

accelerator was implemented, this is explained in

Section [4.2]

14



4.1 Bogoliubov-de Gennes theory of superconductivity

A method of studying superconductors is through the Bogoliubov-de Gennes (BdG)
approach. The BdG equations can be derived in a continuum model as well as a
tight-binding model. For this project we will use the tight-binding form of the BdG
equations, which are derived in the following section.

4.1.1 Tight-binding derivation of the BdG equations

Tight-binding models are widely used in condensed matter physics to study many
different phenomena. Here we will use one to derive the BAG equations for supercon-
ductivity in an s-wave superconductor. We begin from the single-particle part of the
second-quantized Hamiltonian [22]:

Hy = [ [ i} haste. s (11)

with spin-flip and non-local effects included in h,g(r,r’). The field operators can be
expressed in terms of the localized-state basis, as follows

Po(r) = Z w(r — R;)¢ia,

vhr) = 3w (r = Ro)el, "

where the operators c}a and ¢;, create and annihilate an electron at a site ¢ with spin a.

w(r —R;) is the localized orbital around the atomic site R;, and can be thought of as
d-functions centered at R;. By plugging Eq. into the single-particle Hamiltonian
we find [22]

_ E T
HO - Cio—hia,jcr’cja

ij,00’

E T E T E T (13)
= - tio,ja’cigcja’ + €:C;xCio + Qi,aa’ CiCio’ s
i#j,00’ i i,00'

where the first term is the kinetic energy from hopping between sites, the second
term is the on-site single-particle energy, which can be included to account for dis-
order and inhomogenity such as single non-magnetic impurities, and the third term
describes magnetic impurities. In this work we are not interested in the effects of
such impurities, which means that the we will only be left with the hopping term,

1.e.
Hy= > chhigjocio == > tigjecl,co. (14)

ij,00’ i#j,00'

15



In order to get s-wave superconductivity we then add an attractive on-site electron-
electron interaction with strength U (U > 0), getting the following Hamiltonian for
superconductivity [22]

H = Z cly |:hia7ja’ - uéijéggz]qa/ - Uznmnu, (15)

ij,00’

with the chemical potential p, which we include to regulate the mean number of
particles, the number operator n;,, = czgcw, and n; = ) _n;,. Working with four
field operators is rather complicated, however, the electron-electron interaction term
can be simplified by doing the following mean-field approzimation [22):

chicl i = (el )eieir + cliel (eipen) = (clic )eien), (16)

This is similar to what is done in Hartree-Fock, the difference here being that we pair
annihilation operators together and creation operators together, instead of pairs of
one annihilation operator and one creation operator. Plugging Eq. into Eq.
we get the following

H = Z cgghw,ja/cja/ — UZ CITC;ELCLLCZ'T

ij,00’ i (17)
~ Y ohigjorcio — U ((chel Yeeinr + cliel (i) — (chic] Y ewen))
ij,00’ %
where ﬁiayj(,/ = Nisjor — 10050 The singlet-pairing potentials can be expressed
as
Ay = U<Ci¢CiT>7 (18)
Af = Ulchel),
which leaves us with the following effective Hamiltonian,
%ff = Z Cjailm’jg/cj'gl — Z [AiiCITCL + A;'Cucn + Ec(mst, (19)
ij,00’ %

where Eopnsge = U Zi(c;.rTcL)(ci 1¢ir). We have now gained a simpler, quadratic term
for the electron-electron interaction, meanwhile we have also thrown it into a form
that is approximative and does not conserve the particle number. Instead it contains
terms that create or annihilate pairs of particles. This can be handled by using the
chemical potential p, which was introduced earlier, in order to fix the number of
particles.

We then proceed by looking at the commutation relations for the creation and anni-
hilation operators and the effective Hamiltonian. The commutation relation between
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cit and Hery can be calculated as

[cit, Horsl = cuHlegs — Hegpcin
= Z BiT,jo"cjo" —+ AMCL (20)
j70,
Performing the same calculation for the remaining electron field operators we get the
following commutation relations,

[cirs H255) = D hitjorCior + Discl
joo’
[Cjw Hifr) = — Z ﬁjo’,iTC;r‘a’ — Ajicuy,

Jo
. (21)
iy, Hogs) = iy jorcior — Ducly,

Jo
i _ 7 f X
[Cz‘¢> ‘}Lﬂeff] - = Z hjaﬁiicjg/ + AiiCiT-

jo'

From this we can conclude that ¢;, and cj-g no longer are a good basis. In order to find a
better basis we would like to express the electron field operators as linear combinations
of electron- and hole-like quasiparticle excitations, which we do by performing the
following Bogoliubov canonical transformation [22],

/ ’

Cio = ) (ulyn —ovirl), ey =) (uisy —ovly). (22)

n n

where o = 41 denote the up and down spin orientations and +/ and -, are operators
that create and annihilate a Bogoliubov quasiparticle at state n. These quasiparticles
anticommute, i.e. {vn, v} = {V1,7,} = 0 and {y,,7],} = dum. The prime sign
over the summation sign indicates that only positive energy states are counted. By
applying this canonical transformation to the effective Hamiltonian, it is diagonalized
as

Heff = Z Enf)/jzlyn + Eéonst' (23)

We then substitute Eq. into Eq. , using the following commutation rela-
tions

(24)
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and comparing the terms containing v and ~,, we obtain the BAG equations [22]:

n o __ 7 n n
Enum = E him(,/uja, + O'Z'Z"Uw,

o7

Enugl = Z Bim,/ + Aiivﬂ,

o7
By Z o hm jor Vs + Aju, (35)
o7

B} = Za hjor i 05 + Ak,

with the following self—consistencyiondition for the singlet-pairing potential:
A = %Z( upvy” 4w vl’) tanh (25;17)' (26)

n

It can be shown from the BdG equations in Eq. that if (uf, of, ufl, ?T) solves the
Tk g Tk Tk

BdG equations for the eigenvalue F,,, it follows that (—v v U vl —ul *) solves them

for the eigenvalue —F,,. Using this, we can simplify the self-consistency condition to
22]

U n , n* E
Ay = 3 ;unvw tanh <2kBT> (27)

Note that A; is the order parameter quantifying the superconductivity, meaning
that A;; will be zero above the critical temperature 7T,. One way of solving the
self-consistency is by making an initial guess for A;; and using it to solve the BdG
equations, then using the result to calculate a new A;;. The new A;; is used to once
again calculate the BdG equations, and the procedure is repeated until the difference
between the new A;; and the previous one is "small enough”. We will however solve
the self-consistently in a slightly more intricate way using the Polyak method, which
is explained in Section 4.2]

In the absence of spin-flip scattering and spin-orbit coupling, i.e. iLiT’j 1= hi 1t =0,
the BAG equations can be split into two sets of equations,

Enlu?:rl — Z hZT ]Tu]T + AZZ/UZ\L y

~ (28)
Env] = - Z hiy g vfy + Ay

and

En?“?f = Z hiy, nun + Auvn ’

2
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Figure 12: Tight-binding model of a 1D system with four sites. pu is the chemical
potential, A; are the pairing potentials and ¢;,,, are the nearest neighbour hopping
energies.

thus block-diagonalizing the BAG equation, reducing our matrix from 4N by 4N to 2N
by 2N, which improves the computational effiency significantly. With the symmetry
between the solutions for the eigenvalues FE,, and —F,, and the block-diagonalization,
it is enough to solve the first set of equations, in Eq. , with the following self-
consistency condition

u Al il By
Ay = Ezﬁ:uﬁvu tanh <2k‘BT>' (30)

From here on, we drop the ~ and the 1 in the subscript, as well as the second index

1 fOI' Au
The BdG equations in Eq. can be written in a matrix form,

> Mid; = Ends, (31)
J
where .
~ hz ; Az ~ U?
M;; = AT;]T _~*‘7 ; ¢ = [ J] . (32)
ji iljd Uiy

For a 1D system, with only nearest neighbour hopping and without impurities, the
matrix will look as follows,

— U t12 0 0 Al 0 0 0 Uiy
tlg — U t23 0 0 AQ 0 0 Ugyp

0 tog —p tay 0 0 As 0 uz,
Hpaod = 0 0 tga —p O 0 0 Ay | |ug, (33)
A0 0 0 w —t;, 0 0 vy,
0 Ay 0 0 —t7, p° —t53 O Vg,
0 0 A} O 0 —t55 p*  —ti| |vs,
L0 0 0 A} ©0 0  —t5 ] [va]

where we have assumed the chemical potential, u, to be the same at all sites. The
same system can be seen in Fig. 12|
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4.1.2 Charge density

Once one has solved the BdG equations and found the eigenvalues F, and their
corresponding eigenvectors, these can be used to calculate quantities such as the
charge density and the density of states. The charge density is calculated as [22]

niy = > |u|*f(E
i =Y v (=En),

n

where f(E) = 1/(exp(E/kpT) + 1) is the Fermi-Dirac distrubution and the total
charge density is n; = n; + 1.

(34)

4.1.3 Density of states

The density of states is the proportion of states that will be occupied at a certain
energy F for a system. The local density of states at a site ¢ can be calculated as
23]

(uf [ur)|” (o2 |om) |
M(E Z E E, +m+E+En+in (3)

where n > 0 is a small imaginary part of the energy. To get the total density of states
one has to sum up the local density of states over all sites. The integrated density
of states, idos(FE), is calculated by integrating the normalized density of states up to
the energy F,

idos(E) = /_ : Ne(EYdE, (36)

where .47 is the normalized total density of states.

4.1.4 Bond current

An important observable for this project is the bond current, which can be derived
from the Heisenberg equation of motion for the charge density (n;) = (ns) + (ni)
[22]:

nZ0d (o, ) )
ot (37)
= <(_ Z [ t]a zUCT 1Cig +tza]o C;rcrcjal]%
j#i,o,0

where H is the Hamiltonian in Eq. . The electrical current operator from site j
to site ¢ will then be

. e
Jij = E Z[tia,ja/ Czacjo'/ - tja",iacj'a-’ CZ'U]' (38)
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The average bond current is then
Ty = mZZ i [0 F(B) 00 0325 (1= f(Ey)] = c.e), (39)

which can be rewritten using the symmetry properties of the BdG equations to

4e

Jij = 7 (togui uj f(En) — tiui™ul f(En)), (40)

1]

where we have also assumed that there are no spin-flip scattering or spin-orbit cou-
pling.

4.2 Self-consistency: Convergence accelerator

The self-consistency in the order parameter, A;, was solved by employing a conver-
gence accelerator, namely the Polyak method [24]. The first few steps are the same
as for a simple self-consistency procedure (where the calculated order parameter is
naively put as the next guess). The convergence accelerator is then introduced when
it is time to make a new guess, in Eq. . The algorithm begins by making an initial
guess for A; and using that to solve the BAG equations in Eq. . The solution is
then used to calculate the order parameter again, in the following way

A = Ulegpen) UZ uB i (41)

Note that we did not use Eq. for A;, this is because that formulation is better
suited for analytical work. The derivation of this expression can be found in Appendix
. We then check whether maz(|JA%7|) < tol, where tol is a set tolerance and

A?iff _ Azgalc _ A;)ld’ (42)

where A% is the order parameter which was used to solve the system. If the largest
difference in A; is larger than the tolerance, we continue iterating, solving the BdG
equations with a new guess for A;. We do however not naively put in A% as our new
guess, but use the Polyak method, as it converges a lot faster and is more stable:
P — (1 o B)Uiold + OCAZdef,

ANV — Aqld + pIew (43)
where 8 € (0,1) is the drag and o > 0 is the stepsize. v?¢ is initially set to be zero.
A7 is the new guess for which we solve the BAdG equations. This procedure is then
repeated until maz(|A%//]) is smaller than the given tolerance. The method is also
described step by step in Table [2]
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Solving BdG self-consistently using the Polyak method

1. Make an initial guess for A;. Set v?!? = 0 and A4 = Ainit,
2. Solve BdG equations in Eq. 1)

3. Calculate A" using Eq. {D

4. Check tolerance, i.e. check if maz(|AY7]) < tol.

If false go to step 5. If true go to step 6.

5. Calculate v]*" and A7*" according to Eq. .

Set v2ld = v and A% = AT and go back to step 2.

6. Stop iterating and return final solution to the BdG equations.

Table 2: The BAG method was solved self-consistently in A; using the Polyak method.
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5 SNS-junctions

SNS-junctions and NS-junctions are hybrid systems that combine the effects of re-
gions in the superconducting (S) and normal (N) state respectively. In the case of
a nanowire, an NS-junction can for example be constructed by inducing supercon-
ductivity through proximity by placing part of the nanowire on a superconductor. If
both ends of the nanowire are placed on superconductors, one will instead have an
SNS-junction.

This section of the thesis discusses two phenomena found in SNS-junctions, the prox-
imity effect and the Josephson current. First explaining the proximity effect, Section
5.1} and the Josephson current, Section[5.2] in regular, periodic SNS-junctions. There-
after follows a discussion on quasicrystal SNS-junctions, where Section [5.3|details how
the quasicrystal SNS-junction was modeled and Section discusses the proximity
effect in quasicrystals.

5.1 The proximity effect

When a system in the normal state is
placed next to a superconducting sys- 035
tem, the superconducting state will start 030
7spill” into the region in the normal
state. This is referred to as the proxim-
ity effect |25]. This can be understood . "
as a leakage of Cooper pairs from the
superconducting region into the normal

0.15

010

region. Even though there is no attrac- 0.05

tive electron-electron interaction in the 0.00 1 . ; ; . : . :
. . o 5 50 75 100 125 150 175

normal region, i.e. U = 0, there can Site i

still be pair correlations. You may re-
call that the superconducting gap could
be expressed as A; = U(c; cit), where U
is by definition zero in the normal state,
but where F; = (¢;¢;4) may be non-zero. The pair correlation can be expressed using
the solution to the BdG equations as

F, = Z ugvy f(E (44)

Figure 13: The proximity effect in an SNS-
junction.

where f is the Fermi-Dirac distribution. An example of the proximity effect in an
SNS-junction can be seen in Fig. (13|
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5.2 Andreev reflections and Josephson currents

An electron in a normal metal approaching an interface can either be reflected or
transmitted according to scattering theory. However, if the region on the other side
of the interface is superconducting another kind of reflection can occur, called Andreev
reflection [26].

We begin by considering an electron in
the normal part of an NS-junction, mov-
ing towards the interface, see Fig. N e S
As the electron approaches the interface @)
it may reflect or transmit normally, ex- \

cept that if the energy of the electron e ‘
is smaller than the superconducting gap, .’/
E < A, there are no available states in hO

the superconducting part for the electron Aet?

to transmit into. What instead can hap- o
pen is that the electron is reflected as a Figure 14: Andreev reflection in a NS-

hole, transferring a Cooper pair, which Jjunction. A right-moving electron in the

has charge 2e, to the superconducting N part, B < A, can be either normal re-
part. flected (cyan arrow) or Andreev reflected

(orange arrow). If it is Andreev reflected,
a Cooper pair is transferred to the S part.

Cooper pair

We now consider an SNS-junction where
the left superconductor has pairing po-
tential Az = Ae®t and the right super-
conductor has pairing potential Az = Ae®®, with a normal part of length Ly, see
Fig. [I5 A right-moving electron in the normal part, with energy E < A, will be
reflected as a hole at the right interface, leaving behind a Cooper pair in the right
superconductor. The left-moving hole will then meet the left interface and reflect
back as an electron, taking a Cooper pair from the left superconductor. As this cy-
cle continues, Cooper pairs will be transferred from the left superconductor to the
right superconductor, creating a supercurrent across the junction. Since the normal
part has a finite length, Ly, discrete energy levels will form. If the phase difference,
AfO = 0r—0;, is non-zero, there will be standing bound waves with quantised energies
in the SNS-junction. These states are known as Andreev bound states [27].

SNS-junctions can be divided into two different categories depending on the relation
between the length of the normal part, Ly, and the superconducting coherence length
128, £ = hop/mA, where vp = hkp/m. Short SNS-junctions have normal parts that
are much shorter than the coherence length, Ly < &, and long SNS-junctions have
normal parts that are much longer than the coherence length, Ly > &.
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Figure 15: Schematic of an SNS junction. The electron reflects off the right interface
as a hole, transmitting a charge 2e to the right superconductor. The hole will there-
after reflect off the left interface as an electron, taking a charge of 2e from the left
superconductor. Through this process, Cooper pairs are transferred from the left to
the right superconductor, creating a Josephson supercurrent.

As previously mentioned, the formation of Andreev bound states will also lead to the
creation of a supercurrent flow across the junction. This will occur as long as there is
a finite phase difference Af between the superconductors and is referred to as the dc-
Josephson effect. The Josephson current can be calculated from the thermodynamic
potential, F', as [25]
2e dF

~ hd(A§)’
where the factor 2 comes from the Cooper pair charge. This formula is general and
applies to any type of Josephson junction. From the BAG equations, Eq. can be
written as [25], [29)

1(A6) (45)

% < E, \ dE,
180 == ;tanh (2@ )d(A@)

2 oo
— —GQKBT/ dE In [2 cosh (
h A

(46)
E

6I€BT>] dzjgcﬁ) ’

where ’ denotes that we only sum over the positive eigenvalues. The first term contains
the contributions from the discrete positive Andreev levels in the gap. The second
term contains the contribution from excited states in the continuum above the gap
where p. is the density of states in the continuum.

For a short SNS-junction, the continuum density of states p. is the same as in the bulk
superconductor, and will therefore be phase independent [25]. This means that for
short SNS-junctions and at T" = 0, the Josephson current can be expressed as

!

2 dE,,

h = d(Af)

I(AG) (47)
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5.3 Modeling SNS-junctions with quasicrystals

The system we study in this thesis is a nanowire following the modulation of a single
Fibonacci approximant (not repeated), with two superconducting leads attached on
either side of the quasiperiodic nanowire. This is compared to a regular SNS-junction,
where the normal part between the superconducting leads is periodic. The system
is modeled using the Hamiltonian in Eq. , where U = 0 in the normal part and
U = 2.5tp in the superconducting parts. In the normal part the hopping energies
are either t4 or tp, according to the modulation of a given Fibonacci approximant.
In the superconductors the hopping energies are set to tg = tp, and the hopping
tint between the superconductors and the normal parts are set to t;,, = tp unless
otherwise specified. The chemical potential is set to ;1 = 0 everywhere. The setup is
also illustrated in Fig.

Superconducting Quasicrystal Superconducting
lead 1 nanowire lead 2

s ls Lint ta tp ta Lint ts s

Figure 16: Tight-binding model of a 1D SNS-junction. The violet parts are super-
conducting leads attached to normal part in green.

5.4 The proximity effect in quasicrystals

In a regular, clean, and periodic SNS-junction, the proximity effect typically displays
an exponential and smooth decay. This is however not the case as one replaces the
periodic normal part with a Fibonacci quasicrystal, see Fig. [I7] The pair correlation
F in the normal part will then become heavily modulated, making it difficult to
compare how long the proximity effect reaches in the quasicrystal compared to the
periodic case. In order to be able to compare them, a curve fit is made to the
pair correlation in the quasiperiodic normal part. Studies made on superconductor-
quasicrystal hybrid rings [6], have found the best fit to the pair correlation in the
quasiperiodic normal part to be

FI'"=a4bli~e+ (L+1-1)79, (48)

where L is the effective Fibonacci chain length. The best fit is found when including
one site on each side of the proper Fibonacci chain, i.e. displacing the interface by
one site on both sides of the Fibonacci chain, which means we have L = Ny + 2,
where Ny is the length of the proper Fibonacci chain. 4 is the position, and since
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Figure 17: The pair correlation F' for an SNS-junction with a 90 sites long quasicrys-
tal, Fibonacci approximant n = 10 (left). The superconducting leads are 45 sites long
and the superconducting phase difference is set to A@ = 0. The purple vertical lines
show the positions of the interfaces between the superconducting and normal parts.
A curve fit is made to the quasiperiodic normal part, of which an example is shown
for t4/tgp = 0.8 (right), with fitting parameters a = 5.0429 - 107%°, b = 0.15980 and
¢ = 1.0520.

the decay is assumed to be symmetric, the leftmost position is set to ¢ = 1 and the
rightmost position is set to i = L. The parameters a, b, ¢ are found by curve fitting
using least squares. An example of a curve fit can be seen in Fig. [I7]

One measure of the decay of the proximity effect in the quasicrystal could then be the
decay length c. It was however found that ¢ differ significantly depending on how the
curve fit is done @, e.g. if L = Ny instead of L = Ny + 2. Instead, the value of the
pair correlation in the middle of the curve fit, F},;4, is chosen as the measure of the
proximity effect, since this remain closely the same for different choices of L.

27



6 Results for quasicrystal SNS-junctions

This section contains the results for the proximity effect, Section [6.1} and the Joseph-
son current, Section [6.2 in a superconductor-quasicrystal-superconductor junction.
For the proximity effect, the results in the quasicrystal SNS-junction should be com-
parable to that of a superconductor-quasicrystal hybrid ring [6], as long as the super-
conducting phase difference, A, is set to zero. For the proximity effect we only study
the case of Af = 0, since most of our focus is on the results for the Josephson current,
as those are more novel and significant results. In order to be able to compare with
the results for the superconductor-quasicrystal hybrid ring, we chose to look at two
Fibonacci quasicrystals in particular, the 9:th approximant which is 56 sites long and
the 10:th approximant which is 90 sites long. In all cases the superconducting leads
are 45 sites long and the tolerance for the self-consistency is set to tol = 107°.

6.1 The proximity effect

The proximity effect is studied by taking the central value, F,;4, of the curve fit,
described in Section [5.4. Figure |18 shows how F),;s changes as the phason angle ¢ is
varied. Three different hopping ratios are plotted, the quasiperiodic t4/tg = 0.8,0.9,
as well as the periodic case t4/tg = 1. The periodic case remains constant as ¢ is
varied, since phason flips can not occur in a periodic structure. For t4/tgp = 1, Fiia
is taken as the value of the pair correlation F in the middle of the chain, and not by
doing a curve fit. The superconducting phase difference is set to Af = 0.

One may note that for some phason angles F,,;4 is larger in the quasiperiodic chain
than in the periodic chain. The difference is however quite small, and thus we have
plotted the pair correlation F' and the corresponding curve fit for the the maximal
and minimal F},;; in Fig. [19 for n = 9 and in Fig. 20| for n = 10.

‘l] f 0.006 A i
0.009 AR j N nn

i il il
0.008 0.005

0007 0.004

W 0.006 uE
0.003
0.005
— fhfts=08 — tafta =08
0.004 "" 0.002 )
fa/ts = 0.9 talts = 0.9
0.003 Lafts = 1.0 Lafts = 1.0
; : : : : : : : : 0.001 +— : : : ; : : : :
0oe 025 050 075 100 125 150 175 200 0oo 025 050 095 100 125 150 175 200
Phason angle @/m Phason angle @'m

Figure 18: F),;q plotted as a function of the phason angle ¢ for two different Fibonacci
approximants, n = 9 (left), which is 56 sites long, and n = 10 (right), which is 90
sites long. The superconducting phase difference is Af = 0.
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Figure 19: The minimal and maximal F},;; for Fibonacci approximant n = 9. The
upper plots display the chosen phason angle for the minimal and maximal values of
Fiq respectively. The lower plots show the corresponding pair correlation F' and
curve fit as a function of position, with the minimal F},;4 to the left and the maximal
Fiiq to the right.
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Figure 20:

The same plots as in Fig

) , but for Fibonacci approximant n = 10.
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6.2 Josephson currents

This section presents the results for the
Josephson current, first as a function of
the superconducting phase difference,
Af, and thereafter as a function of the
phason angle,¢, and the interface hop-
ping, t;., respectively. The current
over the junction is calculated using
Eq. , an example of which is shown
in Fig. 21} The Josephson current as a
function of the superconducting phase
difference A@ is shown in Fig. for
the hopping ratios t4/tp = 0.8,0.9, 1.
For certain values of the superconduct-
ing phase difference, around A6 = m,
the quasiperiodic chains carry a larger
current than the periodic chain. For
n = 9, the current is only larger for
ta/tg = 0.9, but for n = 10, both
ta/tg = 0.8 and ta/tg = 0.9 carry
larger currents than the periodic chain
for certain phase differences.
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E 0.0100
S 00075 i
2 ] i
& 00050 | tajts = 0.8 !
0.0025 E — it =10 E
0.0000 E — falts =12 E
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Link
Figure 21: The bond current as function

of position (link) for Fibonacci approximant
n = 10. The superconducting phase dif-
ference is set to A9 = —m/2. The purple
dashed lines mark the location of the inter-
faces. The phason angle is set to ¢ = ¢
(¢ = ¢po + ¢,,). The interface hopping is set
to tint = tB-

Figure [23| shows the Josephson current as a function of the phason angle ¢, also for
the hopping ratios t4/tp = 0.8,0.9, 1, for the fixed superconducting phase difference
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1.17. All other figures display chains where the phason angle is set to ¢ =
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Figure 22: The Josephson current as a function of the superconducting phase differ-
ence for Fibonacci approximants n = 9 (left) and n = 10 (right). The phason angle
is set to ¢ = ¢g and the interface hopping is t;,, = tp.
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Figure 23: The Josephson current as a function of the phason angle for Fibonacci
approximants n = 9 (left) and n = 10 (right). The superconducting phase difference
is set to Af = 1.17 and the interface hopping is set to t;,; = tp.
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Figure 24: The Josephson current as a function of the interface hopping t;,, for
Fibonacci approximants n = 9 (left) and n = 10 (right). The superconducting phase
difference is set to Af = 1.17 and the phason angle is ¢ = ¢y.

The periodic chain is as familiar not impacted by varying the phason angle, thus
the current over the periodic junction remains constant as ¢ is varied. For certain ¢
values, the currents over the quasiperiodic junctions are larger than in the periodic
one.

Figure [24] displays the current over the junction as a function of the interface hopping
tint, for the hopping ratios t4/tp = 0.6,0.8,1,1.2,1.4. The superconducting phase
difference is set to Af# = 1.1w. Here it is interesting to note that the current peaks
for different values of ¢;,, depending on what value t4/tp is set to. For smaller ratios
ta/tp the Josephson current peaks for a lower interface hopping ¢;,;, and as t4/tp is
increased the peak is shifted to higher values of ¢;,,. For some of the quasiperiodic
junctions, the current at the peak is an order of magnitude larger than in a periodic
junction with the same value of t;,,.
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For the periodic case, the current peaks as the transparency over the interface is the
largest, which occurs for interface hopping t;,; &~ tg. This is because the the electrons
and holes then solely Andreev reflect, maximizing the Josephson current. As the
interface hopping is decreased, the electrons and holes start to reflect "normally”
more, and Andreev reflect less, leading to a decrease in current over the junction. We
do not expect for the coupling between the superconducting and normal parts to be
larger than the hoppings in the two parts respectively, this might be why the current
decreases as the interface hopping increases past the peak.

One hypothesis for why the current peaks for a different interface hopping, t;,;, in
the quasiperiodic junctions than in the periodic one, has to do with backscattering.
Because of the modulations in the quasiperiodic chain, as the electron (hole) Andreev
reflect against the interface, there is a finite possibility that it then backscatters, and
thereafter Andreev reflects again, forming a bound state. These bound states near
the edges then makes it easier for the Cooper pairs to tunnel through the junction.
Depending on the modulation and the hopping ratio, t4/tpg, of the chain, these bound
states would then occur for different values of t;,,;.

Figure displays the Joseph-

son current as a function of the ot
phason angle for the 9:th Fi- 0.05 | H A A H l :j:; 0o
bonacci approximant, with in- boa | | — tte =10
terface hopping ¢,y = 0.88tp. & | |

The current over the junction is & g3 ‘ J"‘ }|
significantly larger in the qua- g | | i | In |
sicrystals for many values of the 5 927 | 1 |'|| Wll N |
phason angle, often 4-5 times HH I'U “ | JL -“ Hr U'I ] |||
larger than the current in the R "J".I"..L_,_'p'l"ﬂ \f \ N"-"ﬂ"-,__.-"""u'r "
periodic chain. 0.00

000 025 050 075 100 125 150 175 200
In order to wunderstand the Phason angle /m
mechanisms behind the en-
han(jed Josephson Current’ we Figure 25 The current as a function Of the phason
start by studying the energy angle for Fibonacci approximant n = 9, with inter-
spectra. For short junctions it is face hopping t;,; = 0.88tp. The superconducting
mainly the positive eigenvalues phase difference Af = 1.17.
within the superconducting gap
that contribute to the Josephson
current. Figures [26] and [28| show the Josephson current and the positive energy
eigenvalues within the superconducting gap, i.e. for £ < A, in the 9:th Fibonacci
approximant, as a function of the superconducting phase difference A, for interface
hoppings t;,; = 1.08,0.88 and 0.68 respectively. For each of the different figures, a dif-
ferent hopping ratio ¢4/tp displays the largest current. For ¢;,; = 1.08 (Fig. [26)), the
periodic chain carries the largest current, for ¢;,, = 0.88 (Fig. , the quasiperiodic
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Figure 26: The upper left plot shows the Josephson current for Fibonacci approximant
n = 9, as a function of the superconducting phase difference Af, for the interface
hopping ¢;,; = 1.08. The remaining plots show the corresponding energy levels within
the superconducting gap, A.

chain with hopping ratio t4/tp = 0.8 carries the largest current, and for ¢;,, = 0.68
(Fig. 28), the quasiperiodic chain with hopping ratio ¢4/t = 0.6 carries the largest
current.

A way of analyzing the physics behind the Josephson current in quasicrystal junctions
is by looking at the analytical expression for the Josephson current in Eq. and
comparing with the energy spectra, to see what part of the spectra contributes the
most to the current. In short SNS-junctions it is primarily the positive Andreev levels
in the gap that contribute to the Josephson current, as can be seen in Eq. . The
current then depends on the sum of the slope of the positive energy levels in the
gap, as a function of the superconducting phase difference, Af. We do however not
know whether our junctions fall in the short junction regime and it is difficult to
qualitatively gather from the energy spectra in Fig. 26] [27] and 28] if the slope of the
energy levels seem to account for the difference in the currents. A more conclusive way
of determining whether the positive Andreev levels account for the Josephson current
would be to calculate the Josephson current for a short junction using Eq. and
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Figure 27: The upper left plot shows the Josephson current for Fibonacci approximant
n = 9, as a function of the superconducting phase difference A6, for the interface
hopping t;,; = 0.88. The remaining plots show the corresponding energy levels within
the superconducting gap, A.

then compare it to the numeric results. Another way of understanding the physics
behind the Josephson current in quasicrystals would be to study the edge modes, as
they might enable Cooper pairs to tunnel more easily over the junction.
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Figure 28: The upper left plot shows the Josephson current for Fibonacci approximant
n = 9, as a function of the superconducting phase difference A6, for the interface
hopping t;,; = 0.68. The remaining plots show the corresponding energy levels within
the superconducting gap, A.
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7 Conclusions and outlook

We have studied the proximity effect and the Josephson current in quasicrystal SNS-
junctions by solving the Bogoliubov-de Gennes equations self-consistently. We found
that the proximity effect could be somewhat enhanced by quasiperiodicity, as the
value of F),;qy was larger for some phason angles than in the periodic chain. Even
though the relative difference was quite large, the absolute difference between the
maximal F,;q in the quasiperiodic chains and the F,;; value in the periodic chain
was rather small. This can also be seen in Fig. [19/and Fig. As the pair correlation
oscillates in the quasiperiodic chains it often takes on values that are lower than the
periodic value of F', with some peaks that are significantly larger than the periodic
pair correlation. Here we looked only at two different Fibonacci approximants, n = 9
and n = 10, so it could be that for some other quasicrystal chain the difference is
more prominent.

The most interesting result of this thesis is that the Josephson current was found to
be significantly larger in the quasiperiodic junctions than in the periodic junctions, for
certain parameter choices. Figure [23|shows that the choice of phason angle strongly
impacts the current over a quasiperiodic junction. The interface hopping t¢;,; can
have an even larger effect on the Josephson current, as can be seen in Fig. [24
Depending on the hopping ratio t4/tg, the current will peak for a different value of
tint- Lower hopping ratios t4/tp will peak for lower interface hopping ¢;,; and vice
versa, higher hopping ratios will peak for higher interface hoppings. At some of the
peaks, the current in the quasiperiodic chains are one order of magnitude larger than
in a periodic chain with the same interface hopping.

Thus far we have not been able to come with a conclusive answer as to what mech-
anisms lie behind the increased Josephson current in the quasicrystal SNS-junctions.
To do so, it will be crucial to try to understand the energy spectra. One hypothesis
for the enhanced current in the quasiperiodic chains is that the modulations in the
chain give rise to bound states at the edges, enabling Cooper pairs to more easily
tunnel through the normal part. Another one is that it is the critical states that
facilitate the tunneling over the junction. This could be investigated by first looking
at the probability density and the spectrum at the edges, as well as calculating the
transparency or transmission at the interfaces.

Other possible outlooks for the 1D quasicrystal SNS-junction could be to investigate
the effects of varying the chemical potential, i, of the junction as a whole, or parts
of it, as we have only studied the case of u = 0 for the whole system. Another
interesting, but challenging, research question is to study if one can find a connection
between the Josephson current and the topological properties of the quasicrystals.
Furthermore, it would be of interest to extend this study to 2D quasicrystals to see
if they also display significant enhancements in the Josephson current.
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A Appendix

A.1 Pair correlation

The pair correlation F' can be written in terms of the eigenvectors one gets from
solving the Bogoliubov-de Gennes equations. We begin from the pair correlation

F = (ciycir), (49)

plugging in the Bogoliubov transformation in Eq. ,
(cascir) = > (U] ym + o)) (uliyn — vE))
A (50)

n , ,n* T * 'I’L*

= (Ul () — U (Y vh) + bl (vim) — ol (i),

where ’ denotes that we only sum over positive eigenvalues. Using the following

relations, (v,7:) = (W) = 0. () = f(E,) and (y7f) = 1 — (7)), we can
rewrite the expression as

(caer) =D (—uf v (1= (vimm)) + uol (vim))
, (51)

—Z u ol f(—=By) + uhly f(B)),

where f(En> - 1/(eXp(En/kBT> + 1) and f(_En> =1- f(En)
Using the symmetry properties of the BAG equations, that if (u[, i Uil s Ug U?T) solves

n* n* n*

the BAG equations for the eigenvalue E,, it follows that (—vi, uii", vi{", —uiy’) solves
them for the eigenvalue —F,,, we end up with the final expression

(cicir) Z uviy f(E (52)
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A.2 Results: Density of states for quasicrystal SNS-junctions

This appendix shows the results for the density of states for quasicrystal SNS-junctions,
with Fibonacci approximant n = 9, for different interface hoppings, t;,:.
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Figure 29: Density of states for an SNS-junction with Fibonacci approximant, n = 9.
Interface hopping is set to t;,; = 1.08t5 and superconducting phase difference Af =
1.17.
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Figure 30: Density of states for an SNS-junction with Fibonacci approximant, n = 9.
Interface hopping is set to t;,; = 0.88tp and superconducting phase difference A =
1.17.
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Figure 31: Density of states for an SNS-junction with Fibonacci approximant, n = 9.
Interface hopping is set to t;,; = 0.68tp and superconducting phase difference A =
1.17.
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