Faster Functional Warming with Cache Merging

GUSTAF BORGSTROM, Uppsala University
CHRISTIAN ROHNER, Uppsala University
DAVID BLACK-SCHAFFER, Uppsala University, Sweden

SmARTs-like sampled hardware simulation techniques achieve good accuracy by simulating many small portions of an application in
detail. However, while this reduces the detailed simulation time, it results in extensive cache warming times, as each of the many
simulation points requires warming the whole memory hierarchy. Adaptive Cache Warming reduces this time by iteratively increasing
warming until achieving sufficient accuracy. Unfortunately, each time the warming increases, the previous warming must be redone,
nearly doubling the required warming. We address re-warming by developing a technique to merge the cache states from the previous
and additional warming iterations.

We address re-warming by developing a technique to merge the cache states from the previous and additional warming iterations.
We demonstrate our merging approach on multi-level LRU cache hierarchy and evaluate and address the introduced errors. By
removing warming redundancy, we expect an ideal 2X warming speedup when using our Cache Merging solution together with
Adaptive Cache Warming. Experiments show that Cache Merging delivers an average speedup of 1.44X, 1.84%, and 1.87x for 128kB,
2MB, and 8MB L2 caches, respectively, with 95-percentile absolute IPC errors of only 0.029, 0.015, and 0.006, respectively. These results

demonstrate that Cache Merging yields significantly higher simulation speed with minimal losses.

CCS Concepts: + Computer systems organization — Serial architectures; « Computing methodologies — Discrete-event

simulation; Simulation environments.

Additional Key Words and Phrases: functional warming, cache warming, cache merging

1 INTRODUCTION

Computer architects rely on simulators for evaluation and experimentation. However, as simulating is highly time-
consuming, a range of techniques have been developed to provide trade-offs in accuracy and speed. On one end,
analytical approaches use simplified models for speed but at a loss of precision [8, 11, 14]. Conversely, cycle-accurate
simulations use detailed models of the full system but are orders of magnitude slower. Sampled simulation improves
the performance of cycle-accurate simulation while controlling the loss of accuracy. SimPoint [19] and SMARTs [22] are
the two most common sampling approaches. SimPoint identifies the samples that are needed to represent the overall
behavior accurately. By simulating a relatively small number of such SimPoints and weighing them according to their
relevance, an accurate result can be obtained with much less simulation. SMARTS [22] simulates sufficiently many
uniformly distributed samples to represent the whole simulation statistically. The benefit of this approach is that the
sampling error can be statistically bound, and each sample can be much shorter than those of SimPoint. However, this
means that the simulation time it takes to move between samples now dominates, which is the focus of this work.
Figure 1 shows how SMARTs achieves speedup by replacing most of the slow, detailed simulation (red) with much
faster functional simulation (yellow). Functional simulation allows SMARTS to fast-forward to the next point where a
slow, detailed simulation sample is required. The faster functional simulation keeps simulation structures that do not
need detailed simulation, such as caches and branch predictors, up to date or warmed. As a result, its contribution to the

simulation is called functional warming. However, since functional warming does not keep detailed structures warmed,

Authors’ addresses: Gustaf Borgstrém, Uppsala University, gustaf.borgstrom@it.uu.se; Christian Rohner, Uppsala University, christian.rohner@it.uu.se;
David Black-Schaffer, Uppsala University, Department of Information Technology, Lagerhyddsvégen 1, Uppsala, 752 37, Sweden, david.black-schaffer@it.

uu.se.

HTTPS://ORCID.ORG/0000-0001-7833-4412
HTTPS://ORCID.ORG/0000-0002-1527-734X
HTTPS://ORCID.ORG/0000-0001-5375-4058
https://orcid.org/0000-0001-7833-4412
https://orcid.org/0000-0002-1527-734X
https://orcid.org/0000-0001-5375-4058

2 Gustaf Borgstrom, Christian Rohner, and David Black-Schaffer

such as the pipeline, scheduler, ROB, etcetera, a short amount of additional detailed simulation called detailed warming
is executed immediately before the samples. The detailed warming and simulation are each in the order of thousands of
instructions, while billions to tens of billions are executed in functional warming. Using SMARTS, Wunderlich et al. show
a 0.64% CPI error trade-off for a simulation speedup up to 60x faster than always running in detailed simulation mode.

With SMARTS, most time is spent in the faster functional mode

warming the cache (yellow in Figure 1). Reducing the time spent Detailed simulation onl
warming speeds up simulation but risks hurting accuracy if the cache —

is insufficiently warmed. Warming reduction has been extensively ISMARTS . . .

investigated [4, 5, 9, 15, 21]. Adaptive Cache Warming [2] addresses ACW

this by iteratively increasing the warming for each sample until :.

the detailed simulation reaches a given desired accuracy. (See Fig- o o [|
Detailed Functional Virtual

ure 1, bottom.) Unfortunately, Adaptive Cache Warming’s iterative simulation warming_fast-forwarding

approach results in re-warming the earlier warming amount at each)))
Fig. 1. Simulation modes (slow detailed vs. faster func-

iteration when it increases the warming time. tional) with SMARTS and Adaptive Cache Warming. The

This work addresses the re-warming overhead of Adaptive Cache dashed line in the detailed simulation shows detailed
s . L . . warming vs. detailed simulation.

Warming’s iterative warming increases by merging the new warming
with the previously warmed cache state. Our Cache Merging avoids
re-warming on each iteration and reduces simulation time but opens up new challenges with correctly merging the

previous and newly warmed cache states.

2 HOW ADAPTIVE CACHE WARMING IMPROVES SMARTS

Adaptive Cache Warming [2] (Acw) dramatically improves the performance of SMARTs by dynamically identifying the
minimum amount of warming needed for each simulation sample. Acw achieves this with a simulate-and-evaluate
process, where the warming amount increases iteratively, followed by an evaluation that determines whether the
warming is sufficient for accurate simulation results. This approach improves performance by replacing constant
warming with dynamically adjusted warming, resulting in a 6.9 — 18X average speedup (depending on cache size) over
SMARTS with a fixed 100M cycle warming before each sample.

Figure 2a illustrates how Acw iteratively finds the correct warming,. It starts with an in-memory checkpoint of the
simulated application far before the sample (@). Acw then “jumps” forward! closer to the sample (@), where it
switches to functional warming mode and starts warming the cache. When it reaches the sample, Acw does SMARTS’
detailed warming and simulation (€). However, Acw needs to assess whether the amount of warming was sufficient
to trust the detailed simulation results. To do so, Acw estimates the simulation accuracy by executing a second detailed
simulation that evaluates the impact of accesses to un-warmed cache portions. More warming is needed if there is a
significant difference between these two simulations. In that case, Acw restarts from the in-memory checkpoint before
the warming (@) but with increased cache warming (@). The iterative process repeats until reaching sufficient
accuracy (@).

To determine if the iteration’s warming is sufficient (@ and @), Acw tracks cold misses, that is, accesses that miss
in a cache set that is not yet fully warmed and which might turn into hits with more warming. However, we can not

know if the behavior of these accesses plays a significant role in the simulation. To answer this, Acw uses the method

! acw accomplishes this using hardware virtualization (also demonstrated in previous work [7, 18]) and in-memory checkpointing, which allows it to
move to different points in the simulation at near-native hardware execution speeds.

Faster Functional Warming with Cache Merging

Checkpoint Functional Detailed

v Virtual fast- warming y simulations
: SR T e
® o
________________ e REEEEE LR b
-t (5]
l » (6]
(4], >
tRedundant v
warming

(a) Adaptive Cache Warming. In the first iteration (top), the simu-
lation fast-forwards to the chosen warming point (2) and starts
warming, followed by the optimistic/pessimistic detailed simu-
lation to determine if more warming is needed. If it is, another
iteration is simulated (bottom) by restarting from the checkpoint
and increasing the amount of warming. As a result, the entirety
of the previous iteration is redundantly re-warmed on each sub-
sequent iteration.

w
Cache Mergingd@m

Merged

(b) Acw with Cache Merging. As with Figure 2a, the first iteration
(top) has insufficient warming, requiring a second (bottom) it-
eration with increased warming. With Cache Merging, we only
warm the new portion of the warming (Late) in the second it-
eration and then merge it with the previous warming (Early),
thereby avoiding the need to re-warm the portion from the pre-
vious iteration (top).

Fig. 2. Left: Acw. Right: Acw with Cache Merging.

proposed by Sandberg et al. [18], making two detailed simulations: a pessimistic simulation that assumes cold misses are
true misses, regardless of more warming, and an optimistic simulation that assumes they should be hits with sufficient
warming. As the true IPC should lie between these two estimates, Acw increases warming until their difference is
sufficiently small. While this identifies the correct amount of warming, it also results in Acw re-doing the previous
iteration’s warming on each new iteration. If warming doubles each iteration, this results in half the warming time
being redundant.

In this work, we eliminate Acw’s redundant warming by warming the new portion of the simulation on each iteration
and merging them with the warming from the previous iteration, as shown in Figure 2b. We first save the Late cache
state from the previous iteration’s warming @ . We then start the additional warming @ as before but stop right before
where the previous warming (Late) started. € is then saved as the Early state. The simulation then fast-forwards to
the start of the detailed warming @ and merges the Early and Late cache states to produce a Merged state to use
with the detailed simulation. If the merging operation is correct, the Merged state will contain the same contents as the
Full cache state resulting from warming the entire time, but without the need to re-warm, the Late portion warmed
in the previous iteration. We develop the techniques needed to implement this merging for LRU caches, analyze the
occurred errors, and evaluate the performance and accuracy trade-offs. Because acw doubles the amount of warming
in each iteration and as Cache Merging eliminates redundant warming, we expect to double the warming speed as half

of all warming time is omitted.

3 CACHE MERGING STRATEGY

3.1 Single-level Cache Merging Strategy

The simplest example of Cache Merging is a single-level LRU cache, as the cache state is maintained solely by the
LRU order of the blocks in all sets. (The multi-level cache case is more complex as the state is shared across levels, as
discussed in Section 3.3.) Merging the Early and Late cache states requires correctly choosing cache blocks from the

Early and Late cache states such that the final Merged state has the same contents as the reference Full state from

4 Gustaf Borgstrom, Christian Rohner, and David Black-Schaffer

Exists in Early? | Existsin Late? | Lateis filled? | Should merge? | Existsin Merged?
F F X F F
F T X F T
T F F T T
T F T F F
T T X F T
Conditions Action Result

Table 1. Truth table for single-level cache merging. The conditions are whether the data to be merged exists in Early, exists in Late,
and if Late is filled yet, i.e., if there is any space left to merge to.

continuous warming would have had. For an LRU cache and whenever Late’s warming has not yet filled a set, we
merge data in LRU order from that set in Early into that set in Late. Table 1 shows the specific merging criteria.

Figure 3 shows an example of Cache Merging for a single set. Address streams warming the Early and Late cache
states are at the top. When merging, the cache blocks A, B, and D are present in Late and thus kept in the Merged state.
This example accurately reflects the LRU replacement pol-

icy, as the Late state is later in the simulation, so its cache

Checkpoint

entries are added more recently. However, cache block C @ .} AN L : i

. . . o e 6 Fast- el C1 A2 B3 o D4 As B6 o

is only present in the Early state. As there is a remaining o -V -~ "5
orwarding '

unfilled (cold) block in Late @ , merging will copy cache Barly access }

block C into the Merged state. More generally, merging o= -

proceeds on a set-by-set basis and adds the most recently B B Be M

used blocks from the Early cache state to any unfilled (cold) > 35 35 - 35

entries in the Late state. If a block is present in both states e i 1o C4 C4

but in different LRU positions, Cache Merging uses Late’s Early Late Mer;e d FuI1I LRY

LRU position. The resulting Merged cache state is then

used with the detailed warming and simulation. Fig. 3. Cache Merging. The “Early access trace” and “Late access
trace” (top) are used to warm the Early cache state (left, red)

and Late cache state (middle, blue). The blocks in Early are
then merged in LRU order (5) into the Late (6), starting with
Early’s MRU position and merged into un-warmed entries in

)] ~ Late in LRU order until no more blocks can be merged from
in the correct data blocks in the Merged cache state, it is Early or until Late is filled. For reference, the baseline Full

3.2 Merging Dirty Blocks

While Cache Merging for a single-level LRU cache results

not always possible to determine the correct dirty status for ~ state comparison shows that Merged and Full states have the
each block. Figure 4a shows an example: a write request in same final cache contents (7).
Early results in a block being marked as dirty @ but only
accessed by a read request to the the same block in Late @ . As a result, the Merged value will be taken from Late
and be clean @, while in the Full simulation, the block would have remained dirty throughout @ . These merge
errors can lead to (very) minor IPC errors from the resulting detailed simulations, as explored in Section 5.2. A valid
approach could have been to set the dirty status when detecting this situation, i.e., whenever the block exists as dirty
in Early and as clean in Late. However, we saw that neither case is statistically much more likely. Merge errors and
their corrections are discussed further in Section 3.3. To always ensure that the correct values are used in the detailed
simulation regardless of a block’s status, Cache Merging will always load the latest values from main memory for every

block in Merged and before the detailed warming starts.

3.3 Multi-level Cache Merging Strategy

Cache Merging for multi-level cache hierarchies is more complex than single-level ones as copies of blocks in different

levels at different times affect data movement on accesses and evictions. While strictly inclusive or exclusive policies

Faster Functional Warming with Cache Merging

W R \A% R
5l [

Early

(a) Mislabeling of dirty bits due to merging in a single-level cache.
When a cache block is written (W) in the Early warming it is
marked as dirty (2), but if it is only read (R) in the Late warming,
it will be marked as clean (3). As the Merged takes the latest
state from the Late warming, it will incorrectly mark the block
as clean, when comparing (1) to (4).

W WB W W WB W

“IE0 OE 0 [
L1IEID“E L] [

Early
(b) Extra Block error introducing incoherence in a multi-level cache.
A write request (W), write-back to L2 (WB), and then write
request again results in dirty data in Fully, (1). However, when
the write request and write-back occur in Early (2), the second
write request in Late (3), and then finally the cache states are
merged, there is a risk of merging the dirty block from Early ,

to Later,, resulting in an incoherent state (4) as there are two
dirty versions of the same block present.

Fig. 4. Examples of merge errors.

are predictable and therefore easy to handle, this work addresses a mostly-inclusive policy that installs data in all cache
levels on read requests, but data may remain in lower caches even if evicted from higher levels. This policy causes
additional complexity and uncertainty when merging, as it can result in more valid data placements across the hierarchy.
The main effect of this comes from Latey ; being empty at the start of the Late warming causing accesses to it to miss.
The multi-level setup installs data in the Later; cache and propagates changes further to the Latey, cache, which might

not have happened if L1 was warm. In more detail:

o The Latey; warming starts with a cold (empty) L1 cache. As a result, all accesses miss in the L1 and are forwarded
to the L2, resulting in installations in both L1 and L2. In Fully ; most of these accesses would hit to the L1 and
be filtered so that they did not reach the L2. The resulting lack of filtering in a cold Latey ; is that blocks are
installed in Latey, that a warm Full; would have filtered.

e Dirty blocks in the L1 are written back to the L2 when they are evicted due to other accesses to the L1. However,
by splitting the warming up into Early and Late, we often find that there are not enough accesses to Early to
cause this block eviction to L2. At the same time, the block is absent from Latey ;, so it is neither written back

to L2 from there. As a result, the dirty data remains in L1 instead of being moved to L2.

We refer to errors stemming from a cold Later,; as cold-start effects. These effects lead to an incorrect Late state with

the following errors:

(1) Extra Blocks (from warming). Data may be present in L2 that should have been absent.
(2) Missing Blocks (from warming). Dirty data in Early; ; that should have been evicted to L2.
(3) Dirty Status Mislabeling (from warming). Data may be marked as dirty in Full but clean in Merged (or

vice versa). This merge error may also occur in single-level Cache Merging.
In turn, the merging exacerbates the error, producing an incorrect Merged cache state:
(1) Extra Blocks (from merging). Extra Blocks are merged from Early to Late.
(2) Missing Blocks (from merging). Blocks are prevented from being merged by Extra Blocks that should not
have been in the cache.
We refer to the union of the errors originating from warming or merging as merge errors. As discussed in Section 5,

these merge errors can significantly impact simulation accuracy. To address this, we now discuss mitigation strategies

that extend cache merging to take these effects into account more intelligently.

6 Gustaf Borgstrom, Christian Rohner, and David Black-Schaffer

Full Early Late Merged

Empty cache

L2 o space
X
High reuse
. v g data set
L1 aans
o Low reuse

data set

t, t t ft t t, G

Fig. 5. Extra- and Missing Block example. Data can be evicted from the L2 but remain in the L1 if it is frequently enough accessed
(green, high reuse) compared to other data that streams through the L1 and evicts it from the L2 (orange, low reuse). In the longer
baseline Full this leads to the high reuse (green) data remaining in the L1 but being evicted from the L2, but in the shorter Early
and Late warmings, there is not enough time to evict it from the L2. This results in the high reuse (green) data showing up as Extra
Blocks in the merged L2 and low reuse (orange) data not being present (Missing Blocks).

3.4 Correcting Merge Errors

After identifying what the merge errors are and their effects, we now describe their respective origins to explore possible

corrections:

(1) Extra Block errors

(a) Cold-start Effects. Reads while warming Late may install data into Latey , that should not be present due
to a lack of filtering from the cold Latey ;. Figure 5 shows an example where the low reuse data set should
have evicted the block from the high reuse data set in L2, but because the Later; does not filter the access,
that block will exist as an Extra Block in Merged; ,.

(b) Merging. Data read and later evicted from Fully ; is expected to be absent. However, if the block was loaded
when warming Early, but there were not enough accesses to evict it later, it will still be present. If there
are not enough accesses to fill Late, there will be cold space left there such that the block will be merged
from Early, resulting in an Extra Block in Merged.

In a complementary scenario, merging Extra Blocks may lead to an incoherent cache state with a dirty
block in several caches simultaneously. Figure 4b shows an example of merging a dirty block from Earlyy ,
into Later ; while the same dirty block is already present in Latey; @ . This case is essential to address to
ensure program correctness. Furthermore, this also gives a good hint about where in the hierarchy the
block belongs in Late.

(2) Missing Block errors

(a) Cold-start Effects. A dirty block in Earlyy ; is supposed to be written back to L2 during Late’s warming
but is not present when Late starts warming, resulting in the write-back never occurring. As a result, the
block is missing from Later; and, therefore, Merged; ,.

(b) Merging. Extra Blocks that prevent merges from Earlyy, to Later . Figure 5 shows an example where
the Extra Block from a high reuse data set in Latey , prevents the correct merging of the block from the
streaming data set, which will be missing from Merged; ,.

(3) Dirty Status Mislabeling errors. Cold-start Effects. If a write request happens in Early and a read request to
the same data in Late, then the read request will miss in the cold Latey ; and install clean data into L1 (instead of
hitting to the dirty data in L1, as was the case in Full). The example error shown in Figure 4a is in a single-level

hierarchy, but the principle is the same for multi-level hierarchies.

Faster Functional Warming with Cache Merging 7

The ability to identify and correct these merge errors falls into the following categories:

(1) Always correctable. Merge errors that can be accurately detected and whose corrections are unambiguous.

(2) Statistically correctable. Merge errors whose detection or correction can be ambiguous but where the outcome
is heavily biased. Here we can apply the statistically more likely correction for a better overall outcome but
may introduce other false-positive errors.

(3) Statistically non-correctable. Merge errors whose correction is ambiguous and not heavily biased in a particular
direction cannot be corrected without introducing more errors than they address.

(4) Undetectable. Merge errors that can not be accurately detected, e.g., which blocks would be missing from

Merged after merging.

Correcting the merge errors, therefore, depends on whether or not one or more valid alternatives are possible and, if so,

whether one of them is significantly more likely to occur (we address this further in Section 5.3.)

3.5 Merging Invalidated Blocks

During warming and merging, we must distinguish between cold blocks (never accessed during warming) and invalidated
blocks (accessed but later invalidated). This distinction is because invalidated blocks from Late should survive into
Merged and not be filled with blocks from Early, while cold ones should be filled. Figure 6 illustrates this, where
a write request installs a block copy in both L1 and L2 @ . However, as the write is exclusive in the L1, the gem5
simulator immediately invalidates all copies except L1’s copy @ . Evicting the block from the L1 should write it back to
the L2. On eviction from the L1, this block should be written back to the L2. However, since we should not merge over
invalidated blocks, we need to be careful that such write-backs prioritize replacing invalid blocks in the L2 @ , or we
will cause subsequent merges to be incorrect @ . This distinction leads to two policies:

o During Warming: Write-backs from L1 are first installed into invalidated blocks in L2 before writing to cold

space @ .
e During Merging: Only merge into cold blocks in Late. Invalidated blocks are interpreted as a direct effect of the

Late warming and retained.

Loading from Writeback to L2

main memor
- Y Incorrect Correct

2 5 L2 2
| 4
d d d
3 cold
3 cold|7 cold blocks
blocks| piocks

* *

10 9 L19:: |_19:‘

o | =

1) Y tx L
OValid OCold MElinvalidated

.

Fig. 6. Handling invalidated blocks. The gem5 cache policy installs data into both L2 (1) and L1 (2) on a write but immediately
invalidates the block in L2. However, merging must treat invalid blocks distinctly from cold blocks as we expect to have invalid blocks
in the baseline Full and not replace them with merged blocks from Early. This means that during warming we must prioritize placing
writebacks into previously invalidated blocks (4) to avoid later problems with merging (3).

8 Gustaf Borgstrom, Christian Rohner, and David Black-Schaffer

3.6 Cache Merging in a Multi-core Environment

When using Cache Merging with a multi-threaded program running on a multi-core setup, we need to ensure 1) program
correctness with a Merged cache state and 2) that simulation performance measurements are accurate.

For correctness, Cache Merging must ensure not introducing data races into a data-race-free (DRF) program. DRF
programs rely on atomic operations to determine which thread gets access to shared data (i.e., critical section). For
example, whenever two cores want to access the critical section simultaneously, the atomic operations guarantee that
only one core will have exclusive access to memory. Meanwhile, the other core will see that the same data is not
accessible and wait without the risk of both cores entering the critical section simultaneously. For Cache Merging to
uphold this guarantee in a multi-core environment, the values of the atomic variables in the respective caches must be
correct when merging the cache states. Cache Merging ensures this by using up-to-date values loaded directly from
memory (see Section 3.2). Thus, the correct atomic value will be found in the caches, and the program will proceed
correctly.

For performance accuracy, merge errors may result in blocks having the wrong coherence state or being in the
wrong cache. For example, if core A operates on the critical section, but blocks from the critical section were merged
erroneously to core B’s cache, then core A will see a miss to its cache. However, the coherence protocol will move the
blocks to core A as they are accessed. This merge error will result in a correct execution but may cause an increased
memory latency and, in turn, lower IPC accuracy. However, as Cache Merging restores each cache’s contents individually
from the Merged cache state, there will be no block placement into other caches within the same cache level?. As a
result, we do not expect such misplacements to occur frequently or impact performance, as the local hot data will likely

be in the correct local cache after the merge.

3.7 Cache Merging With Alternative Cache Replacement Policies

The Cache Merging algorithm presented so far addresses a LRU replacement policy. Merging for other policies presents
different challenges:

o Random Replacement. Cache Merging would select blocks to merge from Early to cold blocks in Late randomly,
resulting in a statistically correct, but not deterministic merge. Note that other policies employing some degree
of randomness in their policies will have similar behavior.

o Not Most Recently Used (NMRU). Cache Merging would ensure that the MRU block in Late is retained, but fill
any cold blocks with randomly chosen blocks from Early, as with random replacement.

e Not Recently Used (NRU). This policy clears every block’s MRU bit on installation and a hit. If all blocks in a set
have their MRU bits cleared, then all are set. Replacements are chosen randomly from blocks whose MRU bit is
set. Cache Merging would pick blocks from Early with their MRU bits cleared at random and merge them into
cold space in Late.

o DRRIP (Dynamic Re-Reference Interval Prediction) [12]. DRRIP provides trash- and scan resistance by avoiding
always marking new data as most recently used. DRRIP extends NRU by using multi-bit status values to set the
eviction order. To address both thrashing and scanning, DRRIP chooses dynamically between two sub-policies
by set dueling across a few sampled sets. This poses two challenges for merging: determining which policy

would be applied with full warming and merging the cache states based on the policy.

2Multi-level merging places blocks in other caches but only concerning merges across but not within levels (see Sections 3.4 and 5.3).

Faster Functional Warming with Cache Merging 9

— Determining the policy. For short warming amounts the sampled sets may not be warm enough to accurately
determine which policy should be applied. In these cases, the Early/Late warming would need to be done
twice, once for each of the two sub-policies, and the best-performing policy could then be selected because
Full set-dueling would have made the same choice.

— Merging. The cache state’s blocks are then merged in decreasing status value order. However, as the
invariant in DRRIP is to increase all block’s status values until at least one block has its status value at a
maximum, we cannot know if a block in Late has a high status value because it comes from a streaming
data set (inserted at a high value originally) or if it was increased as the result of an eviction of other
blocks. A possible solution would be to keep track of the per-set minimum reached status value during the
warming of Late. When merging with Early, a low minimum status value would indicate that the data in
the cache had high reuse that was reset upon some eviction, while a high minimum value would indicate

that this is a streaming data set.

4 EXPERIMENTS SETUP AND DESCRIPTION

We evaluated Cache Merging using the gem5 simulator [1] in full-system mode with the SPEC2006 [10] benchmark suite
and input workloads for 55 benchmark-input pairs. We followed the SmarTs methodology for each benchmark-input
pair and took ten uniformly distributed checkpoints after skipping the first 1B instructions. After removing one faulty
checkpoint, this gave us a total of 549 simulation checkpoints. For each checkpoint, we warmed for ten warming amounts
from 195k to 100M instructions by multiples of 2. We applied merging to these pairs for nine merged warming amounts,
with the smallest being 195k+195k=390k. We evaluated two single-level configurations (the data and instruction caches
of sizes 32kB and 1MB) and three multi-level configu-

Frequency 2.5 GHz
FID/R//W/C Widths 8/8/8/8/8/8 rations (32kB/128kB, 32kB/2MB, and 32kB/SMB L1/L2
ROB/IQ/LQ/SQ 192/64/32/32 . L . .
Int. / FP Registers 256 / 256 cache sizes), yielding data points from 9,882 single-level
DRAM SimpleMemory, 3GB, 30ns simulation experiments and 14,823 multi-level simula-
Atomic / O3 CPU TLB entries 64/512
Single-level cache setups tion experiments. A Tournament branch predictor[16] is
L1 caches, data- & instruction- Two sizes: 32kB and TMB used in the detailed simulation. To focus specifically on
64B, 8-way, LRU, 4c
Multi-level cache setups the cache effects of warming, we always use the same
L1 cache, data- & instruction set 32kB, 64B, 8-way, LRU, 4 .
cache, cata” & Instruction setup 075, Srway, R, °¢ unwarmed branch predictor state. The snoop filter em-
L2 cache Three sizes: 128kB, 2MB and 8MB
64B, 8-way, LRU, 6¢ ployed by gem5 employs to simplify cache state analysis
of i d si lati inst ti . . .
o warming and simu’ation Instructions is disabled as our benchmarks are all single-threaded. We
Acw functional warming 100M, 50M, 25M, ..., 391k and 195k
Detailed warming and simulation 20k and 30k measure accuracy as the difference in simulated IPC for

Table 2. Simulation parameters. the SMARTSs detailed simulation phase between using Full

(continuous) warmed cache states and Merged cache states, each of the same effective warming size. In L1, both data-
and instruction caches are merged>. Speedup from using Cache Merging with Acw is evaluated by measuring the
execution rate of different simulation phases (VFF, functional simulation, and detailed simulation) on a machine with an
AMD Phenom II X6 3.2 GHz processor and 8GB main memory (we show the speedup as relative times, so we expect

speedup to be roughly the same across different machines)*. When evaluating speedup, the smallest warming size

31t is also possible to merge the page-walker caches and TLBs, but we did not explore this and they are cleared and warmed as part of the SMARTSs
detailed warming.

“4For performance, Acw uses in-memory checkpoints from which simulations are restarted and copy-on-write when advancing from the checkpoints
using hardware virtualization (KVM [13]). We do not implement this, but instead, emulate them to retrieve results for our analysis.

10 Gustaf Borgstrom, Christian Rohner, and David Black-Schaffer

is 195k instructions (in contrast to when evaluating accuracy), as Acw might estimate a sufficient warming amount
immediately after evaluating the first warming iteration.

To evaluate the accuracy, we first look at the IPC error for the single-level merging and compare the Merged and Full
contents to identify and explore merge errors (Section 5.2). We then look at the multi-level caches, propose corrections
for the more complicated multi-level merging and evaluate the impact of these corrections (Sections 5.3 and 5.4). Finally,

we look at the tradeoff in speedup and accuracy from adding Cache Merging to acw (Section 6).

5 ACCURACY EVALUATION OF CACHE MERGING

To analyze which merge error types are most common, we enumerate the possible cache state combinations of Early,
Late, the resulting Merged, and the baseline Full into so-called simulation state vectors. Every such vector uniquely
identifies how every block resides across the caches and is effective for identifying merge errors. Specifically, by counting
all observed errors from our benchmarks, the errors can be classified by their cause and how to handle them. While the
errors for the single-level case are so infrequent as to be essentially negligible, the multi-level case exhibits significantly
more merge errors, leading to decreased accuracy. From this error analysis, we can identify which errors are statistically

correctable and evaluate the accuracy impact of such corrections in Section 5.4.

5.1 Enumeration of Simulation States

To classify all possible merges and errors, we build a simulation state vector for each cache block that combines the
block’s status (dirty=d, clean=c, absent=-) for each cache level (L1, L2) in each warming period (Early (E), Late (L),
Merged (M), and Full (F))® as such:

[Er; Er2][Lr1 Li2] [Mr1 Mro] [Fr1 Fro]

For example, the simulation state vector [dc] [-d] [dd] [-d] indicates that

e the block is dirty in Early; ; and clean in Earlyy ,;

o the block is absent in Later; but is present as dirty in Later y;

e as the block is present in Mergeds ;, it means it was merged from Earlyy ;;

e as the block is already present in Latey, (marked dirty), the clean block in Early; , was not merged;

o the Merged cache state has the block marked as dirty in both L1 and L2.

e an incoherent state as dirty data now exists simultaneously in more than one cache level (the Full state denotes

that the block should only have been in L2, as it was in Late).

In the following sections, we use simulation state vectors for all blocks across the caches, and all applications and

warming amounts to collect statistics about the types and frequencies of merges and errors.

5.2 Accuracy Evaluation of Single-level Cache Merging

To analyze the accuracy of the single-level Cache Merging strategy, we examine IPC error- and merge error statistics
for both a 32kB LRU cache and a 1MB LRU cache across all of our application- and warming amount pairs. We measure

simulation accuracy as the percent difference in IPC between the detailed simulation using a Full warmed cache state

SWe omit the L1 instruction and page walker caches for both data and instructions as they have essentially no errors (at most 0.02% for the page
walker caches).

Faster Functional Warming with Cache Merging 11

and those using the Merged cache state. Out of all 9,882 simulation experiments, only 3 have an IPC error, with a
maximum error of 3%, demonstrating that Cache Merging is exceptionally accurate for single-level caches.

We find the origins of these errors by studying the difference between the Merged and the Full cache states in the
collected simulation state vector statistics across the simulation experiments. This analysis shows that a merge error
may occur throughout the warming, where a block may be mislabeled as clean in Merged when it should have been
dirty in Full (denoted as [dc][cd] in the corresponding simulation state vectors). Out of all possible simulation state
vectors, this merge error occurs in 0.04%/0.49% of all blocks and is spread across 16%/84% of all simulation experiments
in the 32kB/1MB setups, respectively, showing that the merge error is overall widespread (especially in the larger cache
size), but still a rare occasion in a single-level hierarchy. Figure 4a shows an example of the events leading to this merge
error. As this merge error led to only 3 out of 9,882 simulation experiments having minor IPC errors, we conclude that
mislabeling seldom affects the simulation precision in a single-level cache hierarchy. This mislabeling error does not
affect the IPC because while clean and dirty evictions differ (dirty data is written to L2, while clean data is not), this will
still have the same latency in a single-level cache hierarchy, so there is no effect on IPC accuracy. Of the three non-zero
IPC error simulation experiments we observed, one was due to the page-walker data cache snooping other caches after
a miss, which hit to the L1 data cache. If the data in L1-data is clean, the gem5 PWC will not use the data in the cache
and instead retrieve the data from the next memory level (main memory), while if the data is dirty in the L1 cache, a
shared copy will be transferred directly to the page-walker-data cache, and thereby reduce latency. As IPC errors are
exceedingly rare (3/9,882 in our simulation experiments), we can conclude that single-level cache merging is highly

accurate.

5.3 Accuracy Evaluation of Multi-level Cache Merging

We now analyze the more complex Cache Merging strategy in a multi-level cache hierarchy (as described in Section 3.3)
in a simulation setup with 32kB L1 instruction and data caches and three sizes of shared (instruction and data) L2 LRU
caches: 128kB, 2MB, and 8MB. In a multi-level setup, IPC errors due to merge errors are not only due to an incorrectly
set dirty status of blocks (as in the single-level setup) but also due to incorrectly absent or present blocks in the L2
cache. In particular, while incorrect dirty status blocks had little impact on simulation accuracy in the single-level case,
one needs to be careful when merging dirty data in a multi-level cache hierarchy not to simultaneously place dirty data
into several levels. If done incorrectly, we will have an incoherent cache state which could, in turn, result in undefined
program behavior if the reading erroneous values later.

To address these more complex (and recurring) errors, we use the simulation state vector statistics to identify merge
errors and propose corrections (e.g., by merging across cache levels) based on the error statistics. From the simulation
state vectors across all benchmarks, we observe that most merge errors (90%) are due to a small number of erroneous
merge states (15). We can then identify the merge error origin (Extra Block, Missing Block, or Dirty Status Mislabeling)
for each of the 15 states and determine how correctable the error is (Always correctable, Statistically correctable,
Statistically non-correctable, or Undetectable). This approach allows us to propose corrections to improve the merge
results. Table 3 shows a categorized selection of these 15 states; a description of how to undertake their corrections as

follows:

o Statistically corrected. (4 of 15) Three are Dirty Status Mislabeling errors where it is statistically likely that a
block is present in Late whose dirty status needs to be switched. See example (1) in Table 3: the data loaded

as dirty in Early was only read throughout Late’s warming period, thus not setting the data status. In the

12

Gustaf Borgstrom, Christian Rohner, and David Black-Schaffer

Error category

Simulation state vector example
Notation: [E][L][M][F]

Correction category

Ratio vs. all merge errors
(128kB/2MB/8MB setup)

(1) Dirty Status Mislabeling

(2) Missing Block (from warming)
(3) Extra Block (from merging)
(4) Extra Block (from merging)
(5) Missing Block (form warming)

[-d] [-c] [-c] [-d]
[d-1[--1[--1[-d]
[-c1[--1[-c][--]
[-d] [d-] [dd] [d-]
[-c][--1[--1[-c]

Statistically correctable.
Statistically correctable.
Statistically non-correctable.
Always correctable.
Undetectable.

2.1%/50.0%/78.0%

16.4%/10.7%/5.0%
11.6%/2.4%/0.5%
4.0%/13.9%/6.7%
11.6%/2.4%/0.5%

Table 3. Different merge errors with different causes and corrections.

2MB/8MB L2 cache setups, the L2 data is more commonly dirty, while in the 128kB setup, clean data is more
common. The reason is simply that in smaller L2 cache sizes, the data is evicted from L2 and later read as a
clean copy. As the general case is that the data is still in the cache and as the data will be evicted (and read
again later) from the smaller cache, it is statistically more beneficial to implement a specific correction rule for
this merge error. This error is an example of where cache size matters for what correction decision we make,
as it is 0.4/1.1/2.3x as likely in the 128kB/2MB/8MB setups that switching the block’s status to “dirty” would
be correct. Such cache size-dependent cases need additional motivation for how to handle them. In this case,
Table 3 shows that the ratio within the experiments per cache size is prevalent in the 8MB cache setup while
comparably rare in the 128kB cache setup. As we load the block values from memory before detailed simulation
(see Section 3.1), an eventual dirty status set erroneously will not affect program correctness but eventually
simulation accuracy. Therefore, it is more beneficial to classify this error as Statistically correctable.

— The fourth statistically corrected merge error is a Missing Block error from warming due to Late’s cold
start effects (e.g., dirty data in Earlyy; should have been evicted during Late’s warming but was not).
Correcting this error demands cross-level merging from Early; ; to Latery. Row (2) in Table 3 shows an
example where dirty data exist simultaneously in Early;, and Later; and is thus an incoherent state.
This occurs when the L2 cache is merged incorrectly (see demonstration in Figure 4b). To correct this
error, cross-level merging from L1 to L2 is therefore needed. In the smallest 128kB L2 cache setup, it is
more common that the cross-level merge should not occur simply because the data was already previously
evicted. As the general case is an eviction to L2, it is statistically correct to cross-merge the data.

Statistically non-corrected. These are 2 of the 15 most common merge errors, both being Extra Block errors from
merging. While these errors occur, the results show they are not statistically frequent enough to be beneficial
to constantly correct them (or else introduce more errors than we correct). In other words, it is possible to
implement specific corrections for these merge errors, but they will more likely decrease overall accuracy.
Example (3) in Table 3 shows how a block is not present in Latey 5, but as space is available, the block is merged
from Earlyy ,. According to Full, the merge should not have occurred in this case. However, it is at least 17X
more common that the merge should have occurred among the cache sizes, so it is statistically more beneficial
to keep the original merging strategy.

Always corrected. This category is 1 of the 15 most common merge errors and is the only corrected Extra Block
error from merging. The merge error occurs whenever dirty data is merged into Late, already present in another
cache level. Merging blocks such that multiple dirty copies exist throughout the cache hierarchy introduces
incoherence. The solution is to check all caches in Late to see if the dirty block is already present and avoid
merging. This solution has no ambiguity and can, therefore, always be applied. Row (4) in Table 3 shows an
example where the merged dirty data from Early; , causes incoherence due to multiple dirty data throughout

the hierarchy, a error avoided by checking the whole hierarchy before merging dirty data from Early.

Faster Functional Warming with Cache Merging 13

e Undetectable. These cases are either Extra Blocks from warming or Missing Blocks from merging. After finishing
warming the Late cache state, it is impossible to determine which Extra Blocks should not have been present
(compared to Full). Furthermore, if filling the set in Late with such Extra Blocks since the warming, merges
from the corresponding set in Early cannot occur. As the merging algorithm cannot determine which blocks
are Extra Blocks in Late or would be Missing Blocks from Early, this situation is impossible to resolve. Row (5)
in Table 3 shows an example where a block in Early; , is not merged as the set in Latey ; is filled (indicated by
noting that Mergeds , is empty in the simulation state vector even when EarlyL2 had a block). However, the
block should have been present according to the Full cache state. As it is impossible to know what other blocks

prevent the merge in Latey 5, there is no way to correct this merge error.

5.4 Results From Corrections on Multi-level Merging

Figure 7a shows the impact of the above corrections on the IPC error in multi-level cache hierarchies (both relative (left)
and the absolute (right) IPC error).To simplify the visualization, we plot the 4% simulation experiments that together
make up 90% of the total IPC error across all L2 cache size setups. The x-axis shows the percent of merge errors in the
simulation experiment’s Merged cache state that are among the 15 top simulation state vectors, i.e., 100% indicates
that all of its merge errors are in the topmost. The data shows that the corrections (right) significantly improve the
merging accuracy (points move down) in multi-level cache setups. The corrections considerably reduce the maximum
absolute IPC errors (0.567 to 0.228) and the mean absolute IPC errors (0.024 to 0.017). Besides implemented corrections
for specific topmost merge errors, yet another 12 merge errors were also fully corrected.

Figure 7b shows the distribution of merge errors across the 15 top state vectors (red) and the relative reduction
from applying our corrections (blue). Of the four most common errors (86% of all merge errors), two are Dirty Status
Mislabeling errors (completely corrected), one is an Extra Block error (completely corrected), and one is a Missing Block
error (less than < 0.1% remaining after correction). Bars showing no difference between corrected and non-corrected
merge errors are examples of Statistically Non-corrected and Undetectable errors. The Others bar depicts all merge errors
not among the top 90%. The merge errors decreased by 19%/40%/61% after the corrections in the 128kB/2MB/8MB
setups, showing how the corrections improve Cache Merging.

The top merge error after corrections came from misclassifying example (1) in Table 3. In the 128kB cache setup, it is
2.4x more likely that the dirty status should not be corrected (switched from a “clean” to a “dirty” state), while in the
8MB cache, it is 2.3x more likely that the status should be corrected (with a 2MB cache setup it is 1.1X more likely that
the status should be corrected). As these errors make up 78% for the 8MB cache vs. 2.1% for the 128kB cache, we choose
to correct the error. The rest of the errors are either Undetectable (and thus not corrected) or infrequent enough that we
did not analyze them.

Figures 7a and 7b together show that we can successfully target and correct most merge errors and that this signifi-
cantly improves simulation accuracy, particularly for those benchmark/warming combinations that show exceptionally
high IPC errors.

6 USING CACHE MERGING WITH ADAPTIVE CACHE WARMING

The previous section evaluated the accuracy of merging individual pairs of Early and Late warmings. To use Cache
Merging to accelerate Acw (Acw+cM), we need to investigate how well we can cumulatively warm the cache, i.e., by
repeatedly merging with another cache state after additional warming. Specifically, as Acw doubles the amount of

warming in each iteration, we may need to merge up to ten separate warmings per simulation experiment cumulatively.

Gustaf Borgstrom, Christian Rohner, and David Black-Schaffer

Top IPC Errors vs Top Merge Errors
(Topmost erroneous simulations, without/with corrections)

Without corrections Without corrections
50% - 0.5-

40% -

e
S

30%-

o
w

20% -
10%-

0%- [} ’ JMM

With corrections . With corrections

Relative IPC error
Absolute IPC error
o
)

e
-

H o S M

e
o

50% -

.
wn

40% -

o
S

30%-

.
w

20% -

. ot . A ‘
. 3 pS 0B ® 2 on . o9 0O NaRTR %o ¢
o o e S e CNRIPPI A IRTR JIE PRI E S0 7E0 - PR

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Ratio out of top 90% merge errors Ratio out of top 90% merge errors

Relative IPC error

10%-

Absolute IPC error
o o
N

0%-

g
=)

(a) Accuracy without- and with multi-level merging corrections. The x-axis depicts how many of the simulation
experiment’s merge errors are in the 90% most common merge errors, and the y-axis is the simulation
experiment’s IPC error. The data without corrections (top) is clustered at the bottom right, indicating that
most IPC errors are from the topmost common merge errors. With the corrections (bottom), we notice:
1) the overall IPC error decreases: mean by 27% (from 0.024 to 0.017), and the overall maximum was 44%
without, is 22% with corrections; 2) the most common errors are less likely to be among the top errors (left
shift, since many of those were corrected); and 3) there are still a significant number of most common
errors (points to the right), indicating that not all were corrected.

0 70%- s Without corrections

2600/ BN With corrections

o 60%-

o

gso%—

540%—

@©

%5 30%-

5

© 20%-

o

C

D 10%-

B i

go%, .—- . e———— ‘__7L
S T s s 7 %S 7S T 7T 79 o 71 ¢
L=l 1 L1 4L I = 4 4119 g
S s 7T g9 T7T T 9 7T T T b
L= L L L L L L L= L L L L g
S T T 7T 7 v v 7T T T ©
L= L L L L L L L= 4L L L9
T 5 7T ¢ v 77 s T v 97T ¢ T
LL=2=2 L0=2 L 4L L = 4L 4L b 9 9

State enumerations of merge errors

(b) Histogram of the impact of correcting the top merge errors, before and after.

Fig. 7. Correction impact from multi-level merging.

Faster Functional Warming with Cache Merging 15

However, as Cache Merging can introduce errors, we expect that some errors will accumulate across the merges leading
to a more complex trade-off between accuracy and the 50% potential performance increase from eliminating redundant

warmings. We investigate these trade-offs by looking at four metrics:

e Accuracy: The impacts of merging multiple cache states and the accumulation of merge errors.

e Accuracy: ACW+CM vs. ACW with the baseline redundant warming.

Required Warming Estimates: Acw estimates of how much warming is required with/without Cache Merging.

Speedup: Cache Merging’s impact on the amount of warming (and hence performance) of acw.

6.1 Removal of Trivially Error-Free Simulations

Previously we have included data from all simulation experiments when analyzing accuracy to give a general overview
of the simulation- and merge error impact. However, when determining the accuracy and speedup over Acw, many
simulation experiments with long warming lengths (relative to the cache sizes) result in thoroughly warmed Late
cache states. That much warming results in no merged blocks from Early; therefore, Late is identical to Merged. This
results in no blocks being merged from Early, and therefore Late is identical to Merged. To avoid biasing the Acw
error analysis by such merge-less simulations, we use the baseline Acw to determine the required warming for every
checkpoint and filter out simulations that require more warming from our metrics. The black line in Figure 8 shows the
importance of this filtering: nearly all warmings of more than 12.5M instructions (for a 128kB cache) and over 70% of
them for the 2MB and 8MB caches do not result in merges. If included in the error analysis, the filtered values would

heavily bias our results by the configurations not used in Acw and where no merging occurs.

6.2 Analysis of Merging Cache States Cumulatively

In every Acw iteration, the new additional Early cache state is merged with the Merged cache state from the prior
Acw iteration(s). If Cache Merging was perfect, such cumulative merging would give the same result as a single merge
of an Early and Late pair. However, Cache Merging introduces merge errors that accumulate with every iteration and
merge, likely leading to higher overall merge errors than in the pairwise merges analyzed earlier. This accumulation of
errors occurs because once a merge places a cache block into the Merged cache state, blocks from additional Early
states will not replace it as all blocks already inside Merged will be younger. This accumulation results in any blocks
merged incorrectly in prior iterations will not change, so merge errors will accumulate with increasing warming until
the Merged cache state is filled. Besides affecting simulation accuracy, this may also lead to Acw misestimating the
amount of warming needed.

We analyze the impact of cumulative merging on accuracy by comparing the accuracy from simulation experiments
using cache states merged cumulatively to those merging only a single pair of states. Figure 8 shows the average IPC
error comparison from cumulative (red) and non-cumulative (blue) merging for the three cache sizes. As expected,
cumulative merging has a higher IPC error regardless of L2 cache size and warming amount, except for the smallest
merged amount, as nothing is merged cumulatively at that amount. We see the most significant difference in the 128kB
cache size at 50M warming, where cumulative warming yields a 0.036 mean IPC error vs. 0.016 for non-cumulative.
While cumulative merging increases the simulation error, it is clear that it remains very close to the baseline, particularly
for larger cache sizes.

Finally, the smaller cache sizes have more significant inaccuracy, as seen by the different y-axis ranges chosen for

each plot. We hypothesize that this effect is because the larger caches are less filled at merging than smaller caches.

16 Gustaf Borgstrom, Christian Rohner, and David Black-Schaffer

Cumulative vs. Noncumulative Errors for 128kB L2

B Cumulative merging -60%
0.03- B Noncumulative merging -50%
-40%
0.02- 30%
0.01- -20%
]

0.00- Wmmm -0%

2MB L2

oD wn

=

5 ES

@ 0.004- B Cumulative merging -60% tgu ié)

B g 0.003 B Noncumulative merging -50% o g 6

28 -40% 2 ¢ @

== 0.002 -30% 0 S

& 3 20%59 8

i 0.001 o g 5

g0.000- —— — ‘ : : : : : : 0% 3

8MB L2 g8

0.00150- mmm Cumulative merging -60% oo
0.00125- mmm Noncumulative merging -50%
0.00100- -40%
0.00075- -30%
0.00050- -20%
0.00025- -10%

0.00000- — : : ‘ ; : : : 0%

N A W A\ AN N N W
”)ggg) 1,3\7« 4 > o {Lﬁ ’LC"Q ‘)0‘0 \/QQQ

Warming amount

Fig. 8. Simulation accuracy (IPC error) across warming amounts for cumulative and non-cumulative merging. Cumulative merging sees a
higher IPC error as it accumulates merge errors across multiple merges (bar plot, red vs. blue, left axis). The line (right axis) shows the
distribution of warming required for each cache size to show the importance of filtering warmings that do not lead to merges. For
example, for the 128kB cache, essentially all warmings over 12.5M are filtered out as they are unnecessary for such a small cache, and
including them would bias the results towards the cases where no merging occurred.

This less filling results from acw stopping when sufficient data is present in the cache for an accurate simulation, as
opposed to when the cache is filled. It is easier to merge correctly in a large (more empty) cache than in a small (more
filled) cache. For example, the number of Extra Blocks may be proportionally higher in a smaller cache than in a larger

cache, which prevents merging blocks from Early, leading to a proportionally higher number of Missing Blocks.

6.3 Accuracy Analysis of Cache Merging with Adaptive Cache Warming

Acw uses the IPC results from simulation experiments for two purposes: first, to determine how much warming is
needed, and second, to report the final simulation results once meeting the required warming. Errors in the IPC estimate
stemming from merge errors can thus affect both the simulation results and the estimated warming amount. If Acw+cm
overestimates the warming (i.e., over-warming), the result is a loss in performance (extra time spent warming) and
accuracy, as any (or both) of the optimistic/pessimistic simulation’s IPC may be different such that the final IPC result
may not match the Acw’s warming estimate or/and the reported IPC with that warming estimate. Conversely, an
underestimated warming (i.e., under-warming) estimate may increase simulation errors due to the under-warmed cache.
To investigate these effects, we look at the IPC accuracy of acw+cm for both warming estimates and merging, the

accuracy of the warming estimates themselves when using Cache Merging, and, finally, whether the accuracy losses

Faster Functional Warming with Cache Merging 17

come from choosing the wrong warming estimate (but not from Cache Merging) or from Cache Merging, even if

estimating the correct warming®.

0.20-

0.10-

oni_Ha.ahhadl

-
o
=
0 0.10-
O
=
9]
et
E
o
v
e}
<

0.10-

000-B & = — — _ _ _ _ _ _

2 \4 c@\ %a‘*‘ag&& e*‘
S«; Aat ,L <0 <°% ks &
ks ‘l /‘07' \Q’L G1e©

o

L2 size 128kB

iilii iiilii_iiiiiiﬁniil_i___iiiiiii_.;i [

L2 size 2MB

0,00.Li.ﬁi_i__i___ii-ini-.-_“‘._a___i__--__.n__-__i‘-“l

L2 size 8MB

i___ii & li-i__-i’-_a ______ & _ - _ _ 8a_ _ _ _ _ i-_-__l
+\e \L\("L“; 1Lé é L() N eKso
ok 2 L S ‘;i U « ?«%@2@“&; S sfiged
55/ & S8 %@\L@o‘&&“«* %m s e‘, o 9

qu,«

Applications

Fig. 9. Absolute IPC error when using Cache Merging with Acw. The boxes show a 95th percentile range with whiskers at maximum
value. The “overall” bar shows that the 95th percentile IPC error is only 0.03/0.02/0.01 for the 128kB/2MB/8MB cache sizes.

Mean 95% Max.
128kB 0.006 0.029 0.173
2MB 0.003 0.015 | 0.099
8MB 0.001 0.006 | 0.057

6.3.1 Overall Accuracy. Figure 9 shows the IPC error between simulation exper-
iments with Acw and Acw+cM and their respective warming estimates. Table 4

summarizes the overall numbers, showing that adding Cache Merging to Acw

Table 4. Mean, 95" percentile, and maxi- has little significance on mean IPC error (0.006% mean/0.173% max to 0.001%

mum IPC absolute error between Acw+cm

and Acw simulations.

mean/0.057% max) across the different cache sizes. Furthermore, a comparison

between the 95th percentile and the maximums shows that the “tails” of the error

distributions are reasonably long (the differences being 0.144/0.084/0.051) for all cache sizes, showing that higher errors

are uncommon. Analysis of simulation experiments having a significantly higher error than others (the maximum

measurement being tonto in the 128kB cache setup, whose maximum IPC error reaches 0.173) shows that an absolute

IPC error > 0.1 occurs only in less than 1% of the 128kB cache cases and none of the larger caches.

6.3.2 Over- and Under-Warming. Merge errors may also affect Acw+cM’s ability to estimate how much warming is

required accurately. Acw can be particularly sensitive to this as it uses a 0.01 IPC threshold (between optimistic and

pessimistic estimates) to determine if sufficient warming is reached, meaning an IPC error of 0.01 caused by merge

errors can result in over- or under-warming, e.g., when Acw+cM estimates a higher or lower warming amount than

what the reference Acw estimate would have been.

®We do not present results for the last analysis as the error was so small as to be uninteresting.

18 Gustaf Borgstrom, Christian Rohner, and David Black-Schaffer

Figure 10a shows the total percentage of simulation experiments that were over- or under-warmed when using
Acw+cM. The 128kB cache configuration sees nearly twice a high rate of over- or under-estimated warming compared
to the larger configurations. This effect reflects the same as discussed earlier in Section 6.2: smaller caches may have a
higher proportion of merge errors than larger caches. In turn, the optimistic- and pessimistic simulation estimates are

more prone to errors with smaller caches, leading to a higher probability of over- and under-estimated warming.

5.6%

I Under-warming
I Over-warming

128kB [2MB [8MB

5.0%- A.mean absolute IPC error from
e ...over-warming 0.02 0.01 0.01
o ...under-warming 0.02 0.01 0.01
9 Maximum absolute IPC error from
® ...over-warming 0.17 0.03 0.01
o ...under-warming 0.06 0.03 0.05
0.0% - 0 0 0 G.mean speedup within
128kB 2MB 8MB e ...over-warmed checkpoints 0.36X 0.23% 0.14%
L2 cache size o ...under-warmed checkpoints 3.59%X 317X 713X

(b) IPC error and speedup within over- and under-warmed check-

points from Acw+cm simulation experiments.

Over all checkpoints, under- and over-warming yields a speedup

loss is —0.01% in the 128kB cache setup and none in the larger
(a) Percent over- and under-warmed checkpoints with Acw+cm. caches.

Fig. 10. Frequency (a) and impact (b) of over- and under-warming in Acw due to merging.

6.4 Speedup of Cache Merging with Adaptive Cache Warming Across Applications

As Cache Merging avoids re-warming, we expect Acw+cM to spend half as much time warming as Acw, but to have
the overhead of the merge itself and the fast-forwarding from the end of the added Early warmings to the simulation
point (previously, those fast-forwardings were not needed as warming was done continuously from the start of the
new warmings to the simulation point.) To compute the speedup, we collect the average execution rate of the different
simulation modes (VFF, functional warming, detailed warming, and detailed simulation) and the merging itself and
compute the expected execution time for each benchmark’. For reference, merging cache states for the SMB cache took
roughly as much time as simulating 12k instructions in functional simulation mode.

Figure 11 shows the mean simulation time across the checkpoints per application. Notably:

o Acw+cM is faster than Acw for 52.8%/93.3%/94.0% of all checkpoints in the 128kB/2MB/8MB setups. In particular,
the larger cache sizes see more benefit because the baseline can avoid larger re-warmings. The smallest cache
size is only faster in 52.8% of cases because 42% of the checkpoints need only the minimum 195k warming,
meaning no speedup is possible, while 19% need only 390k, e.g., two iterations. This case significantly limits the
potential for speedup as there are few opportunities to merge, and because the warming amounts are small,
the relative overhead of the merging vs. the saved warming time is low. For the 2MB/8MB cache setups, only
21%/20% need <390k instructions, so there is more potential for benefit from merging. The overhead from
ACcw+cM also becomes smaller as the amount of warming needed increases.

o The geometric mean speedup is 1.44x/1.84x/1.87x for the 128kB/2MB/8MB cases, demonstrating that for the

larger cache sizes, Cache Merging enables us to achieve nearly the full 2.0x speedup potential.

"We exclude 8 out of 14,823 simulation experiments from the results that crashed during vFF.

Faster Functional Warming with Cache Merging 19

128kB

50 -

0 M e Bl e - - . - Ak __ @
EISO 2MB

Q

_gloor

E Whobbsbobah | Lol il
o) 50
goll-llllllIIlllllnllll-l-II-I---I_-----IIII_-I|=l
< 8MB

—— Conservative warming
== ACW warming
mm ACW+CM warming

1 TN T A

&"ec‘ze'»‘!ﬁ"cz+ \\ 0«“5‘3@&6 (‘L'[ﬁw\a“@@“z’lx
B&()«E o \d‘“\v“ voE‘@‘ﬁ o‘ xe 4& S ¢e?‘ o »Lo‘- 0\»&&&1&@& N z+"2¢géq OB H Fod
2555° \9101 &\9 ‘,1 s s

150 -

100 -

S X Y o o £ oo o

szmacz & “g: ge«(e‘(eém, \o\‘“\e“ o o Y\\\L,&(\(\E‘Q a(jm"\ mﬁoq(z\;g\e\x 5, SR \)@\1,66@
e e e < o, b‘e S 6 S

sg Q“\B"u"“‘ v‘“ 1 %(0«\‘02/ \‘“V

&(& &

Fig. 11. The mean time of using Acw+cm vs Acw per application. Acw defines 100M instructions as the conservative warming amount,
i.e., sufficient for any checkpoint, whose warming time is shown as a gray line for reference.

e Acw had the problem that a warming estimate equal to the conservative warming amount needed 2x longer
time than simply warming conservatively, i.e., very warming demanding applications would lead to slowdowns.
Cache Merging solves this problem as the redundant warming in that iteration is removed, so ACW+CM can never
be slower than conservative warming. Figure 11 shows an example in the 8MB graph and the astar/lakes
application. The gray line at the top denotes the time it takes for conservative warming to run. While the
average runtime for Acw is higher than this line (i.e., it takes longer time to run than conservative warming),

ACw+cM’s runtime will never be at risk of running for longer than conservative warming.

7 RELATED WORK

We elaborate on other work, related to making detailed simulation faster or to determining the sufficient warming
amount, that Cache Merging could be applied beneficially.

With SimPoint [20], Sherwood et al. identified the most important phases in a benchmark and provide weights for
combining results from simulation experiments of just those phases to produce an accurate overall result. SimPoint is
typically used with extensive functional warming for each phase (often over 100M instructions) followed by a long
detailed simulation of the phases themselves (often 100M to 1B instructions). While Cache Merging could be used
in combination with Acw to reduce the initial functional warming, the majority of the simulation time will still be
dominated by the much slower detailed simulation itself.

Memory Reference Reuse Latency (MRRL) [9] and Boundary Line Reuse Latency (BLRL) [5] determine the amount of
warming needed statistically by tracking reuse distances (RDs, i.e., the number of distinct accesses between two accesses
to the same block) both before and during the detailed simulation. MRRL collects statistics of the reuse distances
observed during warming to determine how much warming would be needed to cover a particular percent of all uses.
BLRL extends this strategy by only looking at the reuses that cross between the warming and the detailed simulation,
as those are the only ones that directly affect the simulation experiment. Similarly, No-State-Loss (NSL) [3] creates an

LRU stack of the latest access to any address during the warming. LRU caches are then warmed using this LRU stack

20 Gustaf Borgstrom, Christian Rohner, and David Black-Schaffer

before detailed simulation. Later work has extended MRRL and BLRL with NSL, showing how warming periods can be
shortened even further when specifically assuming LRU caches [4, 21].

Iterative search and merge methods similar to what we proposed for Acw could be used for these techniques by
merging Early and Late histograms instead of cache states. Reuse histograms are created by recording the reuse distance
between two accesses to a cache block during warming. However, there are two challenges to merging histograms.
First, as we do not have the Late access trace when merging, reuses that cross Early and Late are not captured. This
could be solved by a hybrid cache/histogram approach that records tags and timestamps of accesses during Late’s
warming along with the histogram and then uses this information to detect reuses that cross from Early. The second
challenge is that we must determine when the longest reuse distance so far is sufficiently long, i.e., when we have
reached sufficient warming for good simulation accuracy. One approach could be to pair accesses during detailed
simulation with the cache’s contents from warming to estimate whether additional warming is needed upon misses
(similar to Delorean [17]).

SMA [15] counts “cold start references” to the cache similarly to the way aAcw counts “cold set misses”. The difference
is that SMA continuously keeps track of cold start references during warming and uses that to start the detailed
simulation as soon as it determines the cache is sufficiently warm. As pointed out by the authors, the drawback is that
the user can not pick the precise point for the sample, which is possible with acw. In turn, SMA does not report any
warming estimate that requires explicit searching, so Cache Merging will not be helpful with SMA.

Delorean [17] warms a fully associative cache by fast-forwarding directly to the sample (using hardware virtualization),
applies detailed warming (30,000 instructions for short-term accesses), and then scan for key accesses to memory during
detailed simulation. The blocks installed from these key accesses that were not found in the cache after detailed warming
are found by searching backward in the simulation in an incremental fashion (similarly to aAcw) until all key accesses
are found. When all key accesses are found, their corresponding reuse distances are compiled into a histogram. The
profiles from the short-term warming and key access search are then used with additional statistics from detailed
simulation in a statistical cache model (StatStack [6]) to estimate simulated performance (IPC and MPKI). The authors
present a speedup of 150X over SMARTS at an average 3.89% error. As the short-term warming is fixed and the list of

key accesses is searched for incrementally until all are found, there is no need to merge.

8 CONCLUSIONS

This work has demonstrated how Cache Merging allows us to merge previously warmed ones with newly warmed
cache states to avoid redundantly re-warming when we increase the amount of cache warming before a sample. Cache
Merging is beneficial when spending much of the simulation time re-warming caches. We used Cache Merging to
improve the simulation speed of Adaptive Cache Warming, which dynamically adjusts the amount of warming based
on the sample. Our results show that merging does introduce errors in the cache state but that these errors have a
minor impact on the resulting estimates of how much warming is needed and the final accuracy while allowing us to
avoid much of the re-warming and significantly reduce the simulation time.

We have analyzed merging both single- and multi-level hierarchies. While the rare merge errors in single-level
hierarchies came in the form of incorrect dirty bits, the more complex multi-level hierarchies led to a wide variety of
merge errors, including extra blocks, missing blocks, and incoherent configurations. These errors significantly impacted
IPC accuracy (from a maximum of almost zero IPC error in single-level cache size setups to up to 0.567 IPC error in the
multi-level setups). We investigated these error sources by enumerating the cache states and categorizing and explaining

the error sources and their frequency. From that analysis, we were able to identify common errors that we could correct

Faster Functional Warming with Cache Merging 21

in all cases and those which we could statistically correct: 5 merge errors explicitly and another 12 statistically, bringing
down the maximum absolute IPC errors from 0.567 to 0.228 and mean absolute IPC errors from 0.024 to 0.017.

We have demonstrated the value of Cache Merging by using it to improve the performance (1.44%/1.84x/1.87X
geomean speedup for the 128kB/2MB/8MB caches) of Adaptive Cache Warming, which is narrow to the expected
(ideal) speedup (i.e., 2X). We achieve this speedup with a minimum mean/95-percentile absolute loss of IPC accuracy of
only 0.006/0.029, 0.003/0.015, and 0.001/0.006) IPC error. In doing so, we investigated how the merge errors lead directly
to simulation errors and indirectly to simulation errors by causing over- or under-warming. Our analysis showed that
overall, the simulation experiments are very accurate, but that for the smallest cache size, the proportion of over- or
under-warming estimates was up to 9% (with an average —0.01x slowdown overall for that cache size). These results
demonstrate that combining Cache Merging with techniques such as Adaptive Cache Warming can significantly reduce

simulation time while retaining accuracy.

9 ACKNOWLEDGMENTS

Gustaf wants to thank the UART group for generous input, especially Mihail Popov for helpful comments, Ricardo
Alves for useful discussions and Christos Sakalis and Chang Hyun Park for reviewing this paper.

This work was supported by the Knut and Alice Wallenberg Foundation through the Wallenberg Academy Fellows
Program (grant No 2015.0153), the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant No. 715283). The computations and data handling were enabled by resources provided by
the Swedish National Infrastructure for Computing (SNIC) at NSC (2021/22-435) and UPPMAX (2021/23-626) partially
funded by the Swedish Research Council through grant agreement no. 2018-05973.

REFERENCES

[1] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna,
Somayeh Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture News 39, 2 (2011), 1-7.
[2] Gustaf Borgstrom, Andreas Sembrant, and David Black-Schaffer. 2017. Adaptive cache warming for faster simulations. ACM Press. http:
//urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-310625
[3] T. M. Conte, M. A. Hirsch, and W.-W. Hwu. 1998. Combining trace sampling with single pass methods for efficient cache simulation. IEEE Trans.
Comput. 47, 6 (Jun 1998), 714-720. https://doi.org/10.1109/12.689650
[4] Lieven Eeckhout and Koen De Bosschere. 2006. Yet shorter warmup by combining no-state-loss and MRRL for sampled LRU cache simulation.
Journal of Systems and Software 79, 5 (May 2006), 645-652. https://doi.org/10.1016/].js5.2005.06.016
[5] Lieven Eeckhout, Yue Luo, Koen De Bosschere, and Lizy K. John. 2005. BLRL: Accurate and Efficient Warmup for Sampled Processor Simulation.
Comput. 7. 48, 4 (Jan. 2005), 451-459. https://doi.org/10.1093/comjnl/bxh103
[6] David Eklov and Erik Hagersten. 2010. StatStack: Efficient modeling of LRU caches. In 2010 IEEE International Symposium on Performance Analysis
of Systems & Software (ISPASS). IEEE, 55-65.
[7] A.Falcon, P. Faraboschi, and D. Ortega. 2007. Combining Simulation and Virtualization through Dynamic Sampling. In 2007 IEEE International
Symposium on Performance Analysis of Systems Software. 72—-83. https://doi.org/10.1109/ISPASS.2007.363738
[8] Davy Genbrugge, Stijn Eyerman, and Lieven Eeckhout. 2010. Interval simulation: Raising the level of abstraction in architectural simulation. In
HPCA-16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture. IEEE, 1-12.
[9] J. W. Haskins and K. Skadron. 2003. Memory Reference Reuse Latency: Accelerated Warmup for Sampled Microarchitecture Simulation. In Proc.
International Symposium on Performance Analysis of Systems & Software (ISPASS).
[10] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Computer Architecture News 34, 4 (2006), 1-17.
[11] Engin Ipek, Sally A McKee, Rich Caruana, Bronis R de Supinski, and Martin Schulz. 2006. Efficiently exploring architectural design spaces via
predictive modeling. ACM SIGOPS Operating Systems Review 40, 5 (2006), 195-206.
[12] Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel Emer. 2010. High performance cache replacement using re-reference interval prediction
(RRIP). ACM SIGARCH Computer Architecture News 38, 3 (2010), 60-71.
[13] KVM. 2016. Main Page — KVM,. https://www.linux-kvm.org/index.php?title=Main_Page&oldid=173792 [Online; accessed 22-June-2022].
[14

Benjamin C Lee, Jamison Collins, Hong Wang, and David Brooks. 2008. CPR: Composable performance regression for scalable multiprocessor
models. In 2008 41st IEEE/ACM International Symposium on Microarchitecture. IEEE, 270-281.

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-310625
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-310625
https://doi.org/10.1109/12.689650
https://doi.org/10.1016/j.jss.2005.06.016
https://doi.org/10.1093/comjnl/bxh103
https://doi.org/10.1109/ISPASS.2007.363738
https://www.linux-kvm.org/index.php?title=Main_Page&oldid=173792

22

[15]

[16]
[17]

(18

[19

[20]

[21]

[22]

Gustaf Borgstrom, Christian Rohner, and David Black-Schaffer

Yue Luo, Lizy K. John, and Lieven Eeckhout. 2005. SMA: A Self-Monitored Adaptive Cache Warm-Up Scheme for Microprocessor Simulation.
International Journal of Parallel Programming 33, 5 (Oct 2005), 561-581. https://doi.org/10.1007/s10766-005-7305-9

Scott McFarling. 1993. Combining branch predictors. Technical Report. Technical Report TN-36, Digital Western Research Laboratory.

Nikos Nikoleris, Lieven Eeckhout, Erik Hagersten, and Trevor E Carlson. 2019. Directed statistical warming through time traveling. In Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 1037-1049.

Andreas Sandberg, Nikos Nikoleris, Trevor E. Carlson, Erik Hagersten, Stefanos Kaxiras, and David Black-Schaffer. 2015. Full Speed Ahead: Detailed
Architectural Simulation at Near-Native Speed. In Proc. International Symposium on Workload Characterization (ISWC).

Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Automatically Characterizing Large Scale Program Behavior. In
Proceedings of the 10th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS X). ACM,
45-57. https://doi.org/10.1145/605397.605403

Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Automatically Characterizing Large Scale Program Behavior. In Proc.
Internationl Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS).

Luk Van Ertvelde, Filip Hellebaut, Lieven Eeckhout, and Koen De Bosschere. 2006. Nsl-blrl: Efficient cachewarmup for sampled processor simulation.
In Proceedings of the 39th annual Symposium on Simulation. IEEE Computer Society, 168-177.

R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. 2003. SMARTS: Accelerating Microarchitecture Simulation via Rigorous Statistical
Sampling. In Proc. International Symposium on Computer Architecture (ISCA).

https://doi.org/10.1007/s10766-005-7305-9
https://doi.org/10.1145/605397.605403

	Abstract
	1 Introduction
	2 How Adaptive Cache Warming improves Smarts
	3 Cache Merging Strategy
	3.1 Single-level Cache Merging Strategy
	3.2 Merging Dirty Blocks
	3.3 Multi-level Cache Merging Strategy
	3.4 Correcting Merge Errors
	3.5 Merging Invalidated Blocks
	3.6 Cache Merging in a Multi-core Environment
	3.7 Cache Merging With Alternative Cache Replacement Policies

	4 Experiments Setup and Description
	5 Accuracy Evaluation of Cache Merging
	5.1 Enumeration of Simulation States
	5.2 Accuracy Evaluation of Single-level Cache Merging
	5.3 Accuracy Evaluation of Multi-level Cache Merging
	5.4 Results From Corrections on Multi-level Merging

	6 Using Cache Merging with Adaptive Cache Warming
	6.1 Removal of Trivially Error-Free Simulations
	6.2 Analysis of Merging Cache States Cumulatively
	6.3 Accuracy Analysis of Cache Merging with Adaptive Cache Warming
	6.4 Speedup of Cache Merging with Adaptive Cache Warming Across Applications

	7 Related Work
	8 Conclusions
	9 Acknowledgments
	References

