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ABSTRACT

This work studies the resonance excitations of the three-dimensional skyrmions lattice in the finite thickness plate of an isotropic chiral
magnet using spin dynamics simulations. We found that the absorption spectra and resonance modes differ from those predicted by the two-
dimensional model and the model of the unconfined bulk crystal. The features observed on the spectra can be explained by the formation of
chiral standing spin waves, which, contrary to conventional standing spin waves, are characterized by the helical profile of dynamic magneti-
zation of fixed chirality that is defined by the Dzyaloshinskii-Moriya interaction. In this case, the dynamic susceptibility becomes a function
of the plate thickness, which gives rise to an interesting effect that manifests itself in periodical fading of the intensity of corresponding modes

and makes excitation of these modes impossible at specific thicknesses.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0097651

I. INTRODUCTION

The shape and size of magnetic samples define many of their
static and dynamic properties. The most representative example
is the so-called bubble materials'’—thin ferromagnetic films with
strong perpendicular anisotropy. The size of the magnetic domains
in these systems depends on the film thickness. The variation of the
thickness changes the energy balance between demagnetizing fields
effects, Heisenberg exchange, and magnetic anisotropy. The mag-
netic phases observed in the bulk crystals and thin films of bubble
materials are very different. The ground state of very thin films with a
thickness comparable to the domain wall width is the homogeneous
ferromagnetic state, whereas, for thicker films, the multidomain
states—stripes or bubbles—become more energetically favorable.

Another example of the systems where the shape of the samples
plays a crucial role is the so-called chiral magnets, where the main
properties are defined by the competition between the Heisenberg
exchange interaction and chiral Dzyaloshinskii-Moriya interaction
(DMI).”" At zero external magnetic field, in bulk crystals of B20-type

FeGe,” ® MnSi,” '* Fe;_xCo,Si,"* and other compounds from that
class,”” the ground state of the system is the helical spiral. With
increasing external magnetic fields, the spiral continuously trans-
forms into the cone phase and then into the field saturated state.
These three phases are the main phases observed in the bulk crystals
of isotropic chiral magnets in a whole range of temperatures. There
are, however, a few exceptions; for instance, a tiny pocket near the
critical temperature on the phase diagram of most of the bulk chiral
magnets known as the anomalous phase,”'' and additional phases
that are observed at low temperature in Cu,OSeQ3.'”"” The experi-
mental observations in thin films of chiral magnets show the emer-
gence of another phase—the skyrmion lattice, which remains stable
in a wide range of magnetic fields.” *'*'” A theoretical explanation
of this phenomenon is based on the effect known as the chiral surface
twist, '’ which provides a significant skyrmion energy gain when
the film thickness equals a few periods of helical modulations.””’
The energy gain provided by the chiral twist near the surface reduces
with the film thickness, and above a critical thickness, the skyrmion
phase becomes energetically unfavorable.”’
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It is natural to expect that besides the static properties, the
system’s dimensionality and the edge effects also significantly affect
the dynamic properties of the chiral magnets. For instance, it is
known that in pure ferromagnetic films at particular boundary
conditions,” the spin-wave resonance””" can take place. In chi-
ral magnets, the presence of DMI causes an effective “pinning” of
the spins at the boundaries.'>*”** The latter can lead to the forma-
tion of the standing spin-waves (SSW), where all the spins precess
with identical frequency, but the relative phase and the amplitude
of the spin precessions vary across the thickness. At the same time,
the positions of the minima and maxima of the amplitude, nodes
and antinodes, respectively, remain fixed in time. Analytical mod-
els based on the linear approximation suggest that SSW can arise in
chiral magnets in both the field saturated state and the helical spin
spiral state.”””” ! On the other hand, in some works, it was argued
that SSW with fixed in time positions of the antinodes does not exist
in chiral magnets® or at least cannot be considered as conventional
SSW.** One of the aims of this work is to confirm the presence of
SSW in chiral magnets and to highlight some essential aspects that
have not been discussed in the previous studies.

Here, we present the results of the theoretical study of the
spin-wave resonance in the three-dimensional (3D) skyrmions lat-
tice (SKkL) representing a statically stable configuration in the plate of
isotropic chiral magnets. We show that the spectra of resonance fre-
quencies, in this case, differ from the 2D model, and the additional
resonance modes can be explained in terms of chiral SSW.

Il. MODEL

We consider the classical spin model of the simple cubic lattice
described by the following Hamiltonian:

E= —]Zl‘li . nj — ZDij . [n,v X l‘lj] —‘LISBZI‘IZ', (1)
(ij) (if) i

where n; = M;/p, is a unit vector of the magnetic moment at site
i, g is the value of the magnetic moment of the lattice site, (ij)
means the summation of overall nearest-neighbor pairs, J is the
exchange coupling constant and Dj; is the Dzyaloshinskii-Moriya
vector defined as Dj; = Dry;, D is the DMI scalar constant, and r;; is
the unit vector between sites i and j. The external magnetic field,
B(t) = Bpc + Bac(#), contains the static (DC) and time-dependent
(AC) components. To ensure the generality of the results, we use
reduced units of the external magnetic fields and the distances with
respect to the saturation field Bp = D*/(u.J) and equilibrium period
of helical modulations in the continuum limit, Lp = 27aJ/D, respec-
tively. While the values of Bp and Lp are unique for a particular
chiral magnet, the results provided in reduced units are general
for the whole class of magnets described by the model (1). Using
the reverse conversion for a particular compound with Bp and Lp
known from the experiment, one can obtain the absolute values of
the external magnetic fields and the sizes of the sample required for
the observation of the theory’s predicted effects.

We excluded the dipole-dipole interactions since they do not
affect the discussed phenomena significantly (see Appendix B).

We consider an extended film of finite thickness with periodic
boundary conditions (PBC) in the xy— plane and free boundaries
along the z-axis [Fig. 1(a)]. The shape and size of the simulated
domain in the xy— plane is chosen to fit the equilibrium size of the

ARTICLE scitation.org/journal/apm

FIG. 1. (a) The simulated domain with the size fits the equilibrium period of the 3D
skyrmion lattice with periodic boundary conditions in the xy plane. The color code
represents the magnetization field no (x, y, z). The static magnetic field is perpen-
dicular to the film plane, Bpc |e;. (b) In the excited state, the spins oscillate about
the direction of the effective field and can be decomposed into static component
no and dynamic component &n at resonance. (c) Color code used for a unit vector
field of magnetization n and its dynamic component of magnetization on.

unit cell of the hexagonal skyrmion lattice, Ly/Ly = 78/45 ~ \/3. The
thickness of the film L, varies by changing the number of atomic
layers, d, from 1 to 140, which for a chosen coupling parameter cor-
responds to L, = 0 (in the single atomic layer limit—2D case) and
L, = 4Lp. For definiteness, we set J = 1 and D = 0.18, which results
in Lp ~ 35a and Bp = 0.0324 4; ', The static magnetic field is always
perpendicular to the film plane, Bpc|e,. In the following, we study
both cases of in-plane and out-of-plane alternate magnetic fields:
BaclBpc and Bac HBDO

The magnetization dynamics is described by the Landau-
Lifshitz-Gilbert (LLG) equation, which can be written in the
dimensionless form

8n,- 1

5 = —m(ni x H; + an; x (n; x H;)), (2)

where t is a dimensionless time scaled by yE, /u, with y being the
gyromagnetic ratio and Ey being the reference energy, which we
set equal to exchange constant J since the Heisenberg exchange
is the leading energy term in (1), & is the Gilbert damping, and
H;=-E; 1(9E/8n,- is a dimensionless effective field on the ith lat-
tice site. The solution of the LLG equation provides time dependent
magnetization vector field n(t) that, in the case of small oscillations,
can always be decomposed into static, ng, and dynamic, én(t), com-
ponents: n(t) = ng + 0n(¢) [see Fig. 1(b)]. For visualization of the
fields no and dn, we use the color scheme explained in Fig. 1(c).

The calculation of the absorption spectra in Figs. 2(a) and
2(b) is based on Fourier analysis of the dynamic component
of magnetization induced by an external magnetic field pulse
(see Appendix A for details). The absorption spectra in Figs. 2(a) and
2(b) can be thought of as the system response to the external mag-
netic field oscillating with the frequency w. The picks of th imaginary
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FIG. 2. (a) Absorption spectra Imy,, (w) of the 3D skyrmion lattice for different thicknesses d = L,/a of chiral magnet film under an in-plane exciting field Bac | ex. (b) The
thickness dependent spectra of Imy,, (w) in the case of an out-of-plane exciting magnetic field Bac [|e.. The white digits in (a) and (b) correspond to the indices of modes.
The left panels in (a) and (b) correspond to the limiting case of the 2D system. The red-white dots in (a) and (b) indicate the values of the thickness and frequency used
for the visualization of dynamic magnetization distributions én(x, y, z) and spin-wave profiles depicted below in (c)-(k). (c)-(e) Snapshots of n(x, y, z) in the simulated
domain at a fixed time and profiles of the average value of (dny,) along the film thickness for low-frequency modes with indices p = 0, 1,2 correspondingly for Bag || ex.
(f}-(h) Snapshots of dn(x, y, z) and (dnyy) for high-frequency modes with indices p = 0, 1, 2 for Bac | ex; white dashed line indicates the average region for (Jnyy ); (i)-(k)

Snapshots of dn(x, y, z) and (Jnz,) of the modes with indices p = 0, 1,2 for By ||e;.

component of complex dynamic susceptibility, Imy(w), correspond
to those eigenfrequencies of the system, which can be excited in the
skyrmion lattice by the uniform AC field.

Ill. RESULTS
A. The resonant spectra

First, we consider the case of Bac LBpc. The dynamic suscep-
tibility, Imy,_ (@), as a function of the film thickness, is shown in
Fig. 2(a). In contrast to the 2D case®* (see left panel), the spectrum

for the 3D SKL has a larger number of resonance modes marked
by index p. Each mode has high- and low-frequency branches that
merge with decreasing thickness. The exception is the pair of modes
with p = 0, which in the limit of the very thin film converges to the
clockwise (CW) and counter-clockwise (CCW) precession modes
of the 2D SkL.** Another remarkable feature of the pair of modes
p = 0 is the presence of the crossover point at the thickness of about
L, =0.62Lp (d=21), at which the frequency of the CW mode
becomes lower than that for the CCW mode. This effect is absent
for the modes with p > 1.

APL Mater. 10, 071111 (2022); doi: 10.1063/5.0097651
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Modes belonging to the high-frequency branches have a lower
intensity that quickly decays with the thickness. For p > 2, the high-
frequency and low-frequency branches overlap and hybridize, which
makes identifying a particular mode challenging. Because of that, in
the following, we focus on the modes with p < 2 and film thicknesses
below 2Lp only.

The functional dependence of the resonance frequency on
the thickness is wp(d) ~ p/d, which is most prominent for low-
frequency modes. Such behavior of the resonance frequencies
resembles the behavior of SSW. We show below that observed phe-
nomena indeed can be explained in terms of SSW. Furthermore, we
demonstrate that the presence of the DMI plays an essential role in
this phenomenon and gives rise to several interesting effects that
essentially distinguish SSW in chiral magnets from SSW observed
in non-chiral magnets.

The dependence of Imy_(w) on the film thickness for
Bac|Boc is provided in Fig. 2(b). In the limiting case of one layer,
d =1 (see left panel for the 2D SkL), there is only one resonance
mode—the so-called breathing mode.** With increasing thickness,
the number of resonance modes increases [Fig. 2(b)]. Similar to the
case of Bac1Bpc, the resonance frequency and the intensities of
those modes decrease with increasing thickness. On the other hand,
the functional dependencies for w,(d) for the cases of in-plane and
out-of-plane AC fields are different.

B. Visualization of resonance modes

To illuminate the physical origin of the spectra, shown in
Figs. 2(a) and 2(b), we analyze the profile of the dynamic compo-
nent of the magnetization dn for different resonance modes. For
both cases of in-plane and out-of-plane AC fields, we have chosen
three representative thicknesses and the frequencies corresponding
to the first three modes, p =0, 1, and 2 [see red hollow circles in
Figs. 2(a) and 2(b)]. On the left panel in Figs. 2(c)-2(k), we show rep-
resentative snapshots of dn(x, y,z), for each of those modes. Since
the dn is not a unit vector field, we use a special color scheme that
reflects both the direction and the length of the vectors [see Fig. 1(c)].
When [6n| — 0, the color converges to gray, and for [n| - dnmax,
the saturation of the color reaches the maximum value. Here, 8#1max
is the maximal value of the |6n| over the whole domain. The details
of én(x, y,z) calculations are provided in Appendix A.

In the case of BaclBpc, for low-frequency modes [see
Figs. 2(c)-2(e)], the |dn| is maximum in the inter-skyrmion area
where magnetization is parallel to the Bpc. In the case of high-
frequency modes [Figs. 2(f)-2(h)], the maximum of the |dn| is
mainly located in the core of the skyrmions, where magnetiza-
tion is antiparallel to the Bpc. Since the high-frequency modes
are localized in a much smaller volume, their intensities in the
absorption spectrum are much lower than that of low-frequency
modes.

For Bac|/Bpc, |0n| takes its maximal values in the skyrmion
shell where magnetization is mainly lying in the plane, nLe,. Nev-
ertheless, the distribution of dn across the thickness is similar to
the case of Bac LBpc and is characterized by the presence of clearly
visible minima and maxima. In the right panel of Figs. 2(c)-2(k),
we provide the profiles of the dynamic magnetization averaged in a
certain area Q) in the xy-plane, (dn) = (0n)(t,2) = X(,))cadn(t.1),
which aim to make the presence of the minima and maxima more

scitation.org/journal/apm

evident. The details of the (dn) profiles calculation and choosing the
area () are provided in Appendix A. The chains of red dots corre-
spond to the snapshots of the (dn)(z) at a fixed moment in time.
The yellow-blue surfaces of revolution are created by a set of such
snapshots taken at equal time intervals (see Appendix A).

The dynamic magnetization surfaces have nodes and antin-
odes. The number of nodes equals the index of the correspond-
ing mode, p. A major difference between the low-frequency and
the high-frequency modes is the opposite sense of (dny,) rota-
tion. The vectors (dny,) rotate counterclockwise (CCW) in the
case of low-frequency modes (see supplementary material Movies
1-3) and clockwise (CW) in the case of high-frequency modes (see
supplementary material Movies 4-6). For breathing modes, the spins
rotate CCW about the chosen precession axis (see supplementary
material Movies 7-9). The sense of (dn) rotation is defined by the
LLG equation and orientation of the projection plane normal with
respect to the effective field H.

Since the position of the nodes and antinodes remains stable in
time, for the case of Bac LBpc, we identify the corresponding exci-
tation modes as chiral SSW. We use the term “chiral” because the
profile of the dynamic magnetization (dn)(z) has a helical profile
with fixed chirality. On the contrary, in the case of SSW in ferromag-
net without DMI, the vectors (dn) always lie in the same plane.”*”
Moreover, for the case of BacLlBpc in both cases of the low-
frequency and high-frequency modes depicted in Figs. 2(c)-2(h),
the chirality of the (dn)(z) profile across the thickness is defined
by the chirality of the DMI. The period of such chiral modulation of
the (dn)(z) profile equals Lp.

For the case of Bac||e,, the profile of (6n(z)) is also character-
ized by the presence of nodes and antinodes [Figs. 2(i)-2(k)], and,
thus, it can be thought of as SSW localized in the shells of skyrmion
tubes. The (dn(z)) profile, in this case, does not have well-defined
chirality as in the case of the CCW and CW modes excited by the in-
plane field. On the other hand, the (6n(z)) profile is not flat as in the
case of a pure ferromagnet. The latter can be explained by the pres-
ence of the chiral surface twist’”*" and the curvature of the skyrmion
shell.

IV. DISCUSSIONS

An interesting aspect of the problem is the oscillatory fad-
ing and increasing of the dynamic susceptibility seen in the low-
frequency branches of the absorption spectrum for the in-plane
AC field [see Fig. 2(a)]. To explain this phenomenon, we use
the standard approach for analysis of the spin waves.””"*"’ Since
the low-frequency modes of the skyrmion lattice are localized in the
regions where ng | e, we will consider the limiting case of the uni-
formly magnetized film and resonance of the spin-waves propagat-
ing in opposite directions along the z axis. Following the approach of
Refs. 25 and 32, we derived the analytical equations for the dynamic
magnetization of the eigenmodes,

0nyx(z,t) = A cos(Dz/] + wt) cos(mpz/d),

Ony(z,t) = A sin(Dz/] + wt) cos(npz/d), 3)

where the term cos(npz/d) defines the position of the nodes and
antinodes, while Dz/J is an additional phase shift across the film
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thickness (for details, see Appendix C). The resonance frequency
of such standing spin-wave is a function of the thickness d and the
mode’s index p,

pm\* . ps(Boc — Bp)
wp = (7) + sf (4)
Figure 3(a) shows good agreement between the results obtained

with spin-dynamics simulations and the analytical expression (4) for
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Bpc = 1.1Bp. The only exception is the limit of very thin films where
the continuum model and discreet spin lattice model diverge.”’

In Figs. 3(c)-3(k), we show a few representative examples of the
dynamic magnetization profiles for different modes and thicknesses,
which were calculated with (3) and (4). The red lines represent the
instant dynamic magnetization profiles at the fixed moment in time,
and the surfaces are formed by a complete set of such snapshots
over one period. It is easy to see that analytically derived dynami-
cal magnetization profiles in Figs. 3(f)-3(h) are consistent with that

(f) (i)

L, /Lp=0.3 L, /Lp=1

p=0
Top view .

° ‘ ‘
o
L,/Lp,=1.5
(9) ()]

L,/L;=0.9

p=1

L, /Lp=2

FIG. 3. (a) Absorption spectra Imy(w) for a film of chiral magnet in the field polarized phase (Bpc ||€z, Boc = 1.1Bp) under in-plane excitation (Bac Le; ). The red dashed
lines are the resonance frequencies (4). The symbols indicate the corresponding figures with visualizations of dynamic magnetization profiles across the film thickness.
(b) The normalized intensity of fp = Ip/I;® calculated with (5) as a function of the film thickness for the modes with p = 0-6. (c)~(e) Dynamical magnetization profiles (C4)
for the case of a ferromagnetic film without DMI. (f)—(h) Profiles of eigenmodes excited by in-plane uniform field Bac in the magnetic film with DMI in field polarized phase.
(i)~(k) Profiles of eigenmodes unexcited by in-plane uniform field Bac in the magnetic film with DMI in field polarized phase. The solid black circle and hollow red circle in

(c)-(k) correspond to the ends of the vectors (dnyy) at z = 0 and z = d, respectively.
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obtained in the numerical experiment for the skyrmion lattice under
in-plane excitation [see Figs. 2(c)-2(e) and 2(f)-2(h)]. For compar-
ison, in Figs. 3(c)-3(e), we show the dn profiles corresponding to
the case of SSW in pure ferromagnets, where, at any fixed time, all
the vectors of dynamic magnetization lay in the same plane. From
the projections of the dn profiles into the plane orthogonal to the
z axis [Figs. 3(c)-3(e) on the right], it is seen that the total dynamic
magnetization, fod(Sn dz, is nonzero only for p = 0. Because of that,
in pure ferromagnets, the modes with p > 0, strictly speaking, can-
not be excited by a uniform AC field.”” In chiral magnets, it is not
the case because the dn profile is not flat. On the other hand, the
surface of the revolution created by the instant snapshots of the
dynamical magnetization profiles is identical to chiral and flat stand-
ing spin-waves. Thereby, in the most general case, one should take
into account a complete 3D profile of the dynamical magnetization
to identify the position of the nodes and antinodes. Otherwise, when
only one component of the dynamic magnetization is taken into
account, one can come to a contradicting statement that the posi-
tion of the antinodes is not fixed in time, and thus, the observed
spin-waves cannot be identified as standing.”’ The variation of the
projected on one plane dynamic magnetization of the chiral SSW is
illustrated in supplementary material Movies 10.

To understand the reasons for the fading of the intensity of the
chiral standing spin-waves, one should take into account the total
dynamic magnetization. It should be noted that the projection of
the dn into the plane orthogonal to the z axis has a curved shape
[Figs. 3(f)-3(h) on the right]. Because of that, the total dynamic mag-
netization is not zero, and chiral standing spin-waves can be easily
excited even by the uniform AC field. On the other hand, because
of the additional phase shift in (3), the total dynamic magnetization
is a function of the thickness. In Figs. 3(i)-3(k), we provide three
representative examples of the dn profiles at particular thicknesses,
where projected n represents closed loops, and the total dynamic
magnetization integrated over the thickness tends to zero. The lat-
ter explains the fading zones in the absorption spectrum, which are
marked in Fig. 3(a) by (i)-(k), respectively. When the total dynamic
magnetization of a particular mode tends to zero, the response
of the system to the uniform AC field reduces, and we observe
the fading of the intensity of that eigenmode in the absorption
spectrum.

To quantify this effect, we estimated the intensity I, of the
resonance modes using the following well-known relation:*****’

(Jilondz)’
P Sl (5)
d [ on? dz

where 8n = 0n(p, z,t,d) for the particular mode p and thickness d
are defined by (3) and (4). In Fig. 3(b), we show the dependencies I,
for the modes with index p from 0 to 6. The position of the minima
and maxima in I, (d) dependencies is fully consistent with the fading
and increase of the Imy(w) in the simulated absorption spectrum in
Fig. 3(a). One can conclude that the effect of the fading of the inten-
sities of particular chiral SSWs originates from the chiral profile of
the dynamic magnetization. Noticeably, this effect also appears in
the spectrum of the conical phase (see Appendix D). The chiral pro-
file of the dynamic magnetization, in this case, appears not because
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of the additional phase shift across the thickness but due to the chiral
modulations in the static equilibrium state.

The above analytical approach can also be applied to the case of
ng Le;, which can be compared to the modes excited in the skyrmion
shell. The dispersion relation w(k) of spin-waves propagating along
the z axis, in this case, is symmetric as in the pure ferromagnet.”
In this case, the solutions corresponding to SSWs are identical to
those for pure ferromagnet, and the dynamic magnetization pro-
file is flat as in Figs. 3(c)-3(e). Thereby, SSWs are not chiral in
this case. For more details, see Appendix C. On the other hand, in
the skyrmion shell, the static equilibrium magnetization across the
film thickness is not ideally collinear. Instead, it exhibits an addi-
tional chiral twist near the free surface of the sample.”””' Because
of the modulation of ny = ny(z), similar to the case of the cone
phase, the total dynamic magnetization becomes not zero, which
allows exciting these modes with the uniform AC field. Moreover,
the magnetization in the skyrmion shell has a small out-of-plane
component. The spin-wave spectrum w(k) in this case becomes
asymmetric,” and the dynamic magnetization (dn,) gets a weak
twisting across the film thickness. The twist induced by the magne-
tization with the positive and negative out-of-plane components has
an opposite sign. This effect is compensated in the ideal case of an
isolated flat domain wall. However, since the shell of the skyrmion
has a cylindrical shape, the volumes with the positive and negative
out-of-plane magnetization are not identical, and the volume that
corresponds to the outer region dominates. The latter gives rise to
a weak twist of dynamical magnetization in the case of SSWs in the
skyrmion shell.

V. CONCLUSIONS

In summary, we studied the eigenmodes of the 3D skyrmion
lattice in the film of the isotropic chiral magnet. To illustrate the
features of the spin-wave resonance in a 3D skyrmion lattice, we cal-
culated the absorption spectra for the cases of in-plane and out-of-
plane excitations. In the case of in-plane excitation, the absorption
spectrum calculated as a function of the film thickness is character-
ized by a set of low-frequency and high-frequency modes that appear
in pairs. In this case, the maxima of the spin-wave excitations are
localized in the inter-skyrmion area or in the skyrmion core, where
magnetization is normal to the film plane. We identify the corre-
sponding resonance modes as chiral standing spin waves. In contrast
to standard standing spin waves in ferromagnets without DMI, the
profiles of dynamic magnetization of chiral standing spin waves are
characterized by helical modulation with the pitch determined by
the competition between DMI and Heisenberg exchange. An impor-
tant consequence of such modulation of dynamic magnetization is
the periodic fading of the absorption spectra intensity with the varia-
tion of the plate thickness. A detailed analysis revealed that this effect
takes place not only in the 3D skyrmion lattice but also in the case of
the filed saturated state and the conical phase excited by the uniform
field.

Under out-of-plane excitation, the absorption spectrum also
demonstrates the appearance of standing spin waves, which are
localized in the skyrmion shell where spins lie in the plane of the
plate. The helical modulations of the dynamic magnetization profile
are not present. Thus, standing spin waves, in this case, have more
in common with standard standing spin waves in pure ferromagnets.
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We show that the effect of the chiral surface twist plays an essential
role in this case.

SUPPLEMENTARY MATERIAL

See supplementary material Movies 1-9 [URL:] for more
information about the rotation of dynamic magnetization vectors
from Figs. 2(c) to 2(k). supplementary material Movie 10 [URL:]
demonstrates the variation of dynamic magnetization in 3D space
compared to its 2D projection for the case of Fig. 3(g).
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APPENDIX A: METHODS

1. Parameters of the model and spectra calculation

The LLG equation [Eq. (2)] for underlying Hamiltonian (1) was
numerically solved by the fourth-order Runge-Kutta method. The
spectra were calculated with Excalibur code® and double-checked

scitation.org/journal/apm

with the publicly available code Mumax.*’ The modes visualization
was performed with the code Magnoom.*'

The following parameters were used: Bpc = 0.5Bp, D/J = 0.18
(Lp = 3491a), a=0.01, and the time step dt=0.05. To excite
the oscillations in the given ground state, we follow the standard
approach.””" First, we excite the system with the time-step func-
tion*? with the amplitude Bac = 0.03Bpc. After the excitation field
is switched off at ¢t = 0, we record the total magnetization of the
system at each iteration. To ensure a high resolution of the spec-
tra, we set the total number of iterations to 2'° ~ 5 x 10°. Using the
discrete Fourier transform of n(t), we calculate the dynamic mag-
netic susceptibility y(w) as a function of oscillation frequency w. The
absorption spectra presented in the main text show the imaginary
part of dynamic susceptibility Imy(w) for different film thicknesses.
We also tested the magnetization excitation by the sinc function”"’
and found that, in this case, it does not qualitatively influence the
Imy(w) dependencies. As follows from (2), the unitless frequency w
is related to frequency f in Hzas w = f(2mu,)/(yJ). For instance, for
J =0.4meV, w = 0.01 corresponds f ~ 1 GHz.

2. Calculation of the distribution and profile
of the dynamic magnetization

To identify the distribution of dynamic magnetization dn
depicted on the left panel of Figs. 2(c)-2(k) and the corresponding
profiles of averaged dynamic magnetization (Sn)(z), the relaxed
3D SKkL was excited by an AC magnetic field Bac = Asinwpt at
the corresponding resonance frequency wj. Since we consider small
oscillations, the amplitude of exciting field A = 0.01Bpc for Bac| ex
and A = 0.00125Bpc for Bac|e,. We perform simulations in the
long time range to reach the dynamic equilibrium regime. After that,
we took the snapshots of the entire magnetization vector field with
the time interval At = 271/(w,N), where N = 32 is the number of the
snapshots. To ensure precision in these calculations, we fix the time
step df in the LLG simulation to be multiple to At, meaning At/dt
is always an integer. In addition, the snapshots of the magnetization
are averaged over ten periods. Then, for each snapshot, we calculate
the normalized dynamic component of magnetization at each ith
site, 6n;(t) = (ni(t) — ng)/ONmax, where S1max = max |n;(t) — nol is
the maximal dynamic magnetization over the whole sites and whole
period of oscillation, i.e. |6n;] < 1 for any ¢ and i. The normalized
that way vector field 8n;(t) can be visualized using the color scheme
explained in Fig. 1(c). In the left panel of Figs. 2(c)-2(k), we show
a representative example of the én distribution over the simulated
domain at a fixed moment in time.

Because the magnetization precession axis and localization of
the modes are different [Fig. 2], the area Q for calculation of the
average dynamic magnetization profiles has been chosen differently,
as illustrated in Fig. 4. For the low-frequency modes, Figs. 2(c)-2(e),
this area occupies the whole xy-plane in the simulation domain,
Q = Ly x Ly. Although Jn, in this case, is mainly localized in the
inter-skyrmion region, the contribution from other parts of the
domain is negligibly small, and for simplicity, the averaging area Q
can be extended to the whole domain.

For the high-frequency modes [Figs. 2(f)-2(h)], we bound the
averaging area by a disk, ) = 27R%, where R is defined as a dis-
tance from the skyrmion center at which the dynamic magnetization
reaches minima, dn(|r| = R) — min. Such a choice of Q allows us to
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FIG. 4. The area Q in the xy-plane for the averaged dynamic magnetization, (dn)(t,z) = ¥ cadn(t,r), for different modes. (a) and (b) correspond to the case of
Bac LBpc for the low-frequency and high-frequency modes, respectively. (c) corresponds to the case of Bac | Bpc. The top row of images shows the simulated domain, the
arbitrarily chosen xy-plane, and the area Q bounded by the blue line. The bottom row of the images shows the snapshots of the dn distribution provided for the reference
[see also Figs. 2(c), 2(f), and 2(i)]. In (a), Q corresponds to the whole xy-plane, in (b), Q2 is bounded by the circular domain of the radius corresponding to the lowest value
|&n| around the skyrmion core, and in (c), Q corresponds to the line segment drawn from the center of the simulated domain and parallel to the y axis.

exclude small excitations that appeared in the inter-skyrmion region
because of the coupling to more intense low-frequency modes.

In the case of the in-plane AC field, the dynamics magnetiza-
tion mainly lies in the xy-plane (6n, component is negligibly small).
We assume that the normal to the xy-plane is parallel to e, in both
cases of the low-frequency and high-frequency modes. As seen from
Figs. 4(a) and 4(b), in this case, the projected into xy-plane dynamics
magnetization precesses CCW and CW, respectively.

The contrary to above, for modes excited by the out-of-plane
AC field [Figs. 2(i)-2(k)], there is no common precession axis for
the spins lying in the skyrmion shell. In this case, we choose the area
Q as a line segment connecting the skyrmion center and an arbi-
trary point on the circle of radius Ly /2 around it. A particular choice
of the point on the circle does not play a role. For definiteness, we
select that line segment such that it is parallel to the y axis, as shown
in Fig. 4(c). In this case, the dynamics magnetization projected to
the yz-plane exhibits CCW rotation because we select the normal to
the yz-plane to be along —ex. Otherwise, the profiles of the average
dynamics magnetization would precess CW.

APPENDIX B: EFFECT OF DIPOLE-DIPOLE
INTERACTIONS ON RESONANCE EIGENMODES

To estimate the role of the dipole-dipole interaction (DDI),
we used the micromagnetic simulations in Mumax.*” We used the
fourth-order Runge-Kutta method implemented in Mumax to solve
the micromagnetic LLG equation. The relationships between the
micromagnetic constants and the constants of the model (1) have
the form*

A =]2a, D= D/az, M; = Ms/a3, (B1)

where & and & are micromagnetic constants for exchange and
DML, respectively, M; is the magnetization of the material, and a is

a lattice constant. The dimensionless time ¢ in our spin model sim-
ulations and dimensional time 7 in micromagnetic simulations are
related as

2Msd (9)2 (B2)

y2? \J

For definiteness, we used the following micromagnetic parameters:*°
o =475 pJim, D =0.853 mJ/m?, and M, = 384 kA/m and per-
formed the simulations on the mesh with 78 x 45 x 50 cuboids in
the x, y, and z directions, respectively. Following the procedure
described in Appendix A, we calculate the absorption spectra for in-
plane excitation (Bac 1 Bpc|lez, Boc = 0.5Bp ) for both cases with and
without DDI. The results are shown in Fig. 5(a). It is shown that DDI
results in a slight shift of some eigenmodes frequencies, but the num-
ber of the resonant peaks in a given frequency region is the same. For
comparison, in Fig. 5(b), we provide the spectrum calculated for the
spin model at the same parameters.

We identified the in-plain dynamic magnetization profiles of
eigenmodes for the case with DDI, following the method described
in the main text and Appendix A. We show these profiles in the
insets of Fig. 5(a) for the first and second low-frequency eigenmodes.
Similar to the cases without DDI in Fig. 2, the dynamic magnetiza-
tion surfaces also have nodes and antinodes and thus correspond
to SSWs.

A slight shift of the resonance frequencies occurs because the
dynamic magnetization profiles, (6n)(z) in the cases with and with-
out DDJ, are slightly different. In particular, in the case of DDI, the
dynamic magnetization near the free surfaces twists a bit faster than
in the case without DDIL.

For comparison, in Fig. 5(b), we show the spectra calculated in
the spin lattice model without DDI. The discrepancy between the
spectra calculated without DDI in the micromagnetic model and the
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FIG. 5. (a) The absorption spectra Imy,, (w) of SkL in the plate of isotropic chi-
ral magnetic with the thickness L, = 1.42Lp calculated under in-plane excitation
(Bac LBpc||e;) in Mumax3 with and without dipole—dipole interactions. The abbre-
viations “LF” and “HF” denote the low-frequency and high-frequency modes with
the corresponding index according to Fig. 2(a). The bottom axis corresponds to the
dimensionless frequency w [see (2) and Appendix A], while the frequency in the
top axis is given in GHz and corresponds to FeGe parameters.“6 The insets show
the profiles of the dynamic magnetization across the plate thickness. (b) The com-
parison of the absorption spectra calculated in the spin-lattice model and Mumax
with the correction to the finite difference scheme implemented through a built-in
Mumax function that allows user-defined effective fields.

spin lattice model, Figs. 5(a) and 5(b), respectively, can be explained
by a relatively high ratio of D/J used in our simulations. When D/J
gets smaller, the spectra calculated with two models converge. Alter-
natively, one can show the consistency of the simulations performed
in different software by correcting the finite difference scheme in cal-
culating effective fields. The solid blue line in Fig. 5(b) corresponds
to the spectra obtained in Mumax with such a correction. One can
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see the perfect agreement. For more details, see the Mumax script
provided in the supplementary materials.

APPENDIX C: RESONANCE EIGENMODES
OF SATURATED STATE

Here, we recall the results of Refs. 25 and 32 and show that
the analytical solutions for the profile of dynamic magnetization are
fully consistent with the results of our spin-dynamic simulations.
We consider the case when the magnetization ng in static equilib-
rium is parallel to e, in a whole sample. The spin wave propagates
along the z axis. Since the amplitudes of dynamic magnetization én
are small, one can take into account only orthogonal components
Ony and dn, of dynamic magnetization and neglect the n, compo-
nent. For unconfined crystals, this leads to the following dispersion
relation:*

w= (Ezi?@H@), (93]

where k = ka and w are the absolute values of the dimensionless wave
vector and the frequency of a spin-wave, respectively. H in (C1) is the
absolute value of the effective (internal) magnetic field, which exists
in static equilibrium H;|ny; at any site. The sign “+” in (C1) defines
the spin-wave propagation direction. In the limiting case of D = 0,
the dispersion relation (C1) converges to the well-known solution
for a bulk ferromagnet,

w = kiw + usH/J, (C2)

where kg is the wave vector in pure ferromagnet. Using circular
variables, 6n = dny + idn,, the superposition of two spin waves prop-
agating in the opposite directions along the z axis in the case of a
chiral magnet can be written as

on(z,t) = %A exp(iwt) (exp(ik,z) + exp(ikiz)), (C3)

where k, and k; are the wave vectors for spin waves propagating par-
allel and anti-parallel z axis. In the case of a pure ferromagnet, the
dynamic magnetization corresponding to the superposition of two
waves takes the form

on(z,t) = %A exp(iwt) (exp(ikpmz) + exp(—ikpmz)). (C4)

Uiing (Cl):((iil), tlle vectors E and E can be written as E, =k’
+ ke and k; = k" — kpu, respectively.
As follows from (C1), for small D/J, the wave vector shift, up to

the first leading term, is k” = D/J. Let us assume that the sample has
a shape of a film in the xy-plane with the boundaries located at z = 0
and z = d. The boundary conditions are*

On— (2n/Lp)e, x n|,—94 = 0. (C5)

By substituting (C3) in (C5), we obtain the set of solutions with
nonzero amplitudes, kem = 71p/d, where p=0,1,2,.... Then, the
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in-plane components of the dynamic magnetization for the SSW
take the form of (3) in the main text.

Now let us consider the case when the magnetization lies in the
film plane, ngLe,. For definiteness, we will assume that no| ey [see
Fig. 4(c)]. For spin waves propagating along the z axis, the dispersion
relation w(k) is symmetric.’ In the case of an unconfined crystal of
a chiral magnet, the dispersion relation has the form (C2). For the
plate, using (C4) and boundary conditions (C5), we get the solution
for the SSW with the “flat” profile of (0n.,),

dny(z,t) = A sin(wt) cos(mpz/d),

Onz(z,t) = A cos(wt) cos(npz/d). (c6)

(a) Thickness, L, /Lp

0.08

0.06

o
o
=

Frequency, w

0.02

20 40 60 80 100 120 140
Thickness, d
(c)
0.2 p=1
o]
Q0.2 p=2
5 _
3 0
o 0.2 —
£ p=3
= 4
8 0
2 0.2] /\j p=4
5 _
-4 |
0
0.2 /\/ p=5
0f— IR T 7
1 2 3 4

Thickness, L, /Ly

(6n,)

scitation.org/journal/apm

Thereby, the SSW is not chiral in this case. The same is true for SSW
localized in the shell of a skyrmion.

APPENDIX D: ABSORPTION SPECTRA
AND RESONANCE EIGENMODES OF CONICAL
SPIN SPIRAL STATE

Let us consider the case when ng in static equilibrium repre-
sents a cone phase with the wave vector Q = 27/Lp parallel to the
z axis, ng = (sin® cos ®, sin O sin @, cos ®), where ® and ® = Qz
are polar and azimuthal angles, respectively. For definiteness, in
the following, we assume that the static magnetic field Bpc | e, and
Bpc = 0.85Bp are present, and the conical phase is the ground state
of the system in a wide range of film thickness.”’ When spin wave

(d)

p=1 p=2 p=3 p=4 p=5
d=20 d=40  d=60 d=80 d=100
Z '
| z ; !
— ~ A A ~
(6n,)

FIG. 6. (a) Absorption spectra Imy,, (w) of chiral magnetic film in the conical spin spiral state for different thicknesses d = L,/a (dark-blue-white color map) and the
analytical spectrum (D2) (red dashed lines) for Bpc = 0.85Bp; white digits correspond to indices of modes. (b) The equilibrium magnetic ordering n in the conical spin
spiral state along film thickness and the local coordinate system x”y’z” associated with ng; in each ith layer (z’|ng; ). (c) The values of (5) as a function of the film thickness
for modes with indices p = 1,2, 3,4, 5 in the conical spin spiral state. (d) Snapshots of dynamic magnetization (dn,,) in the local system x’y’z" at fixed time moment for

modes with indices p = 1,2, 3,4, 5.
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propagates along e;, the dispersion relations for bulk chiral magnet
have the form?
w = |k[\/k2 + Q2 - sin?(®), (D1)

where Q = Qa. Using (C5), one can show that the eigenfrequency
of the SSW is*®

R (IR

which remains valid only for Bpc < Bp.

Figure 6(a) shows the absorption spectrum Imy, . for cone
phase obtained in numerical simulations as a function of the film
thickness. The eigenfrequencies of the SSWs according to Eq. (D2)
show good agreement with spin-dynamics simulations. Similar to
the case of the spectrum for the field saturated state in Fig. 3, the
only exception is the limit of very thin films where the contin-
uum model and discreet spin lattice model diverge.”! According
to Eq. (D2), the eigenfrequency wo = 0 at any thickness, while in
numerical simulations at small thicknesses, it has a nonzero value.

Similar to the case of the saturated state, the absorption spectra
for the cone phase are also characterized by periodical fading of the
mode intensities. To make the periodical decay of Imy, _ more visi-
ble, we show the analytical dependencies (dashed red lines) only for
p > 4. In contrast to the saturated state (C1), the w(k) relation for
the cone phase (D1) is symmetric. The SSW, in this case, is formed
by two opposite propagating spin waves with identical k-vector. To
explain the presence of the fading zones following the period of cone
modulations, Lp in Fig. 6(a), one should take into account the spi-
raling of the magnetization in a static equilibrium state [Fig. 6(b)].
To take this into account, we apply the rotation matrix associated
with the cone phase to the two counterpropagating spin-waves in a
ferromagnetic state (C4). Then, by substituting the obtained én(z, t)
into (5), we calculate the dependencies of the eigenmode intensities
as functions of the film thickness, which are depicted in Fig. 6(c).
The position of the minima and maxima in Figs. 6(a) and 6(c)
show excellent agreement. Interestingly, in the coordinate system
related to the static equilibrium state of the cone phase illustrated in
Fig. 6(b), the én profiles of SSW are flat [Fig. 6(d)], as in the case of
eigenmodes of the pure ferromagnet. The profiles of én in Fig. 6(d)
are obtained in numerical simulations. The coordinate transforma-
tion depicted in Fig. 6(b) effectively unwinds the cone phase into
the state with ng||e,. Thus, the nonzero intensities of the SSW exited
by the uniform AC field in our numerical experiment are solely
explained by the twist of magnetization ng in the static equilibrium
state. The fading of the intensities following the period of cone mod-
ulations, Lp, appears at the thickness, which satisfies the criteria
I,(d) - 0in (5).
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