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Abstract  
In a strongly correlated material the localized electrons, typically the electrons in the 3d-orbitals, 

become entangled with each other through the Coulomb interaction. However, these electrons 

also interact with more mobile (itinerant) electrons in the s- and p-orbitals. The latter process 

called screening as it effectively reduces the strength of the interaction between the 3d-electrons. 

A less studied and often neglected effect of the screening is that it also entangles the 3d-electrons 

with the itinerant electrons, which is equivalent to a leakage of quantum information from the 3d-

electrons to the environment. This process leads to decoherence since it causes the 3d-electrons 

to effectively lose some of their quantum mechanical properties. But what does this mean for our 

understanding of strongly correlated materials and can this decoherence effect be of such 

magnitude that neglecting it may qualitatively affect the calculated material properties? This is 

the question this report tries to answer, but for a minimal impurity model consisting of an atom 

and a few surrounding bath orbitals. 
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Sammanfattning 
 

I korrelerade atomer kan lokaliserade elektroner, som elektroner i 3d orbitaler, bli 

kvantmekaniskt sammanflätade med varandra genom coulomb-växelverkan. Dessa elektroner 

kan även växelverka med mer mobila elektroner, som elektroner i s- och p-orbitaler. Denna 

process kallas för skärmning eftersom den effektivt sätt reducerar styrkan på repulsionen mellan 

elektronerna i 3d-orbitalerna. En mindre känd och ofta ignorerad effekt från skärmningen är att 

elektronerna i 3d-orbitalerna blir kvantmekaniskt sammanflätade med de mobila elektronerna 

på ett irreversibelt sätt. Detta är ekvivalent med att information om d-elektronernas position 

läcker ut till omgivningen. Denna informationsläcka kallas för dekoherens eftersom den leder 

till att d-elektronerna förlorar en del av sina kvantmekaniska egenskaper. Frågan blir således 

vad dekoherens kan ha för betydelse för starkt korrelerade materials egenskaper. Kan denna 

effekt vara av sådan magnitud att det ger oss en helt felaktig bild om den negligeras? Detta är 

vad denna rapport syftar till att svara på. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Table of contents 
Abstract ___________________________________________________________________ 1 

Sammanfattning ____________________________________________________________ 2 

Table of contents ___________________________________________________________ 3 

Introduction _______________________________________________________________ 4 

Quantum mechanics for a beginner ________________________________________________ 4 
Wave-particle duality ____________________________________________________________________ 4 
Superposition __________________________________________________________________________ 5 
Orbitals _______________________________________________________________________________ 7 
Many body states _______________________________________________________________________ 8 
Entanglement __________________________________________________________________________ 8 

Decoherence ___________________________________________________________________ 9 
The Copenhagen interpretation vs Decoherence ______________________________________________ 9 
Closed and open systems ________________________________________________________________ 10 

Screening ____________________________________________________________________ 11 

Methodology ______________________________________________________________ 11 

Pure states and Mixed states _____________________________________________________ 12 

Entropy ______________________________________________________________________ 13 

The minimal model system _______________________________________________________ 14 
Hamiltonian of the model system _________________________________________________________ 15 

Selection of parameters _________________________________________________________ 16 

Code for linear entropy _________________________________________________________ 17 

Impurity model Code ___________________________________________________________ 17 

Results ___________________________________________________________________ 17 

Decoherence induced by the Au bath orbitals ________________________________________ 18 

Decoherence induced by the Eu bath orbitals ________________________________________ 19 

Decoherence induced by both the Au and Eu bath orbitals ______________________________ 20 
The dependence of electrons in p-orbitals __________________________________________________ 22 

Discussion ________________________________________________________________ 25 

Conclusion _______________________________________________________________ 25 

References ________________________________________________________________ 26 

Appendix _________________________________________________________________ 27 

Code for linear entropy _________________________________________________________ 27 
 

 

 

 



4 
 

Introduction  
 

Electrons have quantum mechanical characteristics, and an implication of this is that we cannot 

describe these kinds of systems using ordinary classical physics, such as the superpositions of 

electrons. Electrons in orbitals can interact with each other through coulomb interaction, and 

with this interaction they can get information about one another, like position for example. 

Many times, one would like to study only a few electrons instead of the whole system, which 

would make these electrons a subsystem. But to only consider a subsystem without explicitly 

including the remaining electrons in the calculation, we need to approximately compensate for 

the effect these electrons have on the subsystem. This compensation is called screening [1]. 

When we make models and simulations of quantum states, it is common to only consider the 

coulomb interactions effect on electrons within separate subsystems [2]. However, this 

approach does not take into consideration the potential leakage of information between the 

subsystems caused by the interaction between the electrons. The question we aim to investigate 

is thus, how much the electron interaction contributes to this leakage of information what we 

call decoherence.  

The purpose of this study is to understand how we can improve theoretical methods used to 

describe electrons in materials. And we will try to answer the question, is it necessary to create 

a better/more advanced description of screening that also takes decoherence into consideration? 

Quantum mechanics for a beginner 
 

To understand the problem, we need to get an understanding of some fundamental principles 

about the behaviors of electrons in quantum mechanical systems (QM systems).  

Wave-particle duality 
 

Electrons seemingly behave both like waves and particles. This is called the wave-particle 

duality which states that entities like electrons can be described as either one or the other 

depending on the circumstances. The most known example of this would be the double slit 

experiment that shows how an electron interferes with itself just like a mechanical wave would 

do.  
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Figure 1: An illustration of an electron passing a double slit, interference with itself. Image adapted from [3] 

The electron passes through both slits and interfere with itself, creating the interference pattern.  

If we place detectors in both slits, we instead see the electron behave like a particle, with no 

interference and going through one or the other slit. 

 

Figure 2: An illustration of an electron passing a double slit, not interfering with itself due to being observed. Image adapted 

from [3] 

 

The conclusion of the double slit experiment is that the behaviors and characteristics of the 

electrons will appear differently depending on the circumstances like how we do our 

measurement [4]. This wave-particle duality makes the electron no longer best be described as 

either a particle or a wave but rather mix of both [5].  

Superposition 
 

These behaviors can be explained with the help of superposition. Meaning the electron can be 

in different states at the same time but not just as a statistical probability but that the different 

states can interfere with each other [4]. 

This can be described using Dirac notation. For a simple system in a superposition of two states 

the system can be expressed in the following way. 

⎹𝜓〉 = 𝑎1⎹ 𝜓1〉 + 𝑎2⎹ 𝜓2〉 

Here ⎹  𝜓1〉 is one of the possible configurations of the state and⎹  𝜓2〉 is the another.  
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An example to understand this superposition phenomena we can look at the interferometer 

(figure 3). 

  

Figure 3: Illustration of an interferometer. Electrons coming from the left side and gets divided by the “beam splitter” getting 

in a super position.  If the detector in the bottom is turned on, the electrons will not get into a superposition sins the detector 

will or will not detect the passage of the electron, making sure which one path the electron must have taken.    

 

This interferometer consists of a beam that shoots electrons on to a beam splitter, sending the 

electrons into both directions in a superposition. The electron will then meet itself at the end 

and interfere with itself and thus be detected to detector 2 [6].  

If we on the other hand would have a device, like a detector in one of the beam paths, that can 

tell us when an electron is passing by we will get a different scenario. The detector will in this 

case tell us that there was an electron passing it, or it will, by not seeing an electron passing, in 

a sense tell us that the electron must have taken the other path. This measurement makes the 

electron that was previously in a superposition, to be either in the path of the detector or the 

other and no longer in both simultaneously. This “collapse” of the superposition will be further 

explained in section about decoherence. But what this mean is two things. The measurement 

makes the electron lose its superposition and be in one of the two paths, and now being in one 

of the two paths it can no longer interfere with itself thereby will either get detected by detector 

1 if the path was the one going up, or it will get detected by detector 2 if the path of the electron 

was the other [6].  
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Orbitals 
 

The state of a single electron is usually referred to as an orbital. 

In the region around a nucleus there are several types of orbitals with different symmetries. We 

will focus on two types of orbitals, the d-orbitals, and the p-orbitals. 

In a cubic symmetry the d-orbitals can be combined into two different irreducible 

representations. These representations, or symmetrized orbitals, are called Eg and T2g. There are 

two Eg orbitals and three T2g orbitals, as illustrated in figure 4 [7]. 

 

Figure 4: the 5 d orbitals. The two orbitals on the left have  Eg  symmetry and the three to the right have T2g symmetry.  

Image adapted from [8] 

 

Each orbital can be occupied by one electron with spin up and one electron with spin down, 

making the maximum number of electrons in the d orbitals being 10 electrons [7].  

In a cubic symmetry, all three p orbitals belong to the same irreducible representation. Making 

the maximum number of electrons for the p-orbitals being six. If the cubical symmetry is broken 

for example by a magnetic field in the z direction, as it will be for this study, the orbitals can 

instead be divided into two other irreducible representation. They can be divided into two 

irreducible representations. Px and py corresponds to the Eu symmetry and pz corresponds to the 

Au symmetry [9].  

  

Figure 5: the 3 p orbitals. Image adapted from [10] 
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Many body states 
 

When we have more than one electron, the electrons can occupy different orbitals and these 

different configurations corresponds to many-body states [11].  

In classical physics we would be able to tell electrons apart from one another, but in quantum 

mechanics electrons are indistinguishable. This means that if two electrons where to switch places 

with each other, like in orbitals, this would not lead to a new many-body state but just change its 

sign. 

To describe such systems, we introduce the creation and annihilation operators. 𝑐̂+ , 𝑐̂. These 

operators can, just as the name suggest, be used to either add an electron to a state or remove from 

a state. We also introduce the Hamiltonian  𝐻𝑖𝑗 that governs the dynamics of the system through 

the Schrödinger equation [11]. 

The one particle Hamiltonian can be expressed as 

Ĥ = ∑ 𝐻𝑖𝑗𝑐̂𝑖
+

𝑖𝑗
𝑐̂𝑗. 

 The Coulomb interaction between the two electrons can be expressed using 𝑈𝑖𝑗𝑘𝑙  

𝑈̂ = ∑ 𝑈𝑖𝑗𝑘𝑙
𝑖𝑗𝑘𝑙

𝑐̂𝑖
+𝑐̂𝑗

+𝑐̂𝑘𝑐̂𝑙. 

In this term we have creation and annihilation operators for two electrons simultaneously and thus 

get the interaction between these.  

Entanglement     
 

For a many-body system we can divide the system into different subsystems. We can take the 

system of the d-orbitals and the p-orbitals for example and divide these systems into the d-

orbital subsystem and the p-orbital subsystem. We could call the state of the d-electrons as⎹ 𝜓𝑑〉 

and the state of the p electrons as⎹ 𝜓𝑝〉 [12] .  

If these subsystems were to interact with each other or exist in near proximity to each other, 

however, we cannot describe these systems as independent systems, even if they later would to 
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be separated by a large distance. Their previous properties like superposition are now dependent 

on each other meaning a measurement or knowing the exact state of one system could lead to 

knowing the state of the other subsystem [13]. 

 To take an example, let us consider the state the ⎹ 𝜓𝑑〉 to have two electrons, one with spin up 

and one with spin down in the same orbital ⎹ ½ − ½〉d and the ⎹ 𝜓𝑝〉 to have no electron at the 

start, ⎹ 0 〉p. Now we consider one of the electrons to exited and thus go from ⎹ 𝜓𝑑〉 to ⎹ 𝜓𝑝〉 . 

Now we have a superposition of either a spin up in the d orbital and a spin down in the p-

orbital of vise versa, as below [14]. (The 𝑎 and 𝑏 coefficients are the weights for the two 

superpositions). 

⎹ 𝜓𝑑𝑝〉 = 𝑎⎹ ½d −½p 〉 + 𝑏⎹ − ½d +½p 〉 

This state of the system can drastically change if we would be able to tell the spin one of the 

electrons for certain.  

As many other quantum phenomena this entanglement is not something we experience in 

everyday life. To understand why we need to learn about measurements and Decoherence. 

Decoherence  
 

To understand the problem and reason for this study the key concept decoherence needs to be 

introduced and understood.  

The Copenhagen interpretation vs Decoherence 
 

One of the most common interpretations of QM is the Copenhagen interpretation. With it comes 

the perception that measuring or observing a quantum system makes it collapse, meaning that 

the measurement changes the wavefunction from a superposition to an eigenstate of the 

observed operator. This interpretation hence states that there is a state that describes the system 

before measurement and a state that describes the system after measurement linked by a special 

rule for the observer of a QM system.   

 

A newer and more relevant interpretation of the observation of a QM system is the idea of 

decoherence and its effects on a QM system. To see the differences of these two we compare a 

scenario [12]. 

Let’s take a QM system with an electron in an initial state described by a superposition of spin 

up and spin down ⎹ 𝜓〉 = 𝑎1⎹  ½ 〉 + 𝑎2⎹ − ½ 〉. In both interpretations this initial state would be 
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described in the same way but they will start to differ when we take an observer into account.  

In our Copenhagen interpretation the state of the QM system in a superposition would 

drastically change (collapse) under an observation of the spin. After the observation the state 

of the  system is either ⎹  ½ 〉 or ⎹ − ½ 〉, depending on what is observed. The other term in the 

superposition is simply eliminated [16].  

For the decoherence interpretation the perceived “collapse” is explained by a buildup of 

entanglement between the system and its environment. The buildup of entanglement can be 

seen as a leakage of information from the QM system to its environment. When the QM system 

interacts with its environment the state of the system and the state of the environment (ⅇ𝑛𝑣) 

gets for all practical purposes irreversibly entangled, as a realistic environment has an unlimited 

number of degrees of freedom. This could be written as ⎹𝜓〉 = 𝑎1⎹  ½ + ⅇ𝑛𝑣1〉 + 𝑎2⎹ − ½ +

ⅇ𝑛𝑣2〉. The entanglement with the environment prevents the two states of the system to interfere 

with each other, if the corresponding states of the environment remain orthogonal. In other 

words, this explains the “collapse” as not an elimination of one of the possible states in the 

superposition, but instead that the states after the measurement are prevented from interfering 

with each other [12]. 

Closed and open systems 

 

An isolated system is what we call a closed system. The isolation implies that the interaction 

between the system and its environment (Hsystem,env) is zero. In an open system this interaction 

is finite [12]. The environment, which we will from now on call the bath, has just like our 

system a Hamiltonian (Hbath). The Hamiltonian for the total system including the bath can be 

expressed as 

H= Hsystem +Hbath + Hsystem,bath  

For this study we have the scenario of a total system consisting of d-orbitals. p-orbitals and 

bath-orbitals. We have included Coulomb repulsion between the electrons in the d- and p-

orbitals (Ud, d, Up, p, and Ud, p), and a hybridization between the p-orbitals and the bath-orbitals 

(Hp, bath). The latter term allows the p-electrons to move from the p-orbitals to the bath-orbitals 

and back. The Hamiltonian for this total system can then be expressed as 

H= Hd + H,p  +Hbath + Ud, d  + Up, p  + Ud, p  + Hp, bath 
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Screening 
 

In our model we explicitly allow the electrons in one subsystem (the d-orbitals) to interact 

through the Coulomb interaction with the electrons in another subsystem (the p-orbitals).  The 

effect of this interaction, on the state of one of the subsystems, is called screening. Screening 

gives two major effects.  

The first effects is that when the electrons in the p-orbitals interact with the electrons in the d 

orbitals, the electrons in the d-orbitals appear effectively to interact much less. The reason is 

that due to the d-p-interaction a p-electron can leave the system when an additional electron 

enters the d-orbitals, so the total amount of electrons interacting with each other remain the 

same. If the d-p interaction is excluded the p-electrons would not compensate for the changes 

in the d-orbital occupation, thus leading to a different total repulsion [12]. One may effectively 

compensate for this lack of compensation by reducing (screening) the value of the Ud,d term in 

the Hamiltonian. 

The second effect of screening is that it can cause decoherence. The interaction between the p- 

and the d-electrons can make them entangled, and when the p-electrons leave the p-orbitals 

going into the bath they will still carry this entanglement. The d-electrons and the environment 

thus also become entangled which decoherence as previously described in section “The 

Copenhagen interpretation vs Decoherence”. 

Current models that describe the electrons in a material do not explicitly take the entanglement 

between the screening and the screened electrons into account. However, by ignoring this effect 

one may overestimate the QM properties of the different subsystems [12]. 

 

Methodology 
 

To determine how much decoherence our system suffers from we used a simulation of a full 

system consisting of a d-orbital system, a p-orbital system, and a bath. The code used for the 

simulations was called “ImpurityModel”. Alternations was done to the code to read and use 

bath state parameters for the p-orbitals, and additional code was written to calculate the linear 

entropy of the ground state which will tell us how much the quantum states are mixed. (see 

appendix “code for linear entropy”).  
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Pure states and Mixed states  
 

If the system can be described with one state vector it is considered a pure state and pure states 

has zero entropy. For our study we look at the ground state of the total system, and since the 

total system is isolated the ground state is given by the (pure) eigenstate of the Hamiltonian 

with the lowest energy [2]. 

For the case of our study we will look at the electrons in the d-orbitals and see how entangled 

they are to the electrons in the environment (p-orbitals and bath). If we have entanglement 

between subsystems then it is not possible to express the state of one of the subsystems as a 

pure state, since the entanglement makes it depend on the other subsystem [2]. Instead, we need 

to describe the state of the subsystem with a density operator, as shown below.  

The state of our full system expressed as 

⎹ 𝜓〉 = ∑ 𝛼𝑖𝑗

𝑖𝑗

⎹ 𝜓𝑖
𝑑𝜓𝑗

𝑃,𝐵𝑎𝑡ℎ〉 

∑|𝛼𝑖𝑗|
2

𝑖𝑗

= 1 

Let us consider the expectation value for an operator that only acts on the d-orbitals 

〈𝐴̂𝑑𝑑〉 = 〈 𝜓⎹𝐴̂𝑑𝑑⎹𝜓〉 = ∑ 〈𝜓𝑖
𝑑𝜓𝑗

𝑃,𝐵𝑎𝑡ℎ⎹ 
𝑖𝑗 𝑖´𝑗´

𝛼𝑖𝑗
∗ 𝐴̂𝑑𝑑𝛼𝑖´𝑗´⎹ 𝜓𝑖´

𝑑𝜓𝑗´
𝑃,𝐵𝑎𝑡ℎ〉 

 

Since the operator does not act on the environment ( 𝜓𝑗
𝑃,𝐵𝑎𝑡ℎ

)  only the terms with identical 

p,bath states (j = j´) are non-zero, as different p,bath states are orthogonal. 

〈𝐴̂𝑑𝑑〉 = ∑〈𝜓𝑖
𝑑𝜓𝑗

𝑃,𝐵𝑎𝑡ℎ⎹ 

𝑖𝑗 𝑖´

𝛼𝑖𝑗
∗ 𝐴̂𝑑𝑑𝛼𝑖´𝑗´⎹ 𝜓𝑖´

𝑑𝜓𝑗
𝑃,𝐵𝑎𝑡ℎ〉 

This can be rewritten using a partial trace 

〈𝐴̂𝑑𝑑〉 = 𝑇𝑟(∑ ⎹ 𝜓𝑖´
𝑑𝜓𝑗

𝑃,𝐵𝑎𝑡ℎ〉 𝛼𝑖´𝑗

𝑖´

)(∑ 𝛼𝑖𝑗
∗

𝑖

⟨𝜓𝑖
𝑑𝜓𝑗

𝑃,𝐵𝑎𝑡ℎ⎹ )𝐴̂𝑑𝑑)  

= 𝑇𝑟(∑ ⎹ 𝜓𝑖´
𝑑〉 𝛼𝑖´𝑗

𝑖´

)(∑ 𝛼𝑖𝑗
∗

𝑖

⟨𝜓𝑖
𝑑| )𝐴̂𝑑𝑑) 

To easier see the next step we substitute the two sums with the states 
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∑ ⎹ 𝜓𝑖´
𝑑〉𝛼´𝑖´𝑗

ⅈ´
⎹ = ⎹ 𝜓̃𝑗〉 and  ∑ 𝛼´𝑖𝑗

∗ 〈𝜓𝑖
𝑑⎹

ⅈ
= 〈𝜓̃𝑗⎹ 

We can normalize the states⎹ 𝜓̃𝑗〉  with the following procedure  

𝑃𝑗 = 〈𝜓̃𝑗⎹ 𝜓̃𝑗〉 

⎹ 𝜓𝑗〉 =  
⎹ 𝜓̃𝑗〉

√𝑃𝑗

 

The probabilities 𝑃𝑗  sums up to one  

∑ 𝑃𝑗

𝑗

= ∑⟨𝜓̃𝑗⎹ 𝜓̃𝑗⟩

𝑗

= ∑  

𝑗

∑(𝛼𝑖𝑗
∗ ⟨𝜓𝑖

𝑑

ⅈ´

) (∑  𝜓𝑖´
𝑑〉𝛼𝑖´𝑗

ⅈ´

) 

= ∑  

𝑗

∑  

𝑖𝑖´

𝛿𝑖𝑖´𝛼𝑖𝑗
∗ 𝛼𝑖´𝑗 = ∑|𝛼𝑖𝑗|

2

𝑖𝑗

= 1 

 

since ⟨𝜓𝑖
𝑑| 𝜓𝑖´

𝑑〉 =  𝛿𝑖𝑖´. Now we can define an expression for the density operator  

𝜌̂𝑑 = ∑ 𝑃𝑗⎹ 𝜓𝑗⟩⟨𝜓𝑗⎹ 

𝑗

 

And thus, leave us with the expression  

〈𝐴̂𝑑𝑑〉 = 𝑇r(𝜌̂𝑑𝐴̂𝑑𝑑) 

Using the density operator 𝜌̂𝑑  we can describe all expectations values for the d system. Since 

𝜌̂𝑑 mixes statistical probabilities (𝑃𝑗)  and quantum superpositions, the state it describes is called 

a mixed state.  Telling if a state is mixed, and at what degree, the entropy of the state can be 

used.  

Entropy 
 

Now having found an expression for the density operator we are just one step from telling how 

much decoherence the system d is experiencing. This will be done by calculating how much 

entangled the d-system gets to the environment, in our case the Bath and the p system. This is 

done by tracing away the Bath and the p-orbitals from the total density matrix. If the subsystems 

are not entangled, then the states of the subsystems will remain pure. On the other hand, if the 

subsystems are entangled, the states of the subsystems will be mixed. 
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For a pure state the trace of its density matrix squared will be one, but for a mixed state, arising 

from partial trace of an entangled state, the trace of the density matrix squared will less than 

one. We can thus tell how much entanglement with the environment there is by calculating the 

linear entropy of the reduced system. For that we use the following equation for the linear 

entropy  [2]  

 

𝐸[𝜌̂𝑑] = 𝑇𝑟(𝜌̂𝑑 − 𝜌̂𝑑
2) 

 

The minimal model system 
 

In our simulations the electrons in the p-orbitals are allowed to jump to the bath orbitals and 

back. The Bath orbitals consist of two parts, the valence bands which have a lower energy, and 

the conduction bands which have a higher energy. In addition, the valence bands and the 

conduction bands are also split into different irreducible representations Au and Eu , just as the 

p-orbitals (see figure 6 ). Only the orbitals with the same irreducible representation hybridize.  

 

Figure 6: A visualization of the parameters and the orbitals of the Hamiltonian 

 

To make sure the ground state is pure, the system is simulated at zero Kelvin and the  parameters 

of the Hamiltonian are chosen in such a way that the eigenstate of the Hamiltonian with the 

lowest energy is non-degenerate. Degenerated states are when more than one state has the same 

energy. If that is the case, we can no longer tell states apart by looking at the energy levels and 

there by risking measuring a bigger effect of decoherence than what there actually is. 
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Hamiltonian of the model system 
 

To make this simulation a Hamiltonian of the system has to be constructed. Previous in section 

“closed and open systems” we considered the Hamiltonian as such, 

𝐻 = 𝐻𝑑 + 𝐻𝑝 + 𝐻𝑏𝑎𝑡ℎ + 𝐻𝑝,𝑏𝑎𝑡ℎ + 𝑈𝑑𝑑 + 𝑈𝑝𝑝 + 𝑈𝑑𝑝 

For the sake of presenting these terms in a structured way, we group them in the following way. 

𝐻0 = 𝐻𝑑 + 𝐻𝑝 + 𝐻𝑏𝑎𝑡ℎ + 𝐻𝑝,𝑏𝑎𝑡ℎ  And  𝑈0 = 𝑈𝑑𝑑 + 𝑈𝑝𝑝 

In order to lift the degeneracy of the ground state, we introduce two additional terms, a week 

spin-orbit coupling term Ĥso for the d-orbitals (𝜉 = 0.01 eV) and a magnetic term   

ĤB = 𝐵 ⋅ 𝑆̂𝑧  (𝐵 = 0.05). Thus the final and total Hamiltonian is 

 

𝐻̂ = 𝐻0 + 𝑈0 + 𝐻̂𝑠𝑜 + 𝐻̂𝐵 

 

 Now we will take a deeper look into all the terms of the Hamiltonian. 

 

Parameters for the data, 𝑯𝟎 Hamiltonian and their meaning 
 

Figure 6 gives an overview of the different orbitals in the system. Figure 7 shows the matrix 

representation of the one-particle Hamiltonian H0. The Eu and the Eg representations both 

contain two orbitals each, while the T2g contains three orbitals. The full definition for the 

parameters are defined in the table below. 

 

Figure 7: the Hamiltonian as the impurity model reads it in matrix form 

p orbitals

d orbitals

bath orbitals
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Name in dataset  Name in 𝐇0 Description 

Au 𝜀𝐴𝑢 The energy level for the p orbital with symmetry Au 
 

Eu 𝜀𝐸𝑢 The energy level for the p orbitals with symmetry Eu 
 

Eg 𝜀𝐸𝑔 The energy level for the d-orbitals with  symmetry Eg 
 

T2g 𝜀𝑇2𝑔 The energy level for the d-orbitals with symmetry T2g 
 

Valence band Eu 

or e-val Eu 
𝜀𝐸𝑢

𝑣𝑎𝑙 The energy level for the valence band with the Eu 

symmetry 
 

Conduction 

band Eu or e-con 

Eu 

𝜀𝐸𝑢
𝑐𝑜𝑛 The energy level for the conduction band with the Eu 

symmetry 
 

Valence band Au  

or e-val Au 
𝜀𝐴𝑢

𝑣𝑎𝑙 The energy level for the valence band with the Au 

symmetry 
 

Conduction 

band Au or e-con 

Au 

𝜀𝐴𝑢
𝑐𝑜𝑛 The energy level for the conduction band with the Au 

symmetry 
 

v-con_ Eu 
 

𝑣𝐸𝑢
𝑐𝑜𝑛 Strength of the hopping from the conduction band to the p-

orbitals with Eu symmetry 

v-val_ Eu 
 

𝑣𝐸𝑢
𝑣𝑎𝑙 Strength of the hopping from the valence band to the p-

orbitals with Eu symmetry 

v-con_ Au 
 

𝑣𝐴𝑢
𝑐𝑜𝑛  Strength of the hopping from the conduction band to the p-

orbital with Au symmetry 

v-val_ Au 
 

𝑣𝐴𝑢
𝑣𝑎𝑙 Strength of the hopping from the valence band to the p-

orbital with Au symmetry 
 

The 𝑼̂ interaction parameter 
 

This is the coulomb interaction parameter that allows the electrons to interact with each other. 

𝑈̂ = ∑ 𝑈𝑖𝑗𝑘𝑙 𝑐̂𝑖
+𝑐̂𝑗

+𝑐̂𝑘𝑐̂𝑙

𝑖𝑗𝑘𝑙

 

𝐔𝐝𝐝: Coulomb interaction between the electrons in the d-orbitals. 

𝐔𝐩𝐩: Coulomb interaction between the electrons in the p-orbitals. 

𝐔𝐝𝐩: Coulomb interaction between the electrons in the p-orbitals.  

 

Selection of parameters 
 

In materials with partially filled 3d orbitals the occupation of the 4p-orbitals is realistically 

somewhere between 0.3 and 0.7. The parameters of the model were selected to keep the p-

orbital occupation close to this range.  
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It is also common that there is a slight difference in the energy levels for the T2g and Eg orbitals.  

In our model we set 𝜀𝐸𝑔
− 𝜀𝑇2𝑔

= 0.5 eV so that the T2g orbitals have a lower energy compared 

to the Eg.    

Code for linear entropy 
 

 The function that was additionally written to the “impurity model” code was named “linear 

entropy” and can be found in the appendix with comments. This function calculates the 

entropy for the d-orbital system by first constructing thee reduced density matrix and then 

apply the formula for the linear entropy.  

Impurity model Code 
 

The “impurity model” is used to calculate the ground states. The main code can be fund with 

this GitHub link (https://github.com/JohanSchott/impurityModel)  

Note: The code fund by the “GitHub link” is an unaltered edition and will not include the “linear 

entropy” function nor the minor alterations to the “impurity model” code.  

Results 
 

Note that there are a lot of parameters that effect the data and therefor some are selected to be 

fixed and others to vary to get some grasp of what causes high respectively low decoherence. 

The decoherence is as previous stated measured using the entropy for the reduced density matrix 

𝜌̂𝑑. Zero entropy means that the ground state is a superposition of infinitely many states, each 

with maximal entanglement between the subsystem. 

 

 

 

 

 

 

 

https://github.com/JohanSchott/impurityModel
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Decoherence induced by the Au bath orbitals  
 

Let’s first consider a minimal system composed of the d- and p-orbitals, and two bath orbitals 

with Au symmetry. The bath orbtials with Eu symmetry are detached from the system ( 

𝑣𝐸𝑢
𝑣𝑎𝑙  =  𝑣𝐸𝑢

𝑐𝑜𝑛 = 0). The two Au bath orbitals are separated in energy to represent a valence band 

and a conduction band., as shown in figure 6. 

Table 1 

 

Figure 8: Measured entropy for selected parameters.  

 

Table 1 shows the entropy of 𝜌̂𝑑 when the hopping to the valence band is set to 0.5 and the 

hopping for the conduction band is set to 1.0. With higher conduction band the entropy 

decreases with one exception for when the valence energy is -0.25 eV. An explanation for this 

overall trend could be that the hopping from the p-orbital to the conduction band is suppressed 

when the conduction band energy is too high. This would effectively reduce the number of 

degrees of freedom in the environment. For the valence band we can see that with lower energy 

the entropy decreases. A reason for this might be that the hopping from the valence band to the 

p-orbitals is suppressed when the valence band energy is lowered.  Overall, the decoherence is 

not very high. An explanation for this could be that the p-electrons with Au symmetry are not 

able to distinguish the different d-electron configurations. 
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Table 2 

 

Figure 9: Measured entropy for selected parameters 

 

Table 2 shows the entropy for system with 𝑣𝐴𝑢
𝑣𝑎𝑙 = 0.5 eV 𝑣𝐴𝑢

𝑐𝑜𝑛 = 1.5 eV. Similar to the case with 

𝑣𝐴𝑢
𝑐𝑜𝑛 = 1.0 eV, when the valence band energy is at a lowered the decoherence decrease. An 

explanation of this would be that the hopping from the valence band is suppressed when the 

energy level is low, resulting in the p-electrons not moving around that much and thus not 

spreading the information to the environment.  

The most interesting thing for this set of systems with hopping strength 𝑣𝐴𝑢
𝑐𝑜𝑛 = 1.5 eV (Table 

2) compared to t 𝑣𝐴𝑢
𝑐𝑜𝑛 = 1.0 eV (Table 1) is that for valence band energy between -0.25 eV and 

-0.5 eV the decoherence increases when the energy level for the conduction band is raised . The 

opposite is observed when the valence band is between -0.75 eV and -1.0 eV. Here we see, 

much like in table 1, a decrease in decoherence when the conduction energy is raised. For the 

former trend one can speculate that the conduction band and the p-orbital form a bonding orbital 

(a superposition between the p-orbital and the bath orbitals that has low energy in H0 ) with 

such low energy that it is almost fully occupied in the ground state.  

 

Decoherence induced by the Eu bath orbitals 
 

Now we consider a minimal system composed of the d- and p-orbitals, and four bath orbitals 

with Eu symmetry. This time the bath orbitals with Au symmetry are detached from the system 

(𝑣𝐴𝑢
𝑣𝑎𝑙  =  𝑣𝐴𝑢

𝑐𝑜𝑛 = 0). The four Eu bath orbitals are separated in energy to represent a valence 

band and a conduction band, as shown to the left in figure 6. 
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Table 3 

 

Figure 10: Measured entropy for selected parameters 

 

Table 3 shows the entropy for this system when the energies for the valence and conduction 

bath-orbitals are varied. 

Comparing this table with table 1 and 2 it is noteworthy that there is an overall stronger 

decoherence effect. This can be explained by the increase in the degrees of freedom of the 

environment (p-orbitals and bath) since there are two orbitals in the Eu irreducible 

representation and only one in the Au.  

In this example we have a very high decoherence when we gave a low valence level and 

conduction level. We can see a very large decoherence when 𝜀𝐸𝑢
𝑣𝑎𝑙 =  -1.5 eV and 𝜀𝐸𝑢

𝑐𝑜𝑛 = 0.25 to 

0.75 eV. By analyzing the ground state for these cases, we see that they are clearly different 

compared to the ground state of the other cases mainly by the large variation of different d- and 

p-configurations.  

Decoherence induced by both the Au and Eu bath orbitals  
 

Finally, we look at the combined decoherence effect of having bath orbitals with both Au and 

Eu symmetries.  The fixed parameters for this setup are 𝑣𝐴𝑢
𝑣𝑎𝑙 = 0.5, 𝑣𝐸𝑢

𝑣𝑎𝑙 =  0.5, 𝑣𝐴𝑢
𝑐𝑜𝑛 = 1.0,

𝑣𝐸𝑢
𝑐𝑜𝑛 = 1.5.  
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Table 4 

Valence band Au   -0,5 -1,0 -1,5 -2,0 

 

Figure 11: Measured entropy for selected parameters. Image from [7] 

 

Table 4 consist of 16 plots of the entropy for systems with different values of the bath orbital 

energies. 

In the considered energy range, when  𝜀𝐴𝑢
𝑣𝑎𝑙 ≤  𝜀𝐸𝑢

𝑣𝑎𝑙 the entropy is almost independent of 𝜀𝐴𝑢
𝑣𝑎𝑙. In 

this region the decoherence decrease as 𝜀𝐸𝑢
𝑣𝑎𝑙 is lowered. It is noteworthy that the occupation of 

the p-orbital remains around 0.5 electrons throughout this region. 

For the region where 𝜀𝐴𝑢
𝑣𝑎𝑙 ≥  𝜀𝐸𝑢

𝑣𝑎𝑙 the situation changes drastically. Here we see a strong increase 

in decoherence when 𝜀𝐴𝑢
𝑣𝑎𝑙 = -0.5, 𝜀𝐸𝑢

𝑣𝑎𝑙=-1.5, and  𝜀𝐸𝑢
𝑐𝑜𝑛= 0.5. These parameters are similar to 

those that gave a high entropy in table 3. However, in table 4 we see that the inclusion of the 

Au bath orbitals strongly effects the entropy.  When the valence band for Au is lowered the 

entropy changes abruptly from 0.67 to 0.1. This is due to a large change in the ground state.  

One physical effect that could play a role is the repulsion between the electrons in the different 

p-orbitals with different irreducible representation.  This repulsion affects the decoherence in a 

V-val Au = 0.5    V-val Eu = 0.5    V-con Au =1.0    V-con Eu = 1.5 
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way that is not only additive since it will lower the contribution from the states with more than 

one p-electron. 

The dependence of electrons in p-orbitals 
 

One idea for explaining the amount of decoherence was that it could depend on the number of 

p-electrons. A quick study of this was made to see if there are any clear trends for the number 

of p-electrons and the amount of decoherence of the system. In figure 12, 13, 14, and 15 the 

entropy is plotted against the amount of electrons in the p-orbitals for various cuts through the 

parameter space. 

  

   

Figure 12: Entropy plotted against number of p-electrons for the parameter cut in eV: 𝑣𝐴𝑢
𝑣𝑎𝑙

 = 0.5, 𝑣𝐸𝑢
𝑣𝑎𝑙

= 0.5, 𝑣𝐴𝑢
𝑐𝑜𝑛

= 1 to 2, 

𝑣𝐸𝑢
𝑐𝑜𝑛

= 1 to 2, 𝜀𝐴𝑢
𝑣𝑎𝑙

=-0.25 to -0.75, 𝜀𝐸𝑢
𝑐𝑜𝑛 = −1.5 𝜀𝐴𝑢

𝑐𝑜𝑛
= 0.1 to 1, 𝜀𝐸𝑢

𝑐𝑜𝑛
= 0.1 to 1. 
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Figure 13: Entropy plotted against number of p-electrons for the parameter cut in eV: 𝑣𝐴𝑢
𝑣𝑎𝑙

 = 0.5, 𝑣𝐸𝑢
𝑣𝑎𝑙

= 0.5, 𝑣𝐴𝑢
𝑐𝑜𝑛

= 1 to 2, 

𝑣𝐸𝑢
𝑐𝑜𝑛

= 1.5 to 2.5, 𝜀𝐴𝑢
𝑣𝑎𝑙

=-0.5, 𝜀𝐸𝑢
𝑐𝑜𝑛 = −1.5, 𝜀𝐴𝑢

𝑐𝑜𝑛
= 0.5 to 2, 𝜀𝐸𝑢

𝑐𝑜𝑛
= 0.5 to 2. 

 

       

 

Figure 14: Entropy plotted against number of p-electrons for the parameter cut in eV: 𝑣𝐴𝑢
𝑣𝑎𝑙

 = 0.5, 𝑣𝐸𝑢
𝑣𝑎𝑙

= 0.5, 𝑣𝐴𝑢
𝑐𝑜𝑛

= 1, 

𝑣𝐸𝑢
𝑐𝑜𝑛

= 1.5 to 2, 𝜀𝐴𝑢
𝑣𝑎𝑙

=-0.5 to -2, 𝜀𝐸𝑢
𝑐𝑜𝑛 = −0.5 to − 2, 𝜀𝐴𝑢

𝑐𝑜𝑛
= 0.5 to 2, 𝜀𝐸𝑢

𝑐𝑜𝑛
= 0.5 to 2. 
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Figure 15: Entropy plotted against number of p-electrons for the parameter cut in eV: 𝑣𝐴𝑢
𝑣𝑎𝑙

 = 0.5, 𝑣𝐸𝑢
𝑣𝑎𝑙

=1, 𝑣𝐴𝑢
𝑐𝑜𝑛

= 1, 𝑣𝐸𝑢
𝑐𝑜𝑛

= 

1.5, 𝜀𝐴𝑢
𝑣𝑎𝑙

=-0.5 to -1.5, 𝜀𝐸𝑢
𝑐𝑜𝑛 = −0.5 to − 2 𝜀𝐴𝑢

𝑐𝑜𝑛
= 0.5 to 2, 𝜀𝐸𝑢

𝑐𝑜𝑛
= 0.5 to 2. 

 

 

In all cuts the amount of decoherence (measured entropy) is the highest when the number of 

electrons occupying the p-orbitals is 0.5 and higher but having a high number of p-electrons 

does not necessarily imply a high amount of decoherence, as seen in figure 14 and 15. For an 

p-orbital occupation lower than 0.4 there seems to be a clear linear trend between entropy and 

occupation number. Figure 12 and 13 seems to indicate that when the number of p-electrons 

exceeds 0.55 the decoherence won’t go higher but instead finds some sort of limit close to 

2/3. The eigenvalues of the reduced density matrix shows that this upper limit is due to that 

the d-electrons in the ground state primarily take three different configurations, which implies 

𝑇𝑟(𝜌̂𝑑
2)≤1/3. 
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Discussion 

 

That there would be decoherence of some magnitude was expected in a way but the high amount 

of it is very surprising. The system simulated is of a minimal model with a limited description 

of the environment, but still with properties similar to that of a transition metal atom in a 

realistic material. Even with this limited number of degrees of freedom the bath was still able 

to resolve the different configurations of the d-electrons to a large extent. 

The aim of the study was to quantify the amount of decoherence induced by the p-d-electron 

interaction to see if it can be neglectable in realistic models of materials. The result of this study 

shows that for some parameter regions it is not a good approximation to neglect the decoherence 

effect. What has been found is that p-d-electron interaction surely is something that needs to be 

investigated further to make more accurate approximations. 

From the data it seems like the bath orbitals with Eu symmetry are important to induce a large 

amount of decoherence. When this symmetry is active there is a higher number of degrees of 

freedom in the environment, which is needed to resolve the different d-configurations. 

An interesting direction for future studies is trying to understand the physical mechanisms that 

amplify the decoherence in order tell when it can be neglected or not. For example, a physical 

mechanism explored was how the number of p-electrons relate to the entropy of the reduced 

density matrix. The figure 12-15 says that the number of p-electrons is not what necessarily 

gives of a high amount of decoherence.  

To expand on this study, one could expand the model system with bath orbitals that hybridize 

directly with the d-orbitals. Another addition could be to consider f-orbitals instead of d-orbitals 

and exchanging the p-orbitals with d-orbitals. Varying the number of electrons in the different 

subsystems. Extending the model system in this way would make the calculations much 

heavier. The runtime for the simulation would go from minutes to days and thus become 

unsuitable for a bachelor thesis.  

Conclusion 
The main conclusion of this study is that the decoherence effect from the interaction between 

the p- and d-electrons cannot be neglected. This highlights the need for continued method 

development to take this effect into account in realistic material simulations. 



26 
 

References 
 

[1]  Mccomb, David & Täuber, Uwe. (2005). Renormalization Methods: A Guide for Beginners. 

Physics Today. 58. 78-79.  

[2] Anna Galler and Patrik Thunström (2021). American Physical Society. Orbital and 

electronic entanglement in quantum teleportation schemes. 
 

[3] Figure 1: User NekoJaNeKoJa (2005/12/16). Wikipedia. 

https://commons.wikimedia.org/wiki/File:Double-slit.PNG 

[4] Eibenberger, Sandra; et al. (2013). Matter-wave interference with particles selected from a 

molecular library with masses exceeding 10000 amu. 15. 14696–14700. 

[5] Orchin, Milton; Macomber, Roger S; Pinhas Allan; Wilson, R. Marshall (2005). Atomic 

Orbital Theory. 2. 2. 

[6] Elham Kashefi (2004). Introduction to Quantum Information Science. Oxford University. 1.  

[7] Liao, Yougui. (2006) Practical electron microscopy and database. An online book, Glob-

alSino. www.globalsino.com/EM/ (2022/06/25) 

[8] Image 4. User: CFCF. (2017/11/24).   Wikimedia. https://commons.wiki-

media.org/wiki/File:CNX_Chem_19_03_Dorbital.png 

[9] Theodore gray (2009). The elements. “A Visual Exploration of Every Known Aton in the 

Universe”. Black dog & leventhal Publisher. England. 15. 

[10] Image 5. User Erenst(2014/01/29) socratic.org  https://socratic.org/questions/how-do-you-

draw-spdf-orbitals 

[11] Szabo, Attila, and Neil S. Ostlund. Modern Quantum Chemistry : Introduction to Advanced 

Electronic Structure Theory, Dover Publications, 1996. ProQuest Ebook Central, 

https://ebookcentral.proquest.com/lib/uu/detail.action?docID=189480  

[12] Maximilian Schlosshauer. (2019) Quantum Decoherence. Department of Physics, University 

of Portland. 13 



27 
 

[13] What Is Entanglement and Why Is It Important?. (2022). Caltech Science Exchange 

https://scienceexchange.caltech.edu/topics/quantum-science-explained/entanglement 

[14] L. D. Landau; E. M. Lifshiyz (1977). Quantum Mechanics: Non- Relativistic Theory. 3. 20-

22 

[15] Stanford Encyclopedia of Philosophy. (2019) Copenhaigen interpretation of quantum 

mechanics. https://plato.stanford.edu/entries/qm-copenhagen/ 

Appendix 
 

Code for linear entropy 
 

def linear_entropy(nBaths,n_spin_orbitals,psi): 

#Finds  egenvalues for the Hamiltonan (ws) and calculate the absolute walue. putting these in a new 

# list as a tupple  

      ws = np.array([ a for a in psi.values() ]) 

      absws = np.array([ abs(a)**2 for a in psi.values() ]) 

      s = np.array([ psr.bytes2tuple(ps,n_spin_orbitals) for ps in psi.keys() ]) 

      j = np.argsort(absws) 

      ws = ws[j[-1::-1]] 

      s = s[j[-1::-1]] 

#constructing two list. one for p-states+Bath (PB)states and one for the d-states(D). This is to later 

#find the superpossitions fo d-states. This will constists of lists with lists as elements.  

      nps = 0 

      PB=[] 

      D=[] 

      for i,slate in enumerate(s): 

            npelec = 0 

            d=[] 

            pb=[] 

            for c in slate: 

                  if 5<c<16: 

                        d.append(c-6) 

                  else: 

                        pb.append(c) 

                        if c < 7: 

                              npelec = npelec + 1 

            nps = nps + npelec*np.abs(ws[i])**2 

            D.append(d) 

            PB.append(pb) 

#Sorting the p Bath list in order and the same order for the weigt for the states and the d list.  

      isort = sorted(range(len(PB)), key=PB.__getitem__) 

      PB = [PB[i] for i in isort] 

      D = [D[i] for i in isort] 

      ws=[ws[i] for i in isort] 

      wslist = [] 

#finding the superpossitions for d where the p bath is identical. 

https://plato.stanford.edu/index.html
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      D_Trace=[] 

      ws_Trace=[] 

      for i in range(len(PB)-1): 

            dlist.append(D[i]) 

            wslist.append(ws[i]) 

            if PB[i] != PB[i+1]: 

                  D_Trace.append(dlist) 

                  ws_Trace.append(wslist) 

                  dlist = [] 

                  wslist = [] 

      dlist.append(D[-1]) 

      wslist.append(ws[-1]) 

      D_Trace.append(dlist) 

      ws_Trace.append(wslist) 

#Calculation of the dencity matrix 

      n_electrons = len(D_Trace[0][0]) 

      n_space = 10 

      rho = np.zeros((n_space**n_electrons, n_space**n_electrons),dtype=np.complex) 

      rhovec = np.zeros((n_space**n_electrons),dtype=np.complex) 

      numvec = [n_space**(n_electrons-k-1) for k in range(n_electrons)] 

      for i, state in enumerate(D_Trace): 

            rhovec[:] = 0 

            for j, slater in enumerate(state): 

                  b = np.dot(slater, numvec) 

                  rhovec[b] = ws_Trace[i][j] 

      rho += np.outer(rhovec,np.conjugate(rhovec)) 

 

#Calculating the linear entropy 

 

      print("Tr(rho) = ",np.trace(rho)) 

      print("Tr(rho^2) = ",np.trace(rho.dot(rho))) 

      entropy = np.trace(rho - rho.dot(rho)) 

      return entropy,nps 

 


