
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2022

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 2210

Simulating ion transport in
electrolyte materials with physics-
based and machine-learning models

YUNQI SHAO

ISSN 1651-6214
ISBN 978-91-513-1642-0
URN urn:nbn:se:uu:diva-487188



Dissertation presented at Uppsala University to be publicly examined in Polhemsalen,
Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Wednesday, 14 December 2022 at
09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English.
Faculty examiner: Professor Barbara Kirchner (University of Bonn).

Abstract
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Electrolytes are indispensable components of electrochemical devices such as batteries, fuel
cells, and supercapacitors, and the mass transport in electrolytes is one of the most important
design focuses of such devices. A microscopic picture of ion transport is essential to link the
chemical properties of electrolyte materials to their electrochemical applications. This thesis
aims to establish such a connection through computer simulations of the transport phenomena,
using a combination of physics-based and machine-learning methods.

The first part of the thesis concerns the study of transport phenomena with molecular
dynamics simulations, where the atomistic interactions are described by physics-based classical
force fields. Guided by the principles of non-equilibrium statistical mechanics, the simulations
reveal governing factors of ion transport in different systems. This is exemplified by the
leading contribution of hydrodynamic interactions in the non-ideal ionic conductivity, and the
qualitative distinction between transient and long-lived ion pairs. This approach also aids the
interpretation and comparison of experiments and simulations, by elucidating their intrinsic
constraints imposed by the reference frame, and their proper inter-conversions.

The second part of the thesis aims to remedy a major limitation of the physics-based approach,
namely the difficulty of accurately simulating complex reactive systems. The machine learning
methods were developed to systematically generate the models from electronic structure
calculations. The strength of this approach is demonstrated by showing how it correctly
predicted the transport coefficients of proton-conducting materials with the desired accuracy.
Limitations of this data-driven approach are also investigated, demonstrating the potential pitfall
in the parameterization process, and leading to the development of an adaptive learn-on-the-
fly workflow.

Overall, the present thesis showcases how computer simulations can lead to insights regarding
the ion transport in electrolyte materials, and how the development of machine-learning methods
could empower those simulations to tackle complex and reactive systems.
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1. Introduction

1.1 Phenomena in electrochemical cells

Advances in materials and energy sources shape the modern society. In a

much-electrified society, its sustainability depends on its control over electric-

ity, materials, and their interplay. Solutions to many of the pressing problems,

e.g., energy sources, energy storage, and efficient energy conversion, are found

in electrochemical cells (batteries, fuel cells, and electrolysis cells, to name a

few).[1,2]
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Figure 1.1. An electrochemical cell (in open circuit) and some of the many phenomena

in it.

The operation of an electrochemical cell is the interplay of a number of fac-

tors, from the interfacial structure[3] and its impact on electrochemical reactions[4]

to the formation of solid electrolyte interphases;[5] from the transport of mass,

heat, and momentum to the mechanical deformation and degradation of the

cell, as illustrated in Fig. 1.1. Each of those factors is coupled intricately with

one another, and an understanding or rational design of those devices would

require integrated knowledge on different levels.

1.2 Multiscale modelling of electrochemical cells

The multiscale models emerge as the phenomena are characterized and de-

scribed at different domains.[6] For example, an electrochemical cell may be

characterized by its current response to a frequency-dependent voltage via
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electrochemical impedance spectroscopy (EIS). The EIS can be interpreted in

terms of different parts of the cell in the form of its equivalent circuit model.[7]

Each component may be further modelled as continuums of materials and in-

terfaces in between.[8] The interfacial and bulk properties find their origin in

atomistic or electronic structures, to be characterized by atomistic simulations

or spectroscopic, diffraction, and microscopic measurements.

Such a hierarchical structure benefits the research in several ways. Going

up the hierarchy, the implication of low-level phenomena at a higher level can

be envisioned or simulated, providing the mechanisms for interpretation or

prediction. Walking down the hierarchy, the empirical observations may be

traced back to their origins as a means to judge the fundamental laws or the

approximations made along the path. Overall, the multiple scales represent

the existence of apt physical laws or equations for certain aspects of the phe-

nomena, while the missing links between them call for empirical or theoretical

advances.[6]

With the recent development of data-driven models and the much increased

throughput of experimental and computational data, it is not hard to imag-

ine that such methods could alleviate the difficulties in the above physics-

based hierarchy, of “bridging” different scales. Example usage of the so-called

machine learning (ML) models include the automated inference of empirical

rules,[9] or as surrogate models in lieu of their more expensive counterparts for

large-scale screening[10] or atomistic simulations.[11]

In the context of multiscale modelling, this thesis chose the specific prob-

lem of ion transport in electrolytes. That said, it is the hope of the author

that this work contributes to a clear connection between the bulk properties

of the electrolyte and the atomistic interactions for better predictions, better

understandings, and better designs of the electrochemical cell.

1.3 Ion transport in electrolytes

Given their role as ion conductors in cell operation, the ion transport properties

of electrolytes are among the most important factors to consider in cell design.

In the search for novel electrolyte materials, under the constraints of, e.g.,

electrochemical (thermal) stability and mechanical properties, a wide range

of materials attract interest.[12–14] The quest for understanding and improving

their transport properties challenges the experiments, the theory, as well as the

simulations of electrolytes.

Accurate measurements of transport coefficients, i.e., ionic conductance,

transference number, and diffusion coefficient, have been available for liq-

uid electrolytes since the early 1900s.[15] Methods and theories based on po-

tentialstatic polarization extend the availability to systems as solid polymer

electrolytes.[16] The advance in experimental techniques, notably nuclear mag-

netic resonance (NMR) measurements, enable the direct mobility measure-
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ments for individual ions (self diffusion) with pulse-field gradient (PFG)-NMR,[17]

or certain ionic species with electrophoretic NMR.[17] Observations made in

those experiments are not always easy to understand, and the correct interpre-

tation and elucidation of the data require theoretical support.

Classical theories of liquid electrolytes, such as Ostwald’s law[18] or the

Debye-Hückel-Onsager theory,[19,20] succeeded in relating transport proper-

ties to other thermodynamic quantities for dilute electrolytes. Despite remark-

able theoretical developments such as the mean spherical approximation,[21,22]

the hypernetted chain approximation,[23] or the classical density functional

theory,[24,25] the mathematical intricacy and the necessary simplification limit

their applications to idealized systems, and employing them in realistic prob-

lems remains challenging.[9,26–28]

In more general cases, a first estimation of the transport properties may be

given by its viscosity, giving rise to the Walden rule in the study of ionic

liquids.[12] An adjusted Walden relation, where the radius of ion is taken

into account, formed the base of many discussions regarding ion transport.[29]

There, an “ideal” conductivity is derived from the self-diffusion coefficients

with the Nernst-Einstein relation. Given the complete set of transport coef-

ficients, the deviation of ionic conductivity from the ideal relation may be

attributed to correlations between ions.[30–33] Although derivation through the

aforementioned theoretical framework is still difficult, computer simulations

offer the possibility to verify hypotheses.

Simulations at the atomistic/electronic level provide much of the informa-

tion unavailable in the previous discussion. In molecular dynamics (MD) sim-

ulations, factors such as ion pairing and association[34–38] can be gauged, and

their effects in terms of the ion correlations[39–41] can be directly evaluated.

MD simulations also provide detailed structural information[42] and thermo-

dynamic properties[43] of the model system which could be used to enhance

the theoretical models with inversion procedures.[44]

Introduction of electronic structure to MD simulations further enables the

investigation of transport phenomena involving chemical reactions like proton

transfer (PT),[45–48] ion-ion charge transfer,[49] etc. To reach the full potential

of this combination, ML models can be built to bypass the electronic struc-

ture calculation and accelerate the MD, so that the desired quantities can be

converged,[50–53] which is also developed in this thesis.

1.4 Scope of this thesis

This thesis focuses on the simulation of electrolyte materials at an atomistic

scale and the specific problem of their ion transport properties. Within the

hierarchical structure of multiscale modelling, the aim is clear — to bridge

the phenomena of transport with the dynamics of atoms. Specifically, the

following questions will be answered in this thesis: (1) How does the ion
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transport relate to the microscopic motion of atoms? (2) What are the insights

into the ion transport that emerge from the microscopic view? (3) How do

interatomic forces affect the atomistic dynamics and the ion transport?

Using classical force fields, the first part of the thesis deals with the first two

questions. Those were studied before computer simulations became feasible,

and simulation mainly serves to check the validity of those theories, that is,

to show their applicability for given systems and to clarify their connection to

experimental measurements. Sec. 2.1 gives a brief review of the development

of ion transport theories, and Sec. 2.2 introduces principles of MD simulations.

Chapter 3 contains three studies focusing on different systems and concepts in

ion transport.

Sec. 3.1 showcases the computation of transport coefficients with two typ-

ical electrolytes NaCl/aq and [BMIM][PF6], where an inspection of the finite

size effect in MD simulations reveals the role of hydrodynamic interaction in

ion transport (Paper I). Sec. 3.2 turns to the concept of ion pairing and shows

the importance of lifetime in the interpretation of ion pairing for the poly-

mer electrolyte PEO-LiTFSI (Paper II). Finally, Sec. 3.3 stressed reference

frame (RF) as the conceptual gap to be bridged for the comparison between

experimental and simulation results in the same polymer electrolyte system

(Paper III).

Classical force fields fall short in regard to the final question, especially

in treating chemical reactions. Chapter 4 attacks the problem with a ML ap-

proach, with the basics of using ML potentials introduced in Sec. 2.3. Sec. 4.1

showcases the strength of the combination of neural network potentials (NNPs)

and MD in the study of transport properties of NaOH/aq, where Grotthuss-type

PT contributes to its high ionic conductivity (Paper IV).

Further development of the methodology to cater to more complex systems

is presented in Sec. 4.2 (Paper V). During the method development, a possi-

ble pitfall is noted regarding the transferability of NNPs, and the role of the

training algorithm is highlighted in Sec. 4.3 (Paper VI). An adaptive learn-

on-the-fly (LOTF) workflow is designed to mitigate the issue and rigorously

study the coupling between sampling and training procedures, the workflow

and its application to the protic ionic liquid (PIL) [C1IM][HOAc] is discussed

in Sec. 4.4 (Paper VII).
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2. Theory and Method

2.1 Theory of ion transport in electrolytes
As outlined in the introduction, ionic transport is the central property of elec-

trolytes, such that being “ionic conductors and electronic insulators” becomes

the modern definition of electrolytes.[54] By focusing on ionic transport, the

following response relation between the flux density Jα , and the gradients of

molar concentration cα and potential Φ, will be studied at its linear limit:*

Jα = Jα,migration +Jα,diffusion (2.1)

=− tα
qαNA

σ∇Φ−D∇cα (2.2)

where σ is the ionic conductivity, tα and qα are transference number and the

formal charge of species α , D is the salt diffusion coefficient, and NA is the

Avogadro constant.

Electrolytes, termed by Faraday[56] to explain the phenomena of ionic con-

duction, were recognized by Arrhenius[57] as substances that dissociate into

charged particles upon solution. This microscopic picture of electrolytes is

pivotal to a mechanistic understanding of their structures, reactivities and trans-

port properties of interest here.[15] The following section shows how those

transport coefficients are related to the microscopic motions of ions, as a cor-

nerstone of this thesis.

2.1.1 Phenomenology of ion transport

The identification of ion formation upon solvation, rather than electrolysis,

marks the first hint that the phenomena of ion conduction can be character-

ized by its equilibrium state. Following Einstein’s seminal work on Brownian

motion,[58] the driven motion of a particle and the random motion are related

through a common “mobility” uα or self-diffusion coefficient Ds
α of the parti-

cle, characterized by its mean squared displacement (MSD):

uα =
Ds

α
RT

= lim
t→∞

1

6RTt

〈
1

Nα
∑
i∈α

‖Δri(t)‖2

〉
(2.3)

* Such a simplified form requires some clarification: firstly, the asserted linear relation is ex-

pected at small currents, which is the case for typical measurement of transport properties.[55]

For the same reason, the isolated effect of an electrochemical driving force is studies here,

albeit convection or coupling with heat flux might be of interest at the device scale.
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where R is the gas constant, T is the temperature, and Δri(t) is the displace-

ment of particle i over time t, with which the flux of a species becomes:

Jα = uαcαXα =−uαcα∇μ̄α (2.4)

where we consider migration and diffusion as the result of a common driving

force Xα , as the negative gradient of the electrochemical potential μ̄α = μα +
qαNAφ , with μα being the chemical potential of species α , and φ being the

electrostatic potential (not to be confused with Φ).*

This representation asserts that Jα only arises from Xα , which is only valid

at low concentration. A more general form of the linear relation is known as

the Onsager phenomenological equations:†

Jα = ∑
β

Ωαβ Xβ (2.5)

and the correlation function may be derived from the linear response theory,[65]

in an analogous form as the MSD:

Ωαβ = lim
t→∞

1

6kBTV N2
At

〈
Δrα(t) ·Δrβ (t)

〉
(2.6)

where the total displacement of α particles in the system is denoted as Δrα , kB

is the Boltzmann constant, V is the system volume, and Ωαβ is the so-called

Onsager coefficients.

The implication of such a relation between the microscopic fluctuation of

the particle and macroscopic transport coefficients is worth a few remarks:

above all, the law of motion for the particles sets the constraints for the macro-

scopic coefficients.[66] As an example, the time-reversibility of the micro-

scopic dynamics implies the symmetry of Onsager coefficients (Ωαβ = Ωβα )

known as the Onsager reciprocal relation (ORR).[61] Further, the form of equa-

tions may be cast back to the form of Eq. (2.1):[59]

σ = ∑
αβ

qαqβ N2
AΩ0

αβ (2.7)

t0
α = ∑

β
qαqβ Ω0

αβ/σ (2.8)

and in the specific case of 1:1 binary electrolytes:

D0 =
2RT

c
·
(

1+
dlny
dlnc

)
·
(
Ω0

+−
)2 −Ω0

++Ω0−−
Ω0

+++Ω0−−−2Ω0
+−

(2.9)

* For the the distinction between the potential definitions and the possible ambiguity, see

eqs. (43–45) in ref. 59, or the discussion in ch. 12 of ref. 60.
† Several alternative forms exists at this level, such as the inverse Onsager equations,[59,61,62]

the Maxwell-Stefan equations,[63] or the modified version by Newman.[64] Given that they

all describe the same process, they can be converted from one to another, and the choice is

usually a matter of convenience.
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where c is the salt concentration and y is the molar activity coefficient.

This connection allows for the rigorous experimental validation of theo-

retical estimations, including the ORR.[67] Notably, the transport coefficients

here are presented under the solvent-fixed frame of reference (denoted as 0),

conversion between different RFs is again constrained, and its implication is

detailed in Paper III.

2.1.2 Conceptual models of ion transport

In the previous section, the theoretical discussion is restricted to a phenomeno-

logical level — the derivation depends merely on the simple assumption of a

linear relation. The simplicity leads to rigidity rather than triviality of its con-

sequence. That said, no quantitative prediction of the transport coefficients is

yet arrived, which will be provided by conceptual models in the following.

While those models are not applied in this thesis, the concepts they provided

will help with the interpretation of experimental and simulation results. The

theoretical development and derivation go beyond the scope of this thesis, the

interested reader is directed to the comprehensive account by Justice.[68, pp. 226]

Following Arrhenius’ theory of ion dissociation, ionic conductivity is natu-

rally related to the degree of ionization, which also corresponds to the Van ’t

Hoff “anomalies” regarding the osmotic pressures of aqueous electrolytes.[18]

The mass action law, suggested by Ostwald, entails the concentration c depen-

dency of the molar conductivity Λ = σ/c as:

1

Λ
=

1

Λ0
+

1

Kd

Λ
Λ2

0

c (2.10)

where Λ0 the limiting molar conductivity at infinite dilution, and Kd is the

dissociation constant of the electrolyte. Given the abundance and accuracy of

conductivity measurements, they become a useful gauge to study ion-solvent

interactions in electrolytes.[15, ch. 6] However, despite the success and simplic-

ity of Eq. (2.10), it fails to account for a number of electrolytes known as

“strong electrolytes”, where the Kohlrausch’s measurements give a square root

dependency of conductivity to the concentration:

Λ = Λ0 −A
√

c (2.11)

The observation is clarified first by the recognition that strong electrolytes

are completely dissociated (Kd → ∞),[68, pp. 227] and then the Debye-Hückel-

Onsager (DHO) theory, which derived the square root law from the electro-

static interactions between ions. The DHO theory quantifies the effect of ion

interactions on transport properties through time-averaged quantities centred

on an ion of type α , namely the spatial distribution functions of β particles:
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gαβ (r), the r dependent mean velocity of β : vαβ (r), and the r dependent

mean force between α and β particles: fαβ (r).*
Those quantities are mutually coupled through interatomic interactions and

continuity equations, and simplification is necessary to reach a solvable set of

equations. Debye and Hückel solved gαβ (r) and its perturbation upon an elec-

tric field with a linearized Poisson-Boltzmann equation, and obtained a change

of the driving force felt by the central ion (ΔX), known as the relaxation ef-
fect. Another effect that is later discussed by Onsager, is the perturbation to

vαβ (r) due to the driving force acting on the central ion following Stoke’s

Law, known as the electrophoretic effect.[20] The two effects can generally be

combined to arrive at flux density in the form:[70]

Jα = cα ∑
β
(uαδαβ +Ω′

αβ )(X+ΔX) (2.12)

where δαβ is the Kronecker delta, Ω′ accounts for the electrophoretic effect

typically given by the Oseen tensor, and ΔX accounts for the relaxation effect.

This gives the DHO limiting law of conductivity in the form of Eq. (2.11).

Whether the Ostwald or the DHO law holds depends on the type of elec-

trolytes, and it raises some conceptual difficulties when some strong elec-

trolytes (like NaCl) exhibit different behaviour depending on the solvent, where

the mass action law is unexpected.[68, pp. 228] Bjerrum attributed this to the

oversimplification of the linearized Poisson-Boltzmann equation, who went on

and suggested treating short-range ion-pair configurations as neutral species,

which does not interact with the rest of ions.[71]

It’s worth mentioning that Bjerrum’s concept of ion pair is a bypass of the

mathematical difficulty rather than a claim of the actual dynamics,[71] or as

put by Onsager: “a convenient but reasonable convention” when “the recom-

bination kinetics is too fast for a sharp definition”.[18] The distinction between

long-lived ion pairs and those with fast kinetics becomes significant when the

full set of transport coefficients (such as the complete set of Onsager coeffi-

cients) are considered, as demonstrated in Paper II.

2.2 Molecular Dynamics Simulations

The above relations between transport coefficients and correlation functions

permit their direct determination through computer simulations, which be-

comes possible with the rapidly increased computing power in the past few

decades. This section gives a brief overview of the numerical simulation of

MD, with some special focus on its connection to transport properties.

* See pp. 234–239 of Ref. 68 for more detailed definitions and derivations. The distinction

between this point of view to that in Sec. 2.1.1 resembles that between the Lagrangian and

Eulerian specification of flow fields.[69]
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With the assumption that the motions of nuclei and electrons can be treated

separately, i.e., the Born-Oppenheimer (BO) approximation, the problem is

decoupled to the determination of potential energy U as a function of nuclei

positions r, and the integration of the equation of motions for the nuclei. This

section discusses the numerical simulation of the equation of motion, while

the determination of U(r) is discussed in Sec. 2.3.

In this thesis, the further approximation that the nuclei follow a classical

equation of motion is made, written in the Hamiltonian form:

H(r,p) = T (p)+U(r) (2.13)

dtr = ∂pH (2.14)

dtp =−∂rH (2.15)

where H is the so-called Hamiltonian of the system, T (p) = ∑i p2
i /2mi is the

kinetic energy, and p is the momenta.*

Despite the simple form of Eqs. (2.13–2.15), the simulation of a micro-

scopic system reveals important structural and dynamic properties, as demon-

strated by the pioneering works of Rahman, Stillinger et al.,[73,74] followed

by endeavours to enhance it by coupling the microscopic system to different

external conditions.[75]†

2.2.1 Integration schemes

That an MD simulation yields relevant structural and dynamical information

relies on its capability to visit the possible states of a system (or ergodicity).

Since the equation of motion preserves the total energy of a system, one ex-

pects to visit a collection of the states of a microscopic system with constant

number of particles, volume and energy (called a microcanonical or NVE en-

semble). Formally, it may be shown with the Liouville equation that well-

defined ensemble distribution functions follow from the symplecticity of the

Hamiltonian equation of motion, from which thermodynamic quantities may

be derived.[65, sec. 2.4–2.5]

This aspect is important to ensure the stability of MD simulation at a long

timescale. Indeed, the principle of symplecticity and conserved quantity guides

the design of integration schemes in MD simulations. In the case of NVE sim-

ulation, the velocity Verlet algorithm may be derived by Trotter factorization

* Such an approximation neglects the so-called nuclear quantum effects, and typically under-

estimates the mobility of light nuclei, to be captured by techniques like path integral MD.[72]

† Historical accounts can be found in Ref. 76, or sec. 3.7 and 4.8 of Ref. 65.

17



of the equation of motion,[65, sec. 3.10] in the form of a three-step procedure:

p(Δt/2) = p(0)− Δt
2

∂rU(r(0)) (2.16)

r(Δt) = r(0)+
Δt
m

p(Δt/2) (2.17)

p(Δt) = p(Δt/2)− Δt
2

∂rU(r(Δt)) (2.18)

It has been shown that violation of symplecticity, as is the case of popular

integrators like the explicit Runge-Kutta methods, results in artefacts in simu-

lation, such as the drift of total energy.[77, ch. 3]

A drawback of simulating the NVE ensemble is that it might not reflect a

realistic dynamics of the system, which could interact with its surrounding.

Systems that conceptually exchange heat with an external “thermostat” lead

to an NVT (constant number of particles, volume, and temperature, or canon-

ical) ensemble, and those interacting with an external “barostat” in addition

leads to an NPT (constant number of particles, pressure, and temperature, or

isothermal-isobaric) ensemble, etc.

The couplings affect the dynamic properties of interest in this thesis due to

both the different statistical ensembles sampled,[78, sec. 5.3] and the changes in

equation of motion along with the numerical integration scheme.[77, ch. 8] Pop-

ular approaches include the introduction of extended variables with modified

conversed property, e.g. the Nosé-Hoover chains[79] or the Parrinello-Rahman

barostat,[80] or the inclusion of random variables in the form of Langevin

dynamics[81] or velocity rescaling.[82]

2.2.2 Finite size effects

Apart from the discretization of dynamics, the finite simulation cell and the

imposed boundary condition could also systematically impact the outcome.

For instance, the particle in a simulation box interacts with copies of itself

under periodic boundary conditions (PBCs), leading to a systematic reduc-

tion of the self-diffusion coefficient. This effect is due to the hydrodynamic

interaction of the particles with their periodic images, and can be accurately

accounted for by integrating the Oseen tensor over the periodic images:

Ds
α(L → ∞) = Ds

α(L)+
ξ kBT
6πηL

(2.19)

where ξ ≈ 2.837 for cubic simulation boxes, η is the shear viscosity, and

L is the box size, derived from the Kirkwood-Riseman theory of polymer

diffusion.[83–85]

That the finite size effect exists is not necessarily a drawback of MD simu-

lation, a well-understood finite size effect entails knowledge on the interaction
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between the simulated system with its surrounding, which underpins the va-

lidity of the simulation. The point is further exploited in Paper I.

2.3 Potential energy surface and its approximations

The above discussion paves the way to establish a relationship between the

ion transport properties and the interaction between atoms, either through the

theoretical framework envisioned by DHO, or computer simulations of MD.

The very interaction, embedded in the potential energy surface (PES) U(r), is

the last piece of the puzzle in this thesis. Much of the interactions affecting

U(r), from the electrostatic interaction between ions central in the DHO the-

ory, to the chemical bondings and ion-solvent interactions, finds their origin in

the quantum mechanics of electrons. Here, different ways of estimating U(r)
are laid out, with the aim of studying transport properties and the emphasis on

their parameterization and computational efficiency.

2.3.1 Classical force fields

The most straightforward approach to obtain U(r) is the classical force fields

describing the different types of interactions. A typical force field for molec-

ular systems separates those into intramolecular terms, e.g., bonding, angular,

dihedral, and improper, and intermolecular terms, e.g., Coulombic, and van

der Waals (vdW):

U(r) =Uintra +Uinter (2.20)

=Ubond +Uangle +Udihedral +UCoul +UvdW (2.21)

where the individual terms are mostly “trial functions” to be fitted against ex-

perimental or theoretical data. The simple form of classical force fields grants

them excellent computation efficiency: most short-range interactions can be

efficiency computed and parallelized, and long-range interactions (those that

decays slower than r−3) may be elegantly treated by the Ewald summation[86]

or its more advanced variants like the particle-particle particle-mesh Ewald

summation.[87]

Despite the fact that those potentials are indeed approximate and empiri-

cal in nature, their form does reflect the most important interactions in the

system. Deeper understanding of the system continues to contribute to more

sophisticated and physical forms of the potential.*

* Exemplified by the class II force fields for hydrocarbons,[88] the glue potential for metals,[89]

and the reactive force field for reactions.[90] A less recent example is the r−6 term of the

Lennard-Jones potential,[91–93] see Ref. 94 for a historical account.
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2.3.2 Density functional theory

On the other hand, U(r) is fundamentally determined by the electronic struc-

ture, specifically the ground-state many-body electronic wavefunction given

the nuclei positions under the BO approximation. Solutions to the problem

deserve detailed discussion available in many textbooks.[95,96] A short path is

presented here to arrive at a practical approximation, namely the Kohn-Sham

density functional theory (DFT) used in this thesis.

Starting from the many-body time-independent Schrödinger equation:

ĤelecΨn = EelecΨn (2.22)

where Ĥelec is the many-body electronic hamiltonian, Eelec is the electronic en-

ergy, and Ψn is the many-body electronic wavefunction defined on the n coor-

dinates of the electrons. The dimensionality of Ψn grows rapidly with n, mak-

ing its solution quickly unpractical.[96] Instead, it’s reasonable to factorize Ψn
into the product of n independent one-electron wavefunctions χ1,χ2, . . . ,χn,

where the electrons only interact through a mean electric field arising from the

nuclei and other electrons.

This approximation, known as the Hartree approximation, can be solved

through the self-consistent field (SCF) procedure that updates the orbitals and

mean field iteratively. This formalism obviously neglects the fermion nature

of electrons, i.e., the exchange effect, or any correlation between the one-

electron wavefunctions. The former may be accounted for by the usage of

Slater determinants, known as the Hartree-Fock method, while the latter by

various so-called post-Hartree-Fock methods.[95]

DFT offers a different path to treat the exchange and correlation. Instead

of solving them in terms of the electronic structure, DFT states that Eelec is

a unique functional of the ground state electron density ρ .[97] As a conse-

quence, the energy difference between the interacting wavefunction and the

non-interacting case (the exchange-correlation energy Exc) is also a density

functional.[98] Given the exact form of Exc[ρ], it can be included in the SCF

procedure as a potential to get the exact many-body electronic energy. Im-

provements to the exchange-correlation density functional have been actively

developed ever since, where the systematic introduction of physics-inspired

terms[99] and empirical fittings[100] are both viable. Comparison of those ap-

proximations deserves separate reviews found elsewhere.[101–103]

In contrast to alternative solutions to the electronic structure, DFT typically

requires only a scaling of O (
N3

)
with respect to the system size. Together

with advances in its numerical solution,[104–106] ab initio molecular dynamics

(AIMD) based on DFT reaches the timescale of hundreds of picoseconds —

sufficient to converge simple transport properties like the self-diffusion coeffi-

cients of water.[107,108] But for slower dynamics or more complex properties,

further approximation as the one developed in this thesis is still needed.
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2.3.3 Machine Learning Potentials

Both classical force fields and ab initio methods in the previous sections rely

on a physics-inspired (albeit approximate) form of interatomic interactions.

This section discusses yet another approach to the problem: given sufficient

labels of U(r), can one devise a most generic way to approximate it, without

explicitly embedding the underlying physics?

This line of thought is by no means unique to potential building, nor is it a

new subject. The study of “learning machines” dates back to the 1940s, shed-

ding light on the capability and limits of those ML models.[109,110] The recent

advance in the practical parameterization of those models revolutionized fields

such as image recognition[111,112] and natural language processing.[113]

The building of a ML potential has much in common with that of a classi-

cal FF, but by casting it as a regression problem, we see it from the two dif-

ferent perspectives: the representation of U(r) with a small set of constraints

imposed by physics, and the sampling of sufficient configurations to parame-

terize it.

The first problem is greatly simplified with the assumption that U(r) can

be further approximated as a sum of contributions from each atom i depend-

ing on its neighbourhood.[50]* In addition, it is advisable to use a descrip-

tion of the neighbourhood that is invariant to symmetry operations such as

translation, permutation and rotation (invariance).[50,114,115] Finally, the de-

scriptor should be expressive enough to distinguish any distinct structures

(completeness).[115–117]

Those principles guide the design of various local descriptors, leading to

much better understanding about their limitations and connections in the past

decade. Paper V discussed one of those designs in more detail. As a re-

sult, those methods do provide a middle ground between classical force fields

and ab initio methods, with which simulations at DFT accuracy reaches the

nanosecond timescale necessary for elucidating transport phenomena involv-

ing chemical reactions, as is demonstrated in Paper IV and Paper VII.

On the other hand, the performance of machine learning potentials (MLPs)

(like other ML models) typically relies on the high-dimensional description.

This implies the difficulty in both determining the growing number of param-

eters and building a representative dataset (known as the curse of dimension-

ality). In contrast to the promising performance of ML models, understanding

about their transferability is far from satisfactory. For MLPs, this manifests as

the difficulty of gauging the performance of MLPs prior to their usage.[118] An

example for this is discussed in Paper VI, and the practical remedy with the

adaptive on-the-fly learning scheme is discussed is Paper VII, among many

other attempts to construct reliable workflows for building MLPs.[119–122]

* This signifies the locality of interactions. While reasonable, especially when dealing with

U(r) in the bulk system, it could have significant implications when long-range interactions

play their role. Validation and extension of the present scheme still take physical insights.
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3. Understanding Transport Coefficients in
Electrolytes

A common question in the study of transport coefficients is how they differ

from the ideal behaviour, i.e. how Eq. (2.5) deviates from Eq. (2.4). Working

with MD simulation, one expects to capture both exactly, given an accurate

U(r). Classical force fields in the form of Eq. (2.20) is used in this chapter, as

no chemical reactions are expected in the studied systems. Before proceeding,

a few more transport coefficients are needed to represent the non-ideality. With

the Nernst-Einstein (N-E) relation, one gets the ideal ionic conductivity:

σN−E =
1

kBT ∑
α

q2
αραDs

α (3.1)

where ρα is the number density of α , while the Green-Kubo (G-K) relation

relates the conductivity to the displacement of the itinerant polarization P(t):

σG−K = lim
t→∞

V
6kBTt

〈‖ΔP(t)‖2
〉

(3.2)

The so-called distinct conductivity represents the non-ideality due to each pair

of species in the case of 1:1 binary electrolytes:

σd
αβ = lim

t→∞

qαqβ (2−δαβ )

6kBTVt

〈
∑
i∈α

∑
j∈β , j 	=i

Δri(t) ·Δr j(t)

〉
(3.3)

It’s easy to show that σG−K indeed is equivalent with Eq. (2.7), and that

σd
αβ captures all the ion-ion correlations that contribute to the difference be-

tween σG−K and σN−E. Experimentally, σN−E can be determined through iso-

topic tracers or PFG-NMR, while σG−K is the ionic conductivity in standard

impedance measurements.

Given the availability of those measurements, they are often used to get the

so-called “ionicity” (or its inverse, known as the Haven ratio) that connotes the

“dissociation degree” in the Arrhenius picture.[123] Recalling Eq. (2.12), one

shall note that the electrophoretic effect also manifests as a form of correlation

(and relaxation is at least partially captured by σN−E).

The simulated transport coefficients are compared to experimental values

for two purposes: to see whether the model U(r) captures the essential in-

teractions, and to find out which of the microscopic picture (association or

electrophoretic) dominates the ion-ion correlations.
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3.1 Paper I: the role of viscosity

3.1.1 Finite size effect

As a proof of principle, Paper I considers two typical electrolytes, the aqueous

solution of sodium chloride (NaCl/aq) and the ionic liquid (IL) [BMIM][PF6].

Knowing that finite-size effect exists for self-diffusion coefficients (and thus

σN−E), we first examine if it affects σG−K as well.

Figure 3.1. σG−K with different sizes of simulation box for (a) NaCl/aq at 20 °C and

different concentrations, and (b) [BMIM][PF6] at different temperatures. Adapted

from Paper I under a CC-BY license.

As shown in Fig. 3.1, σG−K shows almost no size dependency. Such ab-

sence of finite size effect was reported for the viscosity,[85] and one may rec-

oncile the observation as both properties depend on the time-correlations of

collective quantities of the entire simulation box, so that the self-interaction in

these cases might be eliminated by the boundary condition.

3.1.2 Crossover box size

Figure 3.2. σN−E with different box sizes for (a) NaCl/aq at 20 °C and different

concentrations, and (b) [BMIM][PF6] at different temperatures. σG−K with the small

box is plotted as a reference. Adapted from Paper I under a CC-BY license.

When comparing σN−E and σG−K at different box sizes, an interesting ob-

servation is that the two conductivities overlap at the smallest box size (Lmin),
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as shown in Fig. 3.2. Given the finite size effect of self diffusion in Eq. (2.19),

one would expect a simple inverse relation between the specific conductivity

and viscosity, in which Lmin is a system-specific length scale:

lim
L→∞

(ΛN−E −ΛG−K) ·η ≈ 2NAq2ξ
6πLmin

(3.4)

Inspired by this observation, we took experimental data to verify if the rule

hold for general cases, where the ΛN−E corresponds to that derived from the

self-diffusion coefficient measured with PFG-NMR (ΛNMR), and ΛG−K to that

with impedance measurements (ΛImp).

Figure 3.3. Experimentally measured deviation of ionic conductivity for (a) 13 types

of ILs extracted from Ref. 124, and (b) 6 types of ILs at various temperatures using

fitting coefficients of Vogel-Fulcher-Tammann equations from Ref. 125 and 126. The

theoretical bounds set by the MD simulations of NaCl/aq and [BMIM][PF6] using

Eq. (3.4) are shown as grey areas. Adapted from Paper I under a CC-BY license.

As shown in Fig. 3.3, the linear relation between the deviation and viscosity

holds well as a rule of thumb to estimate the contribution of ion-ion correlation

of ionic conductivity. According to the trend of Lmin in Fig. 3.3 (b), Lmin

seem to decrease with larger cations, which might relate to the electrostatic

interaction between ions.

The strong correlation with viscosity, especially within a single IL, seems

to suggest the significance of hydrodynamic interaction or the electrophoretic

effect. On the other hand, the fact that two conductivities coincides puts doubt

on whether kinetically stable ion pairs exist in those electrolytes.

3.2 Paper II: the role of ion-pair lifetime

3.2.1 Lifetime of ion pairs

Following the previous work, Paper II aims to clarify the concept of ion pair-

ing by making the distinction between the long-lived ion pairs and those that

exist as transient structures. In a previous publication,[127] it is shown that the

solvent polarity, tuned by the atomic charges in the MD simulation, determines

the coordination patterns and transport mechanism in the polymer electrolyte
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PEO-LiTFSI. The result is used in this paper to get a series of electrolytes with

different ion-pair lifetimes (τ+−), defined using the stable-state picture (SSP)

proposed by Laage and Hynes.[128]

Figure 3.4. (a) The ion-pair lifetime τ+− as a function of εP; (b) the Green-Kubo

conductivity σG−K as a function of εP. Adapted from Paper II under a CC-BY license.

As shown in Fig. 3.4, the solvent polarity εP does induce a change of con-

ductivity in both the high- and the low-εP limit. In both cases, the ionic con-

ductivity decreases with the ion-pair lifetime, which appears to support the

view that ion pairs reduce the ionic conductivity through their positive corre-

lation, which is more significant at high τ+−. We could nevertheless envision

an alternative explanation of the correlation that both τ+− and σG−K reflects

the overall mobility of the system. In this case, we shall expect all correlation

functions to decay with viscosity in the same way, i.e., less significant at high

τ+−.

3.2.2 Two regimes of ion pairing

The two patterns of correlation both happen in the simulation, where posi-

tive ion-ion correlation (negative σd
+−) is observed at low εP, and vice versa.

As shown in Fig. 3.5, the two regimes can be qualitatively described by two

asymptotic curves: for the long-lived regime, σd
+− scales linearly with τ+−

as a proxy to the ion-pair population, and for the short-lived regime, it scales

with 1/τ+− as indication of mobility.

The results showcase how the ion-ion correlation provides a comprehensive

picture of the microscopic dynamics of electrolytes, which complements what

can be inferred from σG−K or τ+−. Paper III demonstrates how the transport

coefficients measured experimentally corresponds to the ion-ion correlations

discussed so far, to establish the link between experiment and simulations.
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Figure 3.5. Scaling of σd
+− with the ion-pair lifetime τ+− at different solvent polarity

strengths. A clear separation of trends is seen between the red regime (εP < 3) and the

blue regime (εP > 3); each trend is represented by a linear or inverse fit, and the sum

is shown as the grey line. Adapted from Paper II under a CC-BY license.

3.3 Paper III: the role of reference frame

3.3.1 Negative transference number

The ion-ion correlations discussed so far have significant impacts on the oper-

ation of electrochemical devices. Since only the working ions are consumed

during the steady operation of the cell, a concentration gradient builds up in

the bulk, leading to internal resistance or even salt depletion.[14] The transfer-

ence number tα , defined as the fraction of migrational currents carried by α ,

determines the concentration gradient,* and it naturally raises concern when

negative and even contradicting values of t+ (for Li+) were reported.[130,131]

The observation of the negative transference number may partially be rec-

onciled, by noticing that tα , unlike σ , dependents on the RF. In a binary salt

solution, t+ may be converted to the desired RF given the correct weight factor,

i.e., to convert between barycentric RF (denoted as M) and the solvent-fixed

RF (denoted as 0) for the PEO-LiTFSI system, given the weight fractions ωα :

ω0t0
+ = tM

+ −ω− (3.5)

With such a conversion, it’s already clear that the experimentally measured[130]

negative t+ can be reproduced from simulation. As shown in Fig. 3.6. The

force fields used in Paper II seem to reproduce the measurements reasonably

well. We nevertheless proceed to derive the complete set of Onsager coeffi-

cients from experimental data using Eqs. (2.7–2.9), to fully evaluate the PES,

and to understand the interpretation of ion-ion correlations.

* The term transference number is often used interchangeably with the transport number.[129]

They are nevertheless distinct definitions, as suggested in Refs. 31 and 14, when ions are

categorized by aggregates. The former refers to the net currents of one ionic species, while

the later refers to individual contributions from different aggregates. As the former is what is

measured both in experimental studies[130,131] and in the present thesis, it is used throughout.
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Figure 3.6. Transference numbers under (a) barycentric RF and (b) solvent-fixed RF

in PEO-LiTFSI at different concentrations, the conversion if performed with Eq. (3.5),

the experimental data is taken from Ref. 132 and the conversion rule is presented as a

projection of gridlines. Adapted from Paper III under a CC-BY license.

3.3.2 Reference frame and ion correlation

Conversion between Onsager coefficients is not trivial, as is discussed in Ref. 133,

the conversion should follow the constraint of conserving the entropy produc-

tion, and between a set of independent fluxes and driving forces.

Figure 3.7. Transformation of the normalized displacement correlations between (a)

the barycentric RF and (b) the solvent-fixed RF. The displacements are normalized

by the number of ions. The conversion rule is presented as a projection of grid lines.

Adapted from Paper III under a CC-BY license.

The conversion rule might be better understood considering the connec-

tion between Onsager coefficients and the displacement correlation functions

in Eq. (2.9), as shown in Fig. 3.7, when both displacements undergo an RF

transformation, a change of sign might occur in the correlation.

Upon proper RF transformation, we again see an agreement between sim-

ulation and experiments for all the Onsager coefficients. Specifically, at the

point where the negative t0
+ is observed, the correlation between cation and

anion is actually positive in the barycentric RF, unlike the case of long-lived

ion pairs in Paper II. This suggests that the negative transference number is
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Figure 3.8. Ionic conductivity and Onsager coefficients under the barycentric and

solvent-fixed RF derived from (a-c) experimental measurements in Ref. 132 and (d-f)

MD simulations. Adapted from Paper III under a CC-BY license.

more of the effect of the chosen RF rather than an indication of ion associa-

tion.

3.4 Summary

To summarize the results, the electrophoretic interaction of a hydrodynamic

origin seems to play a ubiquitous role in the ion-ion correlations in elec-

trolytes, while for the studied systems, not much sign of ion pairing is gath-

ered. The simulation with the classical force fields generally gives reasonable

predictions when compared to experiments. Though, the agreement could only

be qualitative (e.g. Fig. 3.8). Despite limited precision, the microscopic view

does elucidate the experimental observations, exemplified by the more crisp

distinction between long- and short-lived pairs and the revelations of the RF

dependence of Onsager coefficients.
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4. Developing Neural Network Potentials for
Liquid Electrolytes

In exploring electrolyte materials, a particularly interesting class is the proton-

conducting materials,[18] which find applications in electrochemical cells such

as the Ni Cd batteries, and fuel cells. Such materials are also relevant for bio-

logical processes, e.g., ion transport through cell membranes. There, the high

mobility of the proton is explained by its structural diffusion via the Grotthuss

mechanism.[134] The concerted proton transfer (PT) along a chain of hydrogen

bonds (HBs) conceptually allows for the fast transport of ions, as illustrated

below in Fig. 4.1.

Figure 4.1. An illustration of the conduction of a hydroxyl ion (OH–) via a Grotthuss-

type PT. The hydroxyl ion and its motion are highlighted in yellow, and the hydrogen

bonds are highlighted in orange.

Simulating those proton conducting materials requires U(r) that can deal

with reactions, either through electronic structure calculations, or force fields

based on knowledge of the reactant and product states, exemplified by the em-

pirical valence bond approach,[135,136] or reactive force fields.[137] The former

(producing dynamics at the scale of tens of picoseconds) suffices to converge

the self-diffusion in small systems,[46] but falls short when higher concentra-

tion or slower dynamics is of interest. The latter could reach the scale of

nanoseconds, but its parameterization requires prior knowledge about the re-

actions.

A third way exists, as mentioned in Sec. 2.3.3, by constructing ML models

of U(r) (i.e. MLPs) directly from ab initio data. Specifically, we focus on a

class of MLPs based on neural networks, or NNPs. The goal of this chapter

is clear: one aims to reach the timescale necessary to determine the transport

coefficients and reproduce the dynamics specified by the underlying electronic

structure calculations as much as possible.
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4.1 Paper IV: ionic conductivity in NaOH/aq

4.1.1 The proton transfer contribution

As a first attempt of using NNPs for the modelling of transport properties, we

take the classical proton conducting system — aqueous solutions of sodium

hydroxide, where a NNP has been developed and tested.[138]

The first difficulty of computing the transport coefficients with PT, is the

definition of OH– during the simulation. Due to the possible Grotthuss-type

PT, we need to identify the anions by the connectivity of atoms; to compute

the time correlation functions as Eq. (2.3), we also need to track their identity,

where we applied the “Hungarian algorithm”.[139]

t = 0 t = t ′

vi(0)

vi(t ′)

Δri(t ′)

Figure 4.2. An illustration of the velocities and displacement of the hydroxyl ion in

the present definition, before and after a PT event.

With that, each anion will have defined positions and velocities at each

time step. As illustrated in Fig. 4.2, the time correlation based on the positions

takes into account the displacement of PT, while that based on the velocity

correlation function (VCF) only describes the drift of the ion:

Ds
α =

1

3Nα

∫ ∞

0
dt ∑

i∈α
〈vi(0) ·vi(t)〉 (4.1)

Comparing the self-diffusion coefficients computed with the two meth-

ods, the role of PT is evident in the self-diffusion coefficient. As shown in

Fig. 4.3 (a,b), the Ds of OH– is significantly boosted in most cases, while that

of Na+ is not. On the other hand, the correlation between ions in Fig. 4.3 (c,d)

shows no significant difference between the VCF and MSD values, indicating

a weak correlation between PT and other motions of ions.

4.1.2 Ionic conductivity and non-ideality

The ionic conductivity σ is compared against experimental measurements at

different temperatures (Fig. 4.4 a), where a good agreement is observed, es-

pecially at ambient temperature (293 K). The result is encouraging, as the

potential is derived from DFT calculations only. Like what is discussed in Pa-

pers I-II, deviation of σG−K from σN−E decreases with the lifetime of Na OH–

pairs or its coordination number (Fig. 4.4 b), as another indication that hydro-

dynamic interaction rather than ion pairing is the source of non-ideality in the

case of NaOH/aq.
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Figure 4.3. (a,b) Scaled self-diffusion coefficients Ds/Ds
dilute for Na+ and OH–; (c,d)

distinct conductivities σd for NaOH/aq at two different temperatures (293 K and

323 K). All the VCF (solid lines) and MSD (dashed lines) values were reported in

the case of Ds, while for σd, only the net contribution was reported for the MSD val-

ues. Adapted from Paper IV under a CC-BY license.

4.2 Paper V: a generic atomic neural network library

4.2.1 The PiNet architecture

The previous work uses the Behler-Parrinello Neural Network (BPNN) archi-

tecture, as illustrated in Fig. 4.5. As discussed in Sec. 2.3.3, it features a de-

composition of the total energy into atomic environment-dependent energies.

Having demonstrated the power of this approach, one notices that descriptors

of the atomic environment needs to be handcrafted for the specific system be-

fore the parameters in the feed-forward NN (yellow nodes in the Fig. 4.5) can

be determined.

Figure 4.4. (a) Concentration-dependent ionic conductivities (σN−E and σG−K) com-

puted from MD simulations and those measured in experiments at 293 K and 323 K;

(b) coordination numbers and residence time of Na+-OH– pairs. Adapted from Pa-

per IV under a CC-BY license.
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Figure 4.5. Illustration of (a) the BPNN and (b) the PiNet architecture. Adapted from

Paper V under a CC-BY license.

Paper V takes a different route by designing a neural network that builds up

the features from the feed-forward NN. This method of building NNs that iter-

atively updates node (or atomic properties, denoted as �P) and edge features (or

pairwise/triplets interactions, denoted as�I) of a graph structure is also known

as graph convolution (GC) NNs or message passing (MP) NNs.

Figure 4.6. Visualization of the PiNet architecture, where the atoms and bonds in each

box indicate normalized activations of the atomic property and pairwise interaction,

respectively. Dashed lines show the normalized trainable weights. Adapted from

Paper V under a CC-BY license.

The difference between PiNet, and related works such as SchNet,[140] is the

form of their pairwise interaction. This architecture was designed to mimic

the chemical intuition in the latent representation inside a neural network
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(NN). As demonstrated in Fig. 4.6, the latent variables of PiNet focus on the

short-ranged pairwise interactions, as expected by chemical intuition. In a

later work, those edge features are found useful in constructing the response

properties of molecules and materials, where the interpretation of such short-

ranged pairwise interactions as physical quantities becomes the determining

factor.[141]

4.2.2 Performance of PiNet

The performance of PiNet is benchmarked against a number of publicly avail-

able datasets, from small molecules to perovskites to the aforementioned

NaOH/aq system, as shown in Fig. 4.7. State-of-the-art results were obtained,

and a steady decrease in error with respect to training data size is found, indi-

cating sufficient flexibility or completeness of the PiNet architecture.

Figure 4.7. Performance of the PiNet architecture, left: the total energy for small

molecules against the QM9 dataset,[142] adapted from Ref. 11 under a CC-BY license.

Mid: energy above the hull for perovskites,[143] and right: PT free energy profile

from MD simulations in Paper V, adapted from Paper V under a CC-BY license. See

original articles for details about the training and evaluation procedure.

4.3 Paper VI: training algorithm and model performance

4.3.1 Impact of training algorithm

The BPNN, as a reference NNP architecture for atomistic simulation, was

also implemented in PiNN. During the benchmark of the PiNN code, it was

noticed that when training the same BPNN on a water dataset labelled at the

BLYP level of theory,[144] additional data is needed to get a stable potential for

both NVT and NPT simulations. The case is studied in detail in this work, first

by noticing that a different training algorithm, namely the extended Kalman

filter (EKF), was used in the original implementation of BPNN in the RuN-

Ner code.[145] To pinpoint what has affected the performance of BPNN, the
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same algorithm was implemented in PiNN, to test it against the popular Adam

optimizer[146] with the same set of force and energy labels and implementation

details.

Figure 4.8. (a,b) Evaluation error metrics during training and (c-e) density evolution

during NPT simulation for different implementations of BPNN trained with the BLYP

dataset. 10 instances of each setup are trained, their standard deviations are shown

as shaded areas in (a,b), and the density evolutions are plotted individually in (c-e).

Adapted from Paper VI under a CC-BY license.

As shown in Fig. 4.8 (a), despite minor differences, the EKF implemented

in PiNN has a similar convergence as the RuNNer implementation, approxi-

mately 10 times faster compared to Adam.* Both of the EKF implementations

produce models that give reasonable NPT simulations with a stable density. In

stark contrast, all models trained with the Adam optimizer predicts unstable

NPT trajectories towards a low density. Although the force and energy error

metrics indicate a similar accuracy in the Adam and EKF models.

The result is strong evidence that the training algorithm affects the stability

of the potential, and since the error metrics are close, it reflects a difference

in the transferability of the model. This is further validated by experimenting

on another dataset of water constructed at the RPBE-D3 level of theory to

sample a broad distribution of configurations,[149] where the density prediction

becomes less sensitive to the training algorithm, as shown in Fig. 4.9. This

means that the difference can be mitigated with a better-constructed dataset.

4.3.2 Information geometry of NNPs

Both Adam and EKF minimize the loss function given a stochastic signal of

the gradient of the loss function, a high dimensional and non-convex surface

* Unfortunately, this is accompanied by a higher computational cost per step and memory

cost. More efficient implementations of second-order optimizers such as EKF are actively

developed in the ML community.[147,148]
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Figure 4.9. Density prediction with different training algorithms and training rates

with the RPBE-D3 dataset. Adapted from Paper VI under a CC-BY license.

that resembles the PES. That different algorithms get qualitatively different

models means they favour local minima of the loss function with different

characteristics; similar observations were made in the ML community, though

a universal metric for “good” minima was known.[150,151] As the algorithms

use the Fisher information matrix I (an information geometric metric charac-

terizing the local curvature) or its approximation to rescale the optimization

direction, we investigated whether the final models can be differentiated by I.

As shown in Fig. 4.10, the more robust models tend to have a higher distribu-

tion of eigenvalues (or locally sharper).

Figure 4.10. Distributions of eigenvalues λ of the Fisher information matrix for the

models trained on (a) BLYP dataset and (b) RPBE-D3 dataset. Note that the logarithm

scale of λ is used. Adapted from Paper VI under a CC-BY license.
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4.4 Paper VII: an adaptive learn-on-the-fly workflow

4.4.1 Devising an adaptive learn-on-the-fly workflow

ds-gen${i}step-gen${i}

geo-gen${i}

time-gen${i}

extend?

model-gen${i}

PiNN Train

model-gen${i+1}

PiNN MD

traj-gen${i+1}

CP2K Label

Mixing

Converge?

ds-gen${i+1}time-gen${i+1}

geo-gen${i+1}

step-gen${i+1}

yes
skip

gen > genmax?

Next Generation

yes

stop
no

Figure 4.11. Workflow for one generation of the

adaptive LOTF. Green boxes denote processes, red

boxes denote data which are updated at each itera-

tion, and blue boxes denote loops and decisions.

Paper VI highlights the pro-

cedure of parameterization

as an important factor con-

tributing to the high perfor-

mance of NNPs. The ef-

fect is not fully revealed by

typical error metrics as root

mean squared error (RMSE),

but nevertheless manifests it-

self in the long timescale dy-

namics. This reflects one

shortcoming of NNPs that

they can only be tested on

a small fraction of the con-

figurations, typically sam-

pled with ab initio methods.

In lieu of a “golden” NNP

with perfect transferability,

a more practical alternative

is to continuously improve

the model when it samples

larger volumes in the con-

figuration space, either with

a prescribed pace (learn-on-

the-fly, or LOTF), or with an

uncertainty estimation of the

model (active learning, or AL).

The AL approach has its advantage, as the uncertainty estimation helps to

reduce the number of labels needed. Such estimation, however, requires cali-

bration to the actual error, and the correlation is not always ideal. To achieve

the extension of timescale with the best possible estimation of error, an adap-

tive LOTF workflow is devised, where, instead of biasing the distribution of

data to be labelled, the labelling frequency of a LOTF workflow is adaptively

chosen based on past testing results. An illustration of the workflow is in

Fig. 4.11.

To test the workflow, we opted for the PIL system [C1IM][HOAc], where

ions form upon PT between the Brønsted acid/base pairs. Like NaOH/aq, the

Grotthuss-type PT is conjectured for this system. Previous AIMD calculations

reports the existence of PT,[47] but the simulation time is too short to quantify

the diffusion coefficient in the diffusion regime. The system serves as a strin-

gent test of the methodology, given the scarce prior knowledge available.
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4.4.2 Adaptive LOTF of [C1IM][HOAc]

One instance of the adaptive LOTF procedure is shown in Fig. 4.12 (a-c), the

PiNet architecture developed in Paper V is applied here. As expected, the

initial model generated from short AIMD trajectories does not give a stable

model, as indicated by the high test error computed on the sampled trajectory,

comparing to the evaluation error computed on the randomly split validation

set. With the adaptive LOTF procedure, the model becomes more stable over

generations, as indicated by the diminishing spikes in the test set error and the

sampling timescale increases accordingly.

Figure 4.12. Evolution of a NNP during the adaptive LOTF process. (a) total training

steps and the sampling timescale; (b,c) energy and force RMSE; (d) manual assign-

ment of the atomic types; (e) correlation between the latent space structure of the

model and manually assigned labels.

We also monitored the change of latent space structure to better understand

the evolution of the model. This is achieved by performing a clustering of the

atomic features in the latent space, and comparing them to manually labelled

atomic types. As shown in Fig. 4.12 (d,e), the first generation of the model

already formed a reasonable description of atoms of different types. During

the adaptive learning process, the two chemically distinct carbons were further

separated into two clusters. Interestingly, in between the training process,

some spurious links appear between the two assignments, indicating certain

miscategorised atoms.

That the cluster structure of the latent space can reveal interpretable infor-

mation about atoms is encouraging. The present algorithm depends only on a

distance metric in the latent space, meaning it can be applied to most of the

present MLP architectures, providing a means to compare models regardless

of their implementation. The change of latent space during the adaptive LOTF

also opens the opportunity of using the structure to guide the sampling.
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4.4.3 Long timescale dynamics of [C1IM][HOAc]

To validate the model, we first compare the structure of the PIL in terms of

the radial distribution functions. As shown in Fig. 4.11 (a), the radial distribu-

tion functions of the PiNN model agrees well with the reference calculations

performed with the CP2K[105] code for the initial relaxation (PiNN 100 ps and

CP2K 100 ps) from configurations relaxed with a classical MD code. Notably,

the structure underwent significant change after a long relaxation with PiNN

(5 ns), this is further validated with an extra CP2K reference calculation for

100 ps, starting from the configuration relaxed with PiNN, named as CP2K

100 ps (II). The relaxation seems to diminish the HB network over a long pe-

riod, where a change of the HB structure towards that dominated by acid-base

pairs is observed, as shown in Fig. 4.13.

Figure 4.13. Structural relaxation of [C1IM][HOAc] during the simulation (a) radial

distribution functions between the active hydrogen (H1) and nitrogen (N1) or oxygen

(O); (b) the size of hydrogen-bonded networks during the simulation shown as stacked

filled regions, and the fraction of molecular species shown as black lines.

The significant change in HB structure raises the question of how the for-

mation of acid-base pairs changes the dynamic properties of the PIL. The life-

time of such pairs is first examined, and it seems much longer than that of

the covalent bonds formed by H1, as shown in Fig. 4.14 (a). This suggests a

microscopic picture of long-lived acid-base pairs, while the active proton os-

cillates at a shorter timescale such that the pair switches from and to an ionic

state frequently.

We then proceeded to see how the slow relaxation affects the transport prop-

erties, starting from the self-diffusion coefficients of H1. It is clearly shown

in Fig. 4.14 (b) that the MSD of H1 does not reach the diffusion regime at

a picosecond scale and that the mobility is significantly lower than a short-

timescale estimation. Unfortunately, the observed diffusion coefficient is much

lower than the experimental measurements. Since the time correlation agrees

well at a short timescale, the most viable explanation is that the underlying

DFT approximation does not predict a correct melting point of [C1IM][HOAc],
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Figure 4.14. Dynamic properties of [C1IM][HOAc] during the simulation (a) the life-

time of chemical bonds formed by H1, and the hydrogen-bonded dimeric configuration

O H1 N1; (b) MSD of the active proton in different simulations.

so that a higher temperature or another DFT functional is needed to be able

to compare to room temperature experiments, as has been observed for water

earlier.[152]

4.5 Summary

This chapter demonstrates the power and pitfalls of NNPs in the simulation of

electrolyte materials. As a tool to bridge electronic structure calculations and

the dynamics of nuclei, it fulfils the demand well. This is demonstrated by the

simulation of NaOH/aq, and reaches quantitatively correct predictions of the

phenomenological coefficients.

On the other hand, as “learning machines”, NNP bears the great complexity

coming from its great ambition. As demonstrated in Papers V-VII, factors in-

clude at least the architecture of the model, its parameterization procedure and

the coupling with the sampling procedure. During the method development in

this chapter, a number of empirical observations are made, though much more

insight is still demanded to understand how and why those models work.
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5. Concluding remarks

To sum up, the present thesis takes a deep dive into the simple phenomenon

of: Jα = ∑i Ωαβ Xβ — a linear flux response in a system given several driving

forces. This simple relation characterizes ion transport in electrolytes, as the

defining properties of electrolytes in electrochemical devices.

With the atomistic simulations used throughout the thesis, the goal has

been, above all, to establish a connection between the microscopic picture of

electrolytes as ion-containing materials to a mesoscale one as an ion-conducting

matter. The simulation has not been used as a means to bypass or overwrite the

established conceptual frameworks (from Arrhenius’ to Onsager’s) but rather

as computer experiments to demonstrate those principles.

This starts from the realization in Paper I and Paper IV, that the ion corre-

lations largely arise from hydrodynamics in commonly seen electrolytes. And

it is followed by the identification of a transition of ion dynamics from one

governed by the Arrhenius-type ion association, to that by the DHO-type elec-

trophoretic effect (Paper II). Apparently, such an identification is instructive

to correctly interpret experimental data, a point that is stressed in Paper III,

where some of the puzzles in the literature find their origin in the fundamental

constraints set by the law of irreversible thermodynamics.

In doing so, the demonstrative rather than the predictive power of modelling

is emphasized in the first part of the thesis. Though the two cannot really be

separated, as prediction will not be possible without solid conceptual links,

inaccurate models will not be relevant to understand real-world processes. The

second part of the thesis indeed focuses on predictive models with the aim

of getting an ab-initio-level of accuracy in long MD simulations, given the

difficulty of attaining such force fields for reactive systems.

Instead of building the models on a chemical or physical ground, a data-

driven approach is taken, where we focus on the interplay between representa-

tion, data, and the parameterization process. Leveraging the advances in com-

putational power and generic regression methods, this approach succeeded in

putting extra phenomena into the grasp of atomistic modelling and providing

more stringent tests for the approximated exchange-correlation functionals in

density functional theory (Paper IV and Paper VII).

Like other disciplines of science, the development of ML methods stems

from the entwined fortuitous observations and theoretical consolidations. Dur-

ing the development of methods (Paper V), we see how the understanding re-

garding ML itself is incomplete (Paper VI). It is the hope of the author that

those observations would lead to a deeper understanding of the data-driven

models, and after all, of the physical world and ourselves.
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7. Sammanfattning på svenska: Att förstå
jontransporter i elektrolyter

Jonledare är väsentliga komponenter i många biologiska och teknologiska

sammanhang. Ett aktuellt och viktigt exempel rör dagens elektrifierade samhälle.

När en portabel elektrisk enhet, såsom din smartphone eller laptop, förbrukar

el, så förbrukas ”negativa laddningar” (elektroner) i batteriet. I batteriet kom-

penseras denna laddningsförlust genom att samma mängd joner rör sig i mot-

satt riktning mellan anoden och katoden inuti batteriet. Jonerna rör sig då

genom ett jonledande material som separerar de olika elektroderna.

Vad är då en jon? Joner är små partiklar, vilka kan vara antingen laddade

atomer, eller laddade mindre molekyler. Joner är storleksmässigt cirka en

miljard gånger mindre än batteriet i din telefon. Det var den svenske veten-

skapsmannen Svante Arrhenius som först insåg att salter (de så kallade elek-

trolyterna) bildar joner när de löses i vatten.

När joner rör sig genom ett jonledande material, t.ex. i ett batteri, så för-

brukar det också en del energi vilket minskar dess effektivitet. För att kunna

tillverka bättre material till dagens och framtidens batterier är det därför viktigt

att förstå hur joner påverkas av elektriska fält, och då särskilt hur olika joner

interagerar med varandra när de rör sig tillsammans. Albert Einstein visade

tidigt i sin karriär att vi kan ta reda på hur joner rör sig under elektriska fält

genom att titta på hur de slumpmässigt rör sig utan det elektriska fältet. Teorin

utvidgades sedan till att även beskriva den ömsesidiga interaktionen mellan

joner och deras korrelerade rörelse.

Tyvärr är joner för små för att kunna spåras eller ens synas med blotta

ögat, eller ens med avancerade experimentella metoder, men tack vare kvant-

mekaniken vet vi ändå hur de rör sig. Hur de rör sig kan simuleras genom

så kallad molekyldynamik i datorer. I sådana simuleringar studeras en liten

bit av materialet som ändå är representativt för materialets egenskaper. Denna

teknik för simulering och tillhörande teorier har utvecklats för att säkerställa

att den mikroskopiska simuleringen matchar det som verkligen händer i ett

verkligt fall. För att få tillförlitliga resultat krävs att en simulering besöker alla

möjliga tillstånd och att jonerna som vi är intresserade av interagerar med sin

omgivning på ett realistiskt sätt, vilket medför att vi måste simulera systemen

under lång tid. Problemet med dagens tekniker är att de kvantmekaniska ek-

vationerna är komplexa och därmed svåra och ofta tidsödande att lösa även för

en dator. Det gör att vi i normalfallet inte kan observera partiklarna tillräckligt

länge för att ge en korrekt beskrivning.
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Ett sätt att påskynda beräkningarna är att förenkla de kvantmekaniska mod-

ellerna, t.ex. genom att beskriva interaktioner mellan joner och atomer med

osynliga “fjädrar”. Dessa modeller kallas för kraftfältsmodeller (engelska:

Force Field models). Den första delen i denna avhandling använder just sådana

modeller för att studera jontransport i flera olika elektrolyter. Med datorsimu-

leringar kan vi tydligt studera rörelsen av joner och hur de interagerar med

varandra. I artikel I visade jag hur jonernas korrelation i första hand bestäms

av materialets viskositet. Detta resultat verifierades genom att studera en serie

experiment utförda för en klass av elektrolyter som kallas joniska vätskor.

Datorsimuleringar ger möjligheten att föreställa oss vad som händer om vi

justerar egenskaperna av de ingående kemikalierna bortom de experimentella

förutsättningarna. I min avhandling använder jag denna teknik för att studera

polymerelektrolyter. I artikel II visade jag att genom att justera polariteten

hos polymerelektrolyten, så påverkades livstiden för parbildning av joner med

motsatta laddningar. En viktig upptäckt var att de jonpar som har en längre

livstid rör sig tillsammans, och de som lever kortare tenderar att gå i motsatta

riktningar.

Även om detta resultat inte är intuitivt, är det faktiskt rimligt. Detta beror på

att vi måste definiera en referensram innan vi pratar om rörelse. I en simulering

definieras referensramen med ett masscentrum så att tunga joner tenderar att

röra sig mot varandra. I experiment är det dock bekvämare att mäta rörelsen

med lösningsmedlet som referens. I artikel III överkom vi denna begrepp-

sklyfta genom att visa att simulering överensstämmer med experiment endast

om vi konverterar resultaten på ett korrekt sätt till samma referensram.

I de tidigare fallen har jag tittat på joner som inte reagerar med sin om-

givning, t.ex. lösningsmedlet. Ett exempel är när vi simulerar en vattenlösning

innehållande lut (NaOH). Vi vet att jonerna som bildas i vattenlösningen kan

röra sig mycket snabbt p.g.a. att de kan reagera med vattenmolekyler. För att

simulera deras rörelser behövs sofistikerade kraftfältsmodeller som även kan

hantera kemiska reaktioner på ett korrekt sätt, d.v.s. bildandet och brytande

av interna kemiska bindningar. I den andra halvan av denna avhandling tar

jag hjälp av maskininlärning för att utföra sådana simuleringar. Istället för att

göra förenklade modeller baserade på fysikens lagar, designar jag algoritmer

som läser kvantmekaniska beräkningar, och därigenom förutsäger atomernas

rörelser. Metoden är egentligen inte ny, utan är nästan lika gammal som digi-

tala datorer, men det är först nyligen som den har blivit tillräckligt kraftfull för

att lösa realistiska problem. I artikel IV testade jag detta tillvägagångssätt för

lutlösningar av olika koncentrationer. Jag visade att kraftfältsmodellen förut-

säger korrekt hur den kemiska reaktionen mellan lut och vatten påskyndar

jontransporten vid olika temperaturer.

Maskininlärningsmetoden som användes i artikel IV visade sig vara väldigt

användbar, men den kräver fortfarande mycket insikt om vad som är viktigt

i det simulerade kemiska systemet. I artikel V förbättrade jag maskininlärn-

ingsalgoritmen genom att låta den lära sig kemiska interaktioner på ett mer
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allmänt sätt. Modellen instrueras att göra förutsägelser genom att bygga upp

en serie begrepp där vart och ett beror på tidigare begrepp genom ett struk-

turellt så kallat artificiellt neuronnät. Dessa modeller kan tränas att matcha

data från kvantmekaniska beräkningar. Det som skiljer mot tidigare kraft-

fältsformuleringar är att vi nu kan mer generellt förutsäga egenskaper och

rörelsemönster hos olika material utan någon specifik modelldesign.

Trots de enorma fördelar som maskininlärningsmodeller har när det gäller

flexibilitet, så påvisade jag i en följande studie en svaghet. Maskininlärn-

ingsmodeller opererar i ett högdimensionellt rum, med en så hög dimension

att vi inte kan vara riktigt säkra på att vi fyller rummet med tillräckligt med

data. En bra liknelse är när vi bakar bröd. När “degen” (data) inte kan fylla

hela “brödet” (rummet) får vi problem. Dessa hålrum är svåra att upptäcka

under modellens uppbyggnad, och kan leda till mycket dåliga modeller. I

artikel VI, utvecklade jag modeller för att simulera vatten. Ett problem var

att vissa modeller gav en alltför låg kokpunkt för det simulerade vattnet, som

kokade redan vid rumstemperatur. Mina studier pekade i riktningen på att tran-

ingsalgoritmen var orsaken till problemet, d.v.s. hur vi “bakade” brödet från

degen, snarare än “degen” själv. Det är dock fortfarande oklart hur “träningen”

faktiskt går till, och därför också, vilken som är den bästa träningsalgoritmen.

I det sista arbetet (artikel VII) försöker jag lösa träningsproblemet med

maskininlärningsmodeller genom att använda en adaptiv “lärande-i-farten” al-

goritm för att automatiskt upptäcka när en modell kommer in i ett ihåligt om-

råde och då lägger till data när detta händer. Slutligen tillåter detta oss att

köra mycket långa simuleringar, vilket behövs för att bestämma diffusionsko-

efficienter i det protonledande joniska flytande materialet, där protonen kan

hoppa från en molekyl till en annan. Intressant nog, när vi tittar på kluster-

strukturen i vår maskininlärningsmodell, så kan vi följa hur denna förändras

när vi lägger till mer och mer data mot en som liknar den som vi har från vår

kemiska intuition.

Sammantaget tar denna avhandling en djupdykning i den mikroskopiska

världen av elektrolyter och ger användbar information om hur dessa presterar

i elektrokemiska tillämpningar. För att studera elektrolyterna har nya metoder

som drar fördel av maskininlärning utvecklats, och deras prestanda har blivit

noggrant testade. Slutsatsen från dessa studier är att med en noggrann de-

sign och träningsprocedur fås kemiskt intuitiva modeller som tillåter oss att

simulera komplexa reaktiva system av atomer och bestämma deras jontrans-

portegenskaper.
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