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Abstract

The classical Landau-Lifshitz-Gilbert (LLG) equations are of crucial
importance in micro-magnetism, but a true quantum-mechanical de-
scription was not found until 2013. However, very few realistic quan-
tum systems have been modeled using it.

This project describes the quantum LLG dynamics of a dimer system,
accounting for the Heisenberg exchange and Dzyaloshinskii-Moriya
interactions, as well as local dephasing as an open system effect.
Equations of motion are derived using an appropriate Hamiltonian,
Wieser’s non-linear master equation and a two-qubit parametrization,
then solved numerically. The non-locality and entanglenment of the
system were then investigated using the CHSH inequality and concur-
rence.

The solutions for the dimer system show oscillations in the Bloch
vector components aligned with the external magnetic field, and in
the anti-ferromagnetic case, both CHSH inequality violation and en-
tanglement were initially found, but underwent ”sudden death” and
disentanglement as the evolution continued, due to dephasing. Analy-
sis of the kT-B, parameter space reveals combinations which produce
entanglement without violation of the Clauser, Horne, Shimony, Holt
(CHSH) inequality, and regions of B, where increasing k7' increases
entanglement.

This set of solutions to Wieser’s quantum LLG equation suggests that
the disentangling effect of dephasing and other open-system effects will
be obstacles for future practical efforts in quantum communication.
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Forskare loser en ny kvantlik Landau-Lifshitz-Gilbert-ekvation

Landau-Lifshitz-Gilbert-ekvationen anvands inom flertal vetenskapliga falt.
Aven om den beskriver de magnetiska momenten hos partiklar i ett material
anvands den langt utanfor tillampad magnetism, pa sa olika omraden som
datalagring, medicin och kemi. Men ekvationen tog inte hénsyn till kvant-
mekaniken forran 2013, da Wieser tog fram en kvantversion av ekvationen.
Hittills har ekvationen dock bara losts for de mest grundlaggande situation-
erna. | denna rapport har dess beteenden undersokts for en mer realistisk
modell, och i processen har avsléjats problem for framtida anstrangningar
inom kvantkommunikation och datalagring.

Forskningen innebar att man loste Wiesers ekvation for ett ”dimer”-system,
det vill sdga ett system som bestar av tva kvantbitar. I termer av kvantin-
formation &ar en kvantbit nagot som kan anta tva varden, pa samma sétt som
en bit i en dator kan vara 0 eller 1. Detta galler for spinnet hos en elektron,
och det ar precis vad Wiesers ekvation kan anvandas for att modellera. Sjalv
loste han den bara for ett spinn, vilket innebar att arbetet ignorerade inter-
aktionerna mellan elektroner som kan spela en viktig roll for hur de beter sig.

Losningarna till Wiesers ekvation for ferromagnetiska och antiferromagnetiska
dimerer visade pa vissa forvantade beteenden. For det forsta anpassar sig
partiklarnas spinn till varandra i det ferromagnetiska men inte i det anti-
ferromagnetiska fallet, och storleken pa spinnvektorerna minskar under tid-
sutvecklingen. Dessutom fanns det ett karakteristiskt kvantmassigt "icke-
lokalt” beteende i det anti-ferromagnetiska men inte i det ferromagnetiska
fallet.

Sammanflatning kan beskrivas som en korrelation mellan tva partiklar, som
ar sa stark att man inte kan beskriva den ena partikelns tillstand utan att
hénvisa till den andra. Detta har visat sig vara en vardefull resurs for kvan-
tkommunikation, vilket mojliggor tillampningar som tat kodning och kvant-
teleportering, samt anvands i manga kvantkryptografiska system. Detta
erholls nar ekvationen l6stes for en anti-ferromagnetisk dimer, men det fanns
en hake. Eftersom forskarna inforlivade ”6ppna systemeffekter” - det vill
sdga dimersystemets interaktion med den omgivande miljon - forsvann snart
sammanflatningen i manga fall.
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Denna "finita tidsupplosning” och den darmed sammanhéngande ”plotsliga
doden av icke-lokalitet” avslojade ett problem for praktisk kvantkommunika-
tion. Narvaron av effekterna av 6ppna system, som kommer att vara mycket
svara att undvika i alla verkliga system, forstor den kvantkorrelation som
man hoppas kunna utnyttja i kvantkommunikationen. De nya losningarna
ger en battre inblick i Wiesers ekvation, men avslojar ocksa ett allvarligt
problem som fysiker och ingenjorer maste ta itu med om kvantkommunika-
tion nagonsin ska kunna anvandas i praktiken.
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1 Introduction

The Landau-Lifshitz-Gilbert (LLG) equation is essential to the study of dy-
namical systems in applied magnetism [1], and has a huge range of applica-
tions in fields ranging from chemistry [2] and medicine [3] to astronomy [4]
and data storage [5]. The atomistic version of the LLG equation forms the
basis for the description of atomistic spin dynamics. It involves the magnetic
moments my, at crystal sites k, and takes the form:

) 1 .
m; = —ymy X By + m;, X E QU —— 10y, (1)
!

|y |
where 7 is the gyromagnetic ratio and a4, is the non-local damping rate.

While this atomistic form can be derived from first principles [6], prior to the
work by Wieser [7], the LLG equation itself was a purely phenomenological
result that described the classical motion of a magnetic moment under the
influence of a magnetic field. In reality, the apparent motion of the mag-
netic moment actually stems from the underlying quantum motion of the
spin state of the constituent particles.

Wieser [7] addressed this shortcoming by deriving an equivalent quantum
equation from the starting point of the time-evolution of a quantum state.
He used a non-Hermitian Hamiltonian to model the dissipative effect from
the Gilbert term (the second term in Eq. (1)). This resulted in the non-linear
master equation:

p:Z[IO’H] _)‘[pu [p7 HH? (2>

where p is the density operator for the system, and H is its Hamiltonian. We
propose that this can be considered the lowest-order form of the new, more
general equation:

ﬁ:i[p,H}—f-i/\[p,p], (3)

where Eq. (2) is recovered from Eq. (3) by simply putting its first term in
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place of the p in the commutator.

This represents a step forwards in describing the quantum mechanical reality
behind the phenomenological behaviour, and it generated much interest as
an avenue to study the quantum-classical transition [8, 9]. However, Wieser’s
analysis [7] has some limitations. Firstly, it only addresses the local version
of the LLG equations, where ay; o 0y, and secondly, it did not account for
spin-spin interactions and other effects which make up a genuinely quantum-
mechanical description of the system.

This work aims to address these shortcomings by considering the evolution
of the spin states of a (two-qubit) dimer, accounting for the Heisenberg ex-
change interaction [10] and the Dzyaloshinskii-Moriya (DM) interaction [11].
In addition, dephasing is one of the main obstacles for the production and
operation of quantum information devices [12]. This is caused by the con-
tinuous interaction of the system with its environment [13], which results in
states losing their purity over time. Therefore, any analysis of the quantum
dynamics of a dimer should account for these factors if it is to be applicable
to real-world systems.

Two-particle quantum systems such as this can also display the excess quan-
tum correlations known as entanglement, and this was identified by Wieser
8] as one of the major reasons multi-spin systems exhibit non-classical be-
haviour. Entanglement was described by Schrodinger [14] as “the character-
istic trait of quantum mechanics, the one that enforces its entire departure
from classical lines of thought.” For pure systems, a pair is entangled if they
cannot be factorised into separate pure states, with the singlet state of two
spin-1/2 particles being a common example:

1

V2

In this state, neither particle has a clearly defined state, and yet, even if
separated by a large distance, they will remain perfectly anti-correlated to
each other: if particle one is detected in the spin-up state, particle two will
be detected in the spin-down state and vice-versa.

[¥) (I8 = 1)
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The famous 1935 Einstein-Podolsky-Rosen (EPR) paper [15] suggested that
local, hidden-variable theories could explain these excessive correlations, through
an example often called the "EPR paradox.” However, Bell [16] and later,
Clauser et. al. [17] found that there is a limit to the amount of correla-
tion that can be explained by local hidden variable theories, and quantum
mechanics predicts a violation of these inequalities. While Bell also derived
them in a different form, the Clauser, Horne, Shimony and Holt (CHSH)
form of the inequalities remain a widely-used measure of non-locality.

Since the EPR paper and Bell’s solution to the apparent paradox, entan-
glement has been increasingly identified as a crucial resource in quantum
information processing [18], allowing uniquely quantum feats such as tele-
portation and dense coding [19]. It is on this basis that efforts to quantify
and measure entanglement have gained steam, resulting in measures like the
relative entropy of entanglement [20]. This is equal to the von Neumann
entropy of the reduced density matrix of one qubit from the pair.

There are many other potential measures for entanglement, but one par-
ticularly useful approach is concurrence [19]. This comes from work defining
the entanglement of formation, and will be defined in more detail in Section
6. Simply put, it allows a precise, information-based and practical approach
to quantifying entanglement.

With this all in mind, this work intends to derive equations of motion for
a dimer system using the non-linear master equation (Eq. (2)), solve for
its Bloch vectors and correlation matrix, and then go on to analyze non-
locality and entanglement in the system, through the CHSH inequality [17]
and concurrence [19].
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2 Setting Up the Model

Wieser’s [7] non-linear master equation, Eq. (2), will be used, with the Lind-
blad term added to account for open system effects:

p=ilp, H] = Ap, [p, H]] + L(p), (4)

where L(p) is the Lindblad term. The three key elements of this will be
discussed in this section.

2.1 Spin-Spin Interaction Hamiltonian

The model considered is described by the Hamiltonian:

H:§(51®1+1®52)+J51®52+561X®62, (5)

where ¢ are vector versions of the Pauli matrices (i.e. ¢ = {04,0y,0.}), J
is the coupling constant for the Heisenberg exchange interaction, D is the
DM-interaction vector and B is the magnetic field vector. The subscripts 1
and 2 refer to the individual qubits. We will take 7 = 1 throughout.

The first term is the Zeeman term, the second is a Heisenberg exchange
term, with J > 0 for an antiferromagnetic dimer and J < 0 for a ferromag-
netic dimer, and the third is a DM term. The latter two are two of the most
important spin-spin interactions, but additional interactions could be easily
incorporated.

For simplicity, we shall assume that the magnetic field is entirely in the
z-direction and the DM vector is also aligned in this direction. The explicit
form of the Hamiltonian in this case is therefore:

H :BZ(ULZ X i + i X 0'272) + J(&l . ®5:2)
+Dz(01,x X O2y — 01y X 0-271;)-

(6)

Note that there is no loss of generality in taking the magnetic field to be
aligned in the z-direction: any other orientation can be obtained with an
appropriate rotation of coordinate system. However, some generality will be
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lost in taking the DM-interaction to be aligned in the same way. This choice
is for simplicity.

2.2 Two Qubit Bloch Vector Parametrization
For the Hilbert space H = C? ® C?, we can use the Hilbert-Schmidt basis

to represent the dimer state [21, 22]. This results in the following unit trace
density matrix:

0= (i®i+7?'0_31®i+i®§'52+Tklgl,k®02,l)a (7)

e

where T}, are the components of the correlation matrix and the oy and oy
are the corresponding Pauli matrices. The 7 and § terms are the marginal
Bloch vectors for each qubit, which describe the states as positions on the
unit radius Bloch ball.

2.3 Open System Effects: Dephasing
The Lindblad term in Eq. (4) can be expressed as:

1 1
L(p) = 3 _(LxpLi, = 5 LiLep = 5pLiLy), (8)
k

where the Lj are Lindblad operators [23]. This model only considers the
effect of local dephasing, so the operators take the form:

Ly =\/y01, ® 1,
Lo — /7l @ oa, )

where the ¢ stands in for the direction the interaction is considered in. For
this project, dephasing will be considered in the z direction. This reduces
generality, because the dephasing is aligned with the external field, but sim-
plifies the present analysis. It is important to note that this formalism as-
sumes Markovian dynamics, so that during each small time step, the system
undergoes a completely positive trace preserving transformation. In essence,
this assumes that the environment does not memorize its interaction with
the system.
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3 Deriving Equations of Motion

Given the assumptions and setup above, the two-qubit parametrization,
Hamiltonian and Lindblad terms can be combined for use in the non-linear
master equation, Eq. (4).

3.1 Useful Formulae

There are a number of formulae that were used through the derivation. Most
importantly, the Pauli matrices:

S O ) R N

have the commutation relations:

[O'Z',O'j] = 27;€ijk0'k; (11)

where €;5;, is the Levi-Civita symbol. Products are also formed as follows:

0i0j = 0ij1 + i€ipor, (12)

where ¢;; is the kronecker delta, and the Einstein summation convention is
used so that repeated indices are summed. Tensor products also obey the
following;:

(A® B)(C ® D) = AC @ BD. (13)

We take the same approach as other authors [24], using the extended Pauli
matrices (with og = 1, the identity matrix) and make Dirac matrices, which
take the form:

D, =0,®0,. (14)

Note that we have 7, 7, k,... € 1,2,3 and «, 5,7, ... € 0,1, 2, 3.
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Using Egs. (12), (13) and (14), it can be established that:

DapDrs = (Oanp + i€ay) (Op50 + i€s50) Dy
[Dag, DM?] = zi(eaw%&/ + €aw9B6V)DW7 (15)

where €., is again the Levi-Civita tensor and the 6,4, tensors are defined:

1, when one index is 0 and the others are equal,
Oapy = (16)

0, otherwise.

3.2 Derivation

While the full details of the derivation of the formulae are lengthy (see
Appendix), the overall strategy was very straightforward. The two-qubit
parametrization, Hamiltonian and Lindblad terms were inserted into Eq. (4)
and the commutators calculated with Mathematica. Most of this was accom-
plished with the formula in Eq. (17).

This process led to a long expression that can be arranged in coefficients
of the Dirac matrices. For example:

1 1
p=..+2iDy, (5(—sty+DTm+JTyz—Jsz)+ZL((—er+Jsx+Dsy—Bsz)Tyy

— Ty (=Jr.+ Js, — BTy, + B.T,,) + s,(DTyy — JTyy + JT,, + DT},)
— (Dr, — Ds, — BTy, — B.Ty.)T,. + Ty (Jr, + Ds, — Js, + B.T,.)

—s,(—B.sy + JT,, — DT,, — JT.,) — (Jry — Dry — Js, — Bsz)Tzz)) +...

This shows the part of the right hand side which is a coefficient of Dy, which
is then matched with the corresponding coefficient on the left hand side. In
this way, 15 equations were derived, for three components each for the two
Bloch vectors and the nine entries of the correlation matrix 7);. The Dirac
matrix basis would lead to 16 equations in this way, but the Dyy term is
accounted for by the fixed %11 ®1 term in the two-qubit parametrization (Eq.

(7))
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3.3 Equations of Motion

The equations of motion were derived in full using Eq. (4) (see Appendix
A). This is Wieser’s master equation, for two spins, plus Lindblad terms.
However, using the more general non-linear master equation, Eq. (3), along
with Lindblad terms allows a much neater form to be found. This is not the
version solved for this analysis, but will likely produce very similar results,
especially with a low value for the non-linear parameter A:

A .
7o = 2(—ryB, + Ty d — ToyJ + Tou D — yry) — 5(7'"1/7“2 — 7,1y + Ty Ty
+ Tnyzy - TzazTy:c - TzzTyz + Tszzz - szTyy)
A )
7"y = 2(Bzrx —T.,.J—-1.,.J+ szD - 'Yry> - 5(_7‘}7} + 7.y — Tyl
- Tszzz + szsz - T:Eysz + TzzTa:z + szTxy>
A . .
iy = 2A=TouD + ToyJ + Tyu = Ty D) = S (Fury = iya + Toa Ty + Ty Ty
- TyxTJ:a: - Tnyccy + szTyz - Tsza:z)
A )
$p = 2(—syB, =T, D —T,,J —T,,J — ys;) — §(éysz — 8,8y + Ty T+
Tnyyz - TxZTmy - Tzszy - Tszyy + szTzz)
A .
Sy =2(8;B, + Ty — T, D — T, J — 7ysy) — 5(—éxsz + 5,8, — TouThr—
A ) )
52 = 2A=ToaD = ToyJ + Ty = Ty D) = S (S8 — $y80 + Toa Ty — Ty T
+ Twayy - Tnyyw + Tz:csz B szsz)
. A
Typw =2(r,D —T,yB, — T, B, — 5,D) — §(fysz — 7Ty + 8y Ty — 5Ty —

szry + szsz + Tyzrz - TIZSy) - ’VTZL"ZL"
A

T:Ey = 2(—7”ZJ —|— SZJ + T:prz - Tysz) - 5(7;ysz - 'f,zTyy + S:L‘sz + Sszaﬁ
- wasz + Tyyrz + Taczszc - szry) - ’yTwy
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: A
Too = 2ryJ + 8.0 = 8,7 = T,.B.) = 54y Tox = #.Tys + 32Ty = 8T
+ Ta:ajsy — T:cyszc - TZZTy + Tszz) - ’Yngz
. A
Tyo = 2.7 = 5.7 4+ TopB. = Ty B.) = 5(=iaToy 4 7. Ty + 8, Ty
5.1y — T..r. + Tyysz +Tors — Tyzsy) R
. A
Ty = 2.0 = 8.0 + T, Bo + T2 B.) = 5 (=, Ty + .y = 8T,
$, Ty — Tmyrz — Tyzsz + Tyzsz + szrm) VL
. A
Ty, = 2(—1yd + 5,J +s,D+T1,,B,) — 5( Toloy + 1710y + 8.1y — $yTs
+ Tyxsy — Tyysx —To.r, + Tzzrx) VT,
: A , : )
T =2(—ryD —1yJ —T,,B, + 5,J) — ( — 1y Tys + 5,1, — 8,1,
+ Tmzry - Ty:rrx - Tzzsy + szsz) - ’Vsz
. A
Ty =2(ryJ —ryD — s,J +T,,B,) — E(T"xTyy — Ty Tyy — 8.1, + 5,1,
+ Ta:yry - Tyyr;v - Tzzsz + Tzzsz> - 'Ysz

. A\ . . . .
T,.= _5(7."@Tyz — Ty Lo + 82Ty — 8T + Toary + Towsy — Tyore — Toysy)
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4 Numerical Solutions

The equations of motion were solved numerically using Mathematica, based
on the assumptions listed above and using the thermal equilibrium state as
an initial condition. The function ParametricNDSolve was used to find the
solutions, which can use many different methods for solving the system, but
all work by ”stepping” the system forward in increments the independent
variable (in this case t). The step size and method used are completely
adaptive, which gives it many advantages for tackling otherwise stiff systems
25].

4.1 Initial Conditions: Thermal States

For initial conditions, the qubits were assumed to be in the " X-type” ther-
mal equilibrium states [26]. This also enables temperature to be included in
the model as a parameter, and should allow a critical temperature [18] to be
found, beyond which there is no entanglement. These states have the general
form:

P11 0 0 P14

Z 0 p32 p3z O
par 0 0 pys

or =

where T is the temperature, k is Boltzmann’s constant and the non-zero
matrix components are given by:
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1 _ s _B.
P11 = —e wTe kT
Z

T
I —ig Vv J? + D?
P23 = P32* = —ze%Te sinh T ,

and where Z is the partition function, given by:

B, VJ2 4+ D?
Z="Tr e’% = 2(6%JT cosh(?> + e% cosh (%))

where we also have:
D
t = —.
an ¢ 7

This results in an initial thermal state where the Bloch vectors initially take
a value in the z-component, but the others are zero. These values were ob-
tained by converting the density matrix to the Bloch matrix and reading off
the starting values [24].

Alongside temperature, the strengths of the Heisenberg exchange (J) and
DM-interactions (D), the strength of the magnetic field (B.), the damping
constant () and the coefficient for the non-linear term (\) were all param-
eters in the model. Typical parameters [18, 8], J = +1 (anti-ferromagnetic
and ferromagnetic, respectively), D = -~ X\ = 0.2 and v = 0.2 were chosen

10
in the simulations.
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4.2 Solutions for Bloch Vectors and the Correlation
Matrix

The equations were solved with the initial conditions and parameter values
above. For a range of kT from 0.1 to 10 and a field strength of B, = 0.5 T,
the Bloch vectors remained aligned in the z-direction, but with oscillating
magnitudes that were increasingly damped as t approached 30 s.

4.2.1 General Form of the Solutions at &7 = 0.1

Figure 1 shows the magnitude of the Bloch vectors for the duration of the
evolution for both the ferromagnetic (J = —1, left) and anti-ferromagnetic
(J = 1, right) cases. Both have an oscillating pattern, with the anti-
ferromagnetic case tending towards zero as the system evolves and the fer-
romagnetic case tending towards —0.9929. As expected, the Bloch vectors
take opposing signs throughout the evolution in the anti-ferromagnetic case.
There is also an out-of-phase precession in the ferromagnetic case, which is
a result of the anisotropic spin ”canting” [11] from the DM interaction.

-09920

Qubit1 | Qubit1
e . ol Sy L, I 1 L L
i \JJ‘;.‘.N}T‘}“ oo T Cuhbit2 g 15 20 25 o T Qubit2
I
I
1

—ogszs |l

-09930 |

-0.3835

\l
-0.9940 Hy'

Figure 1: Evolution of Bloch vector z components for the ferromagnetic (left)
and anti-ferromagnetic (right) cases.

The correlation matrix elements were also found throughout the evolution,
with the T.,,7,.,T,. and T}, components being 0 throughout. Figure 2
shows the non-zero matrix components throughout the evolution for the anti-
ferromagnetic case, and Figure 3 shows the ferromagnetic case.

The T, and T,, components have the same absolute values throughout, but
with opposing signs. T, and T}, have matching curves, and 77, has a consis-
tent value of —1. As Figure 2 shows, all values aside from T, tend towards
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. . )
i 5 25
H
i
il —0.zf
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L
1 A _—
l‘,' \ [ 1., -0sf T
v Sl xy
. CrSecene . \ . T,
I 5 15 20 25 F
N op = = Ty _gel

IAWAY.
RY

e —o.el
II
-1.0

-0.2}F

Figure 2: Non-zero matrix components in the anti-ferromagnetic case, with
the T, and T}, components on the left and the 7},, 7T, and T, components
on the right.

0 as the anti-ferromagnetic system evolves.

In the ferromagnetic case (Figure 3), the overall shape of the curves and their
zero components are similar, except most of the magnitudes are smaller and
the components are all flipped in sign. Only the 7),, component has the same
magnitude as in the anti-ferromagnetic case.

20+

0.004F '\".‘Q Ty
S Tyx 1.0 T.
0.002 P a0 e Toox

i
-0.002

Figure 3: Non-zero matrix components in the ferromagnetic case, with the
T,, component on the right and the other non-zero components on the left.

4.2.2 Temperature Dependence of the Solutions

When the value of KT is increased, the evolution of the Bloch vectors takes
the same overall shape, but with a reduced magnitude and range of
oscillation. Figure 4 shows this for the ferromagnetic case and several
values of KT', up to kT = 10.
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kT=0.5

N T-2.5
';r\_f"\-_,'\_-"\_-—_..-.._,- _________________________ _ kT=E
T e T e e L KT=10
b 5 10 15 20 25 20

Figure 4: Absolute values for the z-component of a Bloch vector while kT is
increased.

The variation in the correlation matrix elements follows the same pattern,
with higher kT values corresponding to lower magnitudes of the matrix ele-
ments. This is shown in Figure 5 for the anti-ferromagnetic case and the T,
component, with five illustrative values of kKT displayed with a progressive
offset.

0. 20 B o S s e e e e Bt bt e == KT=10
0.15 ] I,"'. _"".LIJ'. S T e e e kT=F
W
0.10 L . wemannaas KT=2.5
0.05 MU e e s s e e «T=1
L

| !
AT

Figure 5: The variation in the T}, matrix element as kT is increased from 0.5
to 10 J. These have been offset for clarity, in reality, all oscillations overlapped
the kT = 0.5 line

The other matrix components behave in the same way, with some varia-
tion. For instance, the T, component remains a straight line but reduces in
magnitude with increasing k7.
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5 Non-Locality in the System

Non-locality in the system was calculated using the CHSH inequality [17], in
the form used by Horst et. al. [22]. Given the Bell-CHSH operator Bensw,
which is defined:

Bensu=a-d® (b+b0)-d+ad-do(b-1b)-7,

where @, @, band b are real-valued, three-dimensional unit vectors which are
used to maximize the operator’s expected value. With this in mind, the
CHSH inequality can be written as:

| Tr(pBensn)| < 2.

Horodecki et. al. [21] showed that the maximum expected value of the Bell
operator is given by:

max Tr(pBeusu) = 2v/M(p),

Bcusa

where

M(p) = max{h; + hy}.
<k

The h; and hy, in this equation are the eigenvalues of the matrix U = T7T,
where T is the correlation matrix. In terms of M, the inequality is satisfied
iff [27]:

M(p) < 1.

However, as Horst et. al. point out [22], using the function B(p) makes the
measure equal to the concurrence for two-qubit pure states. This function is

defined:

B(p) = v/max[0, M(p) — 1, (18)
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and gives B(p) = 0 if the state p doesn’t violate the CHSH inequality. This
form will be used in the analysis.

5.1 Non-Locality in Ferromagnetic and Anti-Ferromagnetic
Cases

The dimer system considered violated the CHSH inequality in the anti-
ferromagnetic but not the ferromagnetic case. For the anti-ferromagnetic
case (J > 0), Figure 6 shows maximal violation at ¢ = 0 s, for the initial
singlet state, declining to a minimum value of 0.0023 at ¢ = 30 s.

L " M L |I
25 20

Figure 6: CHSH inequality violation for anti-ferromagnetic dimer at 7" = 0.1

In contrast, there is no violation for the ferromagnetic case, with B(p) = 0
throughout.
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5.2 The B, and kT Dependence of Non-Locality

Non-locality in the system, as measured by B(p), depends on both the mag-
netic field strength B, and the temperature T', actually expressed with Boltz-
mann’s constant as k7. Figure 7 shows the evolution of the system for a range
of B and kT values.

X
X

Figure 7: Values of B(p) obtained for various values of magnetic field strength
B, (left) and temperature kT (right). Non-locality was detected in the orange
region. Note that both parameters have " critical” values, beyond which there
is no non-locality.

Figure 8 shows the values for B(p) across a similar range of values, but shown
as a snapshot at ¢t = 0. This shows that non-locality is only observed for a
small range of values of the parameters. After kT = 0.9 J and B, = 1.92
T, the non-locality is lost. For the magnetic field, there is a sharp drop-off
between the maximum of 1 (which remains the value even when B, = 1.5 T)
and the minimum at B, = 1.93 T, while the change with temperature is a
little more gradual.

In all cases of the ferromagnetic dimer, there is no non-locality for any val-
ues of B, or kT. Additionally, while an analysis at a later time than t =0 s
would produce slightly different results, the overall pattern is the same and
is best illustrated by the ¢ = 0 s example.
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Figure 8: Values of B(p) for different combinations of B, and kT values,
taken as a snapshot of the anti-ferromagnetic system at t = 0. Non-locality
is detected in the orange region.

6 Relative Entropy of Entanglement Via Con-
currence

Entanglement in the system was also calculated via concurrence [19]. The
original form of the equation for concurrence comes from work defining the
entanglement of formation E (M) [28] for a mixed state M, with E(M) being
the minimum expected entanglement for any ensemble of pure states satis-
fying M. It has been found [19] that the entanglement of formation can be
written as:

where C, the concurrence, is defined:
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cw) = | (v[¢)

Y

with ¢ being the spin-flipped version of 1. Finally, ¢ is given by:

VI 1+\/1—02_1—\/1—0210g 1—1-C?
5 .

25 9 9 2 5

e(C) =

This function is monotonically increasing, going from 0 to 1 as C also goes
from 0 to 1. This means that the concurrence itself can also been seen as a
measure of entanglement, and it can be calculated directly from the density
matrix for the system.

This approach was used for the analysis, so, in practice, concurrence was
calculated using the eigenvalues of the Hermitian matrix R [19]:

ENNCNG (19)

where the p is the spin-flipped density matrix. This is calculated with:
p=(oy®@0y)p (0, ®0y,), (20)

where p* is the complex conjugate of p. With this definition, and eigenvalues
of this matrix indicated by \;, the concurrence can be written as:

C(p) = maX{O, )\1 — )\2 — )\3 — )\4}, (21)

where the \; is the numerically largest eigenvalue, A\, is the next largest
and so on. This can also be calculated based on the square roots of the
eigenvalues of the matrix pp. Each ); is a non-negative real number [19], and
this was checked by analysis of any imaginary parts of the eigenvalues. In
all cases, these were 0 or extremely small (of the order 107 or less), and so
the formula is valid in this case.
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6.1 Concurrence for Ferromagnetic and Anti-Ferromagnetic
Cases

As with CHSH inequality violation, non-zero concurrence was obtained for
the anti-ferromagnetic (J = 1) but not the ferromagnetic (J = —1) case.
This is shown in Figure 9 for the anti-ferromagnetic case and the parameter
values used before.

Concumence
1.0

0.8

0.4

1 S S S e . e
0 5 10 15 20 25 20

Figure 9: Concurrence in the anti-ferromagnetic dimer case considered, with

J =1

The value for concurrence starts out at the maximum (C' = 1) and then
asymptotically declines to zero. However, throughout the entire evolution
considered in this paper (up to ¢t = 50 s) it always remained above zero in
this case. In the ferromagnetic case (J = —1), it never reaches a value above
zero and so there is no entanglement.

6.2 The B, and kT Dependence of Concurrence

As for non-locality, the influence of kT and B, values on concurrence was an-
alyzed, both individually across the first 20 seconds of the dimer’s evolution
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and simultaneously as a snapshot at ¢ = 0 s. Figure 10 shows the influence
of KT and B, on the entanglement in the system, from the initial state to 20
s into the evolution.

Figure 10: Variation in C(p) throughout the dimer’s evolution (up to t = 20
s) as B, (left) and kT (right) are increased. Entanglement was detected in
the orange region.

Note from Figure 7 and Figure 10 that there are values of kT (between 1
and 2 J) for which there is no non-locality but where there is entanglement
as measured by concurrence. In contrast, non-locality is lost for values above
B. =2 T and the degree of entanglement reduces substantially.

Figure 11 shows the variation in the initial value for concurrence with both
kT and B simultaneously. As before, this analysis is performed at t = 0 s but
the results retain their general form (albeit with smaller values) throughout
the entanglement. Note that there is only entanglement initially if both B,
and k7T fall within certain critical values.

Based on the numerical solutions, this gives a critical kT value of kT,.,.;; = 1.84
J, where the J here is joules. For B,, while the values decline substantially
after B, = 2 T, even at B, = 3.5 T there is a small amount of detectable
entanglement. However, we can establish B, .,;; = 4 T as the point where
zero values begin to appear at minimum temperature. Beyond these values,
the entanglement is lost.

Additionally, as shown by Figure 12, there are many values for B, in which
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Figure 11: Values of C(p) for the dimer system at t = 0 s as k7 and B, are

increased.

increasing the temperature increases the entanglement, contrary to the re-

sults obtained in the rest of the analysis.

Figure 12: A rotated version of Figure 11, clearly showing values of B, for

which increasing k7" also increases entanglement.
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7 Discussion

Wieser’s [7] non-linear master equation (Eq. (2)) was solved for a dimer
system, with two important spin-spin interactions and open system effects
included, across a range of values for both temperature and magnetic field.
The results showed oscillations in the Bloch vectors, with initial peaks in
the anti-ferromagnetic case up to +0.145, with progressively smaller values
afterwards and quickly reaching zero. The five non-zero correlation matrix
elements either took matching values with an opposite sign (7, and Ty,),
the same value (7}, and T}, or remained constant like 7},).

As expected from other results [18, 26], non-locality and entanglement were
found in the anti-ferromagnetic but not the ferromagnetic case. Both non-
locality and entanglement were detected early in the evolution and approached
zero as it continued. In the case of non-locality (shown in Figures 6 and 7),
this has been called "non-locality sudden death” [29] (in particular, in cases
as discussed below where there is non-zero entanglement). Similarly, the loss
of entanglement (Figures 9 and 10) has been called "finite time disentangle-
ment” [30].

As identified by other authors [30], these effects are due to the parameter
~ from the Lindblad term, and when local dephasing is switched off, the en-
tanglement and non-locality remain with the same intensity throughout the
evolution. However, this loss of entanglement will likely pose issues for quan-
tum communications in the presence of similar open-system effects [31, 30].

Both non-locality and concurrence were also analyzed in the kT and B,
parameter space, in Figures 8, 11 and 12. At B, = 0, the singlet state is
the ground state of the system and the triplets are degenerate excited states.
Increasing the temperature leads to the mixing of triplets with the singlets,
decreasing the observed entanglement [18]. Likewise, increasing B, splits the
triplet states, making |00) the ground state, but then increasing the temper-
ature brings in a singlet component and thereby increases entanglement, as
shown clearly in Figure 12. Arnesen et. al. also detected this phenomenon
[18], albeit at higher magnetic field values.

Figure 8 shows the CHSH inequality values in this parameter space. At
the minimum temperature considered £7" = 0.1 J, the non-locality is bro-
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ken at a magnetic field strength of B, .y = 1.92 T, and at B, = 0 T, the
non-locality is broken when kT,,.; = 0.86 J. For entanglement, the parameter
space plot in Figure 11 shows a critical field strength value of B, .,;; = 4 T,
measured at 7" = 0.1 J, and a critical temperature of kT,.;; = 1.834 J at
B.=0T.

Arnesen et. al. [18] studied the 1D Heisenberg model, producing a similar
Hamiltonian to the one used here but without the DM-interaction included
and with no open system effects. The authors found a critical temperature
value of k1., = ﬁ ~ 0.91J, where J here is the Heisenberg coupling con-
stant. As in this report, Arnesen et. al. used a value of J = 1, so their values
translate directly. For the magnetic field, in their case, they found a critical
value of B, .;; = 4J, again, expressed in the paper using the Heisenberg
coupling and closely matching the results here.

Despite the agreement in terms of critical magnetic field, there are some
important differences to note between this and other analyses [18, 26]. These
analyses were conducted purely based on the Hamiltonian of the state, whereas
the current analysis looks at the solutions to Wieser’s quantum LLG equa-
tion [7], Eq. (2). However, the difference in the critical temperature is close
to a perfect factor of 2, and is likely due to differences in the Hamiltonian.

Comparison of Figures 8 and 11 also shows that there are some parame-
ter regions in the system for which there is entanglement without detectable
non-locality through the basic CHSH measure. While the possibility of this
is already well-known [32], in most cases the non-locality is simply ”hidden”
(33, 34] and is recoverable if a local filter is used prior to the Bell test. This
analysis predicts the behaviour for a quantum LLG system between around
ET = 0.9 J and 1.8 J, provided the magnetic field is weak enough to allow
entanglement. There are some entangled states without this hidden non-
locality [35], but it’s likely that the simple test is the issue in this case.

The present analysis leaves much ground to explore. Firstly, the only spin-
spin interactions considered were the Heisenberg exchange and the DM inter-
action. More interactions could easily be incorporated into a similar analysis,
and a more realistic treatment should also include additional particles and
non-nearest-neighbour interactions [18|. Future analyses could also incorpo-
rate other open system effects. Finally, the "lowest-order” version of Wieser’s
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equation (Eq. (2)) was solved here, while the version in Eq. (3) is likely more
accurate.

Despite these limitations, this analysis has shown the form of a solution to
Wieser’s quantum LLG equation for a dimer system, incorporating impor-
tant spin-spin interactions and open system effects, finding Bloch vectors and
the system’s correlation matrix. The CHSH inequality violations and con-
currence values align with expectations from similar systems, but with some
differences that likely stem from the more complicated model, the Hamilto-
nians used and the specific form of the solutions to the LLG equation.
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8 Appendix: A More Detailed Derivation

While the whole derivation process was extensive (due to the large number
of terms coming from the nested commutator in Eq. (4)), the vast majority
of the process was applying the formulae from Section 3.1, particularly the
commutators in Egs. (12) and (17). For example, the following commutator

comes from the - &) ® 1 term in the two-qubit parametrization (Eq. (7))
and the B, term in the Hamiltonian (Eq. (6)):

Term 1 = [(r,0, + 140, +7.0.) ®1,B.(0. @1 +1®0.)] (22)

First, note that only the first B, term in Eq. (24) has a non-zero commu-
tator, because of the relation in Eq. (14). For the second term, we can also
use Eq. (14) to write:

A

Term 1 = B,(ry[0,, 0] + 1yloy, 0.] + 1[04, 0.]) @ 1,

where we can pull B, and r; out of the commutators because they are scalars.
Then, using Eq. (12), we find:

~

Term 1 = 2iB,(—ry0, + 1,0,) @ 1,

which can be expressed more neatly if we define r;; = r;,0; — 10, for ¢,j €
x,y, 2, and write:

Term 1 = —2iB.r,, ® 1.

Another example term, from the same 7- & ® 1 term hitting the Jo, ® oy,
term, shows the use of Eq. (17) in the derivation. We can write:

Term 2 = [(ryDyo + 1y Dyo + 72D0, J Doy,

where we’ve used the Dirac matrices to express the commutator, and again
we can remove 7; and J from the commutators because they are scalars. This
leads to:

35 Lee Johnson



Uppsala University

Term 2 = T:):[D:):O> Dmc] + ry[Dy[)a Dzm] + TZ[DZ()? D:m:]
= 2iry<0yzu€0xu + 6y$M00xV)D;,LV + Qirz(ezx5€0xp + sz500zp)D6p
= 2i(—ryD,p +1.Dy),

where the third line follows from the second based on the rule in Eq. (18),
with the first 6 term for both r, and 7, having two non-matching indices.
The majority of terms were calculated in this way, including the nested com-
mutator terms. This filled out the right hand side of Eq. (4).

The left hand side of Eq. (4) was calculated using the Bloch vector parametriza-
tion in Eq. (7). Explicitly, this was:
1

o= Z(—' 7 ® irti®s. lop ‘|’Tkl01,k ® 0a1).

From here, as described in Section 3.2, the terms were arranged as coeffi-
cients of the Dirac matrices, and the equations of motion were formed by
matching coefficients on each side. This led to the equations of motion that
were solved in this paper, coming from Eq. (4) and ultimately from Wieser’s
[7] version (Eq. (2)). The full equations of motion are reproduced below,
with the explicit ¢ dependence of the 7;, s; and T;; omitted on the right-hand
side for clarity:

Ty (t) = 2(”}/7“95 + J(sz — Tyz) —DT,, — Bzry) + )\(BZ (rmrz + 10Ty — 2Ty T +
Ty Loy +2Ty 0 Ty + 10T )+ J (ry Loy 47T, — 20y Ty + 5y Ty + 12Ty — 5013y —
21, Ty + 8, Tow + 121, — 5. 1)+ D(—ry Tyy — 10Ty — 21, Ty — 21, Ty + 5,1y —
5,1%2))

7y (t) = 2(—yry+J(Th, —Ton) — DTy 4+ Bory) + N B, (ryr, + Ty Toy +217, T —
2T Ty + Ty 1oy + 1. T )+ I (1y Ty — 8y Ty — 273 Ly + 53 Ty + 13 Ty 41,1 —
21, Ty + 8. Ty + 1y 1oy — 5y Tss) + D(2ry oy + 1y Ty + 12Ty + 21, T — 5, 1w +
Saszz))

o(t) = 2(D(Tow + Tyy) + J(=Toy + Ty)) + N Bo(—13 — 1y = T3, = T —
T2 — T, Ty — 2T0y Ty + 2T0aTyy — T2 — T2) + J (1 Ty — 5. T — 27, Ty +
Solye +1.Tyy — 8. Tyy — 21y Ty + 5Ty + 100 + 1y Toy) + D(r, Ty — 5.0y +
SyTye — 1Ty + 8. Tyw — 85Ty — 1y Lo +121%y))
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55(t) = 2(—=y8s+ DT+ J (Lo —Toy) — Bosy) + AN B (828 + Tua Ty — 21,1 +
0T, Ty + TyoTye + TooTos) + J(ryTay — 28, Ty + 12Tz — 28, Ts + 5, Ty —
"oy + 82Ty + 8.1 — 175 Tss + 5:1%) + D(syTyw + 5510y + 25,1y — 1.1, +
25Ty, + TyTzz))

$,(t) = 2(=vysy + DTy, + J(—Thys + Tow) + Busy) + M Ba(sys, + TopTy. +
szTazz + szTy:t + _2T:c:r:Tyz + Tnyyz + szTzz) + J(_TyTxx + SyTa:x + Sa:Txy +
"o Lye —28:Tye+1. Ty —28. T+ 8, oy — 1y T+ 5,150 ) + D(—28, Ty +1. T —
25,10y — Sy Tyw — 821y — 1271%2))

$:(t) = 2(D(=Tow — Tyy) + J(Ty — Tya))) + >‘(BZ(_52 - 532/ - T:?:c — Do Ty —

T

T2, —ToyTye — T2 4 2T Ty — T2, — T2, = T2) + J (—7 Ty + 8. Tp + 5, T —

7Ty +8:Tyy+ Sy Tye + 15Ty — 25, Ty + 1Ty — 25, Ty) + D(—1. Ty + 5. Ty +
SyTwe + 1. Tye — 8. Ty — 52Ty — 1y 1oy +121%y))

Too(t) = 2(Bo(~Toy — Tyo) + D(—72 + 52)) + MBa(r:Tow + 8:Toq + 85Tz —
1Ly — $:Tyy + SyTye + 13 1on + 1yT5y) + J(—TZ — 724 2rys, — 512/ + 2r,s, —
s2 — T:?y -T2 +2T,,T,, — Tyzx + 2T, T — T2,) + D(—=141y + 808y + Ty Ty —
T:):xTyx + szTyy - Ty:pTyy =+ TzzTyz - szsz>) - fywa

Toy(t) = 2(By(Tyw — Tyy) + J(r2 — 52)) + MBS Ty + 72Ty + 5. Ty + 5y T +
7 Lyw — Selys — 1y Loy +12515y) + J(rary — 2ryse + SuSy + TuaToy — TuaTyr +
ToyTyy — TyaTyy — ToTye + 2T Ty — T2pToy) + D(—12 — 12 — 5% + 2.5, —
Sg - Ta?x - szz - QTMTyy - T;y - T2y)) - fysz

To(t) = 2(=B.Ty. + J(—7y 4 5,) — Dsy) + M B.(—28,Trs — 8y Tz — 28, Ty +
7L ye 4 8Ly +1315) + J(rary — 20,80 + 855, + Too Ty + 2101, — Tya Ty —
szsz - Txysz + szTzz - Tza:Tzz) + D(_QTZSy + Sysz + T:(:yT:cz - QTJ::(:Tyz -
TyyTy. — szTZZ)) - %’YTM

Tyfﬂ(t) = 2(BZ(T$1‘ - Tyy) + J(_TZ + 82’) + )‘(BZ(TZT:C:B + TzTa:y + SzTa:y -
SyTye + 8. Ty + SoTys + 1y Loy — 12 Ley) + J(1ary — 2738y + S8y — TowTay +
ToaTye — ToyTyy + Ty Ly — 10T, + 21, T, — szsz) + D(T’?E + 7“5 + 83 —
2r.s. + 52+ To + 210 Tyy + Ty + T + 12,)) — VT ya

Tyy(t) = 2(B.(Tyy + Tya) + D(=1. +5.)) + N Bo(—7.Tow — 8. Tps + 82T +
Ty + $:Tyy + $yTys + 12 Tow + 1, Toy) + J(—12 — 12 4 2rp8, — s2 + 21,8, —
s2 — Tl?y + 27,1, — Tny — Ty22 + 2T, T,y — T2) + D(rory — 528y + Tox Ty —

2
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TmTyw + chyTyy - Twayy - chzTyz + szsz)) - 'YT

vy

Ty.(t) = 2(B, Ty, — Dsy+ J (15 — 54)) + N(B.(Lyy — 25,1y + 1.1y, +1,T%.) +
J(ryrz — 21,8y +8yS, — Loy Lo + 21 Ty + Ty Ly — Ty Ly — Ty oy + 13T, —
szTzz) + D(2Tzsa: — SzSz + Tszwz + 2,I'zzjjyy - Tszyz + szTzz)) - %’YTyz

T..(t) = 2(=B.,T., + Dr, + J(ry — 5,)) + A(Bo(—2r,Tyw — 7y Tow — 7Ty —
Ty Tye + 15Ty + $: Lo + 8. 150) + J(rary — 2038, + 858, — Too T, — Ty Ty +
TxxTz:r - Tmysz + 2Tyxsz - T:pszz + szTzz) + D(_TyTz + 2ry52 - Tszzx +
2szsz + Tnyzy + Tszzz)) - %VTz:c

Ty (t) = 2(BzTew + Dry 4+ J (=214 4 282)) + M Bo(ryTow — 21y Tay — 72 Tye —
2ry Ty + 8. Toy + 5y 15.) + J(ryry —2rys, + 8yS, — Ty T — Ty Ty + 200, Ty —
Tyilew + Ty Loy — Ty T + Ty 1) + D(ryry — 2rys, — Ty Ty — 275, Ty +
Ta:ysz - Tzszz)) - %’Ysz

To(t) = NB.(—2r, Ty — 21, Ty — 28, Toy — 28, Toy) + J (=12 — 12 + 21,5, —
sa42rysy — s, —Tp, — To 4 200 1oy — T2, + 20T,y — T2)) + D(—2rys, +

218,21, T, + 2T,,T.,))
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