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A B S T R A C T

Ultra-high-energy (UHE) neutrinos (> 1016 eV) can be measured cost-effectively using in-ice radio detection,
which has been explored successfully in pilot arrays. A large radio detector is currently being constructed in
Greenland with the potential to measure the first UHE neutrino, and an order-of-magnitude more sensitive
detector is being planned with IceCube-Gen2. For such shallow radio detector stations, we present an end-to-
end reconstruction of the neutrino energy and direction using deep neural networks (DNNs) developed and
tested on simulated data. The DNN determines the energy with a standard deviation of a factor of two around
the true energy (𝜎 ≈ 0.3 in log10(𝐸)), which meets the science requirements of UHE neutrino detectors. For
the first time, we are able to predict the neutrino direction precisely for all event topologies including the
complicated electron neutrino charged-current (𝜈𝑒-CC) interactions. The obtained angular resolution shows a
narrow peak at (1°) with extended tails that push the 68% quantile for non-𝜈𝑒-CC (resp. 𝜈𝑒-CC interactions)
to 4°(5°). This highlights the advantages of DNNs for modeling the complex correlations in radio detector data,
thereby enabling measurement of neutrino energy and direction.
1. Introduction

The detection of ultra-high-energy (UHE) neutrinos is a key to
solving the 100-year-old mystery of the origin of cosmic rays and is one
of the crucial milestones for astroparticle physics [1,2]. Their detection
gives access to the most violent phenomena in the universe, those
that happen in the vicinity of supermassive black holes (active galactic
nuclei), in neutron star mergers, or in gamma-ray bursts. Furthermore,
it allows for fundamental measurements of neutrino cross-sections and
flavor ratios at energies beyond the reach of Earth-based accelerators
like the LHC [3–5].

A cost-efficient way to measure these UHE neutrinos above 30 PeV
of energy is via a sparse array of radio antenna stations installed, for
instance, in the Arctic or Antarctic ice [6–12]: A neutrino interaction
in the ice generates a few-nanoseconds-long radio flash that can be
detected from kilometer-long distances due to the large attenuation
length of radio signals in ice. Because of the low expected flux, no UHE
neutrino has been observed yet, but the technology has already been
shown to work reliably with small test-bed arrays such as ARA and
ARIANNA [7,10]. With the Radio Neutrino Observatory in Greenland
(RNO-G) a much larger detector (35 stations) is being constructed at the
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moment [13] and an order-of-magnitude more sensitive radio detector
is foreseen for IceCube-Gen2 [11,12].

With the first detection of a UHE neutrino on the horizon for
the next years, the development of reconstruction methods becomes
increasingly important. In addition, a good estimation of the energy
and pointing resolution for different detector designs is crucial for plan-
ning IceCube-Gen2, which is happening at the moment. Two different
station designs have been established: In a deep design (as explored
by ARA [14]) antennas are placed into narrow boreholes down to a
depth of up to 200m. This increases the sensitivity to neutrinos per
detector station but also increases the costs per station and limits the
choice of available antennas due to the narrow borehole. The second
design is a shallow detector station (as explored by ARIANNA [15])
with high-gain LPDA antennas installed a few meters below the surface.
The Radio Neutrino Observatory in Greenland (RNO-G) combines both
designs into hybrid detector stations. The radio detector of IceCube-
Gen2 foresees a hybrid array of shallow-only stations interspersed with
hybrid stations [12].

This work focuses on a shallow station design as shown in Fig. 1,
which has been explored by the ARIANNA test-bed detector on the
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Ross Ice Shelf and at the South Pole [10]. Each station consists of 4
LPDA antennas installed at a depth of just a few meters below the
snow surface, and 1 dipole antenna installed at a depth of 10m to
5m in a narrow borehole. These antennas observe the ice below for
eutrino interactions. The dipole antenna was added to help with the
econstruction of the neutrino properties. At this depth, the antenna
ill observe two signals: one from a direct path to the antenna, and
second delayed signal from a reflection off the surface. The time

ifference between these two signals provides information about the
istance to the neutrino interaction, which is important for estimating
he neutrino energy [16]. The exact depth is a compromise between
he fraction of events that show a Direct and Reflected (D’n’R) signature

which decreases with depth (the shallower the better), the resolution of
those events where a D’n’R signature is visible (the deeper the better),
and deployment effort (the shallower the better) and is still being
optimized. In the following, we set the depth to 15m; however, previous
studies have indicated that 10m also will lead to energy resolutions
that match the science requirements [16]. In a future study, the work
presented here can be used to study the impact of dipole depth on
energy resolution in detail.

Several aspects of the reconstruction of the neutrino direction and
energy have been studied already and partly probed with in situ
measurements. The reconstruction of the neutrino direction and energy
requires measurement of the distance to the neutrino vertex, the signal
arrival direction, the viewing angle, and the signal polarization, as
well as a good understanding of the ice to correct for the bending
of signal trajectories due to the changing index-of-refraction in the
upper (100m) of the ice sheet [17]. For a shallow detector station,
the measurement of the low-level parameters signal arrival direction
(including the correction of ice propagation effects) and polarization
has been probed experimentally at the South Pole using a transmitter
lowered up to 1.7 km deep into the ice [18–20] as well as by measuring
he radio emissions of cosmic rays [21]. In addition, a novel method
or determining the vertex distance was developed and tested in an
n situ measurement on the Ross Ice Shelf [16]. This method uses the
ime difference between the direct and reflected-at-the-surface signals
easured in the dipole. For a deep detector component, a similar
ethod has been developed [22,23].

To determine the neutrino direction at low signal-to-noise ratios,
he forward folding method was developed [24]. Here an analytic model
f the radio signal is fitted directly to the antennas’ observed voltage
easurements. The method has been applied successfully to shallow

nd deep detector components but requires a reconstruction of the
eutrino interaction vertex as input [18,20,25]. In a Monte Carlo (MC)
tudy using NuRadioMC [26], which includes a full trigger simulation
nd modeling of the signal chain and mixes the expected signals with
oise, the angular resolution was determined to be approx. 3° for all
riggered events of a shallow detector station [18,20]. For a deep
etector, a similar resolution could only be obtained after a quality
ut on the signal strength of the horizontally polarized antennas which
educed the fraction of usable events [25]. A caveat of these analyses
s that so far only hadronic particle cascades have been considered;
hese have a predictable shape and corresponding radio emission. For
lectron neutrino charged-current (𝜈𝑒-CC) interactions, the generated
lectron generates an electromagnetic shower next to the hadronic
hower. The electromagnetic shower is subject to the LPM effect so
hat for neutrino energies of approx. 1 × 1018 eV and beyond, several

spatially displaced subshowers are generated (see for instance the ex-
amples in [6,26]). At lower energies, often only the start of the shower
is delayed, resulting in a displacement with respect to the hadronic
shower. Furthermore, the electromagnetic shower(s) can interfere with
the hadronic shower. This can lead to more complex radio signal shapes
but, more importantly, the correlation between for instance the pulse
width and the viewing angle changes, which further complicates the
reconstruction. For 𝜈𝑒-CC interactions, no results on direction recon-
2

truction have been reported so far because of the difficulty of modeling
the LPM effect in traditional reconstruction methods [18,25]. Because
𝜈𝑒-CC interactions dominate the number of observable neutrinos,1 this
aper addresses this significant caveat of current methods. We note
hat the signatures of 𝜈𝑒-CC interactions allow to distinguish them
rom non-𝑛𝑢𝑒-CC interactions. Preliminary results are promising [27]
nd will be studied thoroughly in a forthcoming publication. In this
ork, we assume that the event type (𝜈𝑒-CC or not) is known prior

o the direction and energy reconstructions, but we also estimate the
dditional uncertainty resulting from a wrong guess of the event type.

For a deep detector station, an energy reconstruction was developed
ecently [22] with a shower energy resolution of 30% for hadronic
howers after moderate quality cuts. However, due to the differences
n station design between a deep and a shallow detector station, these
indings are not directly comparable to our work. Here we focus on a
hallow detector station, for which no end-to-end reconstruction of the
eutrino energy has been presented so far.

The reconstruction of the neutrino direction and energy from ob-
ervable radio flashes is a complex problem: All information about the
eutrino is compressed in a few-nanoseconds-long radio flash that is
bserved in just a few antennas. As a consequence, the development
f traditional analysis approaches as described above is a very time-
onsuming process and the reconstruction algorithms often do not
ake into account all available information. In this article, we take

different approach: training deep neural networks in a supervised
anner [28,29] to extract the neutrino properties of interest directly

rom the simulated raw data. Deep-learning-based reconstructions have
lready produced promising results in closely related fields and have
ften outperformed existing methods, see e.g. [30,31]. We use the
uRadioMC code which simulates the expected signals from neutri-
os [26] as well as the corresponding detector response [24] which
llowed us to generate the needed training datasets. A preliminary
ersion of the analysis was presented at the last International Cosmic
ay Conference (ICRC2021) [27,32].

The importance of the angular and energy resolution on the science
utput of in-ice radio detectors will depend strongly on the science case
nd also on the number of observed neutrinos which, in turn, depends
n the largely unknown neutrino flux level. Different science cases and
cenarios are currently under investigation. Recently, the potential to
iscover point sources [33] and to measure the neutrino–nucleon cross-
ection [4] was presented for the future IceCube-Gen2 radio detector.
oth analyses find a strong dependence on the angular resolution but
nly a weak dependence on the energy resolution. For an angular
esolution of 𝜎 = 3°2 promising results were obtained. Increasing the
ncertainty to 𝜎 = 7° (14°) would increase the cross-section uncertainty
y 50% (178%). For the point source study, increasing the angular
esolution to 𝜎 = 7° roughly doubles the size of the multiplets needed
o claim discovery. The impact of energy resolution to distinguish
ifferent flux scenarios is currently under investigation.

. Dataset generation

We use the NuRadioMC code [26] to create a large dataset of
round 40 million recorded neutrino events that correspond to a data
olume of 1.4 TB. We simulate a shallow radio detector station at
he South Pole with the same configuration and trigger settings as
oreseen for IceCube-Gen2 [12]: The station comprises two parallel
airs of downward-facing LPDA antennas 2m below the snow surface

1 Assuming a 1:1:1 flavor ration, at 1 × 1017 eV neutrino energy roughly
0% of all triggered events stem from 𝜈𝑒-CC interactions. At neutrino energies
f 1 × 1018 eV the fraction reduces to 35%.

2 The authors quantify the angular resolution by quoting the uncertainty
f the zenith angle only which is roughly

√

2 smaller than the space angle
uncertainty quoted in this work if the zenith and azimuth uncertainties
contribute equally to the total uncertainty.
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Fig. 1. Schematic illustration of a shallow radio detector station.
Source: Fig. adapted from [34].

Fig. 2. Number of events in the 3 datasets as a function of the shower energy.

and an additional dipole antenna at a depth of 15m below the snow
surface (see. Fig. 1). The detector is triggered by requiring a high
and low-amplitude threshold crossing of the signal with an additional
requirement of a time coincidence of two triggers out of the four
LPDA antennas. The bandwidth of the trigger channels is reduced
to 80–150 MHz to increase the sensitivity to neutrinos [35] but the
full frequency information within 80–800 MHz is recorded for offline
analysis. The trigger threshold is adjusted to yield a trigger rate on
thermal noise fluctuations of 100Hz, as the data rate is the limiting
factor in current and future experiments and thus sets the trigger
threshold. We note that with a deep learning-based second-stage trigger
that can run on the autonomous detector stations the data rate can be
reduced significantly without impacting the neutrino efficiency [36].

We generate neutrino interactions with neutrino energies (𝐸) from
1 × 1017 eV to 1 × 1019 eV. The simulations are run separately for
small energy bins (0.1 in log10(𝐸)) in which the neutrino energies are
distributed uniformly on a logarithmic scale. More simulations at low
energies are executed to compensate for the lower trigger probabil-
ity (see discussion below). The neutrino interactions are distributed
uniformly in the ice around the detector with random incoming di-
rections (uniformly distributed in the azimuth angle and the cosine
3

of the zenith angle to assure a uniform sky coverage). We created
three datasets with a comparable number of triggered events. The first
dataset only contains hadronic showers – i.e., particle cascades initiated
by the breakup of the nucleus – which are initiated by all neutrino
interactions in the ice. The Askaryan signal is generated using the fre-
quency domain parameterization Alvarez2009 [37,38] as implemented
in NuRadioMC [26]. This setup was used in previous analyses that used
the forward folding technique [18,25]. This dataset is referred to as
Alvarez2009 (had.) in the following.

The second dataset also contains only hadronic showers but uses
a more precise calculation of the Askaryan radiation: The ARZ2020
model calculates the Askaryan radiation from a library of charge-excess
profiles of the particle cascades in the time domain [26], following the
approach in [39,40], which matches a microscopic MC simulation at
a level of ±3%. This dataset is referred to as ARZ2020 (had.) in the
following.

The third dataset contains electron neutrino charged-current (𝜈𝑒-
CC) interactions that produce both a hadronic shower as well as an
additional electromagnetic shower through the outgoing electron. We
again use the ARZ2020 model with the shower library available in
NuRadioMC, which allows a proper simulation of the LPM effect that
leads to a spatial delay of the electromagnetic shower with respect
to the hadronic shower, and for increasing energy also to multiple
spatially displaced sub-showers. We expect that this will complicate
the reconstruction performance. Due to this additional complication,
electron charged-current interactions were so far ignored in previous
analyses. This dataset is referred to as ARZ2020 (had. + EM) in the
following.

The observed radio signals only depend on the shower properties.
Therefore, we will train the deep neural network to determine the
shower energy instead of the neutrino energy. The amount of energy
transferred from the neutrino into the shower is a stochastic process
and can be estimated from theory. For non-𝜈𝑒-CC interactions, only a
part of the neutrino energy is transferred to the particle shower. This
stochastic process also introduces an irreducible uncertainty into the
conversion from hadronic shower energy back to the neutrino energy
which amounts to a standard uncertainty of 0.3 in log10(𝐸), i.e., a factor
of two on a linear scale [16]. This provides a target resolution for the
shower energy. For 𝜈𝑒-CC interactions, the complete neutrino energy is
deposited in the ice but the relative distribution into the hadronic and
electromagnetic shower undergoes the same stochastic process. Hence,
the shower energy equals the neutrino energy. We note that due to the
LPM effect, the showers do not develop in phase (see discussion of the
LPM effect above) which in practice often means that only a part of the
shower energy is measured.

The likelihood of triggering the detector increases quickly with
neutrino energy as the signal amplitude increases linearly with energy.
We made an effort to simulate more low-energy neutrinos to obtain a
similar number of triggered events across all energies, but our dataset
is still biased toward high energies, as can be seen in Fig. 2. In
this figure, we show the number of triggered events as a function of
the shower energy which shows another interesting property. For the
ARZ2020 (had. + EM) dataset the shower energy equals the neutrino
energy, and the number of triggered events steadily increases from
1 × 1017 eV to 1 × 1019 eV, as expected. In contrast, for the other
two datasets, the distribution extends to lower energies because the
shower energy is always lower than the neutrino energy. For the same
reason, the number of events decreases at the high-energy end because
it is unlikely that the complete neutrino energy is deposited into the
hadronic shower. We expect that this uneven event distribution has a
negative impact on the energy reconstruction at low energies due to an
underrepresentation in the training dataset. In total the Alvarez2009
(had.) dataset consists of 8.2 × 106 events, the ARZ2020 (had.) dataset
consists of 4.1 × 106 events, and the ARZ2020 (had. + EM) consists of
5 × 106 events.
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Fig. 3. Two examples of the training dataset. The traces show the recorded voltages in the 5 antennas as a function of time. The upper 4 panels are the signal in the 4 LPDAs,
and the bottom panel shows the signal in the dipole antenna. Left: example at a particularly high signal-to-noise ratio, where the direct and reflected pulse is clearly visible in
the dipole antenna. Right: a more typical example at a low signal-to-noise ratio.
Fig. 4. Sketch of the structure of the developed neural network. The labels are specified in Table 1. The relative sizes of the convolutional layers 𝐶𝑖 hint at the layers’ output
dimensions, while the relative sizes of the dense layers 𝐷𝑖 hint at the neuron amount in each layer.
The training data consists of the recorded voltages as a function of
time of the 5 antennas. We simulated a length of the time trace of 256 ns
with a time binning of 0.5 ns which resulted in 512 samples per antenna.
The shape of one event is (5, 512). The data is normalized by using μV
as the base unit which brings the RMS of the data to (10). The mean
of the dataset is already zero, as the voltages fluctuate around the zero
baseline. Two examples are shown in Fig. 3.

3. Direction reconstruction

In this work, we use a neural network architecture that follows the
VGG model [41]. The general idea of this architecture is the repeated
application of convolutional layers followed by a single pooling, respec-
tively. After a few of these blocks, the data is flattened and several fully
connected layers are added to shrink the information into the output
nodes. For a detailed description of the different layers, the reader is
referred to textbooks, e.g., [28,29]. The VGG model was developed
for image recognition. Similarly, one can interpret our data as one-
dimensional images where the voltage as a function of time corresponds
to the color amplitude as a function of spatial pixel position.

The usage of convolutional layers matches the physical properties
of the data. The pulse shape contains a lot of information about the
neutrino properties. Traditionally, template matching techniques have
been used to identify neutrino-induced radio pulses [10]. Convolutional
layers can be thought of a more versatile and capable template where
the subsequent application of small filters can match a multitude of
different waveform shapes. This allows the neural network to identify
and characterize the signal pulses that are invariant in time (cf. Fig. 3).
Because the signals’ relative time and amplitude differences carry
information, we apply the convolution filters independently to each
4

antenna: i.e., we use an input shape of (5, 512, 1) corresponding to 5
antennas and 512 samples. The last component is 1 as the only available
information from each antenna is the voltage amplitude (unlike three
color channels in the case of images). We share the filter weights over
the five antennas because the signal shapes are expected to be similar
— at least in the four LPDA antennas. A future improvement could be
to have an individual set of filters for the dipole antenna, however, we
expect the low-level features (e.g. sharp rising and falling amplitudes)
to still be similar, independent of the antenna type.

An overview of the neural network architecture is presented in
Fig. 4, with a more detailed description presented in Table 1. In the
following, we first describe the best-performing model architecture to
provide a good overview of the model before describing how we arrived
at this particular model.

The convolutional blocks consist of three convolutional layers, fol-
lowed by pooling layers. The convolutional layers are configured to
use padding, such that the dimensionality does not change following a
convolutional layer. The filter size of the convolutional layers is (1, 5),
which will result in the model scanning each antenna trace separately
with the same filter. The average pooling layer has a pool size of 4,
meaning it will decrease the trace’s dimensions by a factor of 4 by
taking the average of blocks of 4 samples. For example, in 𝐶1, the trace’s
length is reduced from 512 to 128 samples following the pooling layer.
The number of filters is doubled in each block compared to the previous
block. This is a very common technique in developing convolutional
neural network models with pooling layers and can be seen as a way to
mitigate underfitting due to the risk of the model becoming too simple
if the dimensions decrease a lot, following the pooling layers.

After four convolutional blocks, we apply a batch normalization
and flatten the data tensor to a vector before applying a block of
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Table 1
Detailed structure of the model that was developed. The labels correspond to the labels used in Fig. 4. The dimensions specify the output
dimensions of each layer, and the parameters specify the number of trainable parameters for each layer. Note that B has 512 trainable
parameters, but also 512 non-trainable parameters.

Label Layer Dimensions Parameters

𝐼 Input layer (5, 512, 1) 0

𝐶1 Conv2D (32 filters, kernel size (1,5)) (5, 512, 32) 192
Conv2D (32 filters, kernel size (1,5)) (5, 512, 32) 5152
Conv2D (32 filters, kernel size (1,5)) (5, 512, 32) 5152
AveragePooling2D (5, 128, 32) 0

𝐶2 Conv2D (64 filters, kernel size (1,5)) (5, 128, 64) 10 304
Conv2D (64 filters, kernel size (1,5)) (5, 128, 64) 20 544
Conv2D (64 filters, kernel size (1,5)) (5, 128, 64) 20 544
AveragePooling2D (5, 32, 64) 0

𝐶3 Conv2D (128 filters, kernel size (1,5)) (5, 32, 128) 41 088
Conv2D (128 filters, kernel size (1,5)) (5, 32, 128) 82 048
Conv2D (128 filters, kernel size (1,5)) (5, 32, 128) 82 048
AveragePooling2D (5, 8, 128) 0

𝐶4 Conv2D (256 filters, kernel size (1,5)) (5, 8, 256) 164 096
Conv2D (256 filters, kernel size (1,5)) (5, 8, 256) 327 936
Conv2D (256 filters, kernel size (1,5)) (5, 8, 256) 327 936
AveragePooling2D (5, 2, 256) 0

𝐵 BatchNormalization (5, 2, 256) 512

𝐹 Flatten (2560) 0

𝐷1 Dense (1024 units) (1024) 2 622 464
𝐷2 Dense (1024 units) (1024) 1 049 600
𝐷3 Dense (512 units) (512) 524 800
𝐷4 Dense (256 units) (256) 131 328
𝐷5 Dense (128 units) (128) 32 896
𝐷6 Dense (3 units) (3) 387

𝑁 Normalization (3) 0

𝑂 Output layer (3) 0

Total: 5 449 027
A

fully connected layers. The dense block consists of 6 fully connected
ayers. The size of the fully connected layers decreases for layers
urther along the network and reduces the network to the 3 output
eurons. The fully connected layers compile the information gathered
y the convolutional layers, especially in regard to the time difference
etween the pulses in the 5 antenna traces.

We encode the neutrino direction as a three-dimensional cartesian
nit vector that points in the direction of the neutrino origin. This is
ften the better choice compared to the zenith and azimuth angle in
pherical coordinates due to the correlation between the two angles and
he singularities at the poles. Therefore, we add an L2-normalization
ayer to make sure that the network prediction is a unit vector.

.1. Training and optimization of network architecture

We use tensorflow/Keras to train the neural network [42,43]. We
eserved 300,000 events for an independent test dataset. We used
7% of the remaining data for the training dataset and 13% for the
alidation dataset. The datasets Alvarez2009 (had.), ARZ2020 (had.),
nd ARZ2020 (had. + EM) contained 8.2 × 106 events, 4.1 × 106 events,
nd 5 × 106 events respectively. Each event has a size of 20 kB resulting
n data volumes between 82GB and 160GB per dataset. The neural
etwork is trained independently for each data set. The training dataset
s so large that it does not fit into memory. To avoid slowing down the
raining process due to I/O and data preprocessing times, we developed
data pipeline based on the tensorflow.data class, which preloads and

preprocesses the data on several cores. We used a batch size of 64 and
ran the training on an NVIDIA Quadro RTX 6000 GPU resulting in a
training time of roughly 10min per epoch. We always made sure that
the training converged and that no overfitting took place which took a
few hours of training time.

To train the model, we use the optimizer Adam [44] with a learning
rate of 5 ⋅ 10−5 and the mean absolute error (MAE) error as loss func-
tion. The latter choice is motivated by the expectation that a certain
5

d

percentage of the events will have too low signal quality to enable a
good reconstruction. The mean-squared error (MSE) loss will put more
weight on events that might intrinsically be harder to reconstruct. We
do not want these events to dominate the training. In a future analysis,
quality cuts will be developed to remove those events from the dataset.
We found that for this particular task of direction reconstruction, the
MAE loss performed better than the MSE loss.

Through many experiments, we tuned the network inference perfor-
mance via an iterative procedure by testing different hyperparameters
but staying within the general VGG-like architecture of convolutional +
pooling blocks followed by fully connected layers. The best-performing
network was set as the one to be compared against for further exper-
iments. During the optimizations, model parameters such as learning
rate, number of convolutional and fully connected layers, activation
functions, batch normalization use, loss functions, choice of the opti-
mizer as well as convolutional layer stride length, filter size, and filter
amount were tested in order to find the best-performing network struc-
ture and hyperparameters. We tested the parameters multiple times
during the optimization to make sure that the values were not derived
from a previous minimum that had moved when other parameters were
tuned. When additional experimentation was performed with little or
no improvements to the model performance, the optimization of the
network was done. We considered other factors as well such as the
number of trainable model parameters, where a model with a smaller
number of trainable parameters was chosen when deciding between
models that had equal performance. This made the model less complex,
while also decreasing the required time for training and inference.

3.2. Reconstruction resolution and dependence on event properties

In the following, we show the results of the direction reconstruction
for the three different datasets Alvarez2009 (had.), ARZ2020 (had.), and
RZ2020 (had. + EM). All results are evaluated for the independent test

ata set of 300,000 events (cf. Section 3.1). Fig. 5 shows histograms
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Fig. 5. Space angle difference for the three datasets. A Moffat/King function gives a good description of the point spread function. The vertical dashed line shows the position of
the 68% quantile. The overflow in the legend specifies the fraction of events that have a space angle difference larger than 20°.
w

of the space angle difference 𝛥𝛹 between the true and reconstructed
eutrino direction. We quantify the angular resolution by quoting the
osition of the 68% quantile 𝜎68 which is also specified in the graphs.

The point spread function can be described with a Moffat/King function
that can be thought of as a Gaussian with extended tails [45–47] and
is given by:

𝑓 (𝑥;𝐴, 𝜎, 𝛾) = 𝐴 𝑥
2𝜋𝜎2

(

1 − 1
𝛾

)[

1 + 1
2𝛾

𝑥2

𝜎2

]−𝛾
(1)

We find that the narrow part of the distribution is described with a
sigma of 0.5° to 0.6° for the hadronic datasets which increases to 0.8° for
he more challenging 𝜈𝑒-CC dataset. Due to the tails of the distribution,
he 68% quantiles are at 4° to 5°. This finding highlights the advantage
f a DNN for event reconstruction. The complex correlations between
eutrino direction and observed radio flashes of 𝜈𝑒-CC interactions are
earned well and are only slightly worse than for the simpler non-
𝑒-CC interactions. This is a significant improvement over previous
econstruction methods that fail to reconstruct 𝜈𝑒-CC interactions [18,
5].

The average resolution strongly depends on the event distribution,
n particular the number of events as a function of energy (cf. Fig. 2).
herefore, the average resolution obtained on the test data set needs
o be interpreted with caution. A better way of showing the resolution
s by quoting the resolution in bins of neutrino energy and/or signal-
o-noise ratio (SNR) which is presented in Figs. 6 and 7. We define
he SNR of an event as the maximum of the absolute value of the
PDA traces, divided by the noise floor, which is approximately 10 μV.
he maximum signal amplitude is determined from noisy traces which
esults in typical SNR values of 3.5 or higher. Smaller values are rare.
e observe an increase in performance with increasing energy and SNR

s expected. The SNR and energy is weakly correlated with higher-
nergy events having more often high SNRs than low-energy events.
e show the correlation in Fig. 8. However, in each energy bin, the

NR distribution still peaks at low SNRs, i.e., most events are still
easured with signals close to the trigger threshold independent of the
eutrino energy. Therefore, the improvement with energy cannot be
olely explained by an increasing SNR.

The three datasets’ energy dependence gives interesting insights.
verall, the ARZ2020 (had.) dataset performs best, especially at higher
nergies. The Alvarez2009 (had.) dataset performs worse at almost all
nergies which was a surprise at first. Our initial expectation was a
etter performance because the simpler Alvarez2009 emission model

should be easier to model which is indeed the case for traditional
reconstruction techniques [18,25]. We speculate that the reason for
the better performance of the ARZ2020 emission model is that it
generates more information than the neural network is able to learn.
The Alvarez2009 model corresponds to a frequency domain parame-
terization where the phase was assumed to be a constant 90° at all
6

Fig. 6. Angular resolution 𝜎68 as a function of neutrino energy for the three datasets.

frequencies leading to perfectly symmetric pulse forms. However, a
more precise calculation of the radio emission in the time domain (as
done in ARZ2020) shows additional structures in the pulse shape that
depend on the even geometry (see. e.g. [26,39,40]). This highlights the
advantages of deep neural networks for event reconstruction.

The ARZ2020 (had. + EM) dataset performs slightly worse at larger
neutrino energies where the LPM effect becomes relevant and the
stochasticity in the shower development complicates the reconstruc-
tion. Nevertheless, the resolution is just one to two degrees worse than
for the simpler hadronic showers which is encouraging as traditional
reconstruction techniques failed to reconstruct this event class with
good resolution [18,25]. At low energies where the LPM effect is
negligible, the performance is similar to the ARZ2020 (had.) dataset.
The lowest energy bins are difficult to interpret because of low statistics
in these bins. Another factor that influences that dependence on the
energy is the different statistics in the training dataset. Part of the
reason for the worse performance at lower energies might just be an
underrepresentation in the training dataset.

The resolution as a function of the signal-to-noise ratio of Fig. 7
shows a similar trend. Ignoring the first bin which has poor statistics,
the resolution improves with increasing SNR. The performance of the
ARZ2020 (had.) dataset is the best over the entire range of SNR values,
followed by the Alvarez2009 (had.) dataset and the ARZ2020 (had. +
EM) dataset.

So far we assumed that we know the event type, i.e., we recon-
structed 𝜈𝑒-CC events with the neural network trained on 𝜈𝑒-CC events,
and the same for non 𝜈𝑒-CC events. The signature of 𝜈𝑒-CC interactions
allows to distinguish them from non-𝜈𝑒-CC interactions, [27], however,

ith uncertainties. Therefore, as we do not always know the event type,
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Fig. 7. Angular resolution 𝜎68 as a function of signal-to-noise ratio for the three
datasets.

Fig. 8. Correlation between neutrino energy and signal-to-noise ratio. Each column is
normalized to 1. Here, the test data set of the ARZ2020(had. + EM) model is shown
that is also representative for the other datasets.

we also studied the deterioration in reconstruction performance when
the wrong network is used for reconstruction. The results are presented
in Fig. 9. We observe that the model trained on 𝜈𝑒-CC events performs
better on non-𝜈𝑒-CC events than the other way around. This is expected
because the 𝜈𝑒-CC dataset also contains events that are dominated by
the hadronic shower and, thus, are similar to the non-𝜈𝑒-CC dataset.
The ARZ2020 (had. + EM) network reconstructs the ARZ2020 (had.)
dataset almost as good as the ARZ2020 (had. + EM) dataset it was
trained on, with a similar performance above 𝐸𝜈 > 1 × 1018 eV and a
deterioration of approx. 1° for smaller energies. However, the ARZ2020
(had.) network still performs approx. 1° better on the ARZ2020 (had.)
dataset over the full energy range. Thus, if the event type is now known,
it is best to use the ARZ2020 (had. + EM) network but it will lead to a
deterioration in angular resolution of approx. 1° for non-𝜈𝑒 interactions.

We can also obtain an estimate of the systematic uncertainty of the
Askaryan emission model by analyzing the Alvarez2009 (had.) dataset
with the network trained on the ARZ2020 (had.) dataset and vice versa.
Because we know that the ARZ2020 model is more accurate, the dete-
rioration of the angular resolution does not represent the systematic
uncertainty of the emission model but rather sets an upper bound. The
result is presented in Fig. 10. We find that the Alvarez2009 network
works better on the ARZ2020 dataset than the other way around. A
possible explanation for this behavior is that the Alvarez2009 network
only learned simple features that are also present in the ARZ2020
dataset. In contrast, the ARZ2020 network learned to use second order
7

Fig. 9. Angular resolution 𝜎68 as a function of neutrino energy for an incorrect guess
of the event type, i.e., the neural network trained on 𝜈𝑒-CC events is evaluated on the
non-𝜈𝑒-CC dataset and vice versa. Filled markers show the correct combinations, empty
markers the incorrect combinations.

Fig. 10. Angular resolution 𝜎68 as a function of neutrino energy for an incorrect
combination of the Askaryan emission model, i.e., the neural network trained on the
Alvarez2009 (had.) dataset is evaluated with the ARZ2020 (had.) dataset and vice
versa. Filled markers show the correct combinations, empty markers the incorrect
combinations.

features that give it a better performance than the Alvarez2009 network
(see discussion above and Figs. 6 and 7) but as these features are not
present in the Alvarez2009 dataset it performs worse when applied to
this dataset.

3.3. Comparison to previous results

A comparison with the work of [18,20] indicates that our DNN
reconstruction still has room for improvement. The work of [18,20]
used the forward folding technique [24] and found a 3° resolution for
hadronic showers (Alvarez2009 (had.)) with little energy dependence.
The analysis however assumed that the neutrino vertex position was
known and only simulated uncertainties of the core position along the
signal trajectory, whereas our DNN uses only the raw data without
any additional information. But as this is a reasonable assumption,
we expect that the limit of the DNN reconstruction is not yet reached
and can be further improved in future work. For 𝜈𝑒-CC interactions, no
results on direction reconstruction have been reported so far because of
the difficulty of modeling the LPM effect in traditional reconstruction
methods [18,25].
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Fig. 11. Energy difference histograms for the 3 datasets.
Fig. 12. Predicted energy versus true energy for the 3 datasets. Each column is normalized such that the values sum to unity. The lower panels show the number of events in
each energy bin.
4. Energy reconstruction

The structure of the neural network used for energy reconstruction
is very similar to the one used for direction reconstruction, with the
most notable difference of only one output node representing the
reconstructed shower energy. In all other regards, the models used for
direction and energy reconstruction are identical, which illustrates the
benefits of using machine learning for these kinds of tasks. We perform
the training in the logarithm of the shower energy, we use the mean
squared error (MSE) as the objective function and otherwise use the
same settings as before. In addition, we utilized the ReduceLROnPlateau
callback in Keras [48] to reduce the learning rate when the loss
stagnated.

After the neural network was trained until convergence, we evaluate
the performance on the independent test dataset. We show the resulting
energy resolution for all three datasets in Fig. 11. We find similar results
for all three datasets with an average standard deviation of approx. 0.3
in the log10(𝐸shower ) which translates to a factor of two on a linear scale.
This uncertainty is almost identical to the intrinsic uncertainty from
inelasticity fluctuations that we defined as the target resolution. The
stat boxes in Fig. 11 also list the 68% quantiles around the median
which are smaller than the standard deviation, indicating the presence
of non-Gaussian tails. These events could potentially be identified and
removed through quality cuts in future work. The resolution of the
ARZ2020 (had. + EM) dataset is only slightly worse (STD = 0.33 vs.
0.31), although the LPM effect and interference with the hadronic
shower make this reconstruction more challenging. This result again
8

highlights the usefulness of deep neural networks for such a complex
reconstruction task.

In Fig. 12 we show the correlation between predicted and true
shower energy. All three datasets show a clear correlation. For the
had. datasets, a significant bias for shower energies below 1017.5 eV is
visible. At low energies, the DNN overestimates the true energy. Also
at the high-energy end, a systematic underestimation of the energy is
visible. The scatter around the identity line for the ARZ2020 (had. +
EM) dataset is a bit larger, and a similar bias toward low energies is
present but less visible from the figure because of the more restricted
shower energy range.

To gain further insight into the energy dependence, we show the
mean and standard deviation in bins of the true shower energy in
Fig. 13. We find only a weak energy dependence for the standard
deviation but a large energy-dependent bias. At low shower energies,
the shower energy is overpredicted and at the high-energy end it is
underpredicted. In the following, we discuss two approaches to reduce
the bias.

In the data used for training, validating, and testing the neural
networks, the events are not distributed uniformly across the energy
range, as seen in the lower panels of Fig. 12. This will affect the network
such that it becomes good at reconstructing events at energies where
there are many events in the training dataset, and it will perform worse
for events where there are few events. This affects low-energy events
the most, as these are the rarest. One possible solution to this bias
against low-energy events is to use weights in the loss function, such
that it puts higher weights on the events that are rarer when compared
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Fig. 13. Mean and STD of the predicted shower energy in bins of true shower energy.
Fig. 14. Mean and STD of the predicted shower energy in bins of true shower energy after re-weighting of the loss function during training with a maximum weight of 10.
A

e

o more common events. This loss function weight is used for both
raining and validation. As an example, if a shower energy bin has half
he number of events when compared to another shower energy bin in
ig. 2, then the network will weigh the loss function twice as much
or events in that bin as compared to the other bin. This makes it so
hat the network’s weights also take in consideration the less common
vents, even though they represent a smaller proportion of the training
vents. We restrict the maximum weighting factors to a range between
and 10 to avoid single events dominating a batch.

Fig. 14 shows equivalent plots to Fig. 13 for the model that used re-
eighting of the loss function during training. It is evident that using

e-weighting of the loss function reduces the energy-dependent bias
lthough it does not remove it completely. However, it also makes
he network perform slightly worse. This is because the network is
ow adapting to events that are not as common instead of focusing
n the most common events, which leads to the more common events
ot being reconstructed as well as previously. In future work, we
ecommend making a larger effort for an equal representation of all
nergies in the datasets to mitigate this effect further.

Another method to make the bias less significant is to adjust the
redicted shower energies for the bias on an event-by-event basis. Once
prediction has been made using the ordinary model, the average bias
alues at the reconstructed energy from Fig. 13 are used as an estimate
f the bias. This bias is then subtracted from the predicted energy,
hich yields a bias-adjusted value of the predicted energies. However,
ecause the bias depends on the true shower energy which is unknown,
nd because the predicted shower energy has significant uncertainties,
his bias correction will have significant uncertainties which we see in
he resulting distributions shown in Fig. 15. As we expect, the bias is
9

significantly reduced and smaller than what we obtained using the re-
weighting approach. However, the uncertainty (standard deviation) is
also increased substantially which disfavors using this method.

As in the previous section, we also study how much the reconstruc-
tion performance deteriorates if we do not know the event type. The
results are presented in Fig. 16. We find that the ARZ2020 (had. +
EM) network performs equally well on the ARZ2020 (had.) dataset than
on the ARZ2020 (had. + EM) dataset it was trained on, whereas the
RZ2020 (had.) network performs worse on the ARZ2020 (had. + EM)

dataset. Above 3 × 1018 eV, the ARZ2020 (had. + EM) network performs
ven better on the ARZ2020 (had.) dataset than the ARZ2020 (had.)

network itself which we attribute to the larger amount of training data
at high energies in the ARZ2020 (had. + EM) dataset. At energies below
1 × 1018 eV, the ARZ2020 (had.) network still performs better (cf.
Fig. 13). Hence, there is still a benefit in knowing the event type.

We also repeat our estimation for an upper bound of the system-
atic uncertainty of the Askaryan emission model by exchanging the
ARZ2020 (had.) and Alvarez2009 (had.) networks/datasets. The results
are presented in Fig. 17. As for the direction reconstruction, we find
that the Alvarez2009 (had.) network works better on the ARZ2020
(had.) dataset than the other way around and attribute it to the same
reason.

5. Summary and outlook

We presented the first end-to-end reconstruction of the neutrino di-
rection and energy from shallow radio detector data using a deep neural
network (DNN). The only information available to the DNN was the
raw voltage output of the five antenna receivers. The best-performing
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Fig. 15. Mean and STD of the predicted shower energy in bins of true shower energy after bias correction (see text for details).
Fig. 16. Energy resolution (bias left, standard deviation right) as a function of neutrino energy for an incorrect guess of the event type, i.e., the neural network trained on 𝜈𝑒-CC
events is evaluated on the non-𝜈𝑒-CC dataset and vice versa. Filled markers show the correct combinations, empty markers the incorrect combinations.
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NN architecture was a combination of several convolution blocks
ollowed by fully connected layers. The DNN was trained and tested
ith extensive datasets of several million events of expected radio

ignals from neutrino interactions with energies between 1 × 1017 eV
nd 1 × 1019 eV at the South Pole. Throughout this work we considered
ll triggered events: i.e., we did not apply any quality cuts with respect
o trigger level.

We studied three datasets that differed by how the Askaryan radi-
tion was calculated and by the type of neutrino interaction. To be
omparable with previous work, one dataset was restricted to only
adronic showers and used a simple frequency domain parameteriza-
ion of the Askaryan emission. The second dataset improved on that by
sing a detailed time-domain calculation of the Askaryan signal. The
hird dataset considered the challenging event class of electron neutrino
harged current 𝜈𝑒-CC interactions where the shower development is
mpacted by the LPM effect leading to the interference of multiple
article cascades. Previous studies often ignored this case or found that
he reconstruction performance deteriorated significantly. Our work
olved this problem.

The resolution of the neutrino direction (the angular difference
etween the true and reconstructed direction) shows a narrow peak at
(1°) with extended tails. The point spread function can be described
ell with a Moffat/King function that can be thought of as a Gaussian
ith extended tails. We find that the narrow part of the distribution

s described with a sigma of 0.6° which increases to 0.8° for the more
hallenging 𝜈𝑒-CC dataset. Due to the tails of the distribution, the
8% quantiles are at 4° and 5° respectively. This finding highlights
he advantage of a DNN for event reconstruction which is able to
10

W

earn the complex correlations of 𝜈𝑒-CC interactions between neutrino
irection and observed radio flashes. The performance is only slightly
orse than for the simpler non-𝜈𝑒-CC interactions which is a significant

mprovement over previous reconstruction methods. We find the angu-
ar resolution improves with both neutrino energy and signal-to-noise
atio. The energy dependence is partly due to an underrepresentation
f low-energy events in the training dataset.

We also find promising results for the energy reconstruction. The
NN achieved an average resolution of a factor of 2 in shower energy
𝜎 ≈ 0.3 in log10(𝐸)) for all triggered events: i.e., without applying
ny quality cuts with respect to trigger level. The reconstruction un-
ertainty matches the science requirements of UHE neutrino detectors
nd is below the intrinsic uncertainty from inelasticity fluctuations. The
econstruction also works surprisingly well for the more complicated
𝑒-CC interactions. We find a bias toward the low-energy end, where
he DNN overpredicts the shower energy. This is again partly due to
he underrepresentation of these events in the training dataset which
e plan to address in future work.

Although these are promising results, this work is just the beginning
f exploiting deep learning for event reconstruction of radio detector
ata. Additional network architectures can be exploited to potentially
mprove the reconstruction performance such as recurrent neural net-
orks for encoding the time domain waveforms. Furthermore, we plan

o extend the DNN with a prediction of the event-by-event uncertainty
hich is needed for many physics analyses. The simplest way to achieve

hat would be to assume a Gaussian distribution of the uncertainty
nd to let the network predict the corresponding sigma parameter.
hile Gaussian errors are an acceptable approximation of the energy
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Fig. 17. Energy resolution (bias left, standard deviation right) as a function of neutrino energy for an incorrect combination of the Askaryan emission model, i.e., the neural
network trained on the Alvarez2009 (had.) dataset is evaluated with the ARZ2020 (had.) dataset and vice versa. Filled markers show the correct combinations, empty markers the
incorrect combinations.
uncertainty, the expected angular uncertainties are not Gaussian but
banana-shaped regions in the sky [17]. In future work, we will use
normalizing flows [49] to directly predict the event-by-event probability
distribution instead of a single direction plus uncertainty [50].

Another critical aspect is the accuracy of the training data. With the
development of NuRadioMC [26] and its ongoing improvements (see
e.g., [51–54]), a lot of work has already been done, but more work is
needed to ensure the dataset’s validity: i.e., that it correctly resembles
real data. Our study of the impact of different Askaryan emission
models already explored a part of potential systematic uncertainties
of the MC dataset, but more work is needed to systematically study
uncertainties of the simulation code as well as to test robustness against
experimental uncertainties.

The work presented here also opens up new ways to optimize
future detectors. Currently, optimization with respect to the reconstruc-
tion performance is often not possible as it takes too much time to
adapt traditional reconstruction techniques to changing detector lay-
outs. With deep learning based reconstruction, the network architecture
can be tuned once, and then retrained on different detector designs
quickly to evaluate the reconstruction performance as long as enough
training data can be provided. Additional efforts to exchange the time-
consuming MC simulation with fast surrogate models – e.g., by using
generative adversarial networks in combination with the reconstruction
methods developed here – would allow the construction of a fully-
differentiable pipeline that enables an end-to-end optimization of the
detector design: e.g., the position and orientations of the antennas of a
shallow radio detector station [55].
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