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A B S T R A C T   

Background and aim: Experimental studies show that short-term exposure to air pollution may alter cytokine 
concentrations. There is, however, a lack of epidemiological studies evaluating the association between long- 
term air pollution exposure and inflammation-related proteins in young children. Our objective was to 
examine whether air pollution exposure is associated with inflammation-related proteins during the first 2 years 
of life. 
Methods: In a pooled analysis of two birth cohorts from Stockholm County (n = 158), plasma levels of 92 systemic 
inflammation-related proteins were measured by Olink Proseek Multiplex Inflammation panel at 6 months, 1 
year and 2 years of age. Time-weighted average exposure to particles with an aerodynamic diameter of <10 μm 
(PM10), <2.5 μm (PM2.5), and nitrogen dioxide (NO2) at residential addresses from birth and onwards was 
estimated via validated dispersion models. Stratified by sex, longitudinal cross-referenced mixed effect models 
were applied to estimate the overall effect of preceding air pollution exposure on combined protein levels, 
“inflammatory proteome”, over the first 2 years of life, followed by cross-sectional protein-specific bootstrapped 
quantile regression analysis. 
Results: We identified significant longitudinal associations of inflammatory proteome during the first 2 years of 
life with preceding PM2.5 exposure, while consistent associations with PM10 and NO2 across ages were only 
observed among girls. Subsequent protein-specific analyses revealed significant associations of PM10 exposure 
with an increase in IFN-gamma and IL-12B in boys, and a decrease in IL-8 in girls at different percentiles of 
proteins levels, at age 6 months. Several inflammation-related proteins were also significantly associated with 
preceding PM10, PM2.5 and NO2 exposures, at ages 1 and 2 years, in a sex-specific manner. 
Conclusions: Ambient air pollution exposure influences inflammation-related protein levels already during early 
childhood. Our results also suggest age- and sex-specific differences in the impact of air pollution on children’s 
inflammatory profiles.   

1. Introduction 

Air pollution is a serious public health issue globally. Particulate air 

pollution has been associated with increased morbidity including 
chronic and acute respiratory diseases, cardiovascular diseases, and lung 
cancer (Dominski et al., 2021; Lee et al., 2021). Previous studies have 
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shown that children are particularly sensitive to the adverse effects of air 
pollution and that exposure during infancy is associated with increased 
risk of asthma, allergy and impaired lung function up to school age 
(Gruzieva et al. 2012, 2013; Schultz et al., 2012), adolescence (Gehring 
et al., 2015; Schultz et al. 2016a, 2016b), and even young adulthood 
(Wang et al. 2021a, 2021b). Our recent findings suggest that early-life 
exposure to air pollution might be associated with lung function 
changes already at the age of 6 months (Lundberg et al., 2022). 
Nevertheless, the understanding of involved mechanisms remains 
limited. Findings from experimental models suggest that oxidative 
stress, inflammation, and mitochondrial dysfunction may contribute to 
adverse health effects of particulate exposure (Cassee et al., 2013; Nir
anjan and Thakur, 2017). Epidemiological studies on air pollution 
exposure and blood markers of systemic inflammation have so far been 
largely based on adult populations and demonstrated mixed results (Tsai 
et al., 2019; Xu et al., 2022). 

Only very few epidemiological studies investigated the association 
between air pollution and levels of inflammatory biomarkers in chil
dren. Positive associations have been observed between long-term air 
pollution exposure and increased serum levels of IL-6, IL-10, as well as 
IL-8 levels in nasal lavage (Barraza-Villarreal et al., 2008; 
Calderón-Garcidueñas et al., 2013; Klumper et al., 2015). In contrast, 
several other pediatric studies reported a lack of association with in
flammatory markers (Armijos et al., 2015; Brown et al., 2012; Li et al., 
2019c). Most of the existing studies on children included school-age 
children or adolescents, and data on young children are scarce. Prena
tal exposure to moderate levels of air pollution may lead to changes in 
cord blood cytokine levels in healthy infants, including reduced IL-10, as 
well as increased IL-1β and IL-6 (García-Serna et al., 2022; Latzin et al., 
2011). Furthermore, lower production of IL-6, TNF-α, and IL-10 in cord 
blood mononuclear cells from newborns prenatally exposed to higher 
levels of PM2.5 has been demonstrated in newborns from the US Project 
Viva cohort (Hahn et al., 2021). The inconsistency in previous findings 
may partially be attributed to methodological differences (i.e., sample 
size, model specifications, exposure assessment) and to the actual levels 
of exposure to air pollutants. 

Additionally, the inflammatory response to air pollution may vary 
depending on the child’s sex. For example, in the Swedish birth cohort 
BAMSE, air pollution exposure during the first year of life was positively 
associated with IL-6 only in boys, whereas it was negatively associated 
with IL-2 among girls (Gruzieva et al., 2017). Adult studies have also 
shown that the expression of inflammatory proteins following air 
pollution exposure differed by sex (Cabello et al., 2015; Hoffmann et al., 
2009). 

The present study aims to expanding the limited knowledge on 
whether air pollution exposure induced changes in systemic inflamma
tory patterns can be detected already during infancy and early child
hood. Also, unlike most previous studies focusing on a single or a limited 
number of inflammatory markers measured at one point in time, we 
considered a wide range of inflammatory markers measured repeatedly 
throughout early childhood, allowing detailed characterization of in
flammatory profiles individually as well as combined, i.e. as “inflam
matory proteome”. 

2. Methods 

2.1. Study design and population 

The present study is based on a pooled analysis of two Swedish birth 
cohorts: the Etiological Mechanism of air pollution effects on the Infant 
Lungs (EMIL) and the Born into Life (BiL) cohort. The EMIL cohort was 
set up to investigate biological mechanisms behind the adverse respi
ratory health effects of air pollution in children during early life. Parents 
of children born from 2014 to 2017 in Stockholm city, identified 
through the Swedish birth register, were invited to participate in the 
study. The recruitment strategy focused on households residing on 

streets with low or high air pollution concentration. Low air pollution 
was defined as particulate matter with a diameter of <10 μm (PM10) 
levels below 35 μg/m3 as 90-percentile of daily averages, while high air 
pollution was defined as PM10 levels exceeding 50 μg/m3 as 90-percen
tile of daily averages, which is the current air quality standard in the 
European Union. The exclusion criteria were parents with poor 
comprehension of the Swedish language; planning to move within 6 
months; child with a severe disease that could interfere with the in
vestigations; twins; premature birth (<37 weeks); or low birth weight 
(<2500 g). At the age of 3 months, parents answered a baseline ques
tionnaire on demographic and residence characteristics, parental 
smoking habits, and past medical history of the child, both parents, and 
siblings. Follow-up questionnaires were submitted when the child was 1- 
and 2-years-old. Further, the children underwent clinical examinations, 
including blood sampling at ages 6 months (n = 92), 1 (n = 101) and 2 
years (n = 100). A total of 108 children provided blood sample at least 
once. The same protocol was followed, and the same team of research 
nurses collected all blood samples. Also, if the child had symptoms 
indicating infection at the blood sampling day, the procedure was 
postponed until the child recovered. 

The Born into Life cohort aims to investigate how conditions before, 
during and after pregnancy affect health during early childhood (Smew 
et al., 2018). The Born into Life cohort recruited women from the large 
cohort study LifeGene, who became pregnant and lived in Stockholm 
County (Almqvist et al., 2011). The children were born between 2011 
and 2013 and informed consent was given by both parents. Similar to 
the EMIL birth cohort, children in the Born into Life cohort were fol
lowed up at 6 months, 1 and 2 years of age with parental questionnaires 
and clinical examinations. Blood sampling for protein analyses was 
carried out at 1 year (n = 43), and 2 years follow-up (n = 41). A total of 
50 children provided blood sample at least once. 

Ethical approvals for the EMIL and Born into Life cohorts and the 
analyses performed in this study were obtained from the Regional Ethics 
Review Board, Karolinska Institutet, Stockholm, Sweden. All caregivers 
provided written informed consent. 

2.2. Air pollution exposure assessment 

A wind model and a Gaussian dispersion model were used to calcu
late annual levels of ambient air pollutants at a grid of 35 m for ad
dresses in the more densely populated areas of Stockholm, such as urban 
areas, and 100 m or a 500 m resolution in less densely populated rural 
parts. In addition, the Operational Street Pollution Model, OSPM (www. 
au.dk/OSPM) was used to calculate the dispersion of air pollutants in 
street canyons. As input to the dispersion modeling, emission in
ventories for Stockholm and Uppsala counties for the years 2011, 2015 
and 2020 were used. To obtain air pollutants levels for years in between 
linear regression was used for interpolation of the model calculations. 

The databases consist of local and regional emission data from e.g. 
road traffic, shipping, industrial facilities and domestic heating 
(Segersson et al., 2017). Depending on the source sector, the emissions 
are described as point, area or line sources. However, for some sectors 
the emissions are based on regional statistical data and are distributed 
spatially on a regular grid, using relevant spatial proxies, such as e.g. 
harbors and residential areas. For both the emission databases and as a 
framework for running the wind- and dispersion models the Airviro Air 
Quality Management System (https://www.airviro.com/airviro/mo 
dules/) was used. To obtain total concentrations, annual average 
long-range contributions based on continuous measurements at a 
regional background station, were added to the locally modelled con
centrations. Finally, time-weighted average levels of PM10, PM2.5, NO2 
were calculated at the residential addresses from birth up to the date of 
biosampling at 6 months, 1-year and 2-year follow-ups, respectively, 
based on residential history and estimated annual levels adjusted for 
short-term variations using urban background monitor measurements. 
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2.3. Outcome assessment 

Inflammation-related proteins were measured in plasma samples 
from EMIL and Born into Life cohorts collected at 6 months (only in 
EMIL), 1 and 2 years of age. Samples were analyzed with the multiplex 
Proximity Extension Assay (PEA), developed by Olink® (Olink Prote
omics, Uppsala, Sweden), using the Inflammation panel (www.olink. 
com). In summary, the PEA uses a pair of protein-specific antibodies 
attached to oligonucleotides, whose ends are complementary to each 
other, to simultaneously quantify 92 proteins in one sample (Assarsson 
et al., 2014). Once the antibodies bind to the target protein, the oligo
nucleotides hybridize and are amplified through quantitative Polymer
ase Chain Reaction (qPCR). The qPCR cycle threshold (Ct) for the 
amplified product is proportional to the initial amount of protein in the 
sample (Lundberg et al., 2011). The Ct values are then normalized, and 
the final results are expressed in Olink Proteomics’ unique unit, 
Normalized Protein eXpression (NPX) in a log2 scale (Assarsson et al., 
2014). 

We also verified the randomization success by confirming that the 
frequency of values below the lower limit of detection (LOD) and the 
first 5 principal components of the biomarkers did not differ between the 
well plates. Quality control was applied to all 92 inflammatory proteins 
included in the assay. Samples with no measurements and proteins with 
>25% of values below LOD were removed. For the remaining proteins, 
values below LOD were imputed to LOD/square root of 2 (Finkelstein 
and Verma, 2001). A total of 75 and 73 proteins with >75% of samples 
above LOD in the EMIL and Born into Life cohorts, respectively, were 
included in the present analyses, comprising 78 unique proteins. 

2.4. Statistical analyses 

All statistical analyses were conducted with Stata software (version 
16.1; StatCorp, USA). Due to similar study design and sampling strategy 
of the two included cohorts, we pooled the datasets to increase the 
sample size and statistical power. We examined the association of 
plasma inflammation-related protein levels with air pollution exposure 
averaged from birth up to the date of respective biosampling at 6 
months, 1 and 2 years of age (referred to as 0–6 months, 0–1 year and 
0–2 years). 

Firstly, we combined all proteins into one outcome variable (referred 
to as “inflammatory proteome”), for each clinical visit (i.e., biosampling 
at 6 months, 1 year and 2 years), and created a protein name variable 
(referred to as “protein id”) to identify specific proteins. In other words, 
we transformed 78 protein variables from wide format to one “inflam
matory proteome” variable in long format. The inflammatory proteome 
variable was then fitted into a longitudinal cross-referenced mixed effect 
model to estimate the association between air pollution exposure and all 
inflammation-related proteins in the panel measured up to 2 years of 
age. Using PM10 as an example, the PM10 exposure and visit were 
modelled as fixed effects, whereas the identification number of a subject, 
and the specific protein were modelled as random effects. Further, we 
included interaction terms between visit and PM10, a random slope 
between specific protein and PM10, a random slope between specific 
protein and visit at 1 year (using the visit at 6 months as reference), and 
a random slope between specific protein and visit at 2 years. Stratified 
by sex, for subject i, visit j, and protein k, the outcome inflammatory 
proteome was modelled as: 

Proteinijk = βo + ui + uk + (vk + β1)PM10ij + (v1k + β2)Visit1i

+ β3Visit1iPM10ij + (v2k + β4)Visit2i + β5Visit2iPM10ij + eijk  

Where:  

• Proteinijk is the log-base-2 of the NPX in subject i in visit j in protein 
k. 

• β0 is the overall mean of the protein concentrations of the inflam
matory proteome.  

• PM10ij is the lifetime PM10 exposure before the visit j, in subject i.  
• β1 is the population mean change in the protein concentrations in the 

inflammatory proteome, for each unit change of PM10.  
• vk is the random slope on PM10 at protein k. In other words, the 

model allows each protein to have its own relationship between 
protein concentrations and PM10, and the coefficient on PM10 would 
represent the average of these relationships.  

• Visit1i is the visit at 1 year of age for subject i.  
• β2 is the population mean difference in the protein concentrations in 

this inflammatory proteome in the visit at 1 year of age, compared to 
the visit at 6 months of age.  

• v1k is the random slope on the visit at 1 year of age at protein k, 
compared to the visit at 6 months of age. In other words, the model 
allows each protein to have its own change between 6 months and 1 
year of age, and the coefficient would represent the average of these 
changes.  

• β3 is the coefficient for the interaction term between the visit at 1 
year and PM10 compared to the visit at 6 months.  

• Visit2i is the visit at 2 years of age for subject i.  
• β4 is the population mean difference in the protein concentrations in 

this inflammatory proteome in the visit at 2 years of age, compared 
to the visit at 6 months of age.  

• v2k is the random slope on the visit at 2 years of age at protein k, 
compared to the visit at 6 months of age. In other words, the model 
allows each protein to have its own change between 6 months and 2 
years of age, and the coefficient would represent the average of these 
changes.  

• β5 is the coefficient for the interaction term between the visit at 2 
year and PM10, compared to the visit at 6 months.  

• ui is the random effect of subject i.  
• uk is the random effect of protein k.  
• eijk is the residual of the outcome due to individual variation.  
• The number of subjects, i, and the number of proteins, k, are different 

at different visit j. 

The outcome of the regression models is the protein expression. The 
models allowed for the possibility that different proteins may have 
different expression levels and included a protein-specific random effect. 

To understand to what extent the association of inflammatory pro
teome with air pollutants may be influenced by a mixed nature of 
included proteins, we conducted a sensitivity analysis, excluding well- 
recognized anti-inflammatory proteins (i.e., IL-10 and TGF-beta) from 
the definition of the inflammatory proteome. 

Next, we applied bootstrapped quantile regression models to esti
mate the association between air pollution exposure and each of the 78 
proteins separately, stratifying by sex and age, at specific quantiles of 
protein levels (i.e., 25th, 50th, and 75th percentiles). Quantile regres
sion is known to be robust to outliers, skewness, and heteroscedasticity 
on the response variable (Koenker and Hallock, 2001). All results are 
presented as regression coefficients and 95% confidence intervals (CI) 
across the interquartile range (IQR) of air pollution levels averaged over 
the period 0–6 months, to enhance comparability of the effects from the 
different exposure periods. 

Potential confounders were selected based on literature review and 
data availability, and included sex, birth weight, gestational age, 
maternal education, parental smoking, older sibling, furry pet, mold or 
dampness in the residence, season of birth, and breastfeeding. Final 
models were only adjusted for time indicator (i.e., clinical visit at 6 
months, 1 and 2 years), as the rest of the variables did not consistently 
influence the air pollution and inflammation-related proteins associa
tions, with exception for child’s sex, therefore all results were stratified 
by sex. We further conducted sensitivity analyses including additional 
adjustments for daily average temperature at the date of biosampling, as 
well as mode of delivery. In addition, we excluded one subject born 
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prematurely (i.e., <37 weeks of gestation) from the Born into Life cohort 
to evaluate potential impact on the estimated associations. Multiple 
testing was accounted for in the quantile regression analyses by con
trolling the false discovery rate (FDR) at 5%, implementing the 
Benjamini-Hochberg adjustment (Strimmer, 2008). FDR-corrected 
p-value<0.05 was considered statistically significant, unless otherwise 
specified. 

3. Results 

3.1. Descriptive statistics of the study population 

The study population comprised 158 children. The distribution of 
selected background characteristics, the inflammatory proteome, and 
time-weighted average of air pollution exposure (PM10, PM2.5 and NO2) 
for both cohorts are summarized in Table 1. Children in the EMIL and 
Born into Life cohorts were similar in terms of proportion of girls (42% 
vs. 40%), preterm birth (0% vs. 2%), mode of delivery (66% vaginal vs. 
68% vaginal), and maternal smoking during pregnancy (0% in both). 
Yet, the EMIL cohort had more older siblings in family (53% vs. 70%) 
and more mothers with university degrees or higher (89% vs. 76%). The 
distribution of air pollution concentrations in the EMIL and Born into 
Life cohorts was comparable. There were generally strong correlations 
(r > 60) between PM2.5, PM10 and NO2 exposures calculated as time- 

weighted averages from birth to the date of biosampling at respective 
age (Supplementary Table S1). 

3.2. Longitudinal associations between air pollution exposure and 
inflammatory proteome 

In our main analysis combining quantitative proteomics data, we 
identified significant longitudinal associations of the inflammatory 
proteome profile with air pollution exposure during the first 2 years of 
life among girls (Table 2). For PM exposures, we observed inverse as
sociation with inflammatory proteome, while it appeared to have posi
tive direction with exposure to NO2. Among boys, we identified 
significant associations of the inflammatory proteome profile with PM10 
during the first 6 months of age and PM2.5 exposure during the first 2 
years of life, but not with NO2. The identified age-specific associations 
had consistent directions across ages though significantly different 
magnitude based on the Wald tests for the null hypothesis that the co
efficients of the interaction terms between the age groups and exposure 
indicator are jointly equal to 0 (p < 0.05). 

For both boys and girls, the coefficients of the random slope between 
PM exposures (PM10 and PM2.5) and specific proteins were generally 
small. Therefore, the impact of the variation of protein-specific slopes on 
the PM – inflammatory proteome association is likely minimal. 

However, the coefficient of the random slope between NO2 exposure 
and specific protein was large, compared to the NO2 – inflammatory 
proteome estimate, especially for boys (random slope: 0.08 vs. estimate: 
0.10). Since some proteins may increase and other proteins may 
decrease in association with NO2, and most proteins had different slopes, 
the impact on the inflammatory proteome variation may be due to 
biological differences across different proteins. 

In the sensitivity analysis, we rerun the analysis using redefined in
flammatory proteome outcome by removing known anti-inflammatory 
proteins. The results remained largely unchanged (Supplementary 
Table S2). Further, additional adjustments for daily average ambient 
temperature, as well as mode of delivery yielded similar association 
estimates as our main results (Supplementary Tables S3–S4). Also, 
analysis restricted to term born children generated similar association 
estimates (Supplementary Table S5). 

3.3. Protein-specific associations with air pollution exposure 

Next, we analyzed age- and sex-specific associations of air pollution 
exposure with each protein separately by means of quantile regression. 
We observed multiple statistically significant associations of air pollu
tion exposure with proteins concentrations at predefined percentiles 
across different age and sex strata after adjustment for multiple com
parison (FDR p-value<0.05) (Supplementary Tables S6–S7; Supple
mentary Figs. S1–S2). An IQR increase in PM10 exposure levels from 
birth to 6 months of age was associated with 0.51 unit increase in the 
25th percentile of Interferon Gamma (IFN-gamma) and 0.35 unit in
crease in the 25th percentile of Interleukin-12 subunit beta (IL-12B) 
among 6-month-old boys, as well as 0.59 unit decrease in the 75th 
percentile of IL-8 among 6-month-old girls (Fig. 1; Supplementary Table 
S8), whereas there was no evidence that preceding PM2.5 or NO2 
exposure was associated with any of the inflammation-related proteins 
at the age of 6 months (Supplementary Tables S9–S10). 

At the age of 1 year, average PM10 exposure from birth to 1 year of 
age was associated with a decrease in the median of osteoprotegerin 
(OPG), the 75th percentile of adenosine Deaminase (ADA) and fibroblast 
growth factor 23 (FGF-23) among girls (Supplementary Table S11). 
Associations with FGF-23 in girls were also detected in relation to PM2.5 
and NO2 exposure during the 1st year of life (Supplementary Tables 
S12–S13). Further, average PM2.5 exposure from birth to 1 year was also 
linked to a decrease in the 25th percentile of Interleukin 17C (IL-17C) 
and median of urokinase-type plasminogen activator (uPA) among girls. 
In 2-year-old girls, PM10 exposure from birth to 2 years of age was linked 

Table 1 
The distribution of descriptive characteristics of children in the EMIL and Born 
into Life cohorts.  

Characteristics EMIL cohort 
N = 108 

Born into Life 
cohort 
N = 50 

Inflammatory proteome, median (q25, q75) 
6 months follow-up 7.0 (4.1, 9.2) NA 
1 year follow-up 6.9 (4.1, 9.1) 6.5 (3.1, 8.4) 
2 years follow-up 6.7 (4.0, 9.0) 6.5 (3.3, 8.6) 
PM10 0–6 ms,a median (q25, q75), μg/m3 13.9 (12.1, 

18.0) 
NA 

PM10 0–1 yr,b median (q25, q75), μg/m3 13.4 (12.1, 
17.4) 

13.9 (12.6, 15.2) 

PM10 0–2 yrs,c median (q25, q75), μg/ 
m3 

12.9 (11.9, 
17.1) 

13.6 (12.6, 15.1) 

PM2.5 0–6 ms,a median (q25, q75), μg/ 
m3 

5.6 (5.1, 6.7) NA 

PM2.5 0–1 yr,b median (q25, q75), μg/m3 5.5 (5.1, 6.3) 5.8 (5.3, 6.3) 
PM2.5 0–2 yrs,c median (q25, q75), μg/ 

m3 
5.5 (5.1, 6.2) 5.7 (5.4, 6.1) 

NO2 0–6 ms,a median (q25, q75), μg/m3 18.0 (12.3, 
27.9) 

NA 

NO2 0–1 yr,b median (q25, q75), μg/m3 18.0 (12.1, 
25.6) 

11.9 (8.5, 16.8) 

NO2 0–2 yrs,c median (q25, q75), μg/m3 15.5 (11.4, 
24.3) 

12.5 (8.2, 15.7) 

Female sex 45 (42%) 20 (40%) 
No older sibling 57 (53%) 35 (70%) 
Preterm birth (i.e., <37 weeks) 0 (0%) 1 (2%) 
Mode of delivery: 
Vaginal 71 (66%) 34 (68%) 
Cesarean 26 (24%) 9 (18%) 
Vacuum extractor 11 (10%) 6 (12%) 
Forceps 0 (0%) 1 (2%) 
Mothers with university degree or higher 96 (88.9%) 38 (76%) 
Maternal smoking during pregnancy 0 (0%) 0 (0%) 
Anyone in the household smoked at the time of: 
6 months follow-up 9/92 (9.8%) NA 
1 year follow-up 7/101 (6.9%) 0/43 (0%) 
2 years follow-up 6/100 (6.0%) 1/41 (2.4%) 

NA=Not available 
The unit of inflammatory proteome is Normalized Protein eXpression value, NPX 
(log2-scale) 

a Time-weighted average exposure during 0-6 months of age. 
b Time-weighted average exposure during 0-1 year of age. 
c Time-weighted average exposure during 0-2 years of age 
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to an increase in the 25th percentile of TNF-related apoptosis-inducing 
ligand (TRAIL) and the median of C–C Motif Chemokine Ligand 11 
(CCL11) (Supplementary Table S14). Several of these associations were 
also nominally significant (p < 0.05) across other percentiles of 
respective proteins. Exposure to PM2.5 from birth to 2 years of age was 
associated with the decrease in the 50th percentile of Interleukin 10 
Receptor Subunit Alpha (IL-10RA) and Tumor necrosis factor-beta (TNF- 
β) among boys (Supplementary Table S15). We observed multiple sig
nificant associations of protein levels at 1 and 2 years of age with pre
ceding NO2 exposure, including the abovementioned proteins also 
linked to PM exposure, such as CCL11, ADA, TNF-β and OPG (Supple
mentary Tables S13 and S16). Most of these associations were seen 
among boys, although several also observed among both sexes. 

By looking closer into underlying biological processes, we found that 
most of the PM10-associated proteins contribute to “Cellular response to 
cytokine stimulus”, “Inflammatory response”, “Apoptotic process” and 
“Cell adhesion”, PM2.5-accociated – to “Cellular response to cytokine 
stimulus” and “Inflammatory response”, and NO2-associated – to 
“Cellular response to cytokine stimulus”, “Inflammatory response”, 
“Apoptotic process”, “MAPK cascade” and “Chemotaxis” (https://www. 
olink.com/products-services/target/inflammation). Complete list of 
relevant biological processes is presented in Supplementary Tables S6 
and S7. 

Table 2 
Sex-stratified analysis of longitudinal associations of inflammatory proteome during the first 2 years of age with preceding average air pollution exposure.   

Girls Boys 

Estimate SE P 95% CI Estimate SE P 95% CI 

PM10 

PM10 (age 6 months) − 0.32* 0.05 2.66E-12 − 0.41 − 0.23 0.12* 0.04 0.01 0.03 0.20 
PM10 (age 1 year) − 0.23* 0.04 4.48E-07 − 0.31 − 0.14 0.02* 0.04 0.69 − 0.06 0.09 
PM10 (age 2 years) − 0.16* 0.05 4.14E-04 − 0.25 − 0.07 0.03* 0.04 0.50 − 0.06 0.11 
Protein random intercept 9.27 1.49  6.77 12.71 9.16 1.47  6.69 12.55 
Protein random slope: PM10 2.45E-13 .  . . 8.55E-15 4.26E-14  4.91E-19 1.49E-10 
PM2.5 

PM2.5 (age 6 months) − 0.21* 0.04 1.94E-06 − 0.29 − 0.12 − 0.10* 0.04 0.02 − 0.17 − 0.02 
PM2.5 (age 1 year) − 0.22* 0.05 8.41E-07 − 0.31 − 0.14 − 0.18* 0.04 1.23E-05 − 0.26 − 0.10 
PM2.5 (age 2 years) − 0.13* 0.04 0.003 − 0.22 − 0.05 − 0.18* 0.05 1.08E-04 − 0.27 − 0.09 
Protein random intercept 9.13 1.48  6.65 12.54 9.16 1.47  6.69 12.55 
Protein random slope: PM2.5 0.005 0.003  0.001 0.02 1.61E-15 7.85E-15  1.14E-19 2.28E-11 
NO2 

NO2 (age 6 months) 0.26* 0.07 9.52E-05 0.13 0.39 0.10 0.05 0.08 − 0.01 0.21 
NO2 (age 1 year) 0.22* 0.07 0.001 0.09 0.35 0.09 0.06 0.12 − 0.02 0.20 
NO2 (age 2 years) 0.32* 0.07 1.00E-05 0.18 0.46 0.06 0.06 0.34 − 0.06 0.18 
Protein random intercept 8.91 1.44  6.50 12.22 8.81 1.42  6.43 12.07 
Protein random slope: NO2 0.06 0.01  0.04 0.09 0.08 0.02  0.06 0.12 

The unit of protein is Normalized Protein eXpression value, NPX (log2-scale). All results are adjusted for air pollution exposure, visit (age time points), interaction 
between exposure and visit, subject id (random effect), protein name (random effect, i.e. protein_id), random slope of specific protein and exposure, and random slope 
of specific protein and visit. The results are presented per IQR increase in air pollution exposure, corresponding to 5.9, 1.6 and 15.6 μg/m3 for PM10, PM2.5 and NO2, 
respectively. Age-specific estimates at age 1 and 2 years were extracted from postestimation (reference: age 6 months). 
* These coefficients are significantly different across age groups based on the Wald tests for the null hypothesis that the coefficients of the interaction terms between the 
age groups and exposure indicator are jointly equal to 0 (p < 0.05). 

Fig. 1. Sex-specific changes in protein levels at 
selected percentiles of the protein level distribution in 
relation to preceding PM10 exposure: Summary of 
FDR-significant associations at 6 months of age. 
The exposure is PM10 from birth to 6 months of age, 
the outcomes are selected percentiles of each protein 
at 6 months of age (based on the EMIL cohort), the 
unit of protein is Normalized Protein eXpression 
value, NPX (log2-scale). The results are presented per 
IQR increase in PM10 exposure (5.9 μg/m3).   
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4. Discussion 

To our knowledge, this is the first study investigating the association 
between early-life air pollution exposure and a wide panel of repeatedly 
measured biomarkers of systemic inflammation in children during the 
first 2 years of life. We found that the overall inflammatory proteome 
during the first 2 years of life was associated with preceding PM10, 
PM2.5, and NO2 exposure among girls. In contrast, we identified that the 
inflammatory proteome profile was associated with PM2.5 exposure 
during the first 2 years of life among boys, but only with PM10 during the 
first 6 months of age and not with NO2. Subsequent protein-specific 
analysis revealed several inflammation-related proteins significantly 
associated with preceding air pollution exposure at different percentiles 
of proteins levels. Further, the results suggest that child’s sex may have a 
role as an effect modifier in associations between air pollution exposure 
and inflammation biomarkers. 

To the best of our knowledge, no other study has investigated lon
gitudinal changes in the overall inflammatory proteome profile char
acterized by a combination of a wide range of inflammation-related 
protein levels measured during early childhood. By applying this novel 
approach, we found sex-specific and age-varying changes in the child
hood inflammatory proteome in relation to air pollution exposure. These 
results may provide further insights into the biological mechanisms 
underlying the adverse health effects of air pollution exposure. 

Our results support earlier studies about the importance of early life 
period for the influence of air pollution exposure on the biomarkers of 
systemic inflammation (Gruzieva et al., 2017; Latzin et al., 2011; Merid 
et al., 2021). For instance, in the Swedish birth cohort BAMSE, exposure 
to PM10 during the first year of life was linked with increased IL-6 levels 
among 8-year-old children, as well as increased IL-10 levels among 
asthmatics (Gruzieva et al., 2017). Calderon-Guarcidueñas et al. 
compared the serum inflammation biomarkers profile of two groups of 
children from different areas. The group that lived in Mexico City, where 
pollution levels were elevated, had higher IL-6 and IL-10 levels, and 
lower IFN-gamma level than the group that lived in another city with 
better air quality (Calderón-Garcidueñas et al. 2009, 2013). A German 
birth cohort study found an association between current exposure to 
PM10 and IL-6 among asthmatic 6-year-old children, however, the au
thors did not evaluate the effects of early-life exposure (Klumper et al., 
2015). A Swiss birth cohort study demonstrated that maternal exposure 
to PM10 during the last trimester of pregnancy was associated with 
changes in some inflammatory proteins (i.e. reduced IL-10) in cord 
blood (Latzin et al., 2011). In the present study, it has not been possible 
to investigate associations with pre- and early postnatal exposure 
separately due to high correlations in air pollution exposure between the 
two periods and limited study sizes, as reported in our earlier study, 
partly based on the EMIL cohort (Lundberg et al., 2022). Our 
single-protein analysis showed significant associations between PM10 
exposure and IFN-gamma at the age of 6 months, and significant asso
ciations between NO2 exposure and IL-10 at the age of 1 and 2 years, 
while we did not observe associations with IL-6, reported earlier. This 
may partly be attributed to differences between age groups and in the 
methodology for protein measurement and statistical analysis. 

We identified associations of air pollution exposure with several 
inflammation-related proteins, not included in the previous studies on 
children. Several studies based on adults reported inverse associations 
between air pollution exposure and levels of osteoprotegerin (Li et al., 
2019b; Saha et al., 2016), which is in line with our results. As OPG is 
involved in key molecular regulation system for bone remodeling, this 
finding may contribute to accumulating evidence on the underlying 
mechanisms behind documented increased risk of low bone mass and 
osteoporosis in children linked to air pollution exposure 
(Calderón-Garcidueñas et al., 2013). Air pollution effects on systemic 
CCL11 and ADA have so far been shown in animal studies (Shih et al., 
2018; Thome et al., 2009). CCL11 plays crucial role in eosinophil che
moattraction and activation in asthma pathogenesis, and has been 

suggested as potentially useful biomarker for the diagnosis and assess
ment of asthma severity and control (Wu et al., 2014). Emerging evi
dence suggests the role of air pollution in autoimmune diseases (Zhao 
et al., 2019). In the present study, we observed association of air 
pollution exposure with ADA, a degrading enzyme for an immunosup
pressive signal, adenosine, playing an important role in immune ho
meostasis regulation and autoimmune diseases development (Gao et al., 
2021). The biomarkers FGF-23, uPA and TRAIL identified in our study 
represent novel associations in the context of air pollution, thus 
contributing to the growing body of evidence documenting inflamma
tory effects of human exposure to air pollution. Interestingly, an earlier 
study based on the Born into Life cohort reported significant changes in 
maternal plasma inflammatory proteome profiling during pregnancy, 
including OPG, TRAIL and IL-10 proteins, that are also identified in the 
present study (Hedman et al., 2020). 

Furthermore, our findings, together with results from previous 
studies, suggest that the inflammatory response to air pollution may 
vary depending on the child’s sex. We observed that the association 
between PM10 exposure and inflammation-related protein profile tended 
to be stronger among girls. In the Swedish birth cohort BAMSE, early-life 
air pollution exposure to PM10, as well as to NO2 was positively asso
ciated with serum IL-6 in boys, while it was negatively associated with 
IL-2 only in girls (Gruzieva et al., 2017). We had small number of sub
jects in the sex-specific analysis, and our findings require confirmation 
in larger studies. 

We observed an inverse relationship between PM exposure and 
overall inflammatory proteome, as well as with several of the identified 
proteins, which has also been seen previously. In an experimental 
setting, exposure of bronchial epithelial cells to PM for 72 h resulted in 
decreased TNF-α, IL-6, and IL-8 compared with cells exposed for shorter 
periods (i.e., 24 h or 48 h) (Cachon et al., 2014). In another study, 
volunteers exposed to diesel exhaust and ozone had a lower production 
of serum TNF-α during the following 22 h (Stiegel et al., 2016). Inverse 
associations of air pollution exposure with markers of systemic inflam
mation (e.g., IL-2, IL-8, IL-10, and TNF-α) have also been reported in 
epidemiological studies (Dobreva et al., 2015; Mostafavi et al., 2015). In 
a Chinese pediatric population, decreased C3 and C4 levels, as wells as 
decreased IL6, ICAM1, and TLR2 mRNA levels have been detected in 
children living in areas of high air pollution compared with children in 
areas of low air pollution (Li et al. 2019a, 2019c). The long-term dura
tion of the exposure could be partially accountable for the inverse as
sociation as demonstrated previously by Dai and coworkers (Dai et al., 
2016). Alternatively, the immature immune system of children may 
make them exhibit different association patterns. Altogether, this may 
suggest that air pollution exposure has immunomodulatory effects by 
reducing levels of certain systemic inflammation biomarkers. While 
some of the proteins were significantly associated with several exposure 
indicators, other associations were only linked to one of the studied air 
pollutants. The identified proteins are mainly involved in “Cellular 
response to cytokine stimulus”, “Inflammatory response”, “Apoptotic 
process” biological processes. It remains to be investigated whether 
non-overlapping associations are pollutant specific. 

We found that most detected associations were only significant at 
one percentile (25th or 75th percentiles), with higher magnitude than 
the other percentiles. One potential explanation is that for a detected 
protein, not all children are susceptible to the air pollution exposure, 
and it is mainly that those children whose protein levels are close to the 
tail of the distribution were affected. Another potential explanation is 
that these significant associations with higher magnitude were suffering 
from the high variability and insufficient data at the tail side, which may 
result in over or under-estimation of the exposure effect (Wang et al., 
2012). 

The main strength and novelty of our study lies in its prospective 
design with repeated objective measurement of inflammation bio
markers over a relatively short time, along with a detailed assessment of 
individual air pollution exposure. A further strength is the unique age 
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group of our study population, including children followed during the 
first two years of life. To the best of our knowledge, no other study has 
investigated the impact of air pollution on inflammatory biomarkers in 
this age group. Almost all existing pediatric studies have focused on 
older children, even though it is recognized that infants may be more 
susceptible to environmental hazards due to their immature immune 
system (Simon et al., 2015). Another major strength of the current study 
is the wide set of inflammation-related protein markers, using well 
validated methods. Previous studies usually focus on several selected 
inflammatory proteins, while the current study examined a panel of 92 
protein markers, enabling a more thorough and comprehensive explo
ration of the association between early-life exposure to air pollution and 
inflammation-related proteins. All measurements for our two cohorts 
were performed by the same procedures, minimizing misclassification of 
the outcome. Furthermore, proteins were measured in a multiplex pro
teomic assay using a PEA technique, which is both specific and sensitive 
and requires a low sample volume (Assarsson et al., 2014). The inter
pretation of biological significance of the effect estimates from this study 
is, however, complicated, since the Olink Proteomics platform measures 
protein levels in NPX units used for relative quantification only, there
fore, the estimates do not translate directly to plasma concentrations. 

We conducted detailed assessment of long-term exposure to several 
air pollution indicators with high geographical resolution for each 
participating family employing validated dispersion models. Misclassi
fication of exposure might still have occurred, partly because modeling 
of air pollution may produce unprecise exposure estimates. Addition
ally, estimated outdoor exposure may not reflect true personal exposure, 
however, because the exposure was estimated independently from the 
measurement of biomarkers, potential bias in exposure is likely non- 
differential, and would generally result in weaker associations. It has 
been shown that air pollution exposure during pregnancy can influence 
cytokines in newborns (García-Serna et al., 2022; Latzin et al., 2011). In 
our study, we were not able to disentangle the role of prenatal versus 
early postnatal exposure, because most families lived at the same 
address during pregnancy and after child’s birth. Also, most of the 
parents who changed address between pregnancy and child’s birth 
moved into areas with comparable air pollution levels (Lundberg et al., 
2022). Furthermore, we did not take time-activity patterns into account, 
considering the time that children spent at daycare. However, previous 
studies from Stockholm and elsewhere have shown that home addresses 
are well representative of air pollution exposure in young children 
(Gruzieva et al., 2012; McConnell et al., 2010), largely because the 
children’s kindergartens are often close to their residential areas. It 
should also be noted that in Sweden children usually start daycare after 
1 year of age, implying that air pollution levels at residential addresses 
should be a good proxy of exposure. 

The nonresponse to the invitation to participate in the EMIL and Born 
into Life cohorts yielded study samples that included fewer smokers and 
more highly educated parents than in the general population. Therefore, 
direct generalizability of findings to other populations may be ques
tionable. The response rate during the two-year follow-up was close to 
100% in the EMIL cohort and around 80% in the BiL cohort, thus, the 
internal validity of our study should not be affected. We also acknowl
edge that the small sample size may have affected the precision of es
timates and the study power. 

5. Conclusions 

Our study contributes to accumulating evidence supporting an 
impact of ambient air pollution exposure on inflammation reactions that 
can be detected in early childhood. Moreover, our results suggested age- 
and sex-specific differences in the impact of early-life air pollution on 
inflammatory profiles. Given that even small changes in the levels of 
inflammation-related biomarkers may underlie the increasing risks for 
respiratory and other health outcomes, these findings have public health 
implications. Furthermore, the identified inflammation-related 

biomarkers associated with long-term exposure to air pollution in an 
area as Stockholm with relatively low air pollution levels may be of 
relevance for environmental policies. 
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Chronic residential exposure to particulate matter air pollution and systemic 
inflammatory markers. Environ. Health Perspect. 117, 1302–1308. 

Klumper, C., Kramer, U., Lehmann, I., von Berg, A., Berdel, D., Herberth, G., 
Beckmann, C., Link, E., Heinrich, J., Hoffmann, B., Schins, R.P.F., Grp, G.I.S., Grp, L. 
I.S., 2015. Air pollution and cytokine responsiveness in asthmatic and non-asthmatic 
children. Environ. Res. 138, 381–390. 

Koenker, R., Hallock, K.F., 2001. Quantile regression. J. Econ. Perspect. 15, 143–156. 
Latzin, P., Frey, U., Armann, J., Kieninger, E., Fuchs, O., Roosli, M., Schaub, B., 2011. 

Exposure to moderate air pollution during late pregnancy and cord blood cytokine 
secretion in healthy neonates. PLoS One 6. 

Lee, Y.G., Lee, P.H., Choi, S.M., An, M.H., Jang, A.S., 2021. Effects of air pollutants on 
airway diseases. Int. J. Environ. Res. Publ. Health 18. 

Li, J., Wang, T., Wang, Y., Xu, M., Zhang, L., Li, X., Liu, Z., Gao, S., Jia, Q., Fan, Y., 
Wang, Z., Wu, N., Zhang, X., Dai, Y., Kong, F., Wang, W., Duan, H., 2019a. 
Particulate matter air pollution and the expression of microRNAs and pro- 
inflammatory genes: association and mediation among children in Jinan, China. 
J. Hazard Mater. 389, 121843, 43.  

Li, W., Dorans, K.S., Wilker, E.H., Rice, M.B., Ljungman, P.L., Schwartz, J.D., Coull, B.A., 
Koutrakis, P., Gold, D.R., Keaney Jr., J.F., Vasan, R.S., Benjamin, E.J., Mittleman, M. 
A., 2019b. Short-term exposure to ambient air pollution and circulating biomarkers 
of endothelial cell activation: the Framingham Heart Study. Environ. Res. 171, 
36–43. 

Li, X., Zhang, X., Zhang, Z., Han, L., Gong, D., Li, J., Wang, T., Wang, Y., Gao, S., 
Duan, H., Kong, F., 2019c. Air pollution exposure and immunological and systemic 
inflammatory alterations among schoolchildren in China. Sci. Total Environ. 657, 
1304–1310. 

Lundberg, B., Gruzieva, O., Eneroth, K., Melén, E., Persson, Å., Hallberg, J., 
Pershagen, G., 2022. Air pollution exposure impairs lung function in infants. Acta 
Paediatr. 

Lundberg, M., Eriksson, A., Tran, B., Assarsson, E., Fredriksson, S., 2011. Homogeneous 
antibody-based proximity extension assays provide sensitive and specific detection 
of low-abundant proteins in human blood. Nucleic Acids Res. 39, e102 e02.  

McConnell, R., Islam, T., Shankardass, K., Jerrett, M., Lurmann, F., Gilliland, F., 
Gauderman, J., Avol, E., Künzli, N., Yao, L., Peters, J., Berhane, K., 2010. Childhood 
incident asthma and traffic-related air pollution at home and school. Environ. Health 
Perspect. 118, 1021–1026. 

Merid, S.K., Bustamante, M., Standl, M., Sunyer, J., Heinrich, J., Lemonnier, N., 
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