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A B S T R A C T   

The influence and interaction of the ionizable amphiphilic drug amitriptyline hydrochloride (AMT) on a 1,2-dio
leoyl-sn-glycero-3-phosphocholine (DOPC) phospholipid bilayer supported on a silica surface have been inves
tigated using a combination of neutron reflectometry and quartz crystal microbalance with dissipation 
monitoring. Adding AMT solutions with concentrations 3, 12, and 50 mM leaves the lipid bilayer mainly intact 
and we observe most of the AMT molecules attached to the head-group region of the outer bilayer leaflet. 
Virtually no AMT penetrates into the hydrophilic head-group region of the inner leaflet close to the silica surface. 
By adding 200 mM AMT solution, the lipid bilayer dissolved entirely, indicating a threshold concentration for the 
solubilization of the bilayer by AMT. The observed threshold concentration is consistent with the observation 
that various bilayer structures abruptly transform into mixed AMT-DOPC micelles beyond a certain AMT-DOPC 
composition. Based on our experimental observations, we suggest that the penetration of drug into the phos
pholipid bilayer, and subsequent solubilization of the membrane, follows a two-step mechanism with the outer 
leaflet being removed prior to the inner leaflet.   

1. Introduction 

Phospholipids are the main component responsible for the formation 
of bilayer membranes and have been an important subject of studies for 
decades [1–3]. The membranes are usually very stable but may be dis
rupted and dissolved by amphiphilic surface-active molecules. An 
important class of amphiphilic molecules with surfactant properties is 
amphiphilic drugs, which are known to interact and self-assemble with 
phospholipid bilayers and influence properties related to pharmaco
logical activity and toxicity [4–7]. Amphiphilic drugs differ in chemical 
structure from conventional surfactants in the sense that they are usually 
composed of a rather rigid hydrophobic part attached to a head group. In 
this respect, amphiphilic drugs are similar to another, from a biological 
perspective, important class of amphiphilic molecules, bile salts. Bile 
salt surfactants are extraordinarily effective in dissolving phospholipids 
into mixed micelles, which may have a phospholipid content as high as 

70–85% [8,9]. Amphiphilic drugs appear to have somewhat lower 
ability to dissolve phospholipids than bile salts, but significantly larger 
ability than conventional surfactants. Amphiphilic drugs, and the 
chemically similar class of bile salt surfactants, share a property of 
significantly higher spontaneous curvature than conventional surfac
tants. This makes amphiphilic drugs and bile salts particularly effective 
in breaking up bilayer membranes and solubilizing substantial amounts 
of phospholipids into mixed micelles. The molecular interaction be
tween drugs and phospholipid membranes is expected to be crucial for 
the performance of the drug. 

Tricyclic anti-depressants are amphiphilic molecules that consist of a 
rigid hydrophobic tail and small hydrophilic head group that can self- 
assemble and form small micelles above the critical micelle concentra
tions (CMC) [5,10]. The tricyclic anti-depressant amitriptyline (AMT) is 
a psychoactive drug that is mainly used for two medical applications 
[11]. It is a non-selective reuptake inhibitor, which interacts on the 
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carriers in the synaptic cleft to inhibit the synaptic reuptake of serotonin, 
dopamine, and noradrenalin to treat depression. The effect is enhanced 
after an adjustment period due to a change in receptor sensitivity caused 
by the shift in concentration. As a painkiller for suddenly occurring 
neuropathic pain, AMT prevents non-physiological action potentials 
(use dependency) by reversibly blocking fast reacting sodium channels. 
A similar process is described for potassium channels. The substance 
must be incorporated into the membrane in order to trigger this kind of 
physiological response [12–15]. For this mechanism, Sheetz and Singer 
formulated their bilayer couple hypothesis suggesting that the two 
halves of the membrane could respond differently to perturbations while 
remaining coupled to each other [16]. In addition, it has been shown the 
same interaction between drug and phospholipid membrane leads to 
AMT having properties of an anesthetic [17,18] To investigate the dy
namics in the system a time estimate (5.64 × 10− 3 s− 1–5.28 × 10− 8 s− 1 

at 20 ◦C) for the so-called flip-flop, i.e. the transfer from one bilayer 
leaflet to the other, was determined [19–21]. Similar values for flip-flop 
rates in membranes were obtained for gramicidin [22,23]. 

Neutron scattering techniques offer several unique opportunities to 
study structure and dynamics due to molecular interactions in bilayers 
composed of more than one component. Especially selective deuteration 
opens possibilities to observe the behavior of living material by making 
some parts visible. The unique ability of neutrons to be traduced to the 
surface through silicon makes neutron reflectivity an excellent tool to 
investigate interfaces and supported bilayers [24]. Neutron reflectom
etry (NR) studies of supported bilayers with inserted helical peptides 
[25], cubosomes [26], quinolone antibiotics [27], antimicrobial pep
tides [28], triphosphates [29], and, lipoproteins [30] have been re
ported recently. In particular, the effect of antimicrobial agents on 
bilayer properties has been investigated and characterized [31]. 

Other surface sensitive techniques to investigate supported bilayers 
include quartz crystal microbalance with dissipation monitoring (QCM- 
D) [32,33]. QCM-D allows monitoring changes in the mass and visco
elastic properties of immobilized films, and can be used to monitor the 
binding of small molecules to lipid bilayer based structures and to 
characterize the effect of these insertions into the membrane properties 
[34–36]. 

In the present work, we combine neutron reflectometry and QCM-D 
to study the molecular distribution, and the eventual membrane break- 
up and dissolution, when adding an amphiphilic drug to a one- 
component phospholipid model membrane. We have chosen the phos
phatidylcholine 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) as 
phospholipid. DOPC has a gel-to-liquid crystalline transition tempera
ture equal to Tc = − 22 ◦C and is known to form a fluid, stable and ho
mogenous lipid bilayer at room temperature [37]. As a result, we are 
able to locate the drug molecules mainly to the outer leaflet of the 
supported bilayer and observe the final membrane dissolution in a two- 
step process above a threshold concentration of drug. 

2. Experimental details 

2.1. Materials and sample procedure 

Synthetic hydrogenous DOPC (1,2-dioleoyl-sn-glycero-3-phos
phocholine) was purchased from Larodan's research grade lipids. Tail- 
deuterated d64-DOPC was purchased from Frankenstein Bio Reagents 
(FB Reagents) and amitriptyline (AMT) from Sigma-Aldrich. All chem
icals were used as received without further purification. The glasswares 
for sample preparation have been immersed overnight in 2% Hellmanex 
III solution followed by extensive rinsing first with MilliQ water, fol
lowed by pure ethanol. The chemical structures of DOPC and AMT are 
displayed in Fig. 1. 

The supported lipid bilayers (SLB) for both NR and QCM-D were 
deposited through the fusion of tip-sonicated vesicles, and details of the 
procedure can be found elsewhere [38,39]. Briefly, the phospholipid 
was dissolved in chloroform and the solvent was evaporated in a rotary 
evaporator. Traces of solvent were removed under vacuum overnight. 
The phospholipid films were stored at − 20 ◦C and prior to the experi
ment hydrated with 50 mM sodium fluoride solution and vortexed for 5 
min. 

The emerging solution containing the lipid bilayers was sonicated to 
form small vesicles (25–35 nm, as measured by DLS). Centrifuging was 
used to remove titanium debris from the tip-sonication. The dispersion 
was then loaded into the measurement cell where the liposomes come in 
contact with UV/ozone treated surface and spontaneously ruptured and 
formed a supported lipid bilayer on top of the used silica substrates. It is 
in agreement with previous reports and our own observations (see re
sults section). Once formed the NaF buffer was replaced with MilliQ 
water for the QCM-D and heavy water for the NR measurements. 

The samples in the text below are denoted with a letter “H” or “D”, 
which indicates whether the SLB is hydrogenous or tail-deuterated. The 
letter is followed by a number referring to the concentration of AMT that 
is injected, i.e. H0, H3, H12, H50, and H200 for 0, 3, 12, 50, and 200 
mM, respectively. 

2.2. Quartz crystal microbalance with dissipation monitoring 

The QCM-D measurements were carried out on the Q-Sense QCM-D 
connected with an E1 module (Q-Sense, Gothenburg, Sweden) con
nected to a peristaltic pump. Commercially available silica-coated sen
sors (Q-sense, Gothenburg, Sweden) were used. The fundamental 
frequency of 4.95 MHz as well as 3th, 5th, 7th, 9th, 11th, and 13th 
overtones were monitored and 3th–13th was used for mass calculation 
in this study. The sensors were cleaned using the procedure recom
mended by the producer, shortly, the sensors were treated in a UV/ 
ozone chamber for 10 min, then immersed in SDS (2% solution) for 20 
min, then 10 min in MilliQ water, followed by extensive rinsing with 
water and ethanol and dried with gentle nitrogen flow. Finally, prior to 
use, the sensors were exposed again 20 min in UV/ozone chamber 
ensuring the formation of a clean and hydrophilic surface. All experi
ments were performed at 21 ◦C, starting with the injection of NaF 50 mM 
buffer [40,41], after establishing a flat baseline, the liposome, in the 

Fig. 1. Structural chemical formulas of (a) DOPC and (b) AMT.  
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same buffer, was introduced to the system. During the bilayer formation 
steps of each experiment liposomes were injected at a flow rate of 150 
μL min− 1. Spontaneous rupture of liposomes due to the interaction with 
the hydrophilic silica surface results in the formation of the supported 
phospholipid bilayer. After SLB formation, the remaining intact lipo
somes were removed by rinsing with buffer and, finally, MilliQ water. 
Subsequently, for the SLB-drug interaction experiment, the flow rate 
was decreased to 15 μL min− 1. 

2.2.1. QCM-D modelling 
The immobilized mass on the QCM-D sensor, for a rigid and 

comparably thin adsorbed layer (i.e. for a negligible change in the 
dissipation factor, i.e. ΔD ≈ 0) can be calculated through the Sauerbrey 
equation [42]: 

Δm =
Δf n

n
C  

where Δm is mass per unit area adsorbed on the sensor, Δfn is the shift in 
oscillation frequency, n is the corresponding overtone, and C is 17.7 ng/ 
cm2 Hz− 1 for a 4.95 MHz sensors crystal. In order to be able to use the 
Sauerbery equation, the collected data were corrected for “bulk effect” 
through a process proposed by Höök et al. [43]. Briefly, it was assumed 
that changes in dissipation were only related to changes in the density 
and viscosity of the medium and not to the immobilized layer, a fair 
assumption considering that the dissipation from SLBs is very close to 
zero [42]. Under these conditions, the frequency changes associated 
with changes in the medium can be calculated and subtracted from the 
recorded signal. The Sauerbrey equation is then valid if the resultant 
corrected signals overlap for all overtones (indicating the formation of a 
rigid layer). 

2.3. Neutron reflectometry 

The reflectometry experiment was conducted at the reflectometer 
SuperADAM (Institute Laue-Langevin, Grenoble, France) [44]. A q range 
between 0 and 0.15 Å-1 was measured. SuperADAM uses a wavelength of 
5.215 Å with a resolution of 0.4%. Both slits in the incident beam were 
set to 1 mm and kept constant throughout the whole experiment. To 
investigate molecular interactions mechanisms at the interface, the off- 
specular signal is taken automatically by the usage of a position- 
sensitive detector and multiple regions of interest. In none of the data 
sets off specular signal beyond noise was detected, which shows good 
layer formation. Background reduction and direct beam normalization 
as well as the over-illumination correction were done by the software 
pySAred [45]. 

Small vesicle fusion was chosen as the method to form the supported 
phospholipid bilayer in order to minimize the risk to manipulate the 
substrate during the mounting process and avoid having it dewetted. 
Similar to the liposome collapse described in [46], liposomes were 
prepared in 50 mM sodium fluoride in D2O and then filled into the 
sample cell. The cell was filled slowly, i.e. 1 cm3 min− 1, the buffer 
replaced with pure heavy water, and consequently, filled with a 
different mixture of AMT in heavy water. 

2.3.1. Neutron reflectometry modelling 
Specular neutron reflectometry measures the intensity, which is re

flected from an interface versus momentum transfer qz of the neutron 
perpendicular to that interface. From the data, information is obtained 
about the scattering length density (SLD) profile across the interface or 
layered structures. The SLD is calculated from the number density ni and 
the bound coherent scattering length for neutrons bi of the respective 
nuclei, according to: 

SLD =
∑

i
(nibi)

Note bi for the two isotopes, hydrogen and deuterium, are very 

different allowing labeling and contrast variation experiments to 
determine the location of individual molecular components in a bilayer. 
The SLDs of the key components for the present study are summarized in 
Table S1 in the Supplementary data. 

The data analysis was done with GenX [47], which uses differential 
evolution (DE) a genetic algorithm for fitting. We chose chi-square as a 
figure of merit, FOM. For further details, we refer to literature [48]. The 
data were fitted with a four-layer model representing the outer and inner 
parts of the lipid membrane to extract SLD profiles. 

3. Results and discussion 

3.1. Quartz crystal microbalance experiment 

In order to study the DOPC bilayer and different concentrations of 
amitriptyline solution, the formation of a DOPC bilayer was confirmed. 
Fig. 2.a shows the surface mass density accumulated on the QCM-D 
sensors as a function of time, calculated as described in the methods 
section. An increase in both frequency and dissipation due to an initial 
immobilization of intact liposomes followed by a decrease in both pa
rameters upon vesicle rupture is evident in Fig. 2.a. Unreacted and 
loosely attached liposomes were removed by rinsing with buffer (NaF), 
and finally, MilliQ water. The final frequency shift of ~25 Hz and low 
dissipation values are very close to previously reported values [49], 
suggesting the formation of a supported continuous DOPC bilayer. 

Fig. 2. a) Bulk effect corrected immobilized mass of QCM-D experiment of four 
different concentration (3, 12, 50, and 200 mM) of amitriptyline introduced to 
the supported DOPC bilayer. b) The enlargement part of the curve after 200 mM 
amitriptyline solution injected. 
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After establishing the DOPC bilayer, the lowest amitriptyline con
centration (3 mM) was introduced with a flow rate of 15 μL min− 1. A 
slight decrease in the immobilized mass was observed, indicating partial 
solubilization of the bilayer. The consecutive injection of 12 and 50 mM 
amitriptyline followed the trend, by increasing the amitriptyline con
centration, more bilayer detached from the sensor's surface. Interest
ingly, after equilibration with a solution of 50 mM AMT, which is above 
its critical micelle concentration (CMC ≈ 37 mM), most of the bilayer 
remained immobilized, indicating that this concentration was not 
enough to remove the whole bilayers. 

In the case of 200 mM, i.e. about 5 times CMC, the QCM-D profile 
illustrates that the amitriptyline concentration is sufficient to dissolve 
the DOPC bilayer entirely in a two-step process. After the addition of the 
AMT solution, a sudden drop in immobilized mass is observed. The mass 
is then stabilized for a few minutes before dropping abruptly again. The 
enlarged QCM-D curve after injection of 200 mM AMT is depicted in 
Fig. 2.b and a shoulder in the curve can be observed. The change in 
immobilized mass is roughly the same in each of the steps. The results 
suggest the scenario in which amitriptyline dissolves the top and bottom 
monolayers of the bilayer in two separate steps. 

To verify this effect for an intact DOPC bilayer, a 200 mM amitrip
tyline solution was infused into a fresh DOPC bilayer. The resulting 
surface mass density profile is depicted in Fig. 3. It is evident that the 
same interaction as described above is still dominant: 200 mM solution 
of amitriptyline completely dissolves the DOPC bilayer in a two-step 
process. On the right hand side of the same graph, the standard devia
tion of the different bulk corrected overtones (f3-f13) is shown. As AMT 
introduced to the SLB the standard deviation of the different bulk cor
rected overtones (STD) increases dramatically, indicating that the Sau
erbrey equation is no longer valid and suggesting that a viscoelastic film 
replaces the rigid bilayer. 

Interestingly, the standard deviation of the different bulk corrected 
overtones drops at 38 min, sharply right after the moment where the 
second dissolution step begins (implying that the film becomes more 
rigid) and then increases again, suggesting a softening of the film. This 
drop happens at half of the initial surface density mass on the sensor. 
This indicates that each leaflet has been dissolved separately and can be 
explained as follows: at 200 mM a sufficient amount of AMT penetrates 
into the outer leaflet of the bilayer solubilizing it by forming mixed 
micelles that remain close to the oppositely charged surface, contrib
uting to a higher dissipation factor. The consequent drops of STD when 
AMT incorporates into the inner leaflet, indicating a rigid film exists for 

a few seconds right before the leaflet is solubilized into mixed micelles. 
It is interesting to note that the solubilization of the inner leaflet is faster 
than the first step, which might be due to the fact that after removing the 
top layer the hydrocarbon tails of DOPC initially come in direct contact 
with water which is unfavorable. 

It is to be noted, that after the addition of the 200 mM AMT solution 
the corrected signals do not overlap for the different overtones (c.f. 
Supplementary data S.I.), resulting in the large STD mentioned above 
and, suggesting that the underlying assumption, meaning the rigidity of 
the layer on the sensor, is no longer valid and the immobilized film is no 
longer rigid. It is also to be noted that the final mass values determined 
after solubilization in the experiments discussed above are negative, 
which has no physical meaning. The fact that the “bulk effect” for the 
final part of the QCM-D curves, where most of the bilayer has been 
removed, cannot be corrected according to the procedure described in 
the method section, advocates the idea that adding a 200 mM amitrip
tyline solution leads to the spontaneous dissolution of the bilayer and 
leaves the surface of the sensor with a viscoelastic layer. We believe that 
this is related to the fact that the AMT concentration has reached and 
exceeded the limit where AMT may dissolve the phospholipid to form 
AMT-rich mixed micelles that remain close to the interface with the 
opposite charge. This idea has been examined by injection of 200 mM 
amitriptyline to the naked silica surface and a similar QCM-D profile was 
observed (c.f. Supplementary data S.II.) as for the final stage of the ex
periments with the bilayer. This behavior was also supported by neutron 
reflectometry as discussed below. 

The observed threshold where the SLB is completely dissolved by an 
AMT solution as concentrated as five times the critical micelle concen
tration is consistent with bulk observations of a rather abrupt transition 
from bilayer aggregates to small micelles at a mole fraction of DOPC XPL 
= 0.35 in the aggregates (unpublished data). 

3.2. Neutron reflectometry experiment 

To unveil the mechanisms of lipid bilayer-drug interaction, we have 
complemented our QCM-D experiments with neutron reflectometry. To 
distinguish between drug substitution and membrane dissolution, the 
experiment is performed using both a hydrogenous and a deuterated 
phospholipid. 

Fig. 4 shows the NR experimental data, as well as the scattering 
length densities (SLD) profiles, obtained from our data analysis. In the 
SLD profiles, z = 0 indicates the surface of the silicon substrate. It is 
evident from all our neutron data, particularly for samples with hy
drogenous SLB, that there is a thin layer of water between the silica 
surface and the lipid bilayer. Head groups and water mix and it was not 
possible to distinguish between the inner head group and the water 
layer. Therefore we allowed for one inner layer composed of both inner 
heads groups and surface water in our data analysis. We have deter
mined the mean thickness of the SLB is about 40 Å, which agrees with 
the previously reported value of 38 Å for the DOPC bilayer [46,50]. 

Fig. 5 shows the SLD profile of an intact hydrogenous and tail- 
deuterated DOPC bilayer, before and after injection of 3 mM AMT so
lution. Both profiles show a reduced SLD in the region of the outer head 
group. From the experiments with hydrogenous and deuterated phos
pholipid, we calculated the concentration of each compound in the 
bilayer, i.e. AMT, water, and DOPC. The inset in Fig. 5 shows the mole 
percent of AMT and water in the bilayer plotted against the bilayer 
profile thickness (z). The drug is incorporated in the outer bilayer leaflet 
at low AMT concentrations. The SLD change indicates changes in 
composition in the bilayer. It is evident that AMT has a high affinity to 
the phospholipid head group region and almost all of it accumulates 
near the outer edge of the SLB where head groups are in contact with a 
free solution. The other notable feature in Fig. 5 is the increase of total 
SLD of the head and chain region in the sample 3 mM AMT. This is 
because the addition of AMT leads to an increase in the amount of water 
(D2O in this case) and, consequently, an increase of the total SLD in both 
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regions. 
In QCM-D, we observe a slight decrease in the total mass of SLB after 

injection of 12 mM AMT solution. Density calculations show that 33% of 

SLB in the outer head-group region consists of AMT and that the total 
amount of water in the SLB increases after incorporation of AMT in the 
SLB. From this, we conclude that AMT replaces DOPC molecules when 
incorporated into the bilayer. Since AMT is an amphiphilic molecule, 
which is more hydrophilic than DOPC, a larger amount of water is 
incorporated along with AMT into the interface region. The addition of 
AMT and water almost compensates for the loss of DOPC molecules. 

Our QCM-D measurements revealed that the adsorbed mass was 
reduced upon increasing AMT concentration, which is consistent with 
patches of phospholipid being dissolved in the solution. Table 1 shows 
the amount of AMT and water in the various bilayer regions for each 
concentration of injected AMT solution. As the AMT concentration in
creases, AMT penetrates deeper into the bilayer and the amount of AMT 
incorporated in the inner tail and head group regions increases. More
over, the increase in the fraction of water in the inner leaflet region 
indicates that the structure of the SLB layer has become perturbed, and 
the organized phospholipid bilayer has started to become dissolved into 
the bulk in the form of mixed AMT-DOPC micelles. This is in agreement 
with QCM-D data shown in Fig. 2 as well as with previous findings 
indicating that the addition of AMT decrease the acyl chain order in 
liposomes formed by the phospholipid DMPC [51]. 

The resultant SLD after the addition of 200 mM solution of the AMT 
to d-DOPC and h-DOPC bilayer is shown in Fig. 6. The NR profile fits 
suggest that the SLB has been removed completely. The slightly reduced 
SLD may be explained by the formation of a new layer of mixed AMT- 
DOPC micelles on the silica surface. This hypothesis is supported by 
comparing with the SLD profile when injecting 200 mM AMT to the bare 
UV/ozone silicon wafer (cf. Fig. 2). This result is in good agreement with 
our QCM-D data, and the observation of a new viscoelastic layer 
replacing the SLB. Although, the concentration above CMC severely 
perturbed the bilayer and its structural order, a concentration as high as 
five times the CMC was needed to entirely dissolve the bilayer. 

4. Conclusion 

The penetration of the amphiphilic drug amitriptyline hydrochloride 
(AMT) into, and the subsequent dissolution of, a supported DOPC 
phospholipid bilayer (SLB) have been studied by a combination of 
quartz crystal microbalance with dissipation monitoring (QCM-D) and 
neutron reflectometry (NR). The QCM-D results show that the complete 
dissolution of the SLB occurs at a drug concentration threshold about 
five times the critical micelle concentration of AMT (~200 mM). This 
observation agrees with our NR experiments, according to which no sign 
of SLB could be observed after addition above a threshold of about 
[AMT] = 200 mM. The complete removal of the SLB above a threshold 
concentration of the drug is consistent with our observations in bulk 
solution of an abrupt transition from bilayer aggregates to rather small 
mixed AMT-DOPC micelles at a mole fraction of about xPL = 0.35. 

Moreover, the QCM-D results demonstrate that solubilization of the 
membrane is a two-step process where AMT solubilizes each bilayer 
leaflet separately. This is consistent with our NR experiments, which 
indicate a high affinity of AMT in the outer head group region, and a low 
tendency of the drug to penetrate deep into the bilayer. After removal of 
the phospholipid bilayer, both NR and QCM-D results suggest that a new 
viscoelastic layer is formed over the silica surface, consistent with the 
formation of mixed AMT-DOPC mixed micelles loosely attached to the 
oppositely charged surface. 

Our study demonstrates the strength of the combination of QMCD 
and NR techniques and gives new insights to the processes of membrane 
penetration, which is, relevant when studying the therapeutic effect of 
AMT sodium (and potassium) channel blockage, and ultimate dissolu
tion of phospholipids by amphiphilic drugs, for instance. Future exper
iments could include a kinetic study of the membrane effects, which, 
however, requires significantly higher neutron flux than available in the 
present study. 
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the fit for each data set. The decade offset in the inset inlay is used for visu
alization purposes. 
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Table 1 
Amitriptyline and water content in different part of SLB before and after injection of three different concentrations of amitriptyline (3, 12, and 50 mM AMT).  

Injected AMT concentration 0 (SLB) 3 mM 12 mM 50 mM 

Layer AMT [%] Water [%] AMT [%] Water [%] AMT [%] Water [%] AMT [%] Water [%] 

Inner head –  28  10  28  33  38  46  40 
Chain –  11  3  23  28  33  48  40 
Upper head –  15  11  10  11  7  18  13  
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Fig. 6. Illustration of the different scattering length density (SLD) of hydrog
enous (H200) and tail-deuterated (D200) DOPC bilayer as well as pure silicon 
substrate (Si200) exposed to 200 mM amitriptyline. The inset plot shows the 
corresponding NR experiments. The red solid line shows the fit for each data 
set. The decade offset in the inset inlay is used for visualization purposes. 
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