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Abstract 

In this master thesis, a 2D device simulator run on a hybrid classical-quantum computer was 

developed. The simulator was developed to treat statistical quantum effects such as quantum 

tunneling and quantum confinement in nanoscale transistors. The simulation scheme is based 

on a self-consistent solution of the coupled non-linear 2D SchrödingerPoisson equations. The 

Open Boundary Condition (OBC) of the Schrödinger equation, which allows for electrons to 

pass through the device between the leads (source and drain), are modeled with the Quantum 

Transmitting Boundary Method (QTBM) [1]. The differential equations are discretized with the 

finite-element method, using rectangular mesh elements. The self-consistent loop is a very 

time-consuming process, mainly due to the solution of the discretized OBC Schrödinger 

equation. To accelerate the solution time of the Schrödinger equation, a quantum assisted 

domain decomposition method is implemented. The domain decomposition method of choice is 

the Block Cyclic Reduction (BCR) method [2]. The BCR method is at least 15 times faster (CPU 

time) than solving the whole linear system of equations with the Python solver 

numpy.linalg.solve, based on the LAPACK routine _gesv [3]. In the project, we also propose an 

alternative approach of the BCR method called the "extra layer BCR" that shows an improved 

accuracy for certain types of solutions. In a quantum assisted version, the matrix inverses 

solved as a step in the BCR method, were computed on the D-Wave quantum annealer chip 

ADVANTAGE_SYSTEM4.1 [4]. Two alternative methods to solve the matrix inverses on a 

quantum annealer were compared. One is called the "unit vector" approach, based on work by 

Rogers and Singleton [5], the other called the "whole matrix" approach which was developed in 

the thesis. Because of the limited amount of qubits available on the quantum annealer, the "unit 

vector" approach was more suitable for adaption in the BCR method. Comparing the quantum 

annealer to the Python inverse solver numpy.linalg.inv, also based on LAPACK [3], it was found 

that an accurate solution can be achieved, but the simulation time (CPU time) is at best 500 

times slower than numpy.linalg.inv. 
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Popular scientific summary

Transistors are the "brain cells" of computer chips. More transistors on a chip lead to
improved computing power, enabling immense improvements in the capabilities of
electronic devices. To increase the number of transistors on chips, the device sizes have
to shrink. Transistor sizes have now entered into the sub-10 nanometer regime. When
the device size is comparable to the electron wave function, quantum effects become
present. Posing new challenges when manufacturing, but also modeling, new devices.

In this project, a device simulator is developed to capture static quantum effects (tun-
neling and confinement) when modeling transistors. To do this, we will solve a two-
dimensional Schrödinger equation with open boundary conditions. The open boundary
conditions account for the transistor’s interaction with the two connected leads (the
drain and the source). These simulations are very time-consuming. It includes solving a
very large linear system of equations several times. To assist the simulation, a quantum
annealer (a form of a quantum computer) is incorporated. However, the limitations of
present-day quantum annealers necessitate us to reduce the size of the linear system
of equations. Using a domain decomposition method called Block Cyclic Reduction
(BCR), we can achieve this. When using the BCR method the linear system of equations
is reduced by dividing it into several subproblems, where matrix inverses are computed.
Theses matrix inverses can in fact be solved on the quantum annealer.

In the quantum assisted BCR method, the matrix inverses were computed on an
actual quantum annealer. We used the D-Wave quantum annealer chip ADVAN-
TAGE_SYSTEM4.1. Comparing the quantum assisted BCR method to the Python inverse
solver numpy.linalg.inv, it was found that an accurate solution can be achieved, but the
simulation time (CPU time) is at best 500 times slower than numpy.linalg.inv. Compared
to solving the large linear system of equations with the Python solver numpy.linalg.solver,
the quantum assisted BCR method is at best 25 times slower. The results suggests that
the quantum computers have a long way to go before they efficiently can be incorporated
into transistor modeling at the nanoscale.
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Introduction 1

1 Introduction

The evolution of 5G towards limitless connectivity, intelligent network platforms, and
edge computing requires significant computational power in the telecommunication
infrastructure. The performance demands of new apps may be fulfilled with new sub-10-
nm transistor technologies, where quantum effects dominate the electrical, thermal, and
switching characteristics of transistors. Modeling these effects accurately is important to
ensure the integrity of circuit design in this domain.

Moore’s law, first predicted by Gordon Moore in 1965 [6], states that the number of
transistors that can be placed on an integrated circuit doubles every two years. So
far, this law has been an observed fact with Samsung beginning their production of
gate-all-around (GAA) 3-nm transistors this year (2022) [7]. The increase in transistor
density, together with enhanced performances of single transistors, has lead to tremen-
dous developments in the capabilities of electronic devices. For future developments to
continue, the transistor technologies have to continuously improve. But as device sizes
shrink, quantum mechanical effects become present in their operations.

When developing new transistor technologies, the use of computer aided design (CAD)
tools has always been of great importance to predict design characteristics before fab-
rication. For classical simulations of Metal Oxide Semiconductor Field Effect Transis-
tor (MOSFET) with gate lengths longer than 100nm, the Drift-Diffusion (DD) simulation
[8] has been very popular and accurate for performance predictions. The DD model is
however a classical model and cannot capture quantum effects such as energy quanti-
zation, quantum tunneling, the wave nature of electrons and holes, and the atomistic
granularity, which are all important at the nanometer scale and physical effects which
cannot be neglected. The need for simulation models which can incorporate these quan-
tum effects is a necessity for the discovery and development of modern nanoelectronic
devices.

There exist several such models, called quantum models (none are perfect), such as the
self-consistent solution of the Schrödinger equation with open boundary condition used
in this project. These models can more accurately simulate nanoscale devices compared
to the DD simulation, but with the cost of increased computational burden. The compu-
tational complexity of the quantum models reduces their usability. Simulation domains
are often limited to two dimensions when in fact the transistors are three dimensional
devices, the simulation times can be very long and solutions hard to achieve. However,

© Uppsala University Anders Winka



Introduction 2

with improving supercomputers (thanks to better transistors) and more important for
this project; with the dawn of quantum computers, new opportunities for the quantum
models can be facilitated.

To fully exploit the parallel capabilities of supercomputers (and quantum computers) a
Domain Decomposition Method (DDM) can be employed which will severely improve
simulation time. DDM’s also has an important task when implementing solvers on the
present existing quantum computers. Current quantum computers are limited by their
amount of coherent logical qubits, and therefor they cannot solve large problems. The
DDM reduces the large problem to several smaller sub-problems, which can be solved
on the quantum computer with current limitations.

If Moore’s law is to persist in the future, transistors have to shrink to sizes that are im-
possible to manufacture because of physical limitations. In one way, marking the lower
limit is the single-atom transistors invented and first demonstrated by Prof. Thomas
Schimmel, et al. in 2004 [9]. One way to move beyond this limitation is with quantum
computers. Described as physical systems that with the laws of quantum mechanics
performs arithmetic and logical operations much faster than a classical computer, or as
cited by Harrow, Hassidim and Lloyd (HHL) [10], “quantum computers are devices that
harness quantum mechanics to perform computations in ways that classical computers
cannot.” There currently exist two complementary specimens of quantum computers,
circuit-based systems and quantum annealers. The circuit-based systems uses deeper
quantum mechanical phenomenons such as coherence, entanglement, and non-locality,
while the quantum annealers mainly exploit tunneling between metastable states and
the ground state [11]. Presently, the quantum annealers have a bigger capacity, with
D-Wave Quantum Annealers having 5000+ qubits [4], compared to the 127 [12] qubits
which can be entangled into a fully coherent state in a circuit based quantum computer.
The greater capacity makes the quantum annealer more suitable for linear algebra, which
we will take advantage of in this project.

In this project a 2D device simulator run on a hybrid classical-quantum computer is pre-
sented. The simulator is developed to treat statistical quantum effects such as quantum
tunneling and quantum confinement. This is done through a self-consistent iterating
scheme of the solution from the coupled non-linear 2D Schrödinger-Poisson equation.
This self consistent loop is very time consuming and to accelerate the simulation time, a
quantum assisted domain decomposition method is implemented for the Schrödinger
equation. The focus in the project was to accelerate the solution of the OBC Schrödinger
equation. In the end no self-consistent solution of the Schrödinger and Poisson equa-
tion was achieved and is left as a future work. The open-boundary conditions of the
Schrödinger equation is modelled with the QTBM [1]. The domain decomposition
method of choice is the BCR method [2], which in the end reduces the size of the linear
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Introduction 3

system of equations that we end up with after discretization of the Schrödinger equation.
In the BCR method several matrix inversions are computed, which will be solved on a
quantum annealer.

1.1 Aim

The aim of this project is to simulate quantum circuits for quantum effects in sub-10 nm
transistor technologies with a quantum algorithm. To do this a self-consistent model of
the non-linear coupled Schrödinger-Poisson equation is employed, mainly based on the
work of Laux et al. in [13] and Lent and Kirkner in [1]. The model is implemented in
Python and discretized using the finite-element method with rectangular mesh elements,
which transforms the physical equations to problems of linear algebra.

Focus in this project is on the solution of the discretized 2D effective mass Schrödinger
equation, the most time-consuming part of the simulation scheme. We wish to solve
this part on a quantum computer. Because of today’s limitations of quantum computers
(few qubits and poor connectivity), a DDM called the BCR method [2] is used to make
the Schrödinger equation tractable to solve on the quantum computer. The quantum
computer used in this project is the D-Wave ADVANTAGE_SYSTEM4.1 chip [4], a quan-
tum annealer with 5000+ physical qubits. To map our problem to the quantum annealer,
a Quadratic Unconstrained Binary Optimization (QUBO) problem is constructed for
finding matrix inverses.

Results are presented for the performance of the BCR method, as adopted to our prob-
lem. A suggested improvement to the BCR method, called the "extra layer" BCR is
also presented. The "extra layer" BCR can improve the accuracy of the solutions for
certain injection energies over the regular BCR method. We also compare two different
constructions of QUBO problems for the matrix inverse. The QUBO problem which uses
the least amount of qubits, called the "unit vector" approach is implemented as part of
the BCR method. The quantum assisted BCR method is compared to the Leap hybrid
solver [14], a hybrid quantum-classical solver distributed by D-Wave.

1.2 Scope of project

Significant approximations are adopted in the physical model of this project. We only
considers two-dimensions, even though transistors are three-dimensional devices. The
empirical effective mass approximation is employed and a simple, six-valley, parabolic
band structure is used for silicon. Also, we consider ballistic transport, so scattering is
neglected. Theses approximations are made because of the computational complexity of
first-principles models. Additional simulating schemes are outlined and discussed in

© Uppsala University Anders Winka



Introduction 4

the Literature Review 4 and Discussion 6.

In this project, only the solution of the Schrödinger equation for a resonant tunneling
device is considered in the results section. For a fully working device simulator, where
current-voltage curves can be obtained, a self-consistent simulation scheme must be
considered. In this project the simulation scheme is outlined, but because of the limited
time we were not able to implement a functioning version of a self-consistent scheme. A
fully working self-consistent scheme is left as a future work.

The thesis begins with a Background section, starting with a outline of the working
principles of transistors and the quantum effects in nanoscale transistors. After that,
the physical model employed in this project is presented. Here the equations, and their
motivation, implemented in our simulation scheme are presented. In the Background
the quantum annealer and the QUBO formalism for a least linear square problem are
also outlined. Finally, we present the BCR method.

In the Methodology chapter the simulation scheme is introduced. Here it is described
how the background is implemented in the Python program. This includes the construc-
tion of the linear system of equation corresponding to the discretized OBC Schrödinger
equation, the adaption of the BCR method and the QUBO formalisms for the matrix
inverse. As mentioned before, the whole self-consistent scheme is presented, however
results are only presented for the solution of the OBC Schrödinger equation.

The report also consists of a comprehensive Literature Review. Since no previous work
was available at Ericsson where a quantum algorithm is used to simulate transistors,
a thorough literature study was conducted. In this section various nanoscale models
are presented, from macroscopic models to models based on first-principles. We also
outline other quantum algorithms for linear algebra problems and DDM considered in
the literature in the making off this thesis.

In the results we will present the solutions of the discretized OBC Schrödinger equation
for a resonant tunneling device. A suggested improvement to the BCR method, called
the "extra layer" BCR is also presented. The "extra layer" BCR can improve the accuracy
of the solutions for certain injection energies over the regular BCR method. We also
compare two different constructions of QUBO problems for the matrix inverse. The
QUBO problem which uses the least amount of qubits, called the "unit vector" approach
is implemented as part of the BCR method. The quantum assisted BCR method is com-
pared to the Leap hybrid solver [14], a hybrid quantum-classical solver distributed by
D-Wave.

© Uppsala University Anders Winka
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The results are followed by a Discussion, where the results will be discussed and an
outlook to future projects in the field is presented. Lastly, the conclusions of the project
are drawn.

© Uppsala University Anders Winka



Background 6

2 Background

2.1 Transistors

To give a good background to the project, it seems fitting to start of with a walk through
of the technical device that we will simulate, the transistor. First invented in 1947-48
by physicists Bardeen, Brattain and Shockley at the Bell Labs, who later won the Nobel
price in Physics for their invention. The transistor is a semiconductor device used for
switching and amplifying electrical signals. Being the active component of integrated
circuits, it deeply embeds modern electronics. It usually comprise of three electrical
leads, the source, the drain and the gate. In figure 2.1 a MOSFET (the most common
transistor type) is shown where the three leads are marked out.

Figure 2.1: Structure of the MOSFET device. G is the gate, B the body and S and D are
the source and drain. The gate is separated from the rest of the device with
an insulated layer (the white block in the figure), which is usually made of

an oxide 1

The source and drain is connected with a channel of a semiconductor and the gate is
isolated with an oxide (the white block in figure 2.1). An applied signal to the gate
adjusts the electron bands in the semiconductor which influences its ability to conduct
electrical current. A current then flows from the source to drain if a VSD bias is applied,
but no current is transmitted to the gate thanks to the oxide. The working principles
of a MOSFET can be seen in figure 2.2. This means that the gate node can determine if
a current can flow or not, by applying a small voltage of typically a few volts. In this
manner the transistor acts as a switch, either the current flows and the circuit is active,
or it does not and the circuit is off. The two distinct states corresponds to the binary 1’s

1Brews ohare, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Com-
mons. URL: https://commons.wikimedia.org/wiki/File:MOSFET_Structure.png
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Background 7

and 0’s in digital computers. The transistor can also be used as an amplifier because the
output power can be higher than the input power. [15]

Figure 2.2: The working principles of a MOSFET device. In stage (a) no voltage is
applied; in (b) a small positive gate voltage is applied; in (c) a gate voltage

large enough to create an inversion layer is applied, aswell as a voltage
between source and drain 2

Since the discovery, the size of the transistors has steadily shrunk over the decades
thanks to improved production techniques, explosively increasing the possible circuit
complexity. The transistor sizes has now reached the nanometer regime, introducing
with it new challenges.

The quantum effects are an actuality and cannot be avoided, but they might have work
arounds. As discussed before in section 2.1, transistors are used as switches, with an on
state and an off state, in circuits. This demands certain properties of these transistors,
such as a rapid on-off transition. Also important is a low voltage in the on state and a
very low off current, the current in the off state. A leakage current in the off state of a
device in a circuit can cause serious problems with heat dissipation. In planar FET this is
a problem, leading to a transition to FinFET devices where the off current is controlled by
pinching it with two opposing voltages from either side of the fin. A similar transistion
to gate-all-around quantum wire FETs is likely to happen. [17]

2.1.1 Challenges in sub-10nm

When the device size shrinks, static and dynamical quantum effects associated with the
wave properties of electrons become present and crucial for the device’s performance.
Static quantum effects include tunneling, confinement and interference, and dynam-
ical quantum effects include scattering. Static effects are physically well defined and
can be implemented in conventional simulation schemes. One example is the Density
Gradient (DG) method which can be incorporated in the DD simulation to account for
tunneling and confinement [18]. Dynamical quantum effects associated with energy
dissipating scattering in electron transport are physically much more involved and
difficult to implement. These dynamical effects have never been critical in MOSFETs
up until now, and basic device properties have been explained within the framework

2Figure 7.13 in Hofmann’s textbook Solid state physics: an introduction [16]
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Background 8

of semiclassical transport theory, such as Boltzmann transport equation [19]. But the
semiclassical transport equations cease to be valid once wave characteristics cannot
be ignored and they cannot treat the quantum effects accurately. Wave characteristics
become important once the de Broglie wavelength of electrons is comparable to the size
of the device. Typical de Broglie wave-lengths in Si is several nm, comparable to sub-10
nm MOSFETs. The phase coherence of the electrons must be taken into account in the
transport analyzes. As this happens, the use of quantum transport models becomes a
necessity. [20]

But this brings about several fundamental problems one must conquer. The ultrasmall
devices, where significant quantum effects are anticipated, are inherently three dimen-
sional (3D). The solution of the 3D Schrödinger equation, that governs the wave-function
of the electron, are extremely computational heavy. Another challenge is the treatment of
the connection between the device region (channel) and the classical reservoirs (source
and drain), from where the macroscopic current is obtained. As cited from Sano et. al.,
"the entire device is intrinsically an open-system and the quantum region and classical
reservoirs must be treated on the same physical ground. This is, of course, one of the
most difficult problems in basic physics" [20]. In this project we will try and deal with
both these problems.

2.2 Transistor modeling

When developing and optimizing devices a modeling tool is essential to better un-
derstand its characteristics. The goal is to describe how the electrons move in the
semiconductor and its connecting leads and insulators. It is based on a mathematical
description of electron transport. As there exist several such descriptions, it can be a
challenge to select one. First-principle calculations such as electronic structure calcu-
lations can accurately describe the nanoscale physics, but are harder to solve. Other,
more well established simulation schemes such as the DD simulation have not been
changed for the last decades and is still frequently employed for its success of simulating
MOSFET devices down to the sub-100 nm regime [21]. But the underlying equations
of the drift-diffusion method cannot describe the nano physics and quantum effects at
the sub-10 nm scale, which are of interest in this project. It is a balancing act between
sufficient physical descriptions and computational efficiency, where several things have
to be considered when choosing a simulation scheme. In this section, we will present the
physical effects that we want to capture and the approach chosen to model a transistor.

2.2.1 Quantum effects in nanoscale transistors

The aim in this project is to simulate quantum effects present at the sub-10 nm scale. The
quantum effects can roughly be divided into three categories, which are listed below.
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• Tunneling

• Confinement

• Scattering

These will be discussed in this section.

2.2.1.1 Tunneling

First of all, quantum tunneling. A true quantum effect where the wave-function of the
electron Ψ has a finite probability to propagate through a thin potential barrier, even if
the potential barrier is larger than the electron’s kinetic energy. It can be explained with
the Heisenberg uncertainty principle. Consider the momentum and position uncertainty

∆x∆p ≈ h̄
2

(2.1)

where ∆x is the position uncertainty, ∆p the momentum uncertainty and h̄ the reduced
Planck constant. If the position of the particle can be pinpointed accurately, the un-
certainty in the momentum becomes large and thus also the uncertainty in the kinetic
energy. If the uncertainty becomes so large that the kinetic energy overcomes the poten-
tial barrier, the electron go over it [22]. Below, in figure 2.3 tunneling through a potential
barrier is visualized.

Figure 2.3: Quantum tunneling through a one-dimensional potential barrier of thickness
s. In the context of the figure, the potential barrier is a small gap between
two electrodes consisting of a sample and the tip of a sampling tunneling

microscope (STD). Φ is the tunneling barrier height, EF are the Fermi levels
of the two metal electrodes. The wave function enters the potential barrier at
x = 0 and then decays exponentially inside the potential barrier. It exists on

the other side of the potential barrier with a reduced, although non-zero,
amplitude. 3

Quantum tunneling has been a known phenomenon in transistors for some time, first
as a concern for a leakage current through the gate oxide. A well known problem in

3Figure taken from F. Trixler’s article Quantum Tunnelling to the Origin and Evolution of Life [23]
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MOSFETs with thin dielectrics for almost as long as they have existed [24]. As the
devices continues to shrink, direct tunneling between the source and drain can also be
an issue [25] as a result of resonance.

2.2.1.2 Confinement

Next on the list is quantum confinement. As the name describes, quantum confinement
is a restriction of the electrons and holes movements. Quantum mechanically, an electron
is represented with a wave-packet of size 3-7 nm [26]. When comparing to the classical
size of a sub-10 nm MOSFET, that is a significant size. So how can you fit an 5 nm
electron into a classical size inversion layer, corresponding to a 1 nm thin potential
well? The answer is that you cannot. Confining the electrons to the small inversion
layers means that a self-consistent solution of the Poisson-Schrödinger equation must be
employed, leading to discretized sets of quantum levels and other quantum effects. In
figure 2.4 we see confinement in one-dimension, two-dimensions, and three-dimensions
and the resulting quantization of the density of states in the conduction and valence
bands.

Figure 2.4: Quantum confinement in 0D ,1D, 2D and 3D materials. In the graphs under
the material samples the density of states ρ for the valence band (VB) and

conduction band (CB) are shown, which emphasise the effects of the
quantum confinement. 4

The quantum effects become present because the electric carriers no longer are simple
localized objects, but defined by quantum wave packets, which are deformed when
confined to a small volume. One example of such a quantum effect happens at the
inversion layer at the Si/Si02 interface. A classical treatment of a standard MOSFET
leads to a carrier density peak at the Si and oxide interface, and an exponential decrease

4Figure taken from T. Edvinsson’s article Optical quantum confinement and photocatalytic properties in two-,
one- and zero-dimensional nanostructures [27]
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away from the surface. This is a result of the positive gate voltage attracting the negative
charge carriers. See figure 2.5.

Figure 2.5: Electron charge density in the center of the channel of a n-MOSFET, obtained
from the density gradient method (solid line), Schrödinger equation (dashed

line), and the classical drift diffusion method (dotted line). 5

A quantum treatment leads to a opposite result, the charge has to be zero at the Si/Si02

interface. The local charge density ρ is usually proportional to the wave function Ψ as
ρ = −e|Ψ|2 and because of the large offset potential of the oxide, the wave function will
vanish at the interface, which means that the charge also vanishes at the interface. [17]

2.2.1.3 Scattering

Lastly, we will talk about scattering, a dynamical quantum effect. As the charge carriers
move in a device, they will inevitably scatter on phonons (quantized vibrations of
the lattice), interface roughness [28] and impurities (due to doping of the substrates),
reducing their mobility. Since the electrons are quantum mechanical (treated as wave
packets), the scattering must be treated in a quantum mechanical fashion. This is not an
effect which our simulator presently can handle, but by implementing the Pauli Master
equation formalism, see section 4.1.2.3, this can be done.

2.3 Schrödinger equation with open boundaries

To capture the quantum tunneling and quantum confinement we wish to solve the
Schrödinger equation and Poisson equation self-consistently to determine a device’s
electrical behaviour, visualized in figure 2.6 below.

5Figure taken from N. Sano et. al.’s article Device Modeling and Simulations Toward Sub-10 nm Semiconductor
Devices [20]
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Schrödinger equation
[HD + ΣL + ΣR − Ev

βD]ϕs,v
β = Bs

β

ϕs,v
β → n(x,z)

Poisson equation
n(x,z) → V(x,z)

V(x,z)n(x,z)

Figure 2.6: The self-consistent Schrödinger-Poisson loop. The ϕs,v
β is the electron wave

function, n(x,z) the charge density and V(x,z) the potential energy.

The Schrödinger equation is the treaty of this section and the following subsections.
To start of, we will point out some of the features of the numerical scheme employed,
mainly drawn from work of Laux et. al. [13] and Vyas et. al. [29]. We will set the
x, z and y coordinates to the transport, confinement and out-of-plane directions. The
simulations are done in the two dimensions (2D) of the x-z plane. We are using the
effective-mass approximation, only considering the first conduction band of Si and the
band minima is approximated with six equivalent ellipsoidal valleys, see appendix A
for a description of these concepts. The potential profile is assumed to be translational
invariant in the out-of-plane y direction, a valid approximation for very wide devices,
which means that this part can be separated from the Schrödinger equation. We assume
ballistic transport because of simplicity, so no scattering is considered. Ballistic transport
could be considered as a "best case" analysis of device behaviour, being useful in that
regard. With an extension of the model outlined here with the Pauli master equation
formulation [30][31][29], it is possible to include scattering into the approach outlined
here. See section 4.1 in the Literature review chapter for a more detailed discussion on
approaches to simulate scattering.

The goal when solving the Schrödinger equation is to study the system’s behavior under
an applied bias (drain-source voltage) where particles can be exchanged with the envi-
ronment through contacts. To treat the interaction with the environment the QTBM is
used, which we outline in Appendix B. The source and drain contacts are idealized as
semi-infinite long leads (no variation in the potential along its length) connected to the
active region of the device. Electron waves are injected from the leads and we want to
find their distribution inside the device and calculate the current into the leads.

The solution domain Ω can be divided into a device region Ω0 and several lead regions
Ω1, ...,Ωn such that Ω ≡ Ω0 ∪ Ω1 ∪ ... ∪ Ωn. See figure 2.7. The boundary of the device
Ω0 not in contact with a lead is named Γ0 and the shared boundaries of a lead s and Ω0

are called Γs. Associated with each lead is a local coordinate system (ηs,ξs), where ηs

denotes the lead direction and ξs denotes the confinement direction.
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Figure 2.7: Problem geometry

The wave functions inside the leads Ωs are denoted ψv
β,s(ηs,ξs), where v denotes the

valley’s in Si (see appendix A), β is the injection energy of the electrons injected into the
device, s is the lead. The confinement in the ξs direction gives wave functions that are
the m eigensolutions χs,v

m (κs) (subbands) of the 1D Schrödinger equation with discrete
energy spectrum Es,v

m (in the QTBM appendix B, the β,v indices are dropped).

Inside the device region Ω0 we have wave functions ϕs,v
β (x,z). These are obtained by

solving the time-independent single-electron Schrödinger equation using the effective-
mass approximation in the 2D x-z plane, independently for every lead s. We assume
that the real space axes (x,z,y) align with the reciprocal lattice axes (kx,kz,ky), and that
the employed simple parabolic energy bands sufficiently describes the conduction band
in the whole domain Ω. The resulting Schrödinger equation follows

− h̄2

2

[
1

mv
x

∂2ϕs,v
β (x,z)

∂x2 +
1

mv
z

∂2ϕs,v
β (x,z)

∂z2

]
+ V(x,z)ϕs,v

β (x,z) = Ev
βϕs,v

β (x,z) (2.2)

V(x,z) is the potential energy distribution, mv
x and mv

z are the effective masses in the
x respective z direction, h̄ is the reduced Plank’s constant. The y direction has been
suppressed out using separation of variables. To obtain the full 3D wave function in
the entire device Ψs,v

β (x,y,z) the out-of-plane wave functions eiky must be multiplied to
ϕs,v

β (x,z), we get

Ψs,v
β (x,y,z) = eikyyϕs,v

β (x,z). (2.3)

Equation 2.2 is solved for three distinct electron configurations, because of the six valleys
in Si, see appendix A.
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2.3.1 Discretization of the Schrödinger equation

The Schrödinger equation in 2.2 cannot be solved analytically, so we have to solve it
numerically on a computer. To do so, we have to discretize it. Doing a finite-element
discretization (see appendix B.2) and using the QTBM boundary conditions (outlined in
appendix B), equation 2.2 becomes a linear matrix equation

[HD + ΣL + ΣR − Ev
βD]ϕs,v

β = Bs
β. (2.4)

HD = T + V is the N × N Schrödinger Hamiltonian of the device consisting of a kinetic
term T and a potential term V, D is a N × N matrix defined in equation B.34, Bs

β is
a N × 2 vector of the injected modes into the device (the 2 stems from the fact that
we consider injection from 2 leads independently). ΣL and ΣR are N × N matrices
representing the self-energy, which includes reflected and transmitted (traveling- and
evanescent-) waves going into and out of the device. These matrices are calculated with
the QTBM in Appendix B, section B.1.5.1. The interfaces where no electrons are injected
Γ0 have zero-value Dirichlet boundary conditions implemented (the wave function ϕs,v

β

are set to zero). Equation 2.4 is solved for the electron wave vectors ϕs,v
β , for all different

injection energies Ev
β, leads s, and conduction-band valleys v. The electron wave vectors

is then used to calculate the charge distribution inside the device, we will do this in
section 2.3.3. The charge distribution shows the electron occupation in the device and it
is used to find a self-consistent solution of the device. [29]

2.3.2 Discretization of the continuous energy spectrum

The energies Ev
β is in reality a continuous energy spectrum, and therefore it needs

to be discretized for computational reasons. A convenient discretization preferably
samples the states (wave-functions) that matters the most inside the device, since they
contribute the most to the charge distribution. It is not straightforward how to perform
this sampling, and there exist several approaches to this problem. The approach used
in this project is outlined in [13]. The energy spectrum is sampled by imposing two
different closed boundary conditions of the Schrödinger equation, either zero-value
Dirichlet (the wave function is set to zero)

ϕs,v
β = 0 on Γs (2.5)

or zero-value Neumann boundary conditions (the wave function’s normal derivative
are set to zero)

∇ϕs,v
β η̂s = 0 on Γs (2.6)

on the device-lead interfaces Γs, thus double sampling the spectrum. The two resulting
eigenvalue problems are solved, yielding standing-wave eigensolutions. The eigenval-
ues from the solutions make up the energy sampling of the injection energies Ev

β of the
open system. This is a good spectrum for obtaining the correct density of states [29].
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The eigenfunctions from the eigenvalue problem will have "cosinelike" or "sinelike"
behaviour at the Γs boundaries. They form a complete orthogonal basis set that spans
the Hilbert space of physical solutions in the device, also obeying the injecting boundary
conditions of the open system in equilibrium, i.e. the case of no applied bias (no dif-
ference in chemical potential between source and drain). Even if the device is driven
out equilibrium, the sampling scheme can vigorously discretize the continuous energy
spectrum such that accurate device solutions and good convergence are provided [29].

2.3.3 Calculation of charge distribution

Using the discretized energy spectrum obtained from the method mentioned in the
above section 2.3.2 when solving the open system Schrödinger equation (see equation
2.4), one gets wave functions ϕs,v

β (x,z) which can be "box" normalized to the device
volume. This is an advantage of the energy discretization scheme. The normalization is
done as follows ∫

Ω
dxdz

(
∑

s
|ϕs,v

β (x,z)|2
)
=

1
2

(2.7)

Instead of |∑s ϕs|2, we have ∑s |ϕs|2 because the leads do not inject the traveling modes
coherently. The 1

2 factor arises because the energy spectrum is sampled with two com-
plete sets of device normal modes, the "sinelike and the "cosinelike" closed system eigen-
functions. The wave functions contains the density of states information in the x and z
directions, and to obtain the 3D electron density we have to include the out-of-plane y
direction. To do this we use the 1D Density Of States (DOS), Dv

1D(Ey) representing the
continuous energy spectrum along the homogeneous y direction, given by

Dv
1D(Ey) =

1
πh̄

√
mv

y

2Ey
(2.8)

and Ey = h̄2k2
y/2mv

y. In the case of ballistic electron transport the electron density n(x,y)
can be calculated by summing all possible traveling modes for the injected states and
associating each wave function with an occupancy factor decided by the Fermi-Dirac
distribution. I.e., the different current carrying states have an associated energy and the
Fermi-Dirac distribution yields a factor for each energy which is multiplied with the
current-carrying state. We also include the y direction 1D DOS, where we can integrate
out Ey. The following expression is obtained:

n(x,z) = ∑
s

∑
v

∑
β

∫ ∞

−∞
dEy

[
1

πh̄

√
mv

y

2Ey
× f s

FD(E , T)

]
|ϕs,v

β (x,z)|2, (2.9)

where f s
FD(E , T) ≡ {1 + exp[(E − Es

F)/(kBT)]}−1 is the Fermi-Dirac distribution, ES
F is

the Fermi level of lead s, T the temperature in Kelvin and E is the total energy given by

E = Eβ + Ey. (2.10)
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Using the expression for the Fermi-Dirac integral of order − 1
2 , given by F− 1

2
(x) ≡∫ ∞

0 dt{t−
1
2 [1 + exp(t − x)]−1}, we obtain the final expression for the charge distribution

n(x,z) = ∑
s

∑
v

∑
β

1
πh̄

√
mv

ykBT
2

× F− 1
2

(
Es

F − Ev
β

kBT

)
|ϕs,v

β (x,z)|2. (2.11)

The charge distribution is calculated separately for different leads s, where each lead
has a associated quasi-Fermi-level Es

F, and then summed together. p(x,y,z), which is
the hole charge distribution is calculated semi-classically using the known 3D DOS
expression

p(x,z) =
1

2
√

π

(
2mhkBT

πh̄2

)3/2

× F1
2

(
V(x,z)− (EF + EG)

kBT

)
(2.12)

where mh = 0.8m0 is the hole effective mass, EF is a constant Fermi level in the device,
Eg is the silicon band-gap energy and F1

2
is the Fermi-Dirac integral of order 1

2 .
[29]

2.4 Poisson equation

When the distribution of electrons, holes and ionized dopants (all charge carriers) have
been found, the Poisson equation is solved to find the new potential distribution in the
2D (x,z) cross section of the device, V, given by

∇ · [ϵ(x,z)∇V(x,z)] = eρ(x,z), (2.13)

where
ρ(x,z) = e[p(x,z)− n(x,z) + NA(x,z)− ND(x,z)] (2.14)

is the total charge, ϵ is the permittivity, e the electron charge, and NA (ND) the acceptor
(donor) concentration, characteristics of the simulated transistor. To obtain the con-
duction band edge potential energy VC, we have to add a discontinuity term ∆EC(x,z)
such that VC = V(x,z) + ∆EC(x,z). The discontinuity term describes the discontinuity
in the conduction band edge energy between different materials, such as Si and SiO2 [13].

A gate potential VGS is included by imposing Dirichlet boundary conditions at the
domain edge representing the oxide-metal interface, see figure 2.1 or 2.2 to see the oxide
placement. Zero-normal derivative is imposed on all other non-lead boundaries,

∇V(r) · n̂ = 0 for r ∈ Γ0 (2.15)

where n̂ is the unit normal vector. The boundary conditions for the lead-device interface
is treated in the next section. To solve the Poisson equation, we discretize it with the
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same finite-element mesh as the Schrödinger equation, and we obtained the following
linear system of equations

PV = c, (2.16)

where P is a N × N matrix representing the discretization of the Laplace operator, V is
a N × 1 column vector representing the unknown potential V and c is a N × 1 column
vector representing the known charge density eρ(x,z).
[29]

2.4.1 Lead boundary conditions Poisson equation

When solving open systems, it can occur (typically at high VDS) unphysical electron
depletion or accumulation at the lead-device interface, which is a known problem.
Methods to tackle this include

• adjusting Fermi levels at the leads to maintain charge neutrality [32].

• A Drifted-Fermi distribution (physically consistent but expensive) [13].

• Zero normal derivative boundaries at the contacts [29].

Here the zero normal derivative is used since it is computational less expansive. Its major
limitation, outlined in [13], is that it forces the electric field to be zero at the contacts,
even for biased devices. This is not a physical behaviour. However, tests done in [29]
showed that the zero normal derivative produced similar results to the more physically
consistent drifted Fermi distribution.

2.5 Self-Consistent scheme

The self-consistency scheme can be presented as a step-by-step process:

1. Set up the problem (geometri, material, etc) and conventions used. Here two
dimensions, Si, etc are used.

2. Calculate the discretized energy spectrum by solving the eigenvalue problems
corresponding to the standing-wave boundary conditions.

3. Find the electron wave functions in the device domain, using the Quantum Tans-
mitting Boundary Method (QTBM) and Schrödinger equation. It is solved by using
the finite-element method with the QTBM boundary conditions, equation 2.4.

4. Once the wave functions are found, the ballistic charges can be calculated with
equation 2.11.

5. Using the distribution of carriers, the Poisson equation 2.16 is solved to find the
new potential V.
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6. Checking for convergence by comparing the old and new potential. If convergence
is achieved the self-consistent solution is obtained and we can calculate the current.
Else, we repeat steps 2. to 5., but with the new potential.

Once the self-consistent solution of the open system is obtained, the different current
transport parameters, which is, the DOS, the current-density distribution, and the total
drain current can be calculated.

2.6 Calculation of current

As said, once the self-consitent solution of the Schrödinger and Poisson equation is
obtained, the current through the device can be calculated. First, define the current at
lead s as [13]

J⃗s
dev =∑

v,β
e
∫ ds

0
dξs

{
1

πh̄

√
mv

ykBT
2

F− 1
2

(
Es

F − Ev
β

kBT

)(
− ih̄

2m∗v
ηs

)

×
[(

∇ϕs,v
β (ηs,ξs)

)∗
ϕs,v

β (ηs,ξs)−∇ϕs,v
β (ηs,ξs)

(
ϕs,v

β (ηs,ξs)
)∗] ∣∣∣∣

ηs∈Γs

} (2.17)

where ds is the width of lead s and ∗ denotes the complex conjugate. To get the current
intensity I in the device we have to sum all contributions from the leads, I = ∑s J⃗s

dev.
When no bias voltage is applied, the device is at equilibrium and all Fermi levels Es

F

have the same value EF. When an applied bias VA is applied at lead s, the Fermi level
shifts at lead s and becomes

Es
F = EF − VA (2.18)

and the current will be non-vanishing.

2.7 Quantum Computing

Quantum transport algorithms comes with several numerical challenges. Matrix oper-
ations such as matrix inversions, eigenvalue problems, and matrix products are very
expensive. Solving for the current-voltage characteristics of a Si nanowire FinFET with a
3nm diameter and a length of 20nm (10 bands tight binding model) using 10 bias points
requires 100,000s [33]. With the emerging Quantum Computer (QC) it is hopefully pos-
sible to speed up these operations/simulations with use of parallelization and quantum
algorithms.

2.7.1 Quantum annealers

One of the two main quantum computing architectures is the quantum annealer (an
additional architecture to the quantum annealer and gate-based QC is the adiabatic
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QC, which is closely related to the quantum annealer), intended as a tool for tackling
optimization problems. The quantum annealer processors naturally finds and returns
minimum energy solutions using quantum tunneling between meta-stable states and
the ground state (also called quantum fluctuations). States are represented by quantum
bits, or qubits. Just like regular bits they can take on binary values, but in a quantum
state of superposition. One of the most common and popular models of a optimization
problem which can be implemented on the quantum annealer is the Ising model [34], a
mathematical model in statistical mechanics for ferromagnetism. The energy Hamilton
of the Ising model is formulated below

H(⃗σ) = −
N

∑
i=1

hiσi −
N

∑
i<j

Ji,jσiσj (2.19)

where σ⃗ = (σ1, ...,σN)
T are spin variables and σi ∈ {−1,+1}. The σi represent the qubits.

Closely related to the Ising model, as we will see in the next section, is the QUBO
problem, which is a combinatorial optimization problem. QUBO problems are ideal for
the implementation on the quantum annealer. In the next section the QUBO problem
is introduced and a formulation is shown that can solve a linear system of equations,
which will be used in this project. [35]

2.7.2 Quadratic Unconstrained Binary Optimization

When formulating the QUBO problem, you start of with creating a cost function f , that
maps from an n-dimensional binary vector space Bn onto R. f is defined as [35]

f (⃗q) = q⃗TQq⃗ (2.20)

where q⃗ = (q1, ...,qN)
T, qi ∈ {0,1}, and Q is an upper diagonal matrix containing the

QUBO coefficients. The problem consist of finding the q⃗min that minimizes the cost
function f . Following from binary arithmetic q2

i = qi (idempotency condition), the cost
function can be written as

f (⃗q) =
N

∑
i=1

Qi,iqi +
N

∑
i<j

Qi,jqiqj (2.21)

where Qi,i are the diagonal elements in Q and Qi,j are the off-diagonal elements. The
Qi,i represents linear terms in the cost function and the Qi,j represents quadratic terms.
As we can see, the cost function in the QUBO model, eq 2.21, and the Hamiltonian of
the Ising model, 2.19, are very similar. They differ in their unknows σ ∈ {−1,1} and
q ∈ {0,1} which are related by the following linear mapping

σ = 2q − 1 (2.22)
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In the next section a QUBO problem will be formulated from the Least Linear Squares
(LLS) problem to find the solution to a system of linear equations.

2.7.3 QUBO formalism for a LLS problem

The LLS problem can be formulated as follows: Find the vector x⃗ ∈ RN that minimize
||Ax⃗ − b⃗|| where A ∈ RN×N is a matrix and b⃗ ∈ RN a column vector. Writing out the
Ax⃗ − b⃗ expression

Ax⃗ − b⃗ =


a1,1 a1,1 ... a1,N

a2,1 a2,2 ... a2,N
...

...
. . .

...
aN,1 aN,2 ... aN,N




x1

x2

...
xN

−


b1

b2
...

bN

 (2.23)

and then taking the L2-norm square we obtain the following expression

||Ax⃗ − b⃗||22 =
N

∑
k=1

[
N

∑
i=1

ak,ixi − bk

]2

(2.24a)

=
N

∑
k=1

( N

∑
i=1

ak,ixi

)2

− 2bk

N

∑
i=1

ak,ixi + b2
k

 (2.24b)

=
N

∑
k=1

[
N

∑
i=1

N

∑
j=1

ak,iak,jxixj − 2bk

N

∑
i=1

ak,ixi + b2
k

]
(2.24c)

=
N

∑
k=1

[
N

∑
i=1

(ak,ixi)2 + 2∑
i<j

ak,iak,jxixj − 2bk

N

∑
i=1

ak,ixi + b2
k

]
. (2.24d)

Solving this problem in a binary format, each xi would have a binary representation of
R bits qr ∈ {0,1} in the following form

xi ≈ ci
R−1

∑
r=0

2−rqi
r − di (2.25)

such that xi ∈ [−di,2ci − di) [5]. di and ci specifies the believed domain that contain xi

and are very important for finding a good solution. After inserting the expression in
equation 2.25 into equation 2.24 we get our QUBO model f (⃗q) for the LLS problem. To
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find the QUBO coefficients we have to expand the terms. We begin by expanding the
first term inside the square brackets in equation 2.24d

N

∑
i=1

(ak,ixi)2 ≈
N

∑
i=1

a2
k,i

(
ci

R−1

∑
r=0

2−rqi
r − di

)2
 (2.26)

=
N

∑
k=1

N

∑
i=1

[
a2

k,i

(
ci

R−1

∑
r=0

2−rqi
r − di

)(
ci

R−1

∑
r′=0

2−r′qi
r′ − di

)]
(2.27)

=
N

∑
i=1

[
a2

k,i

(
(ci)2 ∑

rr′
2−(r+r′)qi

rqi
r′ − 2cidi ∑

r
2−rqi

r + (di)4

)]
(2.28)

=
N

∑
i=1

[
a2

k,i

(
(ci)2 ∑

r,r′
2−(r+r′)qi

rqi
r′ + (ci)2 ∑

r
2−2rqi

r − 2ci ∑
r

2−rqi
r + (di)2

)]
.

(2.29)

In the last equality we used the idempotency condition (qi
r)

2 = qi
r. Now, we expand the

second term inside the square brackets in equation 2.24

2∑
i<j

ak,iak,jxixj ≈2∑
i<j

ak,iak,j

(
ci

R−1

∑
r=0

2−rqi
r − di

)(
cj

R−1

∑
r′=0

2−r′qj
r′ − dj

)
(2.30)

=2∑
i<j

ak,iak,j

(
cicj ∑

rr′
2−(r+r′)qi

rqj
r′ − cidj ∑

r
2−rqi

r − cjdi ∑
r

2−rqj
r + didj

)
(2.31)

Finally, we insert the binary representation in the third term inside the square brackets
in equation 2.24

−2bk

N

∑
i=1

ak,ixi ≈− 2bk

N

∑
i=1

ak,i

(
ci

R−1

∑
r=0

2−rqi
r − di

)
(2.32)

=− 2∑
ir

bkak,ici2−rqi
r + 2∑

i
bkak,idi (2.33)

We get our QUBO model by inserting equations 2.29, 2.31 and 2.33 back into 2.24. We
do this to obtain the QUBO coefficients, but instead of equations 2.29 and 2.31 we use a
binary expansion of the first term in equation 2.24c.

f (⃗q) =∑
k

∑
ir

∑
jr′

ak,iak,jcicj2−(r+r′)qi
rqj

r − 2∑
k

∑
ijr

ak,iak,jcidj2−rqi
r + ∑

ij
ak,iak,jdidj (2.34)

− 2∑
k

∑
ir

bkak,ici2−rqi
r + 2∑

k
∑

i
bkak,idi + ∑

k
b2

k (2.35)

and the QUBO coefficients are
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Qr
i,i = −2∑

k
∑

j
ak,iak,jcidj2−r − 2∑

k
bkak,ici2−r (2.36)

Qr,r′
i,j = ∑

k
ak,iak,jcicj2−(r+r′) (2.37)

Note that some terms in equation 2.35 are just constants and will therefor not affect the
minimization.

2.8 Domain Decomposition Methods

To be able to compute the linear system of equations on a quantum annealer a DDM is
used to reduce the size of the linear system of equations corresponding to the discretized
Schrödinger equation with open boundary condition, see equation 2.4. DDMs are also
useful when utilizing the parallel capabilities of computers. The choice of algorithm fell
on the BCR method, a 1D DDM along the electron transport direction outlined in [2] [36]
[37] [38].

2.8.1 Block Cyclic Reduction

First introduced in [39] and also known as "renormalization" in [40], the idea in the
BCR method is to exploit the structure of the system of linear equations to use Gaussian
elimination to decouple matrix blocks. The matrix blocks corresponds to different layers,
and in this way decouple the different layers (see figure 2.8) until only the first and the
last layers are connected. To make it a bit clearer, let us look at a rewritten version of
equation 2.4 where we have employed a rectangular mesh elements and a "vertical"
ordering (see section 3.2), and only injection from the left is considered:



HD
1,1 + ΣL − EβD HD

1,2 0 ... 0

HD
2,1 HD

2,2 − EβD HD
2,3

. . .
...

0
. . . . . . . . . 0

...
. . . . . . . . . HD

nx−1,nx

0 . . . 0 HD
nx−1,nx

HD
nx ,nx

+ ΣR − EβD


︸                                                                                              ︷︷                                                                                              ︸

H



ϕ1

ϕ2
...
...

ϕnx


︸    ︷︷    ︸

ϕ

=



B1

0
...
...
0


︸  ︷︷  ︸

B

(2.38)

The elements in the matrix H are in themselves matrices of size nz × nz corresponding
to layers, which can be seen in figure 2.8, and the elements of ϕ and B are column
vectors of size nz × 1. The injection vector B has zero entries everywhere, except at
the layer corresponding to the left lead, where we have an injection of electrons. The
v, s and β indices which is seen in equation 2.4 are not written explicitly for clarity.
The matrices are obtained from the finite element method with uniform rectangular
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mesh elements, for details see B.2. The diagonal elements in equation 2.38 describe
interactions within a layer and off diagonal elements describe interactions between
adjacent layers. For convenience, diagonal elements in H will be denoted Hi,i, for
example H1,1 = HD

1,1 + ΣL − EβD, and off-diagonal elements are denoted Hi,±i, for
example H1,2 = HD

1,2.

Figure 2.8: Device after discretization. Each dot represents a nodal point which we solve
the Schrödinger and Poisson equation for. The vertical nodal points lying

under the numbers 1,2,3, ...,nx represents the layers.

For the BCR to work properly a number of properties must be satisfied for the system of
linear equation H that we want to solve: (see [2] page 4)

(a) It is block tri-diagonal where each block represents a layer. In our case this means
that all nodal points in a layer have the same coordinate in the electron transport
direction x.

(b) Following from the first property, the diagonal blocks Hi,i contain energies and
only interactions within the same layer.

(c) Off-diagonal blocks Hi,i±1 connect one layer to its left and right neighbor, they are
sparse, and Hi,i+1 = H†

i+1,i. In our case Hi,i±1 will be real and diagonal, so these
properties are satisfied.

(d) The open boundary conditions, ΣL and ΣR, and the injection vector B, affects only
the first and last blocks.

The problem studied in [2] is an atomistic simulation of high electron mobility transistor
(HEMT) and tunneling field-effect transistor (TFET) structures. It uses a tight-binding
model as a basis for the Schrödinger equation. In this work, finite element shape func-
tions are employed. If electrons flow along the [1 0 0] crystal axis, the atomic layers (as
the layers are called in [2]) will not have interactions between its atoms and the diagonal
blocks in equation 2.38 will be quasi-diagonal, which is ideal for the BCR method as we
will see. Our discretization do not lead to the same nice structure, our diagonal blocks
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are sparse tri-diagonal matrices, but it will not pose a problem to the implementation
since it satisfies all the properties listed above. Now, let us turn our attention to the
implementation of the BCR method.

As mentioned in the beginning of the section, the BCR method uses Guassian elimination
to decouple layers until only the first and last layer are coupled to each other. If we
want to decouple layer i the blocks Hi−1,i−1, Hi+1,i+1, Hi−1,i+1 and Hi+1,i−1 will be
"renormalized" as follows:

Xi = H−1
i,i Hi,i−1 (2.39)

Yi = H−1
i,i Hi,i+1 (2.40)

Ĥi−1,i−1 = Hi−1,i−1 − Hi−1,iXi (2.41)

Ĥi+1,i+1 = Hi+1,i+1 − Hi+1,iYi (2.42)

Ĥi−1,i+1 = −Hi−1,iYi (2.43)

Ĥi+1,i−1 = Ĥ†
i−1,i+1 (2.44)

The last equation follows from the fact that Hi,i+1 = H†
i+1,i. The Ĥ denotes the matrix H

after renormalizaton. These six operations suppresses the atomic layer i from H. It is
possible to suppress all layers except the first and last layer in this fashion. After this is
done, only the first and last layer will be connected and we are left with a 2nz × 2nz linear
system of equations. So instead of solving a nxnz × nxnz system of linear equations, we
solve nx − 2 inverses of size nz × nz and a 2nz × 2nz linear system of equation. Reducing
the size of the linear system of equation we want to sovle, which was exactly what we
wanted! But the BCR method also comes with other advantages, and to exploit them fully
we have to look at the ordering with which we decouple layers. The renormalization
can be devided into three stages:

1. Blocks with even indices are decoupled (2, 4, 6, ...), with exception of the last layer
if that has an even index. This requires the inversion of symmetric tri-diagonal
real matrices and multiplication of dense and diagonal matrices.

2. Half of the odd indexed blocks are decoupled (3, 7, 11, ...). This includes inversion
and multiplication of real dense matrices.

3. The remaining half of blocks with odd indices are removed (5, 9, 13, ...). All
matrices in this process are dense. This process is repeated until only the Ĥ1,1,
Ĥnx ,nx , Ĥ1,nx , and Ĥnx ,1 matrix blocks are left.

After all the steps above are completed, the 2 block × 2 block remaining system of equa-
tions is solved and we find ϕ1 and ϕnx

. The rest of the solution vector ϕ is reconstructed
with the following equation:

ϕi = −Xiϕi−l − Yiϕi+r. (2.45)
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Before decoupling the layer i, it was connected to layers i − l and i + r. So, layer i is
reconstructed from the two layers it was connected to before decoupling. In this way we
can recursively reconstruct the full solution ϕ.
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3 Methodology

The device simulator can be visualized with a flowchart, which can be seen on the
following page in figure 3.1. In the upcoming sections in this Methodology chapter, the
different nodes of the flowchart are described. The goal is to explain how one obtains the
I-V curve for a given device. A lot of focus will be put on the "Solving the Schrödinger
eq." node, since it includes the implementation of the BCR method and the use of the
quantum annealer to compute the matrix inversions in the BCR method. We start of
with a short section on the conventions and assumptions used.

3.1 Conventions and assumptions

The x-, z-, and y-coordinates denotes the transport, confinement, and out-of-plane
directions respectively. Simulations are done in the 2D x-z plane of the device with
the effective-mass approximation, limiting calculations to the first conduction band of
Si, approximating the conduction band minima with six equivalent ellipsoidal valleys
(see appendix A). Translational invariance is assumed in the y-direction, which is a god
assumption in wide devices. The Schrödinger equation and Poisson equation are solved
self-consistently to determine the electrical behavior of the device. The programming
language used is Python. Devices with only one drain and one source are studied.

3.2 Setting up matrices

After discretization of the Schrödinger equation and imposing the open-boundary
condition with the QTBM (see appendix B.1.5), you end up with a sparse linear system
of equation Hϕ = B, seen in equation 2.4 and also re-written again below

[HD + ΣL + ΣR − Ev
βD]︸                           ︷︷                           ︸

H

ϕs,v
β︸︷︷︸

ϕ

= Bs
β.︸︷︷︸

B

But before you can set up equation 2.4, you first have to construct the HD matrix. The
HD matrix is used to compute the energy spectrum and after that, the open-boundary
condition can be obtained. The finite element method, using rectangular mesh elements
(see appendix B.1.5 and B.1.5.1) is used to construct the HD matrix. Each row in HD has
at most five nonzero elements and it can be written in the following form

(HDϕ)ij = aijϕij − bijϕi−1j − cijϕi+1j − dijϕij−1 − eijϕij+1 (3.1)
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Start Initialize matrices Set new Bias

Update Potential

Calculate energy spectrum

Calculate the wave vectors

Calculate the open-boundary condition

Solve the Schrödinger eq.

All Energies?

Calculate charge and current

Solve the Poisson eq.

Convergence?

All Biases?End

Yes

No

Yes

No

Yes
No

Figure 3.1: Flowchart of the device simulator.
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where i = 1, ...,nz and j = 1, ...,nx denotes the 2D spacial position in the discretization
mesh, ϕij is the wave function in position ij, aij describes on site energies, bij, cij describes
interactions with neighbouring sites in the z-direction, and dij, eij describes interactions
with neighbouring sites in the x-direction. When implementing this on the computer,
you have to go from the 2-dimensional indices ij to a 1-dimensional index l. There exist
several different such mappings (orderings), for instance natural ordering and red-black
ordering, which will give different structures to the HD and H matrices. Here, the
following ordering is employed to allow us to use the BCR method and write equation
3.2 in the block tri-diagonal form seen in equation 2.38

l(i, j) = i + (j − 1) · nz. (3.2)

We are basically going one layer at the time, see figure 2.8, from the top to the bottom of
the device. We will call this the "vertical" ordering. This ordering will give the following
structure to the HD matrix, looking at a arbitrary row r(i, j)

HD
r = [⃗0 −dr︸︷︷︸

r−nz

0⃗ −br︸︷︷︸
r−1

ar︸︷︷︸
r

−cr︸︷︷︸
r+1

0⃗ er︸︷︷︸
r+nz

0⃗] (3.3)

where the column indices are written in the underscores. In a matrix format, neglecting
the open-boundary conditions, it can be written as



a1 −c1 0 ... −e1 0 ... 0

−b2 a2
. . . 0 ...

. . . 0
. . .

...

0
. . . . . . −cnz−1 0 ... −enz−1

. . .
...

. . . −bnz anz 0
. . . . . .

−dnz+1 0 0 anz+1 −cnz+1

0
. . . . . . −bnz+2

. . . . . .
...

. . . −dn−2 ... 0
. . . an−2 −cn−2 0

... 0 −dn−1 ... 0 −bn−1 an−1 −cn−1

0 ... 0 −dn ... 0 −bn an.



(3.4)

This matrix is block-tridiagonal and can be written as in equation 2.38. The different
block matrices seen in equation 2.38 will have the following structure
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HD
r,r =



a1+(r−1)·nz −c1+(r−1)·nz 0 0 ... 0

−b2+(r−1)·nz a2+(r−1)·nz −c2+(r−1)·nz 0
. . .

...

0 −b2+(r−1)·nz a2+(r−1)·nz −c2+(r−1)·nz 0
. . .

...
. . . . . . . . . . . . . . .

0 ... 0 −br·nz−1 ar·nz−1 −cr·nz−1

0 ... 0 −br·nz ar·nz


,

(3.5)

HD
r,r−1 =



−d1+(r−1)·nz 0 ... 0
0 −d2+(r−1)·nz 0 ... 0
...

. . . . . . . . .
...

0 ... 0 −dr·nz−1 0
0 ... 0 −dr·nz


, (3.6)

HD
r,r+1 =



−e1+(r−1)·nz 0 ... 0
0 −e2+(r−1)·nz 0 ... 0
...

. . . . . . . . .
...

0 ... 0 −er·nz−1 0
0 ... 0 −er·nz


, (3.7)

The values of the matrix elements are calculated following section B.2. The open bound-
ary conditions, ΣL and ΣL, will be full nz × nz matrices which are calculated with
equation B.41 from the QTBM appendix B.

As stated in section 2.3.1, zero-value Dirichlet boundary condition are employed on
the Γ0 boundary, i.e. the wave-function is vanishing outside the device. To enforce
this boundary condition one can set the rows r in H corresponding to this boundary
to zero, with exception to the diagonal elements, which we set to 1. The injection
vector Bm will be zero everywhere except for the rows that pertains to the device-lead
boundary, so no modification is necessary there. This procedure leads to the insertion
of the trivial equation 1 · ϕr = 0 in the system at every boundary index. However, it is
often desirable to remove these trivial equations before solving the system of equations,
for two reasons. For starters, our matrix H will no longer be symmetric because of the
existence of the trivial equations, and secondly, why solve for known wave-vectors as if
they were unknown? We can remove these trivial equations in the following way. First,
we delete the rows corresponding to the boundary in the matrix H and the rows in the
injection vector Bm. We also want to remove the columns that connect to the boundary
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wave-function, but before doing this we have to transfer these contributions over to
the injection vector. Since our boundary wave-functions are zero we do not have to
add anything to the injection vector. After this step we can finally delete the columns
related to the boundary in H and these trivial equations are removed. We are left with
a symmetric system of equations with reduced size, going from a N × N system to a
Nr × Nr system where N − Nr is equal to the number of nodal points on the boundary
where the wave-function already is known. [13]

3.3 Bias and potential

The next step is to pick for which applied bias we want to simulate the device. If the goal
is to do a I-V (current and voltage) curve, we have to calculate the resulting currents for
many applied biases, as we can see in the flowchart in figure 3.1. This process can be
sped up through parallelization, computing the different bias points simultaneously.

Once we have chosen an applied bias, we can set the initial potential distribution V.
This is done either by using a potential distribution from an old run with a similar setup,
or by calculating the charge distribution from a classical expression, imposing charge
neutrality [41], and then solving the Poisson equation, see equation 2.13. The resulting
potential distribution is then the initial potential fed to the rest of simulator, including
calculating the energy spectrum, wave vectors and then solving the Schrödinger equation
for all energies. The potential is embedded into the HD matrix.

3.4 Discretization of the energy spectrum

In section 2.3.2, the method of choice to discretize the continuous energy spectrum Ev
β

was briefly outlined. Using two different closed boundary conditions at the lead-device
boundaries, called standing wave boundary conditions in [13] (they are basically the
zero-value Dirichlet conditions and Neumann boundary conditions), for the Schrödinger
equation, we obtain two eigenvalue problems of the form

HDψβ = Ev
βDψβ

⇒ D− 1
2 HDD− 1

2 D
1
2 ψβ = Ev

βD
1
2 ψβ

(3.8)

where D
1
2 is defined such that D = D

1
2 D

1
2 and D− 1

2 is its inverse. In the second line, we
have a standard eigenvalue problem Ax = λx, where A = D− 1

2 HDD− 1
2 , x = D

1
2 ψβ and

λ = Ev
β. The standing-wave eigensolutions (Eβ,ψβ) discretizes the continuous energy

spectrum of the lead+device system. The Dirichlet boundary conditions are imposed
following the last paragraph in section 3.2 and the Neumann boundary conditions does
not need any modifications to be implemented since they are satisfied when ΣL = 0 and
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ΣR = 0 (see equation B.20). The eigenvalue problem is solved with the scipy.linalg.eigh
method, but might also be solvable on a quantum computer, see section 4.2.2. We do not
need all the energies obtained from equation 3.8, energies much larger than the Fermi
level will be suppressed when calculating the charge distribution. We chose a cut-off
energy at 5kbT above the Fermi level [41].

For a more detailed description of the standing-wave solutions see Appendix A, section
1. Finding the device normal modes in reference [13].

3.5 Wave vectors and open-boundary conditions

The wave vectors ki
m are calculated using equation B.12 in section B.1.2. Using a infinite-

well potential when solving equation B.9 we obtain the mode energies Es
m, given by

Es
m =

h̄
2

m2π2

m∗
ξs

d2
s

, (3.9)

where m = 1,2,3, .... The open-boundary conditions are calculated with equation B.41.
The integral in equation B.37 are calculated with the Python function scipy.integrate.simps.
For a description on how the open boundary conditions are obtained with the QTBM,
see section B.1.5 in Appendix B.

3.6 Solving the Schrödinger equation

Once we have a potential, calculated the corresponding energy spectrum, the wave
vectors and the open-boundary conditions, the next step is to solve the Schrödinger
equation. After the discretization, we are left with a system of linear equations, see
equation 2.4. The linear system of equations can be solved with an available Python
solver, such as the numpy.linalg.solve which uses the LAPACK routine _gesv [42]. It is
based on LU decomposition to solve the system in a reasonable time, but as you have to
solve the system for several energies, bias points and iterations to find convergence, the
total simulation time will go up a lot. As more nodal points are used in the discretization
the system becomes larger and the time to solve the system increases. It is of great
interest to speed up this process, which is where the BCR method comes into the picture.
The linear system of equations is also too big to solve on present quantum computers,
but the BCR method reduces the problem size such that it can be solved on a quantum
annealer.

3.6.1 Implementation of the BCR method

The BCR method can be divided into two stages; first one decoupling stage and then
one re-coupling stage. The two stages are self-explanatory and are described in the
Background, section 2.8.1. The BCR method was developed for solving a similar system
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of linear equation to the one that we are left with, there are however some things that
differs and needs a special treatment.
One difference between the implementation of the BCR method in reference [36] and
in this project is the structure of the matrix which is solved. Their matrix will have
diagonal matrix blocks which in themselves are diagonal. (In Fig. 1. in reference [37]
we can see the structure of their matrix). This is because they do not have connections
between elements in each layer. This makes the BCR method super sufficient for their
matrix structure since when you compute the Xi and Yi matrices in equations 2.39 and
2.40 you have to do a matrix inversion of a diagonal matrix, which is trivial. As one can
see in equation 3.5 and in figure 3.2, we do not have the same nice matrix structure. This
means that the BCR method will not be as efficient for the matrix structure we study, but
it will still work (see section 2.8.1). We will have to compute the inverse of tridiagonal
matrices instead in the first step, see figure 3.2.

Continuing on the matrix structure, it can be of interest to see how the structure changes
when performing the BCR method. This can be seen in figure 3.2 below. What we also
can notice in figure 3.2 is that we are dealing with full matrices in all decoupling stages,
except the first one. Whereas in [37], full matrices does not appear until in the third
decoupling stage.

(a) Before decoupling. (b) After stage 1. Layer 2
and 4 decoupled.

(c) After stage 2. Layer 3
decoupled.

Figure 3.2: Matrix structure. Non-zero matrix elements are market with blue dots.

A note on the implementation of the BCR method should also be made on the decoupling
order, which is very important for the BCR method. First of, we keep the first and last
block until the end because those blocks are the only blocks that are full and complex
due to the open-boundary conditions. Decoupling these layers in an earlier stage would
introduce complex numbers in the decoupling process, and complex arithmetic is 4
times slower than real arithmetic. So, by leaving these layers till the end, we only have
to deal with real arithmetic in the decoupling process which is much faster. Also, one of
the first or last layer will have a nonzero injection vector, so we do not want to decouple
that layer for that reason.
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The decoupling order was divided into three stages in section 2.8.1. The first stage only
deals with the inversion of sparse tridiagonal matrices. Since it is easier to invert a sparse
matrix than a full matrix, (which we are left with in the other decoupling stages, see
figure 3.2) we want to decouple as many layers as possible in the first stage. Which
is why we decouple every second layer (when decoupling a layer we introduce full
matrices in the adjacent layers). Removing every second layer also makes it possible for
the decoupling in stage 1. to be run in parallel, this is also true for the decoupling in
stage 2.. However, in stage 3. the blocks have to be removed one at the time since the
removal of one block will affect the next block in the decoupling order. The layers in the
third stage are connected, this is not the case for the layers in the first and second stage
which makes it possible to run these stages in parallel.

3.6.1.1 Extra layer BCR

In the re-coupling stage, the whole solution is constructed in a recursive manner where
each layer is created from the two layers it was coupled to before removal with equation
2.45. This is not a flawless process since it is not possible to create a nonzero solution if
the first and last layer, ϕ1 and ϕnx

, which are the two layers that you start the re-coupling
stage from, are equal to zero. It can also affect the accuracy of the BCR method if the ϕ1

and ϕnx
layers are much smaller than the rest of the solution that we want to recreate,

something we will see in the Results chapter 5. There are however ways to go around
this problem.

By keeping one extra layer in the decoupling stage that is likely to be similar in magni-
tude to the rest of the solution, we can create the solution from this layer instead and
achieve a much better accuracy. Several criteria is applicable for the extra layer, outlined
below

• It should not be negligible.

• It should correspond to the magnitude of the device wave function.

• The wave function of the extra layer should belong to the modes of the wave
function.

• It should correspond to the magnitude of one of the modes of the device wave
function.

Preferably, the extra layer should be a layer from the third decoupling stage, since we
want to start the re-coupling from that layer. When keeping an extra layer in the de-
coupling stage you have to solve a 3nz × 3nz system of equations instead of a 2nz × 2nz,
which is a drawback of the approach. But you have to compute one less matrix inverse.
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The time-consuming part of the BCR method is the inversion of the diagonal blocks in
equations 2.39 and 2.40. To try and accelerate these operations a quantum algorithm is
developed in the next sections.

3.6.2 Quantum assisted BCR method

To solve the inverses in the BCR method, the quantum assisted QUBO formalism is
used, introduced in the Background in section 2.7.2. To simplify the implementation,
we employed a Python package called pyQUBO [43] [44]. pyQUBO provides tools to
easily create QUBO models (or Ising) from mathematical expressions, which then can be
solved with different samplers. In our case we are interested in the Advantage quantum
annealer [4], developed by D-Wave Systems Inc. It is currently the most capable quan-
tum annealer available for use in D-Wave’s cloud service Leap, with 5000+ available
qubits.

In section 2.7.2 it was shown how a QUBO model can be constructed from the linear
system of equations, but now we are interested in the inverse of a matrix. To see how
the inverse can be computed, we will look at two different objective functions.

3.6.2.1 The matrix inversion objective function

First of, it is possible to create an objective function based on the following expression

||A · B − IN ||, (3.10)

where A is a non-singular N × N matrix, B its inverse and IN the identity matrix of size
N × N. Here we want to find B which constitutes of N2 different unknown entries. This
means that we have to represent B in a binary format and construct our QUBO problem
in a similar fashion as in section 2.7.3. We can turn the matrix problem into a linear
system of equations

A · B =


a11 ... a1N
...

. . .
...

aN1 ... aNN




b11 ... b1N
...

. . .
...

bN1 ... bNN

 = IN =


1 ... 0
...

. . .
...

0 ... 1

 (3.11a)

⇒


A ... 0
...

. . .
...

0 ... A


︸             ︷︷             ︸

A


b:1
...

b:N


︸   ︷︷   ︸

b

=


e1
...

eN


︸  ︷︷  ︸

e

(3.11b)

where b:i denotes the ith column of B and ei denotes the ith column of IN . A is a N2 × N2

matrix. Next, we can just follow the procedure of section 2.7.3 to find the QUBO matrix.
We will call this the whole matrix approach (or whole matrix solver). This approach is
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not optimal when implemented on present day quantum annealers since it requires a
binary representation of many unknowns (if we want an accuracy of R qubits, we need
a total of R · n2 logical qubits) and we are limited by the number of qubits.

When implementing the whole matrix approach in Python, it is not efficient to turn it
into a linear system of equation because it necessitates the creation of a huge matrix A
with almost all elements equal to zero. Instead, what we did in the project was that we
created a general binary model of the B matrix with pyQUBO, where each element in B
is a binary representation of R binary unknown. An objective function is then created
from equation 3.10 with a norm defined as

||A|| =
N

∑
i

N

∑
j
|aij|2. (3.12)

This approach is preferred since it neglects the creation of the large A matrix.

We can also find the inverse of a N × N matrix A by solving a linear system of equation
Ax = m where m is a unit vector, for example m = e1 = [1,0, ...,0]T. This is just a
decomposed version of the linearization above. The solution to this linear system of
equation with the right-hand-side m = e1 will be the first column of B = A−1. So, by
solving the linear system of equation for all unit vectors we obtain the inverse of A. This
approached is suggested in [5]. We have to solve the linear system of equations N times,
where in every solve we are looking for N unknowns. This approach needs a lot less
qubits (if we want an accuracy of R qubits, we need a total of R · n logical qubits) and
is thus preferred over the approach discussed above. We will call this the unit vector
approach (or unit vector solver). The QUBO formalism for the unit vector approach is
set up and implemented following section 2.7.3.

3.6.2.2 Choosing the domains

When creating a binary representation of an unknown value x, you have to specify a
domain [−d,2c − d) in which x is believed to reside in, see equation 2.25. The smaller
the domain, the more accurate solution you can obtain with fewer qubits. You also have
to include the correct solution in your domain for the quantum annealer to be able to
find it. Beforehand, you obviously do not know the value of x, so it can be very hard
to select a good domain. Especially if the dynamic range is very large. So how do you
chose a good domain? You could obviously chose a very large domain and sacrifice the
accuracy of the solution. However, from the annealing solution you can specify a new
smaller domain around your obtained solution, and compute a new solution with the
new domain and get better accuracy. Doing this in iterations you achieve a satisfactory
solution.

© Uppsala University Anders Winka



Methodology 36

Another viable approach is to compute a fast, low accuracy classical solution and using
that solution as a initial guess for further iterations. In this project, we have the luxury of
being able to compute the correct solution to the matrix inverse using the numpy.linalg.inv
solver, and using this result to specify the domains to the QUBO solver. Setting the
correct value vcor in the middle of the domain, and the domain size to the absolute value
of the correct value multiplied with a factor f . The resulting domain is the following
[vcor − abs(vcor) f ,vcor + abs(vcor) f ]. In the results, we use a factor of f = 0.5.

3.6.2.3 Implementation on the D-Wave annealer

Once the QUBO model is created, it has to be mapped onto the topology of the quantum
annealer. The qubits in the D-Wave chip (called physical qubits) are not fully connected
(because of fabrication challenges), but are only connected to a limited number of
neighbouring qubits [45]. These connections are represented with graphs that makes up
the topology of the chip. As an example, we can look at the Chimera topology of the
D-Wave 2000Q system, seen in figures 3.3 and 3.4. Here, each physical qubit is connected
to four horizontal qubits in each unit cell. The degree of the Chimera topology is 6
(each qubit is connected to 6 different qubits). The Advantage system, employed in this
project uses a different topology called Pegasus, that has an improved connectivity with
a degree of 15.

Figure 3.3: Chimera unit cell1

1Figure is from the Ocean documentation, URL: https://docs.ocean.dwavesys.com/en/stable/concepts/topology.htmltopology-
sdk [45]
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Figure 3.4: A 3 × 3 Chimera graph2

Our QUBO model might have a need for a higher connectivity of the qubits, than that
provided by the QPU topology. To solve this problem, one logical qubit (the qubits
of our qubo model) can be represented by a chain of physical qubits. There usually
exist several ways to create chains of physical qubits and embed the QUBO model onto
the QPU topology. To find the most efficient use of the physical qubits when creating
an embedding can be a hard problem, and it is called minor embedding. D-Wave uses
an heuristic tool called minorminer [46], which is also employed when finding the
embedding for our QUBO models.

Once the embedding has been found we can use the samplers provided by the D-Wave
Ocean software [47] to sample solutions to the QUBO model on the Advantage annealers.

3.7 Charge and current

The charge distribution is calculated after we have found the wave-functions ϕs,v
β for all

the energies using equation 2.11. First, we normalize the wave-functions using equation
2.7. The integral is calculated with the Simpson method. The Fermi-Dirac integral is
calculated with the open source Python package FDINT, created by Scott J. Maddox,
based on the work by Fukushima [48] [49] [50]. If the potential has converged we can
also calculate the current with equation 2.17 for the device.

2Figure is from the Ocean documentation, URL: https://docs.ocean.dwavesys.com/en/stable/concepts/topology.htmltopology-
sdk [45]
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3.8 Solving the Poisson equation

The Poisson equation 2.13 is solved in the same way as the Schrödinger equation, i.e. we
discretize the PDE using the finite element method with the same rectangular mesh as
with the Schrödinger equation. A linear system of equations is obtained, see equation
2.16. P in this linear system of equations will have the same structure as the matrix
in equation 3.4 and is obtained in a very similar way. The elements in the matrix are
calculated with equation B.32, where we replace the reciprocal mass M−1 with the
permittivity ϵ(x,z) and remove the h̄

2 factor. The boundary conditions are zero normal
derivative as mentioned in section 2.4.1 and no modifications are needed to incorporate
them. The linear system of equations can be solved with the BCR method, but as it
is only necessary to solve the Poisson equation once every convergence iteration, it
will not lead to a massive speed up. Therefore we solve the Poisson equation with the
numpy.linalg.solve solver.

3.9 Self consistency

When the new potential distribution V is calculated, we have completed one inner
iteration. The next step is to check for convergence. If the error between the "old"
potential Vold fed to the inner iteration and the "new" potential Vnew obtained in the
previous step (section 3.8) is larger than some predefined value ϵ, the inner iteration is
repeated with the "new" potential as the "old" potential. Otherwise, the "new" potential
is the self-consistent solution that describes the device correctly with the applied bias is
found. When this happens, we calculate the current and go on to the next bias point,
using the previous self-consistent potential as the initial guess for the potential. This
continues until all our bias points have been simulated and we can finally plot our I-V
curves, which marks the end for the Methodology chapter. It should be mentioned once
again here in the methodology that we currently have not succeeded with finding self
consistent solutions, so this part is left as a future work of the project.
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4 Literature Review

Modeling of a device can usually be divided into three stages:

• Selection of an physical model. The physical model is often a simplified version of
a full description of the problem, but important physics is kept that is relevant for
the simulation. Complexity of the model is usually reduced with assumptions or
empirical parameters.

• Discretization and mathematical models transforms the physical equations into
linear algebra problems.

• The resulting linear algebra problems are solved with computing and numeri-
cal algorithms, such as domain decomposition methods and high-performance
computers (quantum computers).

In this literature review we will go through physical models, discretization schemes and
numerical algorithms considered in the making of this project. Starting out with the
nanoscale models.

4.1 Nanoscale models

The challenge of simulating nanoscale transistors have been approached by several dif-
ferent methods. Simulating methods can be divided into macroscopic and microscopic
simulation schemes, the difference being the primitive element that forms the theory.
Macroscopic models treats electron populations whereas the microscopic models considers
single electrons [18]. Additional subdivisions can also be made. The microscopic models
can be divided into classical and quantum models, the distinction being if the individual
electrons can be localized in phase space or not. As the size of the electron’s wave
function becomes comparable to the device size, the electrons are described with their
wave functions (quantum) instead as point particles (classical). The macroscopic models
can in turn be separated into lumped and continuum theories, depending on the size of
the electron population. The methods division can be seen in figure 4.1.
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Table 4.1: Table of different electron transport methods. Table is copied from table 1 in
[18].

Macroscopic Microscopic
Lumped Continuum Classical Quantum

Equivalent circuits,
transmission lines

Drift-Diffusion,
density-gradient

Semi-classical elec-
tron dynamics,
Boltzmann transport

Schrödinger, density-
matrix, Wigner func-
tion, NEGF, PME

The choice of model is dependent on the validity of the model at the considered length
scale, and the computational complexity of the model. In figure 4.1, a number of different
models are entered into a flowchart to visualize the range of validity and complexity.
Model selection is also a question about the physical effects that is under investigation.
At the sub-10 nm we enter the quantum mechanical regime, where we have quantum
effects such as tunneling, confinement and scattering (see section 2.2.1). These can be
modeled with true quantum transport models, or with modified classical models. In
the following sections, we outline some of the approaches to model quantum effects in
transistors.

Figure 4.1: Model hierarchy. See [51] for a description of the models not discussed in
this thesis. 1

1Figure 1.1 in M. Vasicek dissertation Advanced Macroscopic Transport Models. URL:
https://www.iue.tuwien.ac.at/phd/vasicek/node3.html
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4.1.1 Macroscopic Approaches

One of the oldest and most used macroscopic approaches is the DD method, formulated
in the beginning of the 1950s by Shockley and Van Roosbroeck [52] [53]. It is based on
the moments of the Boltzmann Transport Equation (BTE). The DD simulation, equipped
with the full-band Monte Carlo (FBMC), can successfully be used for characterization of
sub-100 nm MOSFETs [54] [21]. However, it is a classical model and cannot be used for
quantum modeling.

Efforts have been made to implement quantum effects in macroscopic device simulators
as the device size is shrinking. One approach is based on the moment equations derived
from a closed-system quantum corrected Wigner distribution function and is called the
DG method [18]. The Wigner distribution satisfies a microscopic transport equation
derived from the quantum Liouville equation, where a quantum correction term is added.
Calculating the first-order moment of this transport equation, we get a macroscopic
current continuity equation which is employed for the density gradient method. The DG
method is embedded into the DD simulation to compensate for the statistical quantum
effects, such as quantum confinement. See figure 2.5 for an example when the density
gradient method is used to model quantum confinement. [20]

4.1.2 Microscopic Approaches

The most used microscopic transport model is the BTE. The solution of the BTE is a
carrier distribution function f (r,p, t) for position r, momentum p, and time t, satisfying
the following microscopic equation [51]

∂ f
∂t

+
p

m∗ · ∇ f −∇V
∂ f
∂p

= Qcoll( f ) (4.1)

where m∗ is the electron effective mass, V the is the electrostatic potential, and Qcoll( f )
is a collision term accounting for scattering. At equilibrium, considering fermions, it
takes the form of the Fermi-Dirac function. The distribution function is classical since
the Heisenberg’s uncertainty principle is neglected, which means that position and
momentum are known at the same time. Therefore, it is not suitable for the treatment of
quantum transport. [51]

In quantum theory a physical state of a closed system is specified by a wave function
describing the probability of measuring the state. An alternate description of quantum
theory is with the use of a quantum mechanical potential, introduced by Bohm [55]. The
quantum potential is a less popular theory in the physics society as it leads to nonlocality,
but favorable from a practical point of view since it can easily be implemented in the
standard Monte Carlo technique [20]. The electron is thus guided with both the classical
electrostatic potential and the quantum potential. This technique can account for static
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quantum interference effects due to the nonlocal wave nature of the particle.

Depending on the assumptions and approximations used in the its derivation, many
different varieties of quantum potential can be obtained, such as the DG method we
saw in the previous section, the quantum moment method [56] and smoothed effective
potential [57]. As stated, static quantum affects caused by the potential profile inside
the device can be accounted for with the quantum potential, and this is natural because
it leads to the closed system Schrödinger equation for electrons [20]. But because it as-
sumes a closed system it is not easy to account for dynamical quantum effects associated
with phase randomizing scattering processes.

To capture the dynamical quantum effects it is necessary to solve the quantum trans-
port equation for the entire system and its environment, such as interactions with the
other electrons, phonons, and surface roughness. In figure 4.2 below the microscopic
approaches are divided into ballistic and diffusive transport, and a more general regime
able to handle both.

Figure 4.2: The microscopic transport models. Distinctions are made between models
that only can describe ballistic or diffusive transport, the top box contains the

general models which can describe transport in both regimes. 2

Before going into the methods that can handle the dynamical quantum effects we should
mention the quantum model used in this project, namely the Schrödinger equation with
open-boundary conditions that is outlined in section 2.3 and reference [13]. We will
call this approach the Wave Function (WF) formalism. The open-boundary conditions
permits the modeling of current flow in the device when driven far from equilibrium,
exchanging electrons with the environment. This physical model assumes ballistic trans-
port and neglects scattering. However, the model is readily extendable with one of the

2Figure 1.1 in P. Ellinghaus dissertation Two-Dimensional Wigner Monte Carlo
Simulation for Time-Resolved Quantum Transport with Scattering. URL:
https://www.iue.tuwien.ac.at/phd/ellinghaus/html_diss_cse2.html#x11-100001.2
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dynamical quantum models which soon will be touched upon, called the Pauli master
equation [29].

There are a couple of methods which can handle the dynamical quantum effects, for
example the density matrix (Wigner distribution3) approach, master equation approach,
and non-equilibrium Green’s function approach. They are essential tools for identifying
the shortcomings of the semi-classical BTE approach, and the foundation for the next
generation of simulation instruments. But as they are much more physically involved,
the computational complexity increases.

4.1.2.1 Wigner function

First off, we have the Wigner distribution function fW(r,p, t). Used in areas such as
quantum transport, quantum chemistry (for calculating static and dynamical effects in
many-body systems), and signal processing (for investigating waves passing through
different media). For non-dissipative transport (no dissipative scattering) the Wigner
distribution function satisfies the following equation of motion

∂ fW

∂t
+

p
m∗∇ fW − 1

h3

∫
d3 p′W(r,p′) fW(r,p + p′) = 0 (4.2)

where W(r,p′) is the Wigner potential, defined in [58], h the Planck constant. The Wigner
function fW is derived from the Liouville-Von Neumann equation for the density ma-
trix using the Wigner-Weyl transformation [59]. The Wigner distribution function is a
quantum mechanical description in phase space, hence a particle cannot be localized
in phase space which means that the position and momentum cannot be known at the
same time (compare to BTE). Because of this the distribution is not positive definite, and
can therefor not be regarded as a distribution function in the classical sense. Instead
observables are derived from the Wigner distribution function [51]. Because it is based
on quantum mechanics it can be used as a quantum transport model.

The transport equation (equation 4.2) is either solved deterministically through dis-
cretization (finite-difference-, finite-element-, or spectral-methods) or stochastically with
the kinetic Monte Carlo methods [58]. The Wigner function can also be used to treat
dissipative scattering, such as electron-phonon interactions [60], with an inclusion of the
scattering term in the Hamiltonian. That being said, it is far from straightforward and
remains a challenging task to include scattering into the Wigner function formalism. For
an overview of the use of Wigner functions and recent advances, see [58].

3This Wigner distribution is for an open system, not the closed system associated with the quantum
potential.
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4.1.2.2 Non-equilibrium Green’s function (NEGF)

The Non-Equilibrium Green’s Function (NEGF) formalism was developed indepen-
dently by Kadanoff-Baym [61] and Keldysh [62] in the 1960s. Since the 1990’s it has been
one of the most efficient techniques to simulate quantum transport at the nanoscale. It
presents an alternative to the OBC Schrödinger to describe the non-equilibrium transport.
Several Green’s functions exist, all related to each other, including the retarded and
advanced Green’s function. The retarded Green’s function GR can be computed from
the following equation

[HD + ΣL + ΣR − ED]GR = I (4.3)

where I is the identity matrix. Comparing this equation with equation 2.4, we see that
the retarded Green’s function acts as the inverse of the []-factor multiplied with the wave
vector ϕ. So the retarded Green’s function and the wave vector ϕ are related as [63]

GRB = ϕ (4.4)

Additional Green’s functions are the lesser- G< and greater- G> Green’s functions. They
describe correlations between different states of the electrons and are used to account
for scattering and the open boundary conditions. They are obtained from the following
equation [63]

G≷ = GRΣ≷GA (4.5)

where Σ≷ are the lesser and greater self-energies that describe the probability for in-
scattering (<, unoccupied state is filled) and out-scattering (>, occupied state is emptied).
The open boundary conditions and scattering are including in the self-energies. GA is
the advanced Green’s function, equal to

(
GR)†.

The advantage of the NEGF formalism is that it is possible to compute the charge density
n and current I directly from the Green’s functions, without having to evaluate ϕ as an
intermediate step[63].

4.1.2.3 Pauli master equation (PME)

The Pauli Master Equation (PME) is a less conventional approach to threat scattering,
outlined in [30], [31], [29]. It is a Markovian class of master equations that describes
transition between quantum states, thereby, the evolution in time of an irreversible open
system. Similarly, it can be used to describe the time evolution of the density matrix
corresponding to a device connected to external reservoirs. If the coherence length of
the injected electrons are longer than the device size, the electrons are highly delocalized
and the off-diagonal elements of the density matrix, corresponding to electron coherence,
can be neglected [30]. This assumption simplifies the computational complexity of the
PME, allowing a treatment of relatively large realistic open systems in an efficient way,
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but is also a limitation of the method.

The scattering states that diagonalize the density matrix is determined from the Schrödinger
equation in the 2D plane of the device using the effective mass approximation[29], which
is the physical model used in this project, allowing us to include scattering into our
model with the extension of the PME. The use of a natural basis of open-system wave
functions in the PME allows an inclusion of quantum effects directly, such as tunneling
and confinement, unlike the BTE approach.

Transition probabilities between quantum states, obtained with Fermi’s golden rule, are
incorporated into the PME to obtain the steady-state distribution of electrons away from
the purely ballistic picture. The system is considered to be in a steady state, even if an
applied bias is causing an exchange of particles with the contact reservoirs. The final
state of the system is obtained by self consistently solving the Schrödinger equation, PME
and Poisson equation. In [29], the impact of electron-phonon and surface-roughness
scattering in silicon ultrathin-body double gate FETs are analyzed theoretically with
the PME. The results show that electron transport is mainly dissipative even in small
devices. The main source of dissipation being the surface roughness, severely reducing
the ballistic source-drain current.

4.1.3 Comparisons quantum microscopic approaches

Three true quantum models have been presented in the above section, the Wigner distri-
bution function formalism, the NEGF formalism, and the PME, an extension of the WF
formalism used in this project. But how does the methods compare?

In the ballistic picture, it is more computational efficiently to use the WF formalism
than the NEGF [64]. It is easier to solve a linear system of equations with N unknowns
than to compute a matrix inverse with N × N unknowns, see equations 2.4 and 4.3.
Next, we can consider the open boundary conditions. In the PME approach used in [29]
contacts between the open system and the reservoirs are modeled using the QTBM. The
QTBM is preferred over the NEGF-based approaches for two reasons: (1) QTBM yields
the eigenstates of our open system directly (2) exploiting the eigenstates of the contact,
QTBM is numerically more efficient than NEGF.

Considering dissipative scattering, the PME provides an efficient approach to account for
scattering processes at steady state, even including a tranfer-wave-vector-dependence.
However, because it uses Fermi’s golden rule, it is only valid when the perturbation
is considered weak. Next, the off-diagonal elements of the density matrix can only be
neglected for short devices. Although, a treatment of off-diagonal elements is possible,
this leads to an intractable numerical problem with similar complexity as the inversion
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of the scattering self-energy matrix in the NEGF formalism [29].

The NEGF is increasingly applied and the standard approach for quantum transport.
However, in Ferry et al.’s review of quantum transport in field-effect transistors [17]
the preference is the Wigner function formalism. The similarities between the classical
particle approach and the Monte Carlo simulation of the quantum Wigner function
provides an efficient method to explicitly study the importance of quantum effects. It
presents a clear study of each process and its importance in the behaviour of the overall
system. As cited from [17], "the Wigner function allows one to clearly identify the
quantum effects". Critique of the NEGF partly stems from the treatment of the source
and drain contacts. The approximation of only treating the device region quantum
mechanically and coupling it to simple self-energies corresponding to the leads ignores
many important effects. This can lead to simulations that are far from reality. More
critique of the NEGF formalism is outlined in section 3.3 in [17].

4.1.4 Discretization techniques and basis sets

Next, we will consider different discretization techniques. To solve the physical models
numerically, the mathematical equation must be discretized by expanding the wave
functions ϕ(r) in a basis set µσ.

ϕ(r) = ∑
σ

cσµσ(r) (4.6)

The unknowns are the coefficients cσ that we want to find by solving either a linear
system of equations or an eigenvalue problem. In this project a real-space discretization
with rectangular mesh elements where used, so the basis set is equal to the shape func-
tions introduced in section B.1.5 and defined in B.2. But it is also possible to discretize
the problem in another basis, such as the mode-space expansion used in [65]. There,
the real-space discretization in the confined z-direction is replaced with subband eigen-
functions (modes) of a 1D z-directed effective mass Schrödinger equation, replacing the
2D real-space domain with a 1D eigenvalue problem in the confined z-direction and
a system of coupled 1D Schrödinger equations in the transport direction. In very thin
devices, only a few of these subbands will be occupied, reducing the size of the problem
from (nx × nz)2 to a (nx)2 problem for every subband. A similar approach is employed
in [66]. In an extension of the work in [66], by Abdallah et al. [67], WKB techniques
is used in addition to the subband decomposition, reducing the problem size further.
WKB denotes oscillating shape functions, applied for the 1D Schrödinger equation in
the transport direction and allowing for a coarser mesh size.

Other basis functions used in the fields of quantum chemistry and solid-state physics
are [68]:
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• linear combinations of atomic orbitals (LCAO), along with the popular Gaussian
local basis set

• plane wave expansion

• real-space mesh techniques, based on finite-difference, finite-element etc.

4.1.5 First-principle calculations

So far in this literature review, we have seen different physical models that attempts to
model the quantum effects in nano-scale devices, employing different simplification to
the real physical picture. But they suffer from the need of parametrization (empirical
models), transferability of the parameters from bulk materials to nanostructures, treat-
ment of heterostructure and the absence of atomic resolution [64].

As an emerging next step in nanoscale modeling are the first-principles calculations.
Starting from the underlying mathematical equations that governs the physical laws,
instead of using empirical parameters, we can obtain a fundamental and fully compre-
hensive picture of the system. These first-principles calculations are based on electronic
structure calculations that decides most of the physical properties of matter through
chemical bonding [68]. The most widely used being the density functional theory (DFT),
based on the Kohn-Sahm equations [69].

Ever since the development of quantum mechanics, the fundamental laws governing
physics has been known (at least at the nm scale). Thus, the difficulty of first-principles
calculations does not lie in the problem formulation, but the problem solution. Simu-
lating atom-by-atom in devices with several thousands of atoms using first-principle
calculations is tremendously computational heavy. A full many-body Schrödinger
equation, treated numerically, leads to a deceptively simple linear eigenvalue problem.
However, it scales exponentially with the number of particles, making it intractable [68].
To make first-principle simulations tractable, present massive parallel capabilities of
modern high-performance computing (HPC) architecture must be fully exploited. [68]

4.2 Quantum Computing

Quantum computing is an area of research that is currently on a surge. Quantum
computers have the potential to outperform classical computers at certain tasks. From
scientific computing [70] to encryption (Shor’s algorithm [71]). In this project the quan-
tum annealer was used to solve matrix inverses, that resulted from a linear system of
equations. Although, no quantum advantage [72] was found in this project, there exist
algorithms that exploit the properties of quantum computers to outperform classical
algorithms.
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4.2.1 Linear system of equation solvers

The HHL algorithm, named after its inventors Harrow, Hassidim and Lloyd [10], effi-
ciently finds a quantum state |x⟩ that is proportional to a vector x⃗ that is the solution
to a linear system of equations Ax⃗ = b⃗. The size of the matrix A is N × N and it has
condition number κ (the ratio of A’s biggest and smallest eigenvalue). Since we find the
quantum state |x⟩ of x⃗, we cannot find x⃗ explicitly unless we perform N measurements
on |x⟩. However, we are often not interested in x⃗ itself, but some expectation value of
|x⟩. The HHL algorithm can be as much as exponentially faster that classical algorithms,
when the condition number κ and one over the error 1/ϵ scales as poly log(N).

The HHL algorithm uses a gate-based quantum computer. The gate-based quantum
computers are sensitive to noise and require error correction to run fault intolerant
quantum algorithms. The gate-based quantum computer’s sensitivity is also limited by
the number of qubits, and algorithms that can be implemented are limited by the number
of gates applicable in sequence, before suffering of decoherence occurs. Therefore,
because of today’s limitations of gate-based quantum computers the quantum annealer
where used instead in this project. [73]

4.2.2 Eigenvalue solver

A part of the device simulator was to solve two eigenvalue problems to find the dis-
cretized energy spectrum, equation 3.8. The eigenvalue problem can also be imple-
mented on the QC. In [74], Wang and Xiang present a new quantum computing algo-
rithm that efficiently can solve eigenvalueproblems for tridiagonal symmetric matrices,
with ability to extend to other matrix structures (in our project we have five diagonals in
a symmetric matrix that we want to find the eigenvalues for). Provided a good initial
guess for the eigenstates of the system, the algorithm cost scales as poly(log N), where N
is the dimension of the matrix. The cost of classical solvers scales at best as O(N2).

4.3 Domain Decomposition Methods

The BCR method used in this project and outlined in 2.8.1 is obviously not the only
DDM. However, it was the one that we thought was most suitable to this project. In this
section we will outline two of the other DDM considered and additional benefits of the
BCR method.

In Sho and Odanaka [75], a parallel DDM based on the restricted additive Schwarz
(RAS) method is presented for a quantum-corrected drift-diffusion (QCDD) model. The
discretization of the QCDD equations leads to a linear system of equations, which is
sought to be solved with multiple computing nodes. In the article, two parallelization
schemes are outlined, one intranode splitting-up operator and a internode DDM based
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on an overlapping Schwarz method. The overlapping Scwarz method decompose the
solution domain Ω into a set of m overlapping subdomains

{
Ωδ

i
}m

i=1, where δ is the
number of overlaps. Each subdomain is solved for with artificial boundary conditions,
which are updated iteratively in a block Jacobi fashion. An inter-node parallel speed
up of 35.2 was obtained for 64 decompositions of the QCDD problem. The overlapping
Schwarz method was an interesting DDM for our project, however it was unclear how
the open boundary conditions should be treated. It is also an iterative method, which is
not very suitable to our problem where we deal with several right-hand-sides.

The next DDM considered was the SplitSolve algorithm, developed by Calderara et al.
[64], with the purpose to accelerate a first-principles quantum transport simulation based
on DFT. The SplitSolve algorithm was added as an extension to the OMEN simulator,
which also incorporates the BCR method. Similarly to our project they want to solve
a linear system of equations Tc = Inj with a right-hand-side injection vector Inj that is
zero almost everywhere, except for the parts corresponding to injection from the leads.
This means that you do not have to compute the inverse of the entire matrix T−1, it is
sufficient to only compute the first and last columns of T−1 that is multiplied to Inj.
The SplitSolve also decouples the calculations of the open boundary conditions, which
are very computational heavy, from the solution of T−1. Additional partitioning of the
problem is done with a modified and optimized version of the SPIKE algorithm [76],
which act as spatial decomposition. Since it is a DFT simulation, the Hamiltonian matrix
will have a different more dense structure compared to our Hamiltonian matrix (see
equation 3.4 and figure 3.2), and therefor the Split-Solve algorithm seemed ill fitted for
our problem.

4.3.1 BCR

As already mentioned, we chose the BCR method as the DDM of choice. The reasons be-
ing many, such as it was easily adaptable to our problem and it is an exact method. More
befinits are listed in the Background 2.8.1 and Methodology 3.6.1. The main usage of the
BCR method in this project was to reduce the size of the problem such that it could be
solved with a quantum annealer. But BCR also have additional capabilities and use cases.

The BCR method provides good scalability and is easily parallelizable. Each CPU only
stores a part of the matrix HD in equation 2.38, decouples all local layers until only the
first and last layer are connected, and then exchange information with neighbouring
CPUs to remove the remaining layers. It also allows for computational interleaving.
Since the first and last layer in the BCR method are removed at the end, the open bound-
ary condition (OBC) matrices, ΣL and ΣR, can be computed at the same time as the
renormalization of H. Something that’s not possible with a linear solver which needs
the whole matrix H, including the OBCs. The OBCs can often be hard to compute,
which makes the BCR preferable over other linear solvers such as SuperLU_dist [77] and
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MUMPS [77]. This is a point pointed out in [2].

Other computational methods have also been tested with the BCR method, such as the
mixed precision scheme to speed up the matrix operations [2]. Instead of using double
precision when computing equations 2.39 - 2.44, a single precision was employed to
speed up the calculations. However, it turned out that equation 2.39 and 2.40 must
be computed in double precision, otherwise rounding errors are propagated through
with the repeated usage of Xi and Yi. The single precision did not offer the required
accuracy. It is possible to use single precision in the matrix multiplications of equations
2.41 - 2.43, with a constraint. Double precision must be used for the last iteration of the
Schrödinger-Poisson self-consistent loop to obtain accurate results.
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5 Results

In this Results chapter we present the results for the first iteration of the of the Schrödinger-
Poisson convergence loop for a Resonant Tunneling Device (RTD). A self-consistent
solution was never achieved in the creation of the simulator, and remains a task for
future work. Instead the results will focus on the performance of the BCR method and
its suggested improvement of an extra layer approach, which has been one of the main
contributions of this work.

This chapter also includes the performance of the quantum annealer matrix inversion
approaches that was outlined in section 3.6.2.1, as well as the results for one injection
energy of the quantum assisted BCR method, where all the matrix inversions are com-
puted on an actual quantum annealer. The D-Wave Systems Inc. quantum annealers
are used to conduct the experiments. D-Wave also provides a quantum-classical hybrid
solver which we will compare to our quantum assisted BCR method.

5.1 Resonant tunneling device

Using an initial potential (no self-consistent solution was achieved), see figure 5.2, for
a RTD when solving the Schrödinger equation, we can compare the BCR method to a
solution of the whole linear system of equation. The RTD is 13 nm long and 2 nm high,
see figure 5.1. Two SiO2 layers with a thickness 0.5 nm define a 2 nm ×2 nm undoped
well region. The 5 nm long cathode and anode are doped with a doping concentration
ND = 1020 cm3. We set the number of nodal points to nx = 130 and nz = 20. So a total
of nx × nz = 2600 nodal points are used. In all of the computations we only consider a
single valley configuration of the effective masses. They are set accordingly:

mx = 0.92me, mz = 0.19me, my = 0.19me (5.1)

where me is the free electron mass. Additional parameter values are presented in table
5.1.

Table 5.1: Parameter values

nz nx ND # injection energies # lead nodal points EG of Si EG of SiO2 T

20 130 1020 cm3 32 nz = 20 1.12 eV 7.62 eV 300 K

© Uppsala University Anders Winka



Results 52

Figure 5.1: [nm] The resonant tunneling device considered. 1

Figure 5.2: An initial potential distribution for a RTD device. Used to compare the wave
functions computed with a whole linear system solver, the regular BCR

method and the extra layer BCR method.

5.2 Bottleneck analysis

The first aspect studied was the time complexity of the simulator, and where the bot-
tleneck of the simulation scheme resides for one convergence loop. The most time
consuming parts of the simulator is the calculation of the energy spectrum and solving
the Schrödinger equation for all the injection energies. For the parameter values in table
5.1 and the potential in figure 5.2, the following CPU times was achieved using the
processor: Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11 GHz.

1Figure taken from S. E. Laux et. al.’s article Analysis of quantum ballistic electron transport in ultrasmall
silicon devices including space-charge and geometric effects [13]
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Table 5.2: CPU times (Wall times) of different parts of the simulator. The wall time is
shorter because the LAPACK drivers used by the Python linear system solver
and eigenproblem solvers uses parallel processing. The "Others" contribution
is mainly the total time of the calculation of the open boundary conditions, the
charge distribution and the solution of the Poisson equation.

nz × nx Energy spectrum [s] Schrödinger equation [s] Others [s]

20 × 130 36.7 (10.4) 179 (53.7) 1.2 (0.7)
20 × 200 130 (31.3) 666 (173) 3.4 (1.6)
30 × 130 132 (32.2) 734 (211) 5.0 (2.1)
30 × 200 508 (99) 2100 (461) 11.3 (2.7)

The energy spectrum is calculated by finding the eigenenergies and eigenvectors of two
different eigenvalue problems, a time consuming process. Right now all the eigenvalues
are found, which are (nz − 2)nx many for the "sinus-like" solutions and (nz − 2)(nx − 2)
many for the "cosinus-like solutions (the minus 2 term stems from the implementation
of the Dirichlet boundary conditions), but only the first 32 are used. The Schrödinger
equation consist of solving the (nz − 2)nx × (nz − 2)nx complex valued linear system of
equations 32 times with the Python function numpy.linalg.solve.

This process can be sped up with the regular BCR method (the CPU time is about the
same for the extra layer BCR). We look at the same configuration of nodal points as in
table 5.2. The CPU (Wall) time for the BCR method can be seen in table 5.3.

Table 5.3: CPU times (Wall times) of the BCR method compared to the linear system
solver numpy.linalg.solve.

nz × nx # injection energies Schrödinger eq. [s] Schrödinger eq. with BCR [s]

20 × 130 32 179 (53.7) 11.8 (11.4)
20 × 200 32 666 (173) 25 (25.5)
30 × 130 32 734 (211) 36.6 (32.5)
30 × 200 32 2100 (461) 66 (64)

We can also plot the speed up of the BCR method, which we have done in figure 5.3.

© Uppsala University Anders Winka



Results 54

(a) Speed up CPU (b) Speed up walltime

Figure 5.3: The speed up of the BCR method compared to the whole linear system solver
(called LSS). It is calculated by dividing the LSS time with the BCR time.

So just by using the BCR method, without any parallelization, we have a substantial
speed up. As we see, the BCR method outperforms the full linear equation solver.

5.3 Error analysis: BCR vs Whole system solver

As a measure of the error, we will compute the root mean square (RMS) of the wave
functions ϕs,v

β , where we use the whole linear system solution as the "correct" solution.
All results are computed in double-precision. We only consider injection from the left
lead and the cut-off energy is set to about 1.25 eV, which results in 32 injection energies.
We examine the regular BCR method, along with the extra layer approach proposed in
section 3.6.1, which should improve accuracy. The 5th layer is the extra layer kept at the
end of the decoupling stage. The two standing-wave eigenenergies which discretizes the
energy spectrum are looked at separately. We will call the "cosine-like" eigenenergies for
Type: 1 energies and the "sine-like" eigenenergies for Type: 2 energies, see section 2.3.2.
The wave-functions have not been normalized. To see the difference between the two
injection energy types, we plot two of these. We pick the 2nd and 3rd injection energy of
both types.
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(a) Type: 1 energy. One mode can be seen. (b) Type: 2 energy. One mode can be seen.

Figure 5.4: Wave function of the 2nd Type: 1 energy and the 2nd Type: 2 energy.

(a) Type: 1 energy. Two modes can be seen. (b) Type: 2 energy. Two modes can be seen.

Figure 5.5: Wave function of the 3rd Type: 1 energy and the 3rd Type: 2 energy.

The Type: 1 energies yields "cosine-like" behaviour at the lead-device boundary, i.e. the
wave function’s normal derivative is small at the lead-device boundary. Whereas the
Type: 2 energies behave "sine-like" at the lead device boundary, i.e. the wave function is
small at the lead-device boundary. Next, we will look at the normalized RMS error in
figure 5.6 for the the two different injection energy types.
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(a) Normalized root mean square error for
different Type: 1 energies.

(b) Normalized root mean square error for
different Type: 2 energies.

Figure 5.6: Normalized RMS error. The error axis is logarithmic. The normalization is
performed by dividing the RMS with the maximum value of the wave

function for each energy.

As we can see in figure 5.6a, the error is very similar for almost all Type: 1 energies and
the regular BCR and the extra layer BCR perform similarly. However, there are two
exceptions, energy number 12 and 15. We plot the 12th energy wave function in figure
5.7 for the whole linear system solution, the regular BCR and the extra layer BCR to see
what the solutions looks like.

(a) Whole linear system solver. (b) Regular BCR solver. (c) Extra layer BCR solver.

Figure 5.7: Wave function for the 12th Type:1 energy. The value of the injection energy is
0.88911170 eV.

No real difference between the figures can be noticed, but as we saw in figure 5.6a, there
is a noticeably larger error for this injection energy. We should remark that the 12th
energy leads to tunneling into the well-region of the device, we see a tunneling mode.
The same thing happens for the 15th Type:1 energy.

Now, looking at the errors for the Type:2 energies in figure 5.6b, there is more of a
difference between the regular BCR and the extra layer BCR, with the extra layer BCR
performing much better for most of the energies. The regular BCR is struggling to find
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good solutions. For the 10th and the 13th Type:2 energy there is a noticeably larger error
compared to the rest for the extra layer BCR. We can look at the wave function for the
10th Type: 2 energy, computed with the three different methods.

(a) Whole linear system solver. (b) Regular BCR solver. (c) Extra layer BCR solver.

Figure 5.8: Wave function for the 10th Type:2 energy. The value of the injection energy is
0.88906483 eV.

Also here, no difference can be seen between the figures because the error is too small.
As we can see, the 10th Type:2 energy injection energy leads to a tunneling mode. It
appears that both the regular BCR solver and the extra layer BCR struggles with the
tunneling modes.

5.4 Quantum effects

One of the specific goals of this project was to simulate the quantum effects of nano-scale
transistors. As listed in the section 2.2.1, the relevant quantum effects in nano-scale
transistors can be divided into tunneling, confinement and scattering. In this project
we considered tunneling and confinement, simulated by solving the open boundaries
Schrödinger equation. In figures 5.4, 5.5, 5.7, and 5.8 we have the wave functions
(solutions of the Schrödinger equation), and we can clearly see that tunneling and con-
finement are captured.

In figures 5.7 and 5.8 we have a tunneling mode. The electron has tunneled through the
potential barriers, even though the injection energy is smaller than the barrier height.
The value of the injection energies are written in the figure caption and the barrier height
is about 3.5 eV, see figure 5.2. This behaviour is quantum mechanical since classically
the electron should not be able to tunnel through the barrier.

Quantum confinement is also indicated by these figures. The wave function is confined
to the device region with zero probability of existing at the device boundary not in
contact with the lead. To describe confined electrons you have to solve the Schrödinger
equation, which we do here. The confinement leads to discretization of the attainable
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energy levels of the electrons and the wave function have mode-like solutions, which
we especially can see in figures 5.4 and 5.5. Through our sampling technique of the
continuous energy spectrum we find the discrete energy levels that the electrons can
attain, thus the energy discretization scheme handles this effect.

5.5 Matrix inversion on the quantum annealer

As proposed in section 3.6.2.1, the objective function for the matrix inverse can be
constructed in two different ways, either as a whole matrix objective function or as a
LLS with the right hand side being the unit vectors. In these results we will compare
these two approaches when computing the matrix inverse of a tri-diagonal matrix A,
where A is given by

A =



−2 1 0 ... 0

1 −2 1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 −2 1

0 ... 0 1 −2


. (5.2)

This matrix has the same structure as the matrices of the 1st decoupling stage of the
BCR method. The matrix A is sparse and because of this, the embedding of the Binary
Quadratic Model (BQM) on the quantum annealer do not need the same connectivity as
if the matrix A was dense, reducing the number of physical qubits needed. This property
is used when creating the embedding for the whole matrix solver, which needs a lot
more qubits than the unit vector solver.

In the unit vector approach, we sample a solution for the BQM created from the LLS
objective function for different right-hand side unit vectors. Since the problem basically
is the same for all these different objective functions (the same matrix A), we can use the
same embedding. The only thing that differs is the weights, which are adjusted when
we call the sampler with a specific unit vector BQM. So, we can use the same embedding
for all the unit vectors. This is preferred since the embedding is a time consuming task.
However, since we have to solve for all the unit vectors in the unit vector approach,
we will have several sampling times. The total sampling time from all samplings is
the value presented in the tables 5.4, 5.5 and 5.6. The embedding is performed with
minorminer.find_embedding(), which is based on a heuristic algorithm described in [46].

In tables 5.4, 5.5 and 5.6 we have tabulated the embedding time, sampling time, logical
qubits, physical qubits and the RMS error of both methods. The Dwave quantum
annealer chip ADVANTAGE_SYSTEM4.1 is used as the sampler. 100 annealing circles
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is performed with a qubit accuracy of 3 qubits. We have also tabulated the maximal
attainable error given the search domains we chose.

Table 5.4: Embedding and sampling times for matrix inversion on the quantum
annealer, using 3 qubits accuracy and 100 annealing circles. Qubit usage is
also included. The RMS error is computed for the lowest energy sample.
WHS = Whole Matrix Solver. UVS = Unit Vector Solver.

Matrix size: 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10

Embedding time WMS [s] 3.787108 4.375526 4.093422 8.597509 7.391740 8.927392

Embedding time UVS [s] 3.515022 3.569846 3.640435 4.929300 6.760475 9.809062

Sampling time WMS [ms] 32.917 29.067 46.346 62.530 76.841 74.717

Tot. sampling time UVS [ms] 97.065 100.659 207.332 247.830 268.645 296.733

Logical qubits WMS 75 108 147 192 243 300

Logical qubits UVS 15 18 21 24 27 30

Physical qubits WMS 156 227 353 456 569 740

Physical qubits UVS 34 47 60 82 98 124

RMS error WMS 0.155065 0.183223 0.192029 0.239608 0.282303 0.349393

RMS error UVS 0.163246 0.197081 0.160062 0.240180 0.274895 0.364064

Max RMS error 0.391932 0.440959 0.490990 0.541667 0.592781 0.644205

Table 5.5: Continuation. WHS = Whole Matrix Solver. UVS = Unit Vector Solver.

Matrix size: 11 × 11 12 × 12 13 × 13 14 × 14 15 × 15 16 × 16

Embedding time WMS [s] 12.559210 16.898327 17.102410 20.886657 18.220348 88.843074

Embedding time UVS [s] 12.267178 8.180394 9.763127 14.062302 29.533599 35.546644

Sampling time WMS [ms] 96.006 161.985 286.886 212.740 579.663 285.967

Tot. sampling time UVS [ms] 496.056 406.117 516.697 610.163 955.900 914.677

Logical qubits WMS 363 426 498 576 660 750

Logical qubits UVS 33 36 39 42 45 48

Physical qubits WMS 911 1076 1366 1587 1824 2198

Physical qubits UVS 147 191 211 248 254 326

RMS error WMS 0.300349 0.366480 0.421162 0.450764 0.440341 0.487875

RMS error UVS 0.373167 0.315537 0.424001 0.400299 0.448990 0.590392

Max RMS error 0.695857 0.747682 0.799639 0.851702 0.903850 0.956066

© Uppsala University Anders Winka



Results 60

Table 5.6: Continuation. WHS = Whole Matrix Solver. UVS = Unit Vector Solver

Matrix size: 17 × 17 18 × 18 19 × 19 20 × 20 21 × 21 22 × 22

Embedding time WMS [s] 120.761445 206.347493 127.960260 158.455197 175.970814 633.731196

Embedding time UVS [s] 23.671692 36.688154 25.563607 30.106782 34.316238 90.679036

Sampling time WMS [ms] 409.993 363.156 420.914 537.626 602.084 806.876

Tot. sampling time UVS [ms] 1426.280 1287.725 1826.708 1689.135 1785.174 2057.731

Logical qubits WMS 846 948 1056 1170 1290 1386

Logical qubits UVS 51 54 57 60 63 66

Physical qubits WMS 2502 2807 3016 3312 3681 4029

Physical qubits UVS 354 398 409 566 494 568

RMS error WMS 0.597358 0.525439 0.589361 0.666625 0.750231 0.724590

RMS error UVS 0.581689 0.590786 0.504415 0.663391 0.564284 0.633990

Max RMS error 1.008339 1.060660 1.113021 1.165416 1.217840 1.270290

We also plot the different results in bar graphs, which can be seen below.

(a) Embedding time (b) Sampling time

Figure 5.9: Sampling and embedding time. The sampling is performed with the Dwave
annealer ADVANTAGE_SYSTEM4.1.

(a) Embedding time ratio (b) Sampling time ratio

Figure 5.10: Ratio sampling and embedding time. The sampling is performed with the
Dwave annealer ADVANTAGE_SYSTEM4.1.
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(a) Logical qubits needed to represent the BQM
with the given specifications.

(b) Actual physical qubits used on the
quantum annealer.

Figure 5.11: Logical and physical qubits for the two inversion methods. The Dwave
annealer ADVANTAGE_SYSTEM4.1 is used, which has 5627 available

physical qubits.

Figure 5.12: The ratio of physical and logical qubits for the two inversion methods.
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Figure 5.13: The RMS error of the lowest energy sample for the two methods using 100
samplings.

Starting with figure 5.9a, we see that the embedding time for both approaches increases
as the matrix size increase, which is expected since the increased matrix size leads to
more qubits that needs to be mapped onto the QPU Topology. Because the whole ma-
trix solver needs a lot more logical qubits, see figure 5.11a, it will also be harder to embed.

Next, we can look at the sampling time in figure 5.9b. Also here, the time increases as
the matrix size increases, which is expected. The sampling time is larger for the unit
vector approach. An average of the individual sampling time for each unit vector can be
obtained by dividing the total sampling time with the matrix size. Some fluctuations
can be seen, caused by the stochastic nature of the quantum annealer.

The ratio of the sampling and embedding time is plotted in figure 5.10. We begin to look
at the embedding time in figure 5.10a. Up until the 15 × 15 matrix the embedding time
is similar for both approaches, with some oscillations. However, for larger matrix sizes
the whole matrix solver is noticeably slower than the unit vector solver. Considering the
sampling time next figure 5.10b, the whole matrix solver is on average about 3 times
faster than the unit vector solver.

Now, turning our attention to the qubit usage in figure 5.11. The logical qubits scale
as expected, with the whole matrix solver scaling quadratic and the unit vector solver
scaling linear in the amount of logical qubits. The scaling seems to be similar for the
physical qubits in figure 5.11b. Looking at the ratio of physical and logical qubits in
figure 5.12, we get a better grasp of the physical qubit usage. The ratio for the whole
matrix solver is close to constant for the different matrix sizes, whilst the unit vector
solver shows a linear increase in the physical qubit usage. It is expected that the whole
matrix solver has a better ratio usage of physical qubits since we have removed zero
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interactions and thus reduced the necessary connectivity.

Lastly, we will examine the RMS error in figure 5.13. We have a similar error for both
inversion methods for all matrix sizes. This is a bit surprising since the unit vector solver
should perform better with the same amount of samplings since it is probing a smaller
state space. It could be that the number of samplings is to small for any of the methods
to perform good. The errors can be compared to the "Max RMS error" in tables 5.4, 5.5
and 5.4, and we see that the errors are fairly large. So, a higher number of annealing
cycles should be employed in further experiments.

5.6 Quantum assisted BCR

In this final section we will combine the BCR method with the matrix inversion on the
quantum annealer. We will use the unit vector approach, since it is more capable than
the whole matrix solver, given the fact that we are limited by the connectivity and the
amount of qubits. We will only consider the solution of one (the first) injection energy.
Because of the limited free time (5 min) provided by D-Wave using their quantum
annealers, the number of nodal points will be greatly reduced when computing these
results. We use 100 annealing cycles and 1 qubit accuracy. The Max RMS error in table
5.7 is the error of the wave function obtained when the maximal attainable error for the
matrix inverse, given the domain, is used.

Table 5.7: The sampling time and embedding time of the quantum annealer used in the
BCR method. The RMS error is the error of the full wave function when
compared to when the inverses are computed with the np.linalg.inv solver,
called the classical inverse. The matrix size of the inverses computed are
(nz − 2)× (nz − 2) because of the Dirichlet boundary conditions.

nz × nx: 10 × 20 12 × 25 14 × 30

Embedding time [s] 4.23 3.67 4.8

Avg. sampling time per layer [ms] 153 181 215

Tot. sampling time [s] 2.6 4.0 5.8

Tot. classical inverse time [ms] 7.2 9.4 12.17

Logical qubits 8 10 12

Physical qubits 12 18 24

RMS error 16.42 71.49e+3 84.08e+6

Max RMS error 16.30e+7 17.43e+7 18.47e+7

We can also look at the total time consumption of the whole procedure of solving the
Schrödinger equation, presented in table 5.8.
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Table 5.8: Time consumption of the whole procedure of solving the Schrödinger
equation. CPU (Wall) time. The wall time is very long because we have to
access the quantum annealer from the Leap cloud service. The CPU time is
also longer than the combined total sampling time and embedding time in
table 5.7, that is because the objective function has to be compiled and
transformed into a BQM, which can take quite some time.

nz × nx Quantum assisted BCR Regular BCR Whole linear system solver

10 × 20 8.73 s (1min 52s) 15.6 ms (11 ms) 359 ms (81.2 ms)
12 × 25 20.4 s (3 min 3s) 15.6 ms (9 ms) 484 ms (87 ms)
14 × 30 40.4 s (4min 46s) 78.1 ms (24.2 ms) 391 ms (107 ms)

5.6.1 Comparison to D-Wave’s hybrid solver

D-Wave provides hybrid solvers that accepts an arbitrary quadratic model and uses state-
of-the-art classical algorithms together with smart allocation of quantum processing
resources to find its solution [14]. Since our quantum assisted BCR method is a form of a
hybrid solver, it can be interesting to compare it to D-Wave’s hybrid solver. The idea is
to create an BQM of the whole discretized Schrödinger equation (equation 2.4), feed it to
the D-Waves hybrid solver and compare it to the results from our BCR method. Since
the wave functions are complex, we have to split the problem in a real and imaginary
part

(Hre + iHim)(ϕ + iϕim) = (Bre + iBim)

⇒
[

Hre −Him

Him Hre

][
ϕre

ϕim

]
=

[
Bre

Bim

]
(5.3)

doubling the size of the original system of linear equations. This linear system of equa-
tions is used to create a LLS objective function, see section 2.7.3.

Just as in the previous section, we create a BQM with 1 qubits accuracy, and the domains
are selected from the correct solution. The nodal points in the z and x directions are set
to nz = 10 and nx = 20. For larger problem sizes, we could not compile the BQM for
the hybrid solver. The hybrid solver used was the Leap provided LeapHybridSampler,
which samples a BQM. The default settings of the sampler was used. In figure 5.14 the
resulting wave functions are plotted for the first injection energy of Type: 1.
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(a) Whole linear system solver. (b) Quantum assisted BCR
solver.

(c) Leap hybrid solver

Figure 5.14: Comparison between the Leap hybrid solver and the quantum assisted
BCR method.

As we can see in the figure 5.14, the Leap hybrid solver cannot find a close resemble to
the whole linear system solver, which we use as the reference for the correct solution,
whereas the quantum assisted BCR solver have a close resemblance. We also look at
the time it takes to solve the Schrödinger equation with the Leap hybrid solver and our
quantum assisted BCR in table 5.8.

Table 5.9: Time consumption of the whole procedure of solving the Schrödinger
equation for the Leap hybrid solver compared to the quantum assisted BCR
solver. CPU (Wall) time. Sampling time for the quantum assisted BCR is the
same as the total sampling time in table 5.8.

Solver: Quantum assisted BCR Leap hybrid solver

Whole procedure time 8.73 s (1min 52s) 2min 51s (3min 7s)
Sampling time 2.6 s 594 ms

The Leap hybrid solver has to compile, create a BQM and decode a bigger problem than
the quantum assisted BCR method, causing a long procedure time. The sampling time is
the time it takes for the LeapHybridSampler to find a sampleset from the BQM.
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6 Discussion

6.1 Discussion of results

We begin the discussion with an analysis of the results presented in chapter 5 Results.

6.1.1 Bottleneck analysis

In the bottleneck analysis it became clear that solving the Schrödinger equation is the
most time consuming process, making up approximately 80% of the total simulation
time of one convergence loop. See table 5.2. Therefore, the solution of the Schrödinger
equation are most interesting to incorporate in a quantum algorithm. As already men-
tioned, current quantum computers are limited by the size of the problems they can
solve, so we first applied the BCR method to reduce the problem size.

The BCR method can also speed up the solution time. Either by allowing parallel
processing, or simply by reducing the complexity of the problem. In table 5.3 and figure
5.3 we see that the BCR method reduces the complexity of the problem, leading to at least
a 15 times faster speed up (CPU time). The speed up for the wall time is approximately 5
times faster because of the multi-threading employed by the numpy.linalg.solve function.
The BCR method also allows for parallel processing, not employed in this project, that
can speed up the solution time even more.

6.1.2 Error analysis BCR

First, we should discuss our method to compute the error of the BCR method. We
assumed that the solution that is obtained by solving the full discretized Schrödinger
equation (equation 2.4) with numpy.linalg.solve is a good approximate for the "correct"
solution. The "correct" solution was then compared to the solutions calculated with
the BCR methods and an error was obtained. However, it might be that the "correct"
solution calculated with numpy.linalg.solve includes errors compared to the true correct
solution. So, a better way to compute the error would be to multiply our solution Œ
with H and compare the product to the injection vector B, and in this way check our
solution.

The errors for the BCR method are very small, as seen in figure 5.6. That is because
the BCR method is an exact method. The errors that are present arise because of the
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computers precision computing matrix inverses/multiplications. Since many operations
are computed, it is important that each operation has a high precision, or an error will
accumulate. In the results, all operations are computed in double-precision floating-
point format. As mentioned in the Literature review section 4.3.1, a single-precision is
not accurate enough when using the BCR method.

If we now turn our attention to the errors of the "extra layer" BCR, looking at figures C.1
and 5.6, we see that the the error is reduced using the same double-precision compared
to the regular BCR. So, it seems that the accuracy of the BCR method is dependent on
the layers with which the construction stage starts from. This was the hypothesis which
the idea of the "extra layer" BCR came from. The reason for the improvement using the
"extra layer" BCR is not yet determined, although a speculation is that the decrease in the
dynamic range of the matrix operations is the cause for the improvement of the "extra
layer" BCR. But a more thorough examination must be conducted to establish a reason.
For example, an attempt to improve the accuracy of the tunneling modes (energy 12
and 15 in figure 5.6a and energy 10 and 13 in figure 5.6b) could pose another test for the
hypothesis.

Lastly, the significance of the "extra layer" BCR is not established. In the end, the objective
of device simulations is to extract I-V curves (or some other characteristics) when the
device is driven out of equilibrium. Since we do not have a fully working simulator, it is
not clear how the smaller boundaries contribute to the current, charge density, etc, and
how the "extra layer" BCR affects the simulations.

6.1.3 Matrix inverses

In section 5.5 the matrix inversion on the quantum annealer was examined as a test
before implementing it in the BCR method. The two different approaches, called the
WMS and UVS were compared. As expected, the WMS uses more qubits but the embed-
ding time is similar until the 16 × 16 matrix size, where the WMS shows an increase in
embedding time compared to the UVS. See figures 5.9a and 5.10a. At matrix size 22, we
have a sharp rise in the embedding time, which could be caused by the fact that we are
close to the max capacity of the annealer, making it harder to find an embedding. Even
if the ADVANTAGE_SYSTEM4.1 chip has 5627 physical qubits, you cannot necessarily
use all of them. Inactive qubits and approaching the boundaries on the chip makes it
harder to find an embedding. Some fluctuations can be seen in the embedding times,
which is caused by the stochastic nature of the embedding. It can therefor be interesting
to do the embedding several times to get a statistical average with deviations.

Looking at the sampling time next. First of, it should be mentioned that the sampling
time is equal to the annealing time × number of annealing cycles. Both the annealing time and
number of annealing cycles are parameters that can be tuned to find the best annealing solu-
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tion. In the results the default annealing time and 100 annealing cycles was used, which
necessarily are not the best settings. The default annealing time changes as the size of the
problem changes. Looking at the sampling times in figure 5.9b we see that the WMS has
a shorter sampling time than the UVS for all matrix sizes, which is mainly because we
have to perform a sampling for every unit vector. As we saw in section 3.6.2.1, the UVS
is a decomposed version of the linearized WMS, or opposite, the WMS is the parallel ver-
sion of the UVS. Which makes it reasonable that the sampling time of the WMS is shorter.

However, the comparison between the UVS and the WMS is not quantitative. If we look
at the error in figure 5.13, we see that it is similar for both approaches, even though the
UVS should have a smaller error because it is probing a smaller state space. Meaning
that it should be able to find a better solution than the WMS using the same amount
of annealing cycles. Thus, we are probably using to few annealing cycles. We can
also look at the qubit ratio in 5.12. There we see that the WMS have a better usage of
the physical qubits, which are not strange considering that we have removed the zero
interactions for the WMS, see section 5.5, reducing the connectivity. In the UVS we
created an embedding with full connectivity, not removing zero interactions. A proper
parameter study is needed for a quantitative comparison between the two methods,
where the annealing time and annealing cycles are optimised for each method, and a
corresponding connectivity is used for both approaches in the embedding.

Lastly, we should comment on the actual use cases of these methods. One of the problems
with these annealing problems is that a search domain for the solution must be set. We
presented a brief discussion on this problem in section 3.6.2.2. In this project we set our
domains knowing the correct solution, which means that we can use few qubits to obtain
accurate solutions. Usually, this is not the case and a different approach for finding
a good domain is necessary (outlined in 3.6.2.2) if the matrix inverse on the quantum
annealer is to replace a classical solver.

6.1.4 Quantum assisted BCR

Finally, the quantum assisted BCR was evaluated in the results, combining the BCR
method with the matrix inversion on the quantum annealer. In table 5.7 three different
problem sizes are presented. First, we can look at the RMS error, which increases dras-
tically for increased problem size. This is an effect of the many operations in the BCR
method and the need for accurate solutions.

Next, we can consider the total sampling time and compare it to the total classical inverse
time, which is the time it takes for numpy.linalg.solve to compute the same matrix inverses.
As we can see, the classical matrix inverse is about 400 times faster than the quantum
correspondence. The time consumption comparison continues in table 5.8, where the
speed up of the classical algorithm is even greater (500 times faster) because of time
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spent creating the annealing problem (compiling the objective function and transforming
it into a BQM). This means that the quantum algorithm is a lot slower than the classical
algorithm. Even if it is possible to optimize the use of the quantum annealer, considering
things such as annealing time, annealing cycles, embedding, objective function, and
compiling etc., there currently is a massive gap to the classical algorithm.

In the last section the Leap hybrid solver provided by D-Wave is compared to the quan-
tum assisted BCR. In figure 5.14 the wave functions computed with the Leap hybrid
solver, numpy.linalg.solve and the quantum assisted BCR are compared. The Leap hy-
brid solver provides a bad solution compared to the other two methods. The reason for
the failure of the Leap hybrid solver is probably caused by the size of the BQM, which
is a lot bigger than the BQM of the Quantum assisted BCR. The Leap hybrid solver is
also employing a decomposition method, which might not be as accurate as the BCR
method.

In table 5.9 the time consumption is compared. As we see, the whole procedure time
is longer for the Leap hybrid solver than our quantum assisted BCR. So, in the end
the quantum assisted BCR performs better than the Leap hybrid solver, but the matrix
inversion on the quantum annealer has a long way to go before being comparable to
the classical algorithms. In the Literature Review in section 4.2.1 we outlined the HHL
algorithm for solving linear system of equations on a gate-based quantum computer. It
has a proven speed up over classical algorithms, and could be a way forward for the
quantum assisted BCR once there exist adequate gate-based quantum computers.

6.2 Future works

One obvious future extension of this work is to create a fully functional self-consistent
iteration process. The self-consistent iteration process of solving the Schrödinger and
Poisson equation seldom converges in practice [29]. So to achieve a solution, you need a
good initial guess for the potential. That can either be obtained by the solution of a sim-
pler physical model or a previous self-consistent solution. To speed up the convergence,
one can also implement a non-linear solver, such as the Newton method. See Laux et al.
[13] for a starting-point.

It can also be interesting to study different types of transistor technologies. In this
project we only looked at the RTD, whereas the silicon ultrathin-body double-gate FETs
(possibility to use a subband decomposition, see section 4.1.4) and the newer FinFETs
and gate-all-around transistors are more interesting to study from a commercial stand
point, although this would need an extension of the model to 3D. The inclusion of
time-dependence to study switching characteristics of nanoscale transistors, is also of
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interest.

Another possibility for future work is to include scattering into the physical model. The
PME is a suitable choice of method to model the dissipative scattering in short devices,
see sections 4.1.2.3 and 4.1.3. Scattering is an inevitable quantum effect in nanoscale
devices and it affects the current flow through the device. It is also possible to extend
the single band effective mass model to a more realistic model, such as the full-band
atomistic model in [78]. The full-band and first-principles models are more accurate, and
therefore also more numerically expensive. But efficient use of discretization techniques,
DDM, and HPC/QC allows for a treatment of larger problems. The subband and WKB
techniques presented in section 4.1.4 are examples that offer interesting extensions to
our model for certain transistor technologies to speed up the simulation time.

Additional use of QC resources is another future work. The QC can assist other parts
of the simulator, such as the eigensolver (see secion 4.2.2) for computing the energy
spectrum. A quantum algorithm could also be used to solve the linear system of
equations that is part of the BCR method, using either a quantum annealing algorithm
such as the one presented in section 2.7.3, or the HHL algorithm presented in section 4.2.1
given that the gate-based quantum computers continue to improve. Finally, one could
optimize the use of the quantum annealer for the matrix inversion, tuning annealing
cycles, annealing time, embeddings, etc. in a future work.
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7 Conclusion

In this thesis project, the current capabilities of the quantum annealer were tested in
the context of a device simulator, with a focus on quantum effects. The results were
computed for a resonant tunneling device. There exist several transistor models with the
capability of simulating quantum effects, so a comprehensive literature review was con-
ducted to find a suitable choice of model. The model chosen is based on a self-consistent
iterative process of solving the Schrödinger- and Poisson equation. In this quantum
model, the solution of the open-boundary condition Schrödinger equation is the most
time-consuming part of the simulator, although necessary to capture static quantum
effects such as quantum tunneling and quantum confinement. It is not possible to di-
rectly assist the solution of the Schrödinger equation with a quantum annealer, because
of the limited number of qubits. However, with the use of a domain decomposition
method it is possible to reduce the size of the problem such that it is solvable on present
quantum annealers. The block cyclic reduction (BCR) method, in addition to reducing
the problem size, speeds up the solution of the Schrödinger equation with a factor 15.
It was discovered that for certain injection energies, the BCR method had a decrease in
accuracy. This inspired a modification called the extra layer BCR. The proposed extra
layer BCR improves the accuracy of the BCR method for wave functions with small first
and last layers. The significance of this improvement is unknown because of the lack
of a fully functioning simulation scheme. In the project we also saw that the quadratic
unconstrained binary optimization (QUBO) whole matrix solver (WMS) is faster than
the unit vector solver(UVS), but as expected uses more qubits. A more thorough com-
parison should be conducted for a quantitative advantage of the WMS. Compared to
the state of the art classical matrix inverses, the quantum annealer algorithm is a lot
slower, suggesting that the usage of a quantum computer is not optimal for solving the
linear algebra problems resulting from transistor modeling. Lastly, it was found that the
quantum assisted BCR performs better than the D-Wave Leap hybrid solver, both in its
accuracy and the time-to-solution.
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Appendices

A Effective mass approximation

In this project the effective mass approximation is used. This allows us to threat the
motion of electrons in a solid as if they were free electrons, just with a different mass
called the effective mass m∗. So the effect of the solid on the electron is that it changes
the effective mass of the electron. When an electron moves in a solid under an applied
bias, it will feel repulsive forces from negative charged ions in the solid, slowing down
its motion. When the electron moves slower because of its interactions with the solid,
it is said to have a heavier mass [79]. We are accounting for the solids impact on the
electrons with the effective mass. The effective mass can either be much bigger or much
smaller than the free electron mass, depending on the solid.

The electrons that conduct the current all belong to a certain energy band called the
conduction band. To understand what an energy band is, we will begin by considering
the energy levels of an isolated atom. The electrons in a single atom occupy discrete
energy levels called atomic orbitals. Joining two atoms forms a diatomic molecule, where
the single atom energy levels are split into two close levels. Forming a larger molecule,
or a solid, of say n atoms, each energy level will be split into n new levels. These new
levels will be so close to each other that they can be treated as a continuous band, see
figure A.1.
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Figure A.1: The electronic band structure of a solid. The graph to the right shows the
energy levels of the atoms as a function of the lattice spacing a (i.e. the

distance between the atoms in the solid). For a long lattice spacing, each
atom will have the single atom p and s orbitals. Bringing the atoms closer to

each other, the orbitals begin to overlap. Because of Pauli’s exclusion
principle, the orbitals have to split such that no two electrons have the same

quantum numbers, forming the energy bands. A solid is typically
compromised of roughly n ≈ 1022 atoms, leading to ∼ 1022 energy levels in

each band. 1

The conducting electrons effective mass m∗ are related to the dispersion relation at the
conduction band minima EC of the material by the following equation

1
m∗ =

1
h̄2

∂EC

∂k
(A.1)

where h̄ is the reduced Planck constant, EC is conduction band energy and k is the wave
vector. In this project, silicon is the semiconductor material in the transistor. Silicon has
different effective masses in different directions. The effective mass in the longitudinal
direction is 0.92me and in the transverse directions it is 0.19me. Using the dispersion
relation in equation A.1, the conduction band edges can be calculated. They form six
ellipsoidal surfaces, called valleys, which can be seen in figure A.2. The effective mass
are found empirically with the cyclotron resonance experiment. [79]

1Figure is from URL: https://commons.wikimedia.org/wiki/File:Solid_state_electronic_band_structure.svg
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Figure A.2: Silicon conduction band valleys. 2

B QTBM

B.1 Quantum Transmitting Boundary Method

The Quantum Transmitting Boundary Method (QTBM) is used to solve the 2D effective
mass Schrödinger equation. It was developed by Craig S. Lent and David J. Kirkner and
their work is presented in [1]. It is a numerical algorithm for finding current carrying
states which are solutions to the open boundaries 2D Schrödinger equation with a finite
element discretization.

B.1.1 Problem formulation

The problem region which is solved for can be divided into a "device" region Ω0 and
several lead regions extending to infinity, Ω1,Ω2, ...,Ωn. All this can be seen in figure
B.1. The boundaries between the leads and the device are denoted Γ1,Γ2, ...,Γn and the
boundary of the device that do not share a boundary with a lead is denoted Γ0. For each
lead we introduce a local coordinate system (ηi,ξi), where η̂i is parallel to the lead walls
and ξ̂i points away from the device. ξ̂i is perpendicular to η̂i.

2Figure is from Figure 9.42 in R.J Singh’s textbook Solid State Physics [79]
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Figure B.1: Problem geometry

The governing equation is the 2D effective-mass Schrödinger equation defined on Ω ≡
Ω0 ∪ Ω1 ∪ Ω2... ∪ Ωn. The problem can be formulated as follows:
Given a total energy E, the potential energy in every region Vs(x,z), s = 0,1,2, ...,n, and
complex amplitudes corresponding to incoming modes in each lead as

m, find:

ψ0 ∈ C2(Ω0),ψ0 ∈ C2(Ω1), ...,ψn ∈ C2(Ωn)

(ψ0 is equal to ϕs,v
β in equation 2.2) such that

− h̄
2

[
∂

∂x

(
1

m∗
x

∂ψs(x,z)
∂x

)
+

∂

∂z

(
1

m∗
z

∂ψs(x,z)
∂z

)]
+ Vs(x,z)ψs(x,z) = Eψs, (x,z) ∈ Ωs

(B.1)
and with the following boundary conditions

ψ0 = ψs on Γs, (B.2)

∇ψ0 · η̂s =∇ψs · η̂s on Γs, (B.3)

ψ0 = 0 on Γ0 ≡ ∂Ω0 − ∑
s

Γs (B.4)

ψs = 0 on Γs0 ≡ ∂Ωs − Γs (B.5)

ψs is bounded as
√

x2 + z2 → ∞. (B.6)

The ∇ operator is the gradient and ∂Ωi denotes the boundary of region Ωi. The boundary
between Ω0 and Ωs is defined as

Γs = {(ηs,ξs)|ξs ∈ (0,ds),ηs = 0}, (B.7)
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where ds is the width of the lead. The QTBM solution algorithm is valid for any potential
V0(x,z) in the device region. The potential in the leads Vs(x,z) is required to be inde-
pendent of its ηs coordinate. This follows from it assumed infinite length. The QTBM’s
goal is to formulate boundary conditions for the lead boundaries Γs which allows us to
specify a incoming flux in every lead and find a solution of the Schrödinger equation in
the device region Ω0 only.

B.1.2 Solution in the leads

Since we have required the leads to be uniform along their lengths, the potential in the
lead vary only across its width, Vs(ηs,ξs) = Vs(ξs). For simple square-well leads, we
have Vs(ξs) = 0, which is used in this project. This means that the Schrödinger equation
is separable into several coupled one-dimensional problems and that it can be solved
analytically. Its general solution can be written as

ψs(ηs,ψs) =
Ns

∑
m=1

[
as

mχs
m(ξs)e−iks

mηs + bs
mχs

m(ξs)eiks
mηs
]

+
∞

∑
m=Ns+1

[
as

mχs
m(ξs)eks

mηs + bs
mχs

m(ξs)e−ks
mηs
] (B.8)

where χs
m is the mth eigenstate of the one-dimensional Schrödinger equation in lead s,

− h̄
2

[
∂

∂ξs

(
1

m∗
ξs

∂χs
m(ξs)

∂ξs

)]
+ Vs(ξs)χ

s
m(ξs) = Es

mχs
m(ξs). (B.9)

The as
m are the injection amplitudes of the incoming traveling-wave states in the first sum

and the injection amplitudes of incoming evanescent states in the second sum, and is an
input to the problem which we will calculate. Ns

m is the number of allowed traveling-
wave modes in lead s, defined at the end of this section. The bs

m’s in the first sum are
coefficients of the traveling-wave states and the coefficients of the outgoing evanescent
states in the second sum. The bs

m’s are unknown and must be calculated. We should
mention that we use incoming evanescent states, which are a modified version of the
traditional QTBM [1], employed by Laux et al. in [13]. The eigenstates χs

m are chosen to
be orthonormal ∫ ds

0
[χs

m(ξs)]
∗χs

n(ξs)dξs = δmn, (B.10)

where δmn is the Dirac delta. If the potential Vs(ξs) takes the form of infinite square-wells
and the effective mass m∗

ξs
is constant, we have the following analytical solution to

equation B.9
χs

m(ξs) =
√

2/dssin[(mπ/ds)ξs], (B.11)

and the wave vector for the mth mode in lead s is given by

ks
m =

√
|(2m∗

ξs
/h̄2)(E − Es

m)|. (B.12)

© Uppsala University Anders Winka



QTBM 85

The number of traveling waves Ni is defined as the maximum m such that Es
m < E.

B.1.3 Boundary conditions

Now, let’s turn our attention to the boundary condition at the lead-device intersections
Γs. We require continuity of both the wave function and its normal derivative (see
equation B.2 and B.3). Inserting the general solution, equation B.8, into the normal
derivative continuity condition we obtain

∇ψ0(r) · η̂s

∣∣∣∣
r∈Γs

=∇ψs(r) · η̂s

∣∣∣∣
r∈Γs

=
∂

∂ηs
ψs(ηs,ξs)

∣∣∣∣
ηs=0

=
Ns

∑
m=1

−ias
mks

mχs
m(ξs) + ibs

mks
mχs

m(ξs)

+
∞

∑
m=Ns+1

as
mks

mχs
m(ξs)− bs

mks
mχs

m(ξs)

(B.13)

Setting ηs = 0 and using the orthogonality of the χi
m’s, we can compute the bi

m’s

bs
m =

∫ ds

0
χs

m(ξs)ψs(ηs = 0,ξs)dξs − as
m. (B.14)

Insert this into equation B.13

∂

∂ηs
ψs(ηs,ξs)

∣∣∣∣
ηs=0

=
Ns

∑
m=1

iks
mχs

m(ξs)

×
(
−2as

m +
∫ ds

0
χs

m(ξs)ψs(ηs = 0,ξs)dξs

)
−

∞

∑
m=Ns+1

ks
mχs

m(ξs)×
(
−2as

m +
∫ ds

0
χs

m(ξs)ψs(ηs = 0,ξs)dξs

)
= fs[ξs,ψs(ηs = 0,ξs)]

(B.15)

Now using equation B.2, the continuity of the wave function itself, we can replace the
ψs’s with the ψ0’s since we are only looking at the boundary. Hence, we get an boundary
condition for ψ0 and its normal derivative:

© Uppsala University Anders Winka



QTBM 86

∇ψ0(r) · η̂s = fs[ξs,ψ0(ηs = 0,ξs)]

=
Ns

∑
m=1

iks
mχs

m(ξs)

×
(
−2as

m +
∫ ds

0
χs

m(ξs)ψ0(ηs = 0,ξs)dξs

)
−

∞

∑
m=Ns+1

ks
mχs

m(ξs)×
(
−2as

m +
∫ ds

0
χs

m(ξs)ψ0(ηs = 0,ξs)dξs

)
(B.16)

The functional fs, defined in equation B.16, is the boundary condition which will be
used to formulate the boundary-value problem for the current-carrying states. Observe
that the value of the normal derivative of the wave-function at a certain point relates to
all values of the wave-function along the boundary through the integral.

B.1.4 Weak variational form

Before discretizing the problem, we will use a weak variational form of the Schrödinger
equation. The goal is to only discretize the wave function in the device domain Ω0 and
using suitable boundary conditions to match the wave function and normal derivative
to the solution in the leads, where we have analytical solutions. Starting with the 2D
time-independent Schrödinger equation for the wave function in the device region ψ0

− h̄2

2
∇
(

M−1∇ψ0(x,z)
)
+ V(x,z)ψ0(x,z) = Eψ0(x,z). (B.17)

where M−1 is diagonal inverse effective mass matrix, defined as

M−1 =

[
1

m∗
x

0

0 1
m∗

z

]
(B.18)

We multiply equation B.17 with an arbitrary test function ψ̄ and integrate over the device
region Ω0

− h̄2

2

∫
Ω0

ψ̄∇
(

M−1∇ψ0(x,z)
)
+
∫

Ω0

ψ̄(V − E)ψ0 = 0. (B.19)

Choosing the same boundary conditions for the test function ψ̄ as for ψ0, i.e. ψ̄ = 0 on
Γ0, we can use Green’s first identity and obtain the following
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h̄2

2

∫
Ω0

∇ψ̄M−1∇ψ0(x,z) +
∫

Ω0

ψ̄(V − E)ψ0 =
h̄2

2

∮
Γ

ψ̄(M−1∇ψ0 · n̂)dΓ

=
h̄2

2 ∑
s

∫
Γs

ψ̄

[
1

m∗
x

∂ψ0

∂x
,

1
m∗

z

∂ψ0

∂z

]
· n̂dΓs

(B.20)

In the last equality we used the fact that ψ̄ is zero on the Γ0 boundary. The problem
formulation in section B.1.1 can now be recast in the form of a weak variational form
using the boundary conditions in equation B.16

h̄2

2

∫
Ω0

∇ψ̄M−1∇ψ0 +
∫

Ω0

ψ̄(V − E)ψ0 =
h̄2

2 ∑
s

∫
Γs

ψ̄
1

m∗
ηs

fs[ξs,ψ0]dΓs (B.21)

where

fs[ξs,ψ0] =
Ns

∑
m=1

iks
mχs

m(ξs)

×
(
−2as

m +
∫ ds

0
χs

m(ξs)ψ0(ηs = 0,ξs)dξs

)
−

∞

∑
m=Ns+1

ks
mχs

m(ξs)×
(∫ ds

0
χs

m(ξs)ψ0(ηs = 0,ξs)dξs

) (B.22)

B.1.5 Finite element discretization

The next step is to solve this reformulated problem in equation B.21. We do this with a
finite element discretization, using a mesh with N nodal points, r1, r2, ..., rN . Each nodal
point has an associated shape function φi(r) with the following property

φi(rj) = δi,j (B.23)

where δi,j is the Kronecker delta. Using the shape functions as a basis, we can do an
approximate expansion of the wave function ψ0 in the shape function basis

ψ0(r) = ∑
i

ψ(ri)φi(r) = ∑
i

ui φi(r) (B.24)

or, in a vector form

ψ0(r) = N(r) · u (B.25)

where N(r) is a (1 × N) row vector of shape functions

N(r) = [φ1(r), φ2(r), ..., φN(r)] (B.26)
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and u is a (N × 1) column vector containing the unknown nodal values of the wave
function ψ0. We can also expand the gradient of the wave vectors in the shape function
basis in a similar manner

∇ψ0(r) =

[
∂ψ0
∂x

∂ψ0
∂z

]
= B(r) · u (B.27)

where B(r) is a (2 × N) matrix of derivatives of the shape functions, given by

B(r) =

[
∂x φ1(r) ∂x φ2(r) ... ∂x φN(r)
∂y φ1(r) ∂y φ2(r) ... ∂y φN(r)

]
. (B.28)

In a similar fashion we can do a approximate expansion of the test function ψ̄ in the
shape function basis

ψ̄ = ūT · NT (B.29)

∇ψ̄ = ūT · BT (B.30)

where ū is a (N × 1) column vector of nodal values of ψ̄. We can insert these approximate
expansions into the Schrödinger equation, see equation B.21

ūT

(∫
Ω0

h̄2

2
BT(r)M−1B(r)dr

)
u + ūT

(∫
Ω0

[V(r)− E]NT(r)N(r)dr
)

u

=
h̄2

2 ∑
s

(∫
Γs

ψ̄(r)
1

m∗
ηs

fs [ξs,ψ0(0,ξi)]dΓs

)
.

(B.31)

The right-hand side is not yet discretized, but it is something we will do soon. We define
three (N × N) matrices T, V and D as follows

T =
h̄2

2

∫
Ω0

BT(r)M−1B(r)dr (B.32)

V =
∫

Ω0

V(r)NT(r)N(r)dr (B.33)

D =
∫

Ω0

NT(r)N(r)dr (B.34)

where T represents the kinetic term, V the potential term and ED the energy in the
Schrödinger equation. The partially discretized Schrödinger can be written as

© Uppsala University Anders Winka



QTBM 89

ūT (T + V − ED)u =
h̄2

2 ∑
s

(∫
Γs

ψ̄(r)
1

m∗
ηs

fs [ξs,ψ0(0,ξs)]dΓs

)
. (B.35)

B.1.5.1 Self-energies

Now, let us discretize the righ-hand side. First, let us be the projection of u onto Γs. us

will have length Ms, where Ms is the number of nodal points on the boundary Γs. Also,
define a row vector Ns(ξs), with shape (1 × Ms), of shape functions on the boundary so
that we can expand ψ0(r ∈ Γs) in the following way

ψ0(r ∈ Γs) = ψ0(ηs = 0,ξs) = Ns(ξs) · us. (B.36)

We also define a (1 × Ms) column vector Ns,m, given by

Ns,m ≡
∫ ds

0
χs

m(ξs)Ns(ξs)dξs (B.37)

The right-hand side can be written as

h̄2

2 ∑
s

(∫
Γs

ψ̄(r)
1

m∗
ηs

fs [r,u]dΓs

)
=

h̄2

2 ∑
s

ūT 1
m∗

ηs

[ Ns

∑
m=1

−2ias
mks

m

∫ ds

0
NT

s (ξs)χ
i
m(ξs)dξs

+
Ns

∑
m=1

iks
m

(∫ ds

0
NT

s (ξs)χ
s
m(ξs)dξs

)(∫ ds

0
NT

s (ξs)χ
s
m(ξs)dξs

)
us

+
∞

∑
m=Ns+1

2as
mks

m

∫ ds

0
NT

s (ξs)χ
s
m(ξs)dξs

−
∞

∑
m=Ns+1

ks
m

(∫ ds

0
NT

s (ξs)χ
s
m(ξs)dξs

)(∫ ds

0
NT

s (ξs)χ
s
m(ξs)dξs

)
us

]
(B.38)

and using equation B.37 we obtain

h̄2

2 ∑
s

(∫
Γs

ψ̄(r)
1

m∗
ηs

fs [r,u]dΓs

)
=

h̄2

2 ∑
s

ūT 1
m∗

ηs

[ Ns

∑
m=1

−2iai
mki

mNT
s,m

+

(
Ns

∑
m=1

iks
mNT

s,mNs,m

)
us +

∞

∑
m=Ns+1

2as
mks

mNT
s,m −

(
∞

∑
m=Ns+1

ks
mNT

s,mNs,m

)
us

]
.

(B.39)

We define a vector Pi and matrix Ci as

Ps ≡ − h̄2

2m∗
ηs

(
Ns

∑
m=1

2ias
mks

mNT
s,m −

∞

∑
m=Ns+1

2as
mks

mNT
s,m

)
(B.40)

Cs ≡ − h̄2

2m∗
ηs

(
Ns

∑
m=1

iks
mNT

s,mNs,m −
∞

∑
m=Ni

ks
mNT

s,mNs,m

)
. (B.41)
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When actually computing the sums we have to set an upper limit on the infinite sum

∑∞
m=Ns+1. Since we would only obtain Ms − 2 different eigensolutions when solving the

discretized lead Schrödinger equation (equation B.9), we set Ms − 2 as the upper limit
(the subtraction of 2 is because we have Dirichlet boundary conditions at the ends of Γs).
Using equation B.40 and B.41 the right-hand side can be written as

∑
s

ūT(Ps − Csus). (B.42)

When solving the discretized Schrödinger equation we have to embed Ps into a (N × 1)
column vector P̂s and Cs into a (N × N) matrix Ĉi. The discretized Schrödinger equation
becomes

ūT (T + V − ED)u = ∑
i

ūTP̂s − ūTĈsu (B.43)

or

∑
s

ūT (T + V − ED − Ĉs
)

u = ∑
s

ūTP̂s (B.44)

The ūT vector stems from the arbitrary test function ψ̄, so we can reduce the Schrödinger
equation to (

T + V − ED − ∑
s

Ĉs

)
u = ∑

s
P̂s. (B.45)

Comparing to equation 2.4 where two leads is used, HD is equal to the T + V, Ĉ1 is
equal to the left self-energy ΣL and Ĉ2 is equal to the right self-energy ΣR, and Bm is
equal to the injection vector ∑s P̂s. In the project we only consider injection from one
lead at the time, such that we have the wave functions corresponding to one lead only,
this is because the leads inject traveling modes independently without coherence. We
have the equations to compute the different matrices in equation 2.4, but to actually be
able to compute them we have to pick a set of shape functions, which we will do in
section B.2. But first, we will compute the injection amplitudes as

m.

B.1.6 Injection amplitudes

To compute the injection amplitudes as
m we will make use of the standing-wave solutions

ψβ, obtained from equation 3.8. The amplitudes as
m can be computed with a similar

approach as we computed the bs
m amplitudes in equation B.14. Depending on the

standing wave boundary condition used when computing one of the following equations
are used when computing as

m. For the "sinus-like" solution we have the following
equations
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as
m =i

∫ ds

0
χs

m(ξs)ψβ(ηs = 0,ξs)dξs, for 1 ≤ m ≤ Ns, (B.46)

=
∫ ds

0
χs

m(ξs)ψβ(ηs = 0,ξs)dξs, for m > Ns. (B.47)

Since the eigenfunction for the "cosinus-like" solutions are zero at the lead boundary
ηs = 0, we cannot use the expression above to obtain the injection amplitudes. Instead,
we will opt for the normal derivative of the eigenfunctions at the lead boundary, which
gives the following

as
m =

i
2ks

m

∫ ds

0
χs

m(ξs)
∂ψβ(ηs,ξs)

∂ηs

∣∣∣∣
ηs=0

dξs, for 1 ≤ m ≤ Ns, (B.48)

=
1

2ks
m

∫ ds

0
χs

m(ξs)
∂ψβ(ηs,ξs)

∂ηs

∣∣∣∣
ηs=0

dξs, for m > Ns. (B.49)

For a more detailed description, see Appendix 2. Finding the traveling eigencompo-
nents in Laux’s and et al.’s work in [13].

B.2 Rectangular mesh elements

In this section we will present how the matrices associated with the discretization of
the Schrödinger and Poisson equation are formed using the rectangular mesh elements.
Consider the mesh element in figure B.2, where we have aligned the mesh rectangle
with the x and z axis. The rectangular mesh elements have an area ∆. We have split
the rectangle diagonally from the 1 corner to the 4 corner and defined shape functions
for the resulting triangular meshes. The upper triangular has an area ∆U and the lower
triangle has an area ∆L.

2

1

4

3

∆L

∆U

lx

lz

x

z

Figure B.2: Rectangular mesh element.
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Associated to a nodal point k is a shape function φk, where k = 1, ..,4. The shape function
has unity value in node k and zero value in the other nodes by definition, see equation
B.23. Since the nodal points 1 and 4 are part of both the upper and the lower triangular,
they will have one shape function in each triangular. We use linear shape functions,
φk = ak + bkx + ckz, where where ak, bk and ck are constants. The shape functions can be
seen in figure B.3.

(a) Shape function 1 (b) Shape function 2

(c) Shape function 3 (d) Shape function 4

Figure B.3: Shape functions.

Setting the effective masses m∗
x and m∗

z to constants in eash mesh element, we can
compute equation B.32 using the linear shape functions. This yields the following 4 × 4
matrix (neglecting all shape functions outside the mesh element, which will be zero)
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Trec =
h̄2

2

∫
∆

BT(r)M−1B(r)dr

=
h̄2

2

∫
∆



∂x φ1∂x φ1
m∗

x
+

∂y φ1∂y φ1
m∗

y

∂x φ1∂x φ2
m∗

x
+

∂y φ1∂y φ2
m∗

y

∂x φ1∂x φ3
m∗

x
+

∂y φ1∂y φ3
m∗

y

∂x φ1∂x φ4
m∗

x
+

∂y φ1∂y φ4
m∗

y
∂x φ2∂x φ1

m∗
x

+
∂y φ2∂y φ1

m∗
y

∂x φ2∂x φ2
m∗

x
+

∂y φ2∂y φ2
m∗

y

∂x φ2∂x φ3
m∗

x
+

∂y φ2∂y φ3
m∗

y

∂x φ2∂x φ4
m∗

x
+

∂y φ2∂y φ4
m∗

y
∂x φ3∂x φ1

m∗
x

+
∂y φ3∂y φ1

m∗
y

∂x φ3∂x φ2
m∗

x
+

∂y φ3∂y φ2
m∗

y

∂x φ3∂x φ3
m∗

x
+

∂y φ3∂y φ3
m∗

y

∂x φ3∂x φ4
m∗

x
+

∂y φ3∂y φ4
m∗

y
∂x φ4∂x φ1

m∗
x

+
∂y φ4∂y φ1

m∗
y

∂x φ4∂x φ2
m∗

x
+

∂y φ4∂y φ2
m∗

y

∂x φ4∂x φ3
m∗

x
+

∂y φ4∂y φ3
m∗

y

∂x φ4∂x φ4
m∗

x
+

∂y φ4∂y φ4
m∗

y


(B.50)

The derivatives of the linear shape functions are given by

∂x φ1 =

− 1
lx

, if (x,z) ∈ ∆U ,

0, if (x,z) ∈ ∆L,
∂y φ1 =

0 , if (x,z) ∈ ∆U

1
łz

, if (x,z) ∈ ∆L,
(B.51)

∂x φ2 =

0, if (x,z) ∈ ∆U ,

− 1
lx

, if (x,z) ∈ ∆L,
∂y φ2 =

0, if (x,z) ∈ ∆U

− 1
lz , if (x,z) ∈ ∆L,

(B.52)

∂x φ3 =

 1
lx

, if (x,z) ∈ ∆U ,

0, if (x,z) ∈ ∆L,
∂y φ3 =

 1
lz , if (x,z) ∈ ∆U

0, if (x,z) ∈ ∆L,
(B.53)

∂x φ4 =

0, if (x,z) ∈ ∆U ,
1
lx

, if (x,z) ∈ ∆L,
∂y φ4 =

− 1
lz , if (x,z) ∈ ∆U

0, if (x,z) ∈ ∆L,
(B.54)

where lx and lz are the side lenghts of the regtangular mesh element. Substituting these
equations into B.50 and computing the integral, we obtain the following matrix

Trec =
h̄2

2

∫
∆

BT(r)M−1B(r)dr

=
h̄2

2


∆U

m∗
x l2

x
+ ∆L

m∗
z l2

z
− ∆L

m∗
z l2

z
− ∆U

m∗
x l2

x
0

− ∆L
m∗

z l2
z

∆L
m∗

x l2
x
+ ∆L

m∗
z l2

z
0 − ∆L

m∗
x l2

x

− ∆U
m∗

x l2
x

0 ∆U
m∗

x l2
x
+ ∆U

m∗
z l2

z
− ∆U

m∗
z l2

z

0 − ∆L
m∗

x l2
x

− ∆U
m∗

z l2
z

∆L
m∗

x l2
x
+ ∆U

m∗
z l2

z



=
h̄2

2


lz

2m∗
x lx

+ lx
2m∗

z lz − lx
2m∗

z lz − lz
2m∗

x lx
0

− lx
2m∗

z lz
lz

2m∗
x lx

+ lx
2m∗

z lz 0 − lz
2m∗

x lx

− lz
2m∗

x lx
0 lx

2m∗
x lx

+ lx
2m∗

z lz − lx
2m∗

z lz
0 − lz

2m∗
x lx

− lx
2m∗

z lz
lz

2m∗
x lx

+ lx
2m∗

z lz



. (B.55)

In the last equality we used the fact that ∆L = ∆U = lx lz
2 . To get the full T matrix, we have

to embed all the smaller Trec matrices, corresponding to a rectangular mesh element,
into the full T matrix of all mesh elements. In a similar fashion the 4 × 4 contributions
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to the D and V matrices can be calculated with equations B.34 and B.33, yielding the
following matrices

Drec =


lx ly

4 0 0 0

0 lx ly
4 0 0

0 0 lx ly
4 0

0 0 0 lx ly
4

 (B.56)

Vrec =


V1

lx ly
4 0 0 0

0 V2
lx ly

4 0 0

0 0 V3
lx ly

4 0

0 0 0 V4
lx ly

4

 (B.57)

where V1, ..., V4 are the values of V(r) at the element nodes. If the edge 1 ↔ 2 of the
mesh element is on the boundary of lead s, this element contributes the 1 × 2 matrix to
Ns,m

[
χs

m(1)
ly
2 χs

m(2)
ly
2

]
(B.58)

C Extra Results

(a) Root mean square error for different Type: 1
energies.

(b) Root mean square error for different Type: 2
energies.

Figure C.1: RMS error. The error axis is logarithmic.

© Uppsala University Anders Winka



Appendices 95

(a) Logical qubits needed to represent the BQM
with the given specifications.

(b) Actual physical qubits used on the
quantum annealer.

Figure C.2: Logical and physical qubits for the two inversion methods. The Dwave
annealer ADVANTAGE_SYSTEM4.1 is used, which has 5627 available

physical qubits.
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