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Abstract We have previously investigated joint ��̄ decay
in the reaction e+e− → γ�(→ pπ−)�̄(→ p̄π+). The
cross-section-distribution functions encountered were rela-
tivistically covariant and expressed in terms of scalar prod-
ucts of the four-momentum vectors of the particles involved.
In the present, sequel investigation, we work instead in
the ��̄ rest system and with three-momentum scalars. In
this configuration our results become directly comparable to
those of others, including experiment.

1 Introduction

The BABAR Collaboration [1] has measured initial-state-
radiation in the annihilation reaction e+e− → γ�(→
pπ−)�̄(→ p̄π+). Such measurements are interesting since
they offer opportunities to determine electromagnetic form
factors of the Lambda hyperons in the time-like region.

Theoretical analyses of this reaction are presented in
Ref. [2], for the ��̄γ final state with single hyperon polar-
ization, and in Ref. [3], for the ��̄γ final state with double
hyperon polarizations.

A Lorentz-covariant description of the cross-section-
distribution functions, including those of the hyperon decays
but neglecting polarizations, is presented in Ref. [4]. The
arguments of the covariant functions encountered in this anal-
ysis are various scalar products of the four-momentum vec-
tors of the particles involved. Working in the covariant for-
malism is cumbersome, and therefore we take advantage of
the covariance and pick a particular reference frame for our
considerations, the ��̄ rest frame, which also is the choice
of Ref. [2].
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Replacing four-dimensional arguments by three-
dimensional ones also requires considerable work, but this
work is worth-while, as we shall see.

2 Cross-section distribution

Our notation follows Pilkuhn [5]. The cross-section distribu-
tion for the reaction e+e− → γ�(→ pπ−)�̄(→ p̄π+) is
written as

dσ= 1

2
√

λ(s,m2
e,m

2
e)

|M|2 dLips(k1 + k2; q, l1, l2, q1, q2),

(1)

where the average over the squared matrix element indicates
summation over final proton and anti-proton spins and aver-
age over initial electron and positron spins. The definitions
of the particle momenta are explained in Fig. 1.

We remove some trivial factors from the squared matrix
element, collected in a factor denoted K,

|M|2 = K|Mred |2. (2)

3 Previous analysis

We start where our previous analysis ended, Ref. [4], but
before we can do so it is necessary to repeat some of the
important definitions and results.

The form factors of the hyperon-electromagnetic cou-
plings are denoted G1 and G2, a standard choice. The desig-
nations of particle four-momenta can be seen in the Feynman
diagrams of Fig. 1.

The cross-section-distribution function, or rather the
covariant square of the annihilation matrix element |Mred |2,
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Fig. 1 Graphs included in our calculation of the reaction e+e− → γ�(→ pπ−)�̄(→ p̄π+)

is obtained by contracting hadronic Hμν and leptonic Lμν

tensors, so that

|Mred |2 = LμνHμν. (3)

Now, the right-hand-side of this equation can be rewritten as
a sum of four terms,

|Mred |2 = R̄�R�MRR+R̄�S�MRS+S̄�R�MSR

+S̄�S�MSS, (4)

with coefficients R�, S� and R�̄, S�̄ that refer to the� and �̄

decay constants of Ref. [4], and with R the spin-independent
and S the spin-dependent ones.

From the structure of the lepton tensor, Eq. (24) of Ref. [4],
it follows that each of the MXY functions of Eq. (4) has two
parts,

MXY = −ay A
XY (G1,G2) − by B

XY (G1,G2), (5)

where the AXY factor is obtained by contracting the hadron
tensor with the symmetric tensor k1μk1ν + k2μk2ν , and the
BXY factor by contraction with the tensor gμν. For details
see Ref. [4]. The weight factors ay and by are defined in
appendix A.

The functions AXY and BXY are bilinear forms of G1 and
G2, and we expand them accordingly, for AXY ,

AXY (G1,G2) = |G1|2KAXY
1 + |G2|2KAXY

2

+2�(G1G
�
2)KAXY

3 + 2�(G1G
�
2)KAXY

4 ,

(6)

and similarly for BXY . We refer to the functions {K} as co-
factors. They are Lorentz covariant functions of the particle
four-momenta and the functions of our attention.

4 Previous results

The leading term of Eq. (4) is MRR as it is independent of
variables that relate to spin dependences in the hyperon decay

distributions. We have

ARR = 2|G1|2
[
(k1 · P)2 + (k2 · P)2 − (k1 · Q)2

−(k2 · Q)2
]

+4�(G1G
�
2)

[
(k1 · Q)2 + (k2 · Q)2

]

−|G2|2 Q2

2M2

[
(k1 · Q)2 + (k2 · Q)2

]
, (7)

with Q = p1 − p2. Furthermore,

BRR = −4|G1|2(P2 + 2M2) + 4�(G1G
�
2)Q

2

−|G2|2 (Q2)2

2M2 . (8)

Thus, the distribution function MRR does not depend on the
decay momenta l and q of the Lambda hyperons.

Next in order are terms linear in the spin variables,

ARS = −4�(G1G
�
2)

[
k1 · Q det(p2 p1l1k1)

+ k2 · Q det(p2 p1l1k2)

]
, (9)

ASR = −4�(G1G
�
2)

[
k1 · Q det(p2 p1l2k1)

+ k2 · Q det(p2 p1l2k2)

]
, (10)

with det(abcd) = εαβγ δaαbβcγ dδ and

BRS = 0, (11)

BSR = 0. (12)

The expressions for the spin-spin contributions are more
complicated. We have for the ASS contribution

ASS = −2|G1|2
[(

(k1 · P)2

+(k2 · P)2 − (k1 · Q)2 − (k2 · Q)2
)

(
p1 · l1 p2 · l2 + M2l1 · l2

)
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+2M2
(
P2(k1 · l1k1 · l2 + k2 · l1k2 · l2)

−2P · l2(k1 · l1k1 · p2 + k2 · l1k2 · p2)

−2P · l1(k1 · l2k1 · p1 + k2 · l2k2 · p1)

)]

−4�(G1G
�
2)

[
M2l1 · l2

(
(k1 · Q)2 + (k2 · Q)2

)

−M2
(
P · l2(k1 · Qk1 · l1 + k2 · Qk2 · l1)

−P · l1(k1 · Qk1 · l2 + k2 · Qk2 · l2)
)

−k1 · Q
(
k1 · p1 p2 · l1 p2 · l2 − k1 · p2 p1 · l1 p1 · l2

− 1
2 P

2k1 · l1 p2 · l2 + 1
2 P

2k1 · l2 p1 · l1
)

−k2 · Q
(
k2 · p1 p2 · l1 p2 · l2 − k2 · p2 p1 · l1 p1 · l2

− 1
2 P

2k2 · l1 p2 · l2 + 1
2 P

2k2 · l2 p1 · l1
)]

−|G2|2 1

2M2

(
(k1 · Q)2

+(k2 · Q)2
)[

Q2
(
p1 · l1 p2 · l2 − M2l1 · l2

)

+2M2Q · l1Q · l2
]
, (13)

and for the BSS contribution

BSS = +4|G1|2
[
(P2 + 2M2)(p1 · l1 p2 · l2 + M2l1 · l2)

−M2
(
P2l1 · l2 + 2P · l2l1 · p1 + 2P · l1l2 · p2

)]

−4�(G1G
�
2)

[
Q2M2l1 · l2

−M2
(
Q · l1P · l2 − Q · l2P · l1

)

−
(
p1 · Qp2 · l1 p2 · l2 − p2 · Qp1 · l1 p1 · l2

− 1
2 P

2Q · l1 p2 · l2 + 1
2 P

2Q · l2 p1 · l1
)]

−|G2|2 Q2

2M2

[
Q2

(
p1 · l1 p2 · l2 − M2l1 · l2

)

+2M2Q · l1Q · l2
]
. (14)

The functions ASS and BSS describe the joint-decay dis-
tributions of the Lambda and anti-Lambda hyperons. The
distributions are correlated, i.e., they cannot be written as a
product of Lambda and anti-Lambda distribution functions.
Our distribution functions are explicitly covariant, as they

are expressed in terms of the four-momentum vectors of the
participating particles. It is not necessary to work in several
coordinate systems, as in Refs. [1] and [3]. Another impor-
tant point is that our calculation correctly counts the number
of intermediate hyperon states.

5 Reference frames

The cross-section distribution function of sect. 4 involves
expressions that are functions of scalar products of particle
four-momenta. To determine the scalar product of two four-
vectors requires knowledge of those vectors in one and the
same reference frame. Our task in this section is to demon-
strate how this is achieved.

Designations of the particle four-momenta follow from
the energy-momentum-balance condition in the reaction
e+e− → �̄(→ p̄π+)�(→ pπ)γ ,

k1 + k2 = p1 + p2 + q. (15)

Additional information is contained in Fig. 1.
The gamma three-momentum q, and electron three-

momentum k, are momenta defined in the e+e− centre-of-
momentum (c.m.) reference frame, in which q̂ · k̂ = cos θ .
We refer to this frame as S0. In S0 electron and positron
four-momenta are k1 = ε(1, k̂) and k2 = ε(1,−k̂), with ε

the common lepton energy. With ω the gamma energy, the
gamma four-momentum is denoted q = ω(1, q̂). Further-
more, the four-momenta of Lambda and anti-Lambda are
p1 = (E1,p1) and p2 = (E2,p2).

Now, we shall not perform our calculations in S0 but in S1

which is the c.m. frame of the ��̄ pair. We indicate variables
in this frame by a prime, so that

p′
1,2 = (E�,±p�f) (16)

with E� =
√
p2
� + M2 and f a unit vector. The ��̄ c.m.

energy W = 2E� may be obtained from the identity

W 2 = 4ε(ε − ω). (17)

The next question concerns the relation between frames
S1 and S0. Since p1 + p2 = −q in S0, we argue that S1 can
be reached from S0 through a boost along the direction of
motion of the gamma, and of magnitude,

v = −(p1 + p2) · q̂
E1 + E2

= ω√
ω2 + W 2

, (18)
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and with Lorentz-transformation (LT) coefficient

γ (v) = 1√
1 − v2

=
√

ω2 + W 2

W
. (19)

Also, note thatv is the relative velocity between two reference
frames, it is not a particle velocity.

A Lorentz boost from S0 to S1 leads to new four-
momentum vectors for the initial state leptons, namely

k′
1,2 = εγ

[
(1 ± vn · k̂); v(n ± N)

]
, (20)

and with n and N by definition

n = q̂, (21)

N = 1

vγ

[
k̂ + (γ − 1)(n · k̂)n

]
. (22)

Relations (21) and (22) are identical to those introduced by
the BaBar collaboration [1].

The photon radiated in our annihilation process carries
energy ω and three-momentum q = ωn , when observed in
S0. A boost from S0 to S1, sends this vector into q′ = ω′n,
with

ω′ = ω

√
1 + v

1 − v
. (23)

However, we should not forget the decay products of the
hyperons, the antiproton and the proton. In the rest system S2

of the Lambda the proton is represented by the four-vector

l1 = (Eg, pg g), (24)

with g a unit vector, and with decay parameters pg and Eg .
Similarly, in the rest system S3 of the anti-Lambda the

anti-proton is represented by the four-vector

l2 = (Eh, phh), (25)

with h a unit vector, and decay parameters ph = pg and
Eh = Eg . A passage from S3 to S1 is achieved by a Lorentz
boost with velocity vh and direction f , whereas a passage
from S2 to S1 is achieved by a Lorentz boost with velocity
vg and direction −f .

The boost equations for the massive hyperons are well
known. Vectors orthogonal to the boost velocity, v = vn,
are unchanged, those parallel are changed according to the
Lorentz-transformation prescription

p′
1,2 = [

p1,2 − n(n · p1,2)
]

+γ (v)n
[
n · p1,2 + vE1,2

]
, (26)

E ′
1,2 = γ (v)

[
E1,2 − v · p1,2

]
. (27)

The inverse-transformation equations, going from S1 to S0,
are obtained by changing the sign of the velocity, from n to
−n.

After this elementary discussion we are ready for the pro-
ton and antiproton four-momentum vectors in S1; for the
proton

p′
g = γ�Egf

[
f · (vg + v�)

] + pg⊥, (28)

E ′
g = γ�Eg

[
1 + v� · vg

]
, (29)

the transverse-vector component pg⊥ being

pg⊥ = pg − (pg · f) f, (30)

with pg⊥ · f = 0; and for the antiproton

p′
h = γ�Ehf

[
f · (vh − v�)

] + ph⊥, (31)

E ′
h = γ�Eh

[
1 − v� · vh

]
. (32)

Our calculations make use of the shorthand notations,

Gg = (vg + v�) · f, Hg = 1 + v� · vg, (33)

Gh = (vh − v�) · f, Hh = 1 − v� · vh . (34)

6 Calculating co-factors

Co-factors can be identified in the AXY and the BXY

functional distributions of Sect. 4. The results are co-
factors expressed in terms of scalar products of four-vector
momenta. However, our goal was to find simpler expressons,
and this by evaluating all scalars in one and the same refer-
ence frame, the c.m. reference frame of the ��̄ pair.

We have evaluated cross-section distributions for two sets
of form-factor parameters. The two sets have attached form-
factor sets, that we indicate by different letters, such that
(G1,G2) ⇒ {K} and (GM ,GE ) ⇒ {L} . We start with the
K set and return to the L set in sect.7.

The much needed � functions are defined in appendix B.
The spin-correlation functions are equally important. Their
definitions are,

Xa(g,h) = 2g · f h · f − g · h, (35)

Xb(g,h) = g · f h · f . (36)

A parameter that appears in practically every formula is
the Z parameter,

Z = 4M2
�

Q2 = −1

γ 2
�v2

�

= 1 − 1

v2
�

. (37)

Other important parameters are v� = p�/E� and γ� =
E�/M�, with M� = M .
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6.1 Spin-independent co-factors

We start with the K base and the KARR co-factors, which can
be extracted from the ARR contribution to the MRR func-
tional distribution of Eq. (7). Since he calculation is straight-
forward we are satisfied with the result,

KARR
1 = (2εω)2� f v

2
�

[
− Z + �⊥/(� f v

2
�)

]
, (38)

KARR
2 = (2εω)2� f v

2
�

[−1

Z

]
, (39)

KARR
3 = (2εω)2� f v

2
�

[
1

]
. (40)

The � functions are described in appendix B.
Next, we extract the KBRR co-factors from the BRR con-

tribution (8) to the MRR functional distribution of Eq. (5);

KBRR
1 = −2Q2

[
Z − 2(1 − Z)

]
, (41)

KBRR
2 = −2Q2

[
1

Z

]
, (42)

KBRR
3 = −2Q2

[
− 1

]
. (43)

Knowledge of these co-factors leads immediately to the
ARR and BRR functions of Eq. (6),

ARR = (2εω)2 1

Z(1 − Z)

[
− |ZG1 − G2|2� f

+Z(1 − Z)|G1|2�⊥
]
, (44)

BRR = 2Q2

Z

[
|ZG1 − G2|2

+2Z(1 − Z)|G1|2
]
, (45)

expressions which are well-known and also displayed in
Ref. [2] and [3].

6.2 Linearly spin-dependent co-factors

Next in order are terms linear in the spin variables, repre-
sented by the functions of Eqs. (9) and (10), and their only
non-vanishing co-factors KARS

4 and KASR
4 . The expessions

for the prefactors of the above-mentioned equations are quite
easily obtained, and equals

Q · k1,2 = −2p�εω

W
f · (n ± N). (46)

In the S1 frame the determinant boils down to

det(p′
2 p

′
1l

′
1k

′
2) = 2E�p′

1 · (p′
g ×k′

2) = 2E� p�f · (p′
g ×k′

2).

(47)

Hence, components of the vectors p′
g or k′

2 along f will
not contribute to the value of the determinant, so that by
Eq. (28) we may replace p′

g by pg . For k′
2 we make recourse

to Eq. (20). All this yields,

KARS
4 = 2p� pg(2εω)2v�[

f · nf · (g × n) + f · Nf · (g × N)

]
, (48)

KASR
4 = 2p� pg(2εω)2v�[

f · nf · (h × n) + f · Nf · (h × N)

]
. (49)

The co-factors that relate to BXY of Eq. (5) vanish,

KBRS
4 = 0, (50)

KBSR
4 = 0. (51)

With the co-factors of Eqs. (48) and (49) in hand we can
determine ARS and ASR from Eq. (6). The related functions
BRS and BSR vanish identically. In agreement with Ref. [2],

ARS = 2p�v� pg(2εω)22�(G1G
�
2)[

f · nf · (g × n) + f · Nf · (g × N)

]
, (52)

ASR = 2p�v� pg(2εω)22�(G1G
�
2)[

f · nf · (h × n) + f · Nf · (h × N)

]
. (53)

6.3 Doubly spin-dependent co-factors

Now, the co-factors are suffixed ASS and BSS. Those suf-
fixed ASS are obtained by analysing ASS of Eq. (13);

KASS
1 = (2p� pgεω)2� f v

2
�[

− Z2Xa + Z�⊥
v2
�� f

(
Xa − 2Xb) + Z

v2
�� f

B1

]
,

(54)

KASS
2 = (2p� pgεω)2� f v

2
�

[
− Xa

]
, (55)

KASS
3 = (2p� pgεω)2� f v

2
�

[
Z Xa + Z

v2
�� f

B3

]
, (56)

with functions B1 and B3 as defined in appendix B. The co-
factors suffixed BSS are dug out from BSS of Eq. (14);

KBSS
1 = 2(2p2

� pg)
2
[
Z2Xa + 2Z(1 − Z)Xb

]
, (57)

KBSS
2 = 2(2p2

� pg)
2
[
Xa

]
, (58)

KBSS
3 = 2(2p2

� pg)
2
[

− Z Xa

]
, (59)

where Z is defined in Eq. (37).
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Starting from the KASS and KBSS co-factors we easily
derive functions ASS and BSS ,

ASS = 4(p� pgεω)2
[

− |ZG1 − G2|2 � f

1 − Z
Xa

+Z�⊥|G1|2(Xa − 2Xb)

+2Z�(G1G
�
2)B3 + Z |G1|2B1

]
, (60)

BSS = 8(p2
� pg)

2
[
|ZG1 − G2|2Xa

+2Z(1 − Z)|G1|2Xb

]
, (61)

two functions which have not been investigated before. Now,
we have all the ingrediants needed to calculate the cross-
section-distribution function from Eqs. (4–6).

7 The GE/GM set

Until now, we have only considered an expansion of the cross-
section-distribution functions AXY and BXY in terms of the
form factors G1 and G2 and their co-factors. Other choices of
form factors are possible and we shall in particular consider
the pair GE and GM . The two sets are related by

GM = G1, (62)

GE = (ZG1 − G2)/Z . (63)

The arguments of the form factors are all equal to P2. In
particular, when P2 = 4M2 then GM = GE .

The functions AXY and BXY are bilinear forms of G1 and
G2, and expanded according to Eq. (6), but they can also be
expanded in terms of GM and GE in which case

AXY (GM ,GE ) = |GM |2LAXY
1 + |GE |2LAXY

2 (64)

+2�(GMG�
E )LAXY

3

+2�(GMG�
E )LAXY

4 , (65)

and similarly for BXY . The relation between the two sets of
functions, {KXY Z

i } and {LXY Z
i } becomes

L1 = K1 + Z2K2 + 2ZK3, (66)

L2 = Z2K2, (67)

L3 = −Z2K2 − ZK3 (68)

L4 = −ZK4, (69)

and with the parameter Z defined in Eq. (37). The most
notible fact about the new set is that several co-factors vanish;

LARR
3 = LBRR

3 = 0. (70)

Also, as we shall see, LBSS
3 = 0 but LASS

3 	= 0. Our results
are the following.

Co-factors suffixed ARR;

LARR
1 = (2εω)2

[
(n × f)2 + (N × f)2

]
, (71)

LARR
2 = (2εω)2 1

γ 2
�

[
(n · f)2 + (N · f)2

]
, (72)

LARR
3 = 0. (73)

Co-factors suffixed BRR;

LBRR
1 = −4P2, (74)

LBRR
2 = 8M2, (75)

LBRR
3 = 0. (76)

Co-factors suffixed ARS and ASR;

LARS
4 = −2Zp� pg(2εω)2v�[

f · nf · (g × n) + f · Nf · (g × N)

]
, (77)

LASR
4 = −2Zp� pg(2εω)2v�[

f · nf · (h × n) + f · Nf · (h × N)

]
. (78)

The co-factors that relate to BXY of Eq. (5) vanish,

LBRS
4 = 0, (79)

LBSR
4 = 0. (80)

With these co-factors in hand we can determine ARS and
ASR from Eq.(6) whereas the related functions BRS and BSR

vanish.
Co-factors suffixed ASS ;

LASS
1 = (2p� pgεω)2Z

[
�⊥(Xa − 2Xb)

+2(L0 + ZLM/γM )

]
, (81)

LASS
2 = (2p� pgεω)2� f v

2
�

[
− Z2Xa

]
, (82)

LASS
3 = (2p� pgεω)2

[
− Z2γ�LM

]
. (83)

The functions L0 and LM appearing in Eqs. (81) and (83)
are defined in appendix B.

Co-factors suffixed BSS;

LBSS
1 = 2(2p2

� pg)
2
[

2Z(1 − Z)Xb

]
, (84)

LBSS
2 = 2(2p2

� pg)
2
[
Z2Xa

]
, (85)

LBSS
3 = 0. (86)
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8 Discussion

In a previous report, Ref. [4], we derived a set of cross-
section-distribution functions for the reaction e+e− →
γ�(→ pπ−)�̄(→ p̄π+). It involved functions whose argu-
ments were Lorentzian scalar products of four-momentum
vectors of the particles participating in the reaction. Since
some of the functons are quite intricate we have here tried
another approach, replacing the Lorentz scalars by Euclidean
scalars of three-momentum vectors. In doing so it should
be remembered that one can form a scalar product of two
vectors only if they are defined in the same reference sys-
tem. The functions which multiply the coupling constants
are called co-factors, or weight factors, and can be retrieved
from Eqs. (7–14). For a complete determination of the cross-
section-distribution function fourteen co-factors are needed.

The cross-section-distribution function describing our
e+e− annihilation reaction is detailed in Sect. 6. However,
we are also interested in knowing the final-state-distribution
function after integrating over one or both hyperon decays.
Let us start with the integral over the �g hyperon decay,
while keeping the anti-hyperon decay angle �h fixed. Then,
terms which are linear in the three-vector g vanish. Thus,

∫
d�g

4π
ASS, BSS, ARS = 0. (87)

Also, since BRS is non-excisting we can add BRS = 0 leav-
ing the three-vector h described by the co-vector of Eq. (49).

The next step is integration over the hyperon decay angles
�h ,

∫
d�h

4π
ASR = 0. (88)

Since by definition, BSR = 0, we end up with the cross-
section-distribution function for the reaction e+e− → γ��̄,
as expected. This distribution function is proportional to the
function MRR of Eq. (4).

The angular integrations just described can also be per-
formed in the four-dimensional formulation of the co-factors,
as in Sect. 4, by exploiting Eq. (7.48) of Ref. [4] for the inte-
gration.

There is an alternative approach to the angular integration
[6], which employs the Euler angles. In this case the angular
measure is written as

d�hd�g = d(cos θgh
)
dαd(cos β)dγ. (89)

Since we know that terms linear in the vectors g or h vanish
upon angular integration, we need only concern ourselves
with the co-factors of ASS and BSS of Sect. 6.3. We notice

that cos θgh only appears in the function Xa(g,h) of Eq. (35),

Xa(g,h) = 2g · f h · f − g · h.

The first term in this expression vanishes on the αβγ inte-
grations, and g · h = cos θgh . Hence, with a little help from
the co-factors of sect. [6] we get for the αβγ averages,

B̄SS =
〈
BSS

〉

αβγ

= 8 cos θgh(p
2
� pg)

2
(

− |ZG1 − G2|2
)
, (90)

ĀSS =
〈
ASS

〉

αβγ

= 4 cos θgh(p� pgεω)2

× 1

1 − Z

(
|ZG1 − G2|2� f + Z(1 − Z)|G1|2�⊥

)
.

(91)

Both functions, B̄SS and ĀSS, vanish on integration over the
cos θgh variable, but a finite result is obtained by weighting
the integration with the factor cos θgh . Moreover, ZG1 −
G2 = ZGE and G1 = GM , and the functions � f and �⊥,
are defined in appendix B. As a consequence, we may write
our result on a more compact form,

B̄SS = 8 cos θgh(p
2
� pg)

2
(

− Z2|GE |2
)
, (92)

ĀSS = 4 cos θgh(p� pgεω)2Z

(−1

γ 2
�

|GE |2� f + |GM |2�⊥
)

.

(93)

Thus ends our exposé.
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Appendix A: Kinematics explained

The parameters describing the decay of Lambda into proton
and pion are pg and Eg , with

pg = 1

2M�

[(
(M� + mp)

2 − μ2)((M� − mp)
2 − μ2)

]1/2

,

(A1)

Eg = 1

2M�

(
M2

� + m2
p − μ2), (A2)

representing the proton in the Lambda rest system. The
hyperon mass is sometimes denoted M , sometimes M�.

The kinematic variables P2, y1, and y2 of Eq. (5) are
defined by,

P2 = (p1 + p2)
2, (A3)

y1 = 2k1 · q = 2εω(1 − cos θ), (A4)

y2 = 2k2 · q = 2εω(1 + cos θ), (A5)

and the normalisation factors ay and by of the same equation
by

ay = 4P2/(y1y2), (A6)

by = (2sP2 + y2
1 + y2

2 )/(y1y2). (A7)

Appendix B: Notations explained

The � fuctions are by definition, and n2 = 1,

�(n,N) = n2 + N2 = 1

v2 + (n · k̂)2, (B1)

= � f (n,N) + �⊥(n,N), (B2)

� f (n,N) = (n · f)2 + (N · f)2, (B3)

�⊥(n,N) = (n × f)2 + (N × f)2. (B4)

TheN vector is defined in Eq. (22), and fulfils the relations,

N2 = W 2

ω2 + (n · k̂)2, (B5)

n · N = 2ε − ω

ω
n · k̂. (B6)

Also, introduced are co-factor functions B1 and B3

L0 = n · g⊥ n · h⊥ + N · g⊥ N · h⊥, (B7)

LM = (f · gh⊥ + f · hg⊥) · (nf · n + Nf · N), (B8)

B1 = 2

[
L0 + 1

γ�

LM

]
, (B9)

B3 = γ�LM , (B10)

with γ� = E�/M�.
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