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Efficient parameterisation 
of non‑collinear energy landscapes 
in itinerant magnets
A. Jacobsson1*, G. Johansson1, O. I. Gorbatov1, M. Ležaić2, B. Sanyal3, S. Blügel2 & C. Etz1

Magnetic exchange interactions determine the magnetic groundstate, as well as magnetic excitations 
of materials and are thus essential to the emerging and fast evolving fields of spintronics and 
magnonics. The magnetic force theorem has been used extensively for studying magnetic exchange 
interactions. However, short-ranged interactions in itinerant magnetic systems are poorly described 
by this method and numerous strategies have been developed over the years to overcome this 
deficiency. The present study supplies a fully self-consistent method for systematic investigations 
of exchange interactions beyond the standard Heisenberg model. In order to better describe finite 
deviations from the magnetic ground state, an extended Heisenberg model, including multi-spin 
interactions, is suggested. Using cross-validation analysis, we show that this extended Heisenberg 
model gives a superior description for non-collinear magnetic configurations. This parameterisation 
method allows us to describe many different itinerant magnetic systems and can be useful for high-
throughput calculations.

From a fundamental point of view and in the perspective of various applications, it is of utmost importance to 
be able to accurately calculate magnetic exchange interactions. These interactions are essential in a theoretical 
description for everything from the magnetic ground-state to dynamical and thermodynamical properties for all 
kinds of materials in different geometries. This is especially important in the field of spintronics, which involves 
the study of active control and manipulation of spin degrees of freedom in solid-state systems1. In particular, 
when modeling magnon spintronics that utilizes spin waves to carry spin current2,3. The present study focuses 
on developing a method that can properly describe the magnetic interactions in a wide range of systems, with 
collinear or non-collinear magnetic structures.

Calculations of magnetic exchange interaction are frequently based on multi-scale modelling described by 
a phenomenological, classical or quantum, Heisenberg model fitted to total energy calculations by e.g. density 
functional theory. Building on the formulation of Andersen’s force theorem4–6, the works by Liechtenstein et al.7 
and Oswald et al.8 introduced the magnetic force theorem (MFT). The general formulation by Liechtenstein 
et al.7,9 is one of the most widely used methods for the determination of inter-atomic exchange interactions since 
it may be applied to any collinear magnetic configuration. The great utility of the theorem for the electronic 
structure community is due to the fact that the exchange interactions are determined from non-self consistent 
calculations that are orders of magnitude faster than most self-consistent approaches. However, further improve-
ments to the method for calculating inter-atomic magnetic exchange interactions are still widely discussed10–15.

Developments in time-dependent density functional theory (TD-DFT) and many body perturbation theory 
have made it possible to access the full dynamical magnetic susceptibility16–19, which gives detailed information 
on both magnon and Stoner excitations, the latter not being accessible by the different versions of MFT calcula-
tions that operate in the adiabatic approximation. However, by a multi-code and multi-scale approach using ab 
initio calculations, Monte Carlo and atomistic spin-dynamics simulations, magnon excitations and magnetic 
phase transitions may be accurately simulated for larger systems20–22.

The MFT relies on the assumption of small changes in the magnetisation and charge density. In addition, 
usually the internal magnetic fields are varied in the calculations rather than the directions of the moments. Short 
wavelength excitations are, therefore, determined less accurately and the calculations are said to be performed in 
the long wavelength approximation (LWA) (for a more extensive discussion see the work of Antropov et al.23,24). 
Various strategies to avoid the LWA have been suggested over the years23–26. In particular, developments by 
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Patrick Bruno25 using “constrained” density functional theory introduced by Dederichs et al.27, included con-
straining magnetic fields acting on each atomic site. These fields reinforce the directions of the small transverse 
spin displacements used to probe the exchange interactions. It was suggested that by neglecting the constrain-
ing fields, one obtains a set of “bare” exchange parameters, which differ from the real exchange parameters. 
The inclusion of the constraining fields leads to a “renormalisation” of the spin-wave spectrum and the Curie 
temperature. The work by Katsnelson et al.26 showed that while the renormalisation suggested by Bruno25 gives 
better thermodynamic properties, the improvement in the magnon dispersion is questionable since the renor-
malisation should be small in every case where the adiabatic approximation is valid. Moreover, it is also interest-
ing to compare the results with those obtained using the disordered local moment (DLM) formalism28,29 that 
also operates beyond the LWA.

The MFT is usually applied in the frozen magnon method30, where exchange interactions are determined 
from energy differences or evaluation of the spin-torque for different spin spiral configurations. It has been noted 
that in the absence of constraining fields (converged in self-consistent spin spiral calculations), a mismatch is 
introduced between the desired and the resulting directions of the magnetic moments, thus leading to a signifi-
cant unphysical spin-torque31,32. Analogous to Bruno’s correction, this can be solved by adding an additional 
term to the potential, that includes the constraining fields. This procedure will be referred to as the corrected 
frozen magnon method in the continuation of the text. It should be noted that the constraining fields are equal 
to the Heisenberg exchange fields that act on the magnetic moments. It is, therefore, quite possible to derive the 
exchange parameters directly from the self-consistently converged constraining fields31,32. This approach is used 
in the present work to formulate the transverse-field method that is found to be preferable to the frozen magnon 
procedures due to better scaling and the avoidance of a frozen potential. A possible exception could be for systems 
with strong relativistic effects, where spin-orbit coupling can be introduced through perturbation theory33,34. 
Furthermore, it is well-suited to parameterise finite deviations from the ground state since no assumption of 
small changes in magnetisation and charge density is necessary.

After setting the grounds of the transverse-field method, the next step is to extend the Hamiltonian by includ-
ing multi-spin interactions and see to what extent the increased flexibility improves the predictive power of the 
model for finite deviations. Interactions beyond the Heisenberg model have made the focus of many studies 
in the field of materials science10,35–38. However, it is important to avoid overfitting when constructing effective 
models. A simple and effective strategy is to use cross validation39, where the calculated data can be used both 
to parameterise an effective model and to estimate the predictive power of the model.

When one aims at an automatic scan of the magnetic behaviour of a large number of compounds, following 
the lines of high-throughput computational materials design40, it is advantageous to have a general Hamilto-
nian and a method of parameterisation that can accurately capture the magnetic phase space for many different 
compounds at a reasonable computational cost. The transverse field method presented in this work fulfills those 
requirements. Given a computationally designed, still non-existing material, the developed method allows for a 
fast calculation of exchange parameters and, importantly, the cross-validation offers a programmable decision 
maker that will automatically determine which interactions in the extended Heisenberg model are important.

The article is structured in the following way: In “Introduction”, we present different methods for obtaining 
the exchange interactions. We also introduce an extended Heisenberg models and discuss the predictive power 
of the cross-validation method for these models. The computational details are described in “Theory”. In “Com-
putational details” we present calculated energies and exchange interactions for three different systems: bcc Fe, 
fcc Ni and the B2 FeCo alloy.

Theory
The frozen magnon methods.  As mentioned in the Introduction, one way of obtaining the exchange 
interactions is by means of the frozen magnon method. Within this technique, one needs to construct different 
spin-spiral configurations and compare their energies in order to evaluate the exchange parameters. At a closer 
look, one can observe a discrepancy between the input-direction of the magnetic moments and their actual ori-
entation. This leads to an undesired effect, namely an unphysical spin-torque acting on the magnetic moments. 
In order to avoid this, the constraining fields are introduced.

In the augmented plane-waves (APW) based methods, the crystals are divided into spherical muffin-tin 
regions around the atomic sites and interstitial regions between the sites. The constraining fields ( BC

i  ) are intro-
duced in the Kohn–Sham equation,

as uniform vector fields in the muffin-tins in addition to the magnetic field BXC(r) , generated by the exchange-
correlation potential,

The constraining fields BC
i  , are the Lagrange multipliers necessary to perform the energy minimisation under 

the constraint of the specific magnetisation density41. In the self-consistency cycle, they are converged together 
with the rest of the potential such that the components of the total integrated magnetic moments perpendicular 
to the chosen direction of the moments are zero

(1)
{

−
�
2

2m
∇2 + V eff (r)+ σ · Beff (r)− ǫν

}

ψν(r) = 0

(2)Beff (r) = BC
i + BXC(r).

(3)BC
i,p+1 = BC

i,p + �(mi,p −mi,chosen),
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where i is the site index, mi is the magnetic moment at site i, p is the iteration number and � is a scaling factor. 
The procedure still allows for intra-atomic non-collinearity.

When calculating the total energy of a cone-spin-spiral, it is usually necessary to add constraining mag-
netic fields to each magnetic sub-lattice in order to preserve the cone-angle during the self consistency cycles. 
Exceptions are systems with the cone-spin-spiral ground state42 since the constraining fields are equal to the 
transverse part of the Heisenberg exchange fields. Non-zero transverse exchange fields imply that the system is 
not in equilibrium.

In the frozen magnon methods, a number of reference Ŵ-point spin configurations are converged self-consist-
ently. Configurations where there is a non-zero cone angle of the magnetic moment on either a single magnetic 
sub-lattice or a pair of magnetic sub-lattices are considered here. These are only collinear if all magnetic sub-
lattices are tilted with the same angle. In some previous publications22,43, these reference states were obtained by 
rotations of the potential of a collinear state. Since only the potentials in the muffin-tins were rotated, this left a 
discontinuity in the magnetisation density at the border between the muffin-tins and the interstitial region. It 
was therefore found that better agreement with self-consistent calculations was achieved by setting the interstitial 
magnetisation to zero22.

The procedure followed in this work makes it possible to keep a non-zero interstitial magnetisation since we 
don’t perform any rotations of the potential. On the other hand, it leads to a moderate increase in computational 
cost for systems with more than one magnetic sub-lattice since several self-consistent non-collinear calculations 
have to be carried out. Once the potentials for the reference configurations are obtained, non-self consistent total 
energy calculations are done for a set of spin-spiral wave vectors using the converged V eff (r) and BXC(r) from 
the reference configurations and BC(r) set to zero. The total energy differences �E(q) are approximated as the 
difference in the sums of eigenvalues through the MFT9

In the last step, exchange parameters Jij of a Heisenberg Hamiltonian are obtained through a least square 
fitting procedure43

Here, the direction of the magnetic moments of a sub-lattice with a cone-angle θ is given by the expression,

where φi are the phase factors, q is the spin-spiral wave-vector and Ri are the lattice vectors.
In the corrected frozen magnon method an extra calculation step is done compared to the conventional 

method. First, V eff (r) is kept fixed and BC(r) is converged separately for each spin-spiral wave vector. In the 
final total energy calculations, V eff (r) and BXC(r) are kept fixed, as in the conventional method, but now the 
pre-converged BC

i  are added for each one-shot calculation of the sums of eigenvalues. There are slight numerical 
differences between the constraining fields obtained in this way compared to fields obtained fully self-consistently. 
However, this procedure is much faster than a fully self-consistent calculation and no significant difference 
was obtained with respect to the total energy differences for the different compounds studied in this work. A 
noteworthy difference between the two frozen magnon methods is that, while ei is roughly parallel to BXC(r) in 
both cases, only in the corrected method is ei also guaranteed to be the direction of the integrated moment after 
a single iteration of the electronic structure code. For materials and magnetic states, where the self-consistently 
converged magnetic fields fulfil BC

i � BXC(r) , the correction to the conventional frozen magnon method can be 
expected to be important. The constraining field BC(r) compensates for the spin-torques the system experiences 
when it is forced to assume magnetic configurations different from the ground state structure. The correction 
will thus tend to be more relevant for itinerant magnetic systems with small moments, materials with strong 
exchange interactions or magnetic configurations far from the ground state.

Exchange parameters from a transverse field.  In order to obtain exchange parameters from self-
consistent quantities one could perform fully self consistent spin-spiral total energy calculations and extract 
the exchange parameters from Eq. (5). This is however computationally expensive even for systems that can be 
described with a small unit-cell if we want to use an accurate all-electron code. A faster procedure, that is also 
fully self-consistent, was worked out by Grotheer et al.31,32. Their approach exploits the fact that the constraining 
fields are equal and opposite to the transverse part of the Heisenberg exchange fields. We use this as a starting 
point and develop a method which we coin the transverse field method (TF).

The exchange field H0i acting on a magnetic moment mi is given by:

Once the constraining fields and magnetic moments are converged for a number of magnetic configurations, 
we can solve the following system of equations for the exchange parameters, Jij:

(4)�E(q) ≈
∑

ν

ǫν(q)−
∑

ν

ǫν(0).

(5)�E(q) =
1

2

∑

i �=j

Jij(ei(q) · ej(q)− ei(0) · ej(0)).

(6)ei(q) = sin(θi) cos(q · Ri + φi)x + sin(θi) sin(q · Ri + φi)y + cos(θi)z,

(7)H0i = −
1

mi

∑

j

Jijej .
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Relative to previous studies, besides the difference in starting point (i.e. real space vs. reciprocal space), a 
further difference is the choice of the free variable, which is the constraining field BC

i  in our method, while in 
Grotheer’s et al. approach31,32 it is the cone-angle. The transverse field method has a better scaling with respect to 
the size of the system than the frozen magnon method has, since the number of determined variables is equal to 
the number of magnetic atoms for each calculation, while in the latter method only a single variable is determined 
in each calculation. While the constraining fields in the transverse field method are converged self-consistently, 
which is computationally more demanding compared to non-self-consistent methods, this is compensated well 
by the fact that the constraining fields are robust quantities that are usually much faster to converge with respect 
to the computational parameters than small total energy differences44.

In Fig. 1 we present a diagram that summarises the two methods that we developed, namely the corrected 
frozen magnon and the transverse-field method in comparison to the canonical frozen magnon method. A detailed 
comparison and analysis of exchange parameters obtained within these three methods is given in “Computa-
tional details”.

Beyond the Heisenberg model.  The regular Heisenberg model performs poorly when large deviations 
from the ground state are considered for itinerant magnetic systems in the sense that the convergence of the 
residuals with respect to the number of parameters is slow compared to more complex models45. In the final sec-
tion (“Computational details”), the good scaling of the constraining field method is therefore applied to param-
eterise models that—besides the bilinear terms—also contain higher order interactions such as bi-quadratic, 
three- and four-spin interactions. The exchange fields of two models are considered here in addition to the 
regular Heisenberg exchange field H0 (Eq. (7)). First, H0 together with bi-quadratic, three- and four-spin interac-
tions, called H2:

and then H2 restricted to bi-quadratic interactions only, called H1:

where Jij and Bijkl are the exchange parameters. Similarly to Eq. (8), the parameters can be related to the con-
straining fields. For example, applied to the most general model H2 (Eq. (9)), this gives:

In order to address the problem of overfitting and access the predictive power of the models, a leave-one-out 
cross-validation analysis is performed (“Computational details”). Each single data point is left out in turn from 
the set, and the parameters are then extracted from the remaining set of data points and used to predict the 
value of the left-out data point.

In the regular Heisenberg model, the terms are usually ordered and included in the model according to the 
relative distances of the atomic pairs. For more complicated models, additional conventions have to be made. 
In H1 and H2 the higher order terms are ordered according to the sum of all the relative distances between the 
members of the moment-quadruples. Hence, the nearest neighbour bi-quadratic interaction is always the first 

(8)BC
i · BC

i =
1

mi

∑

j

JijB
C
i · ej .

(9)H2i = −
1

mi
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C
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Figure 1.   Three different methods for obtaining exchange parameters: the frozen magnon, the corrected frozen 
magnon and the transverse-field method. Due to the fact that the constraining fields in the corrected frozen 
magnon method are converged self-consistently, while the potential is kept fixed, we call these fields pseudo-self-
consistent.
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higher order term included in the model. In addition, rules are introduced that order the Jij with respect to the 
Bijkl coefficients. In the H1 model, Bijji is counted before Jij if the sum of the relative distances between the mem-
bers of the moment-quadruple that define Bijji is less than two times the distances between the pair that defines 
Jij . For H2 , the factor two is increased to a factor four. Essentially the two dimensional problem with possible 
different length cutoffs for bilinear and higher order interactions is reduced to one dimension by the use of a fixed 
ratio. The drawback of this simplification is of course that the possible predictive power of the more complex 
models might be underestimated. These factors may be optimised and made specific to the material and the 
chosen sampling of non-collinear states using the cross validation procedure. However an optimisation using 
our data on bcc-Fe resulted in similar ratios between the cutoff lengths (four and two), so these rules are used in 
this work in order to simplify the comparisons to the standard Heisenberg model. In general it is recommended 
to do the full model optimisation since it may identify the cases where the ground state is stabilised by higher 
order interactions and will further increase the predictive power of the model.

Computational details
The main results presented in this paper are obtained with the new formalism described above as implemented 
in the full potential APW+lo Elk code46. The computational details for the three systems bcc Fe, fcc Ni and 
FeCo are the same, except for the number of k-points. The local spin density approximation (LSDA) functional 
by Perdew and Wang47 is used throughout this work. For the band energy calculations a 31× 31× 31 k-point 
mesh is used for fcc Ni and FeCo while a 41× 41× 41 k-point mesh is used for bcc Fe. The constraining fields 
are obtained using a 15× 15× 15 k-point mesh for fcc Ni and FeCo, while a 21× 21× 21 k-point mesh is used 
for bcc Fe. The muffin-tin radius was set to 1.23 Å for all atoms. The angular cutoff for the APW functions, for 
the muffin-tin potential and the density was set to 9. The maximum length of the {G+ k}-vectors was regulated 
by fixing its product with the average muffin-tin radius to 9. The maximum length of the {G}-vectors describing 
the interstitial potential and the density was set to 9.5 Å −1 . We utilise unrestricted intra-atomic non-collinearity 
in the calculations. The experimental lattice constants of 2.87 Å, 3.50 Å and 2.83 Å were considered for bcc Fe, 
fcc Ni and B2 FeCo, respectively.

For the calculations of exchange parameters, 100 spin-spirals were considered with randomly generated 
wave-vectors for bcc Fe, while 90 spin-spirals were considered for fcc Ni and FeCo. Cone-angles of 0.25 rad on 
one or two magnetic sub-lattices were used for all the results in this paper, while angles up to 0.5 rad were con-
sidered to ensure that our results did not depend sensitively on the chosen angles. The constraining fields were 
considered converged when the change of the constraining fields between two successive iterations was less than 
0.5%. For FeCo we also calculate the exchange parameters using the Korringa–Kohn–Rostocker (KKR) method 
and the MFT method as developed by Lichtenstein et al.9 and implemented in the Münich SPR-KKR band 
structure program package48,49. The disordered local moment (DLM) model has been employed for describing 
the paramagnetic state of Fe28,29. This model treats spin-up and spin-down components in equal concentration, 
assuming a completely random distribution of magnetic moments for each magnetic element, in the sense that 
the correlation between site occupancies of spin-up and spin-down moments is absent. The electronic structure 
of the DLM-state has been obtained using the coherent potential approximation (CPA)50,51, which accurately 
describes disordered systems in the single-site approximation.

In order to sample a large variety of non-collinear states for the different beyond-Heisenberg models and to 
avoid issues of linear dependency between higher order parameters, the cubic 16-atom unit cell was considered 
for bcc Fe. Here 125 k-points were evaluated and otherwise the same set of computational parameters used pre-
viously, was employed. The constraining fields and magnetic moments were converged for five sets of magnetic 
configurations. The cone angles θi for the 16 atoms were randomised in the intervals (n− 1)π/10 < θi < nπ/10 
for the five sets defined by 1 ≤ n ≤ 5 . Furthermore, the phase factors φi were randomised between 0 and 2π and a 
spin-spiral with a random wave-vector applied for each configuration. With increasing n increasingly disordered 
states are considered from the almost collinear states of n = 1 to the almost paramagnetic n = 5 . In total, 100 
different magnetic configurations were considered.

Results
In order to evaluate the accuracy of the spin-spiral total energy differences using the MFT with and without the 
use of constraining fields, spin-spiral total energies calculated fully self-consistently were used as a benchmark. 
Three systems were considered, bcc Fe, fcc Ni and B2 FeCo, with results presented here. For each system, three 
different methods were used for calculation of the total energy: (i) non-self-consistent calculations without 
any constraining fields (referred in the following as NSC and marked with blue circles); (ii) non-self-consistent 
calculation with constraining fields (referred to as NSC-F, green triangles) and (iii) self-consistent calculations 
(referred to as SC, red squares). It should be noted that, only for bcc Fe and fcc Ni are the spin-spiral dispersions 
directly related to the adiabatic magnon dispersion through a scaling factor since they—unlike FeCo—have 
a single magnetic sub-lattice. The exchange parameters are obtained from the regular Heisenberg exchange 
field, H0 (Eq. (7)). The NSC calculations employ the conventional frozen magnon method, while the NSC-F 
employ the corrected frozen magnon method and the SC calculations employ the transverse field method (see 
“Introduction”).

Bcc Fe.  We calculated the spin-spiral energy dispersion in bcc Fe along the H–Ŵ –P direction for all the three 
cases mentioned before: NSC, NSC-F and SC (Fig. 2a). The magnetic field Beff (r) is aligned closer to the z-axis 
when the constraining fields are neglected and thus, it corresponds to a situation of smaller cone-angles. This 
results in lower total energy differences with respect to q = 0 and it is why the NSC-F energies lie above the NSC 
curve.
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The behaviour is consistent with the results of previous studies where quantities such as exchange parameters, 
magnon energies and the Curie temperatures TC are increasing when the MFT calculations are corrected for the 
LWA23–26. Indeed, we also obtained a higher TC for bcc Fe with the corrected frozen magnon method than with 
the conventional one as can be seen in Table 1.

It is worth noting that we have intra-atomic collinearity in our non-self consistent calculations for bcc Fe 
(and for fcc Ni) since we have only a single magnetic sub-lattice in this case and therefore, have a collinear Ŵ
-point reference state. In a previous study,24 it was shown that suppressing intra-atomic non-collinearity in bcc 
Fe gives rise to an increase of the calculated TC when derived from self-consistent spin spiral total energies. This 
observation is consistent with our results since it suggests that the non-self consistent calculations—where we 
have intra-atomic collinearity—should get higher total energy differences compared to the self consistent calcula-
tions. This may explain why the agreement with self-consistent spin-spiral total energies decreases somewhat with 
the introduction of the fields in the non-self-consistent calculations. This is likely due to the fact that the error 
cancellation is lost between the neglect of the fields (leading to smaller effective cone-angles and thus energies) 
and the imposition of intra-atomic collinearity (that increases the energies of the spin-spirals).

The most pronounced difference in the exchange parameters (Fig. 2b) is the larger nearest neighbour interac-
tion of the NSC-F case compared to the NSC case. This difference is of similar size to the one obtained in previous 
studies between methods that worked in the LWA and those that went beyond, using linear response theory23 or 
self-consistent spin-spirals24. Similarly, the error cancellation can explain the excellent match obtained between 
self-consistently converged exchange parameters and the exchange parameters from previous studies using the 
MFT53–55. In fact, an almost perfect match is obtained with the results of Bergqvist53.

It should be noted, however, that bcc Fe is not very well described in a strict Heisenberg model. The exchange 
parameters are configuration-dependent and specifically the ratio between the dominating nearest- and second 
nearest neighbour interactions is known to depend sensitively on the cone-angle of the spin-spirals56. Some 
differences between the results of various calculations available in the literature can be expected for that reason. 
To avoid the configuration-dependence, a more complex Hamiltonian has to be considered45. This issue will be 
discussed in further detail later in the article.

Fcc Ni.  As in the case of bcc Fe, we have intra-atomic collinearity in the non-self-consistent calculations for 
fcc Ni as well. Introducing the pre-converged constraining fields into the non-self-consistent calculations gives 
results that match excellently with self-consistent calculations. This is exemplified by the green and red curves in 

Figure 2.   (a) Spin-spiral energy dispersion in bcc Fe. The blue circles and green triangles represent non-
self-consistent total energies calculated without- (blue) and with (green) constraining fields. The red squares 
represent self-consistent total energies. Dashed lines represent fitted polynomials. (b) Exchange parameters 
for bcc Fe. The blue circles and green triangles represent exchange parameters calculated non-self-consistently 
without (blue) and with (green) constraining fields. The red squares represent exchange parameters calculated 
with the transverse field method.

Table 1.   The Curie temperatures ( TC in K) for bcc Fe, fcc Ni and B2 FeCo. All theoretical results are obtained 
in the mean-field approximation using exchange parameters from NSC, NSC-F and SC calculations. Note that 
the mean-field approximation typically overestimates the TC by ∼ 15%. The exchange parameters of Ref.52 are 
obtained using the MFT approach of Liechtenstein et al.9 in the LWA.

NSC NSC-F SC Ref.52 Exp.

bcc Fe 1067 1143 1077 1050 1043

fcc Ni 351 572 533 406 627

FeCo 1853 2261 1934 – –
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Fig. 3a. In the meantime, not including the constraining fields produces a dispersion curve that is significantly 
lower.

This means that correcting for the LWA removes almost entirely the large differences between non-self con-
sistent and self-consistent results. As a consequence, the exchange parameters of the corrected frozen magnon 
method correspond more closely to the exchange parameters obtained by the transverse field method, shown 
in Fig. 3b. There is a substantial difference between the size of the nearest neighbour interaction obtained in 
our study when derived from the transverse field or the corrected frozen magnon method and previous self-
consistent results24. We obtain also a substantially weaker nearest neighbour interaction compared to results 
of linear response theory23. However, it is clear from Fig. 3a that the NSC-F energy differences are close to the 
self-consistent results, which indicates that the mapping of the self-consistent total energy landscape is correct 
(proven for the high symmetry lines probed here). This is further reinforced by the close agreement between the 
exchange parameters calculated self-consistently from the transverse field and the ones obtained from the cor-
rected frozen magnon method. Note that our results for the TC give a decent match to previous time-dependent 
density functional simulations57. It is well-known that the TC of fcc Ni is underestimated by MFT calculations that 
operate in the LWA and employ the LSDA functional23–25,30,52. The transverse field method and corrected frozen 
magnon method give a much improved prediction of the TC (Table 1), but still fall short of the experimental value.

Constraining fields were also calculated for configurations with larger angles and it was found that the 
dominating nearest neighbour interaction tends to weaken with the onset of magnetic disorder, while no other 
interactions grew substantially in size. This indicates that a more thorough sampling of non-collinear states 
will rather decrease (than increase) the predicted transition temperature. The discrepancy between theory and 
experiments should be sought elsewhere. This further strengthens the case that the LSDA functionals underes-
timate the exchange interactions or that non-adiabatic processes and longitudinal fluctuations not captured by 
the Heisenberg model also play an important role in determining the TC in fcc Ni57,58.

B2 structured FeCo.  In FeCo, we have two different magnetic sub-lattices present. When analysing the 
energy dispersions for this compound, two different magnetic configurations were considered: (i) when the 
moments are tilted simultaneously on both magnetic sub-lattices (Fig. 4a) and (ii) when the moments are only 
titled on one magnetic sub lattice either Fe (Fig. 4b) or Co (Fig. 4c), while the orientations of the moments on 
the other sub-lattice are kept fixed.

The NSC-F dispersion curves correspond considerably more accurately to the SC case than the NSC for 
FeCo. The difference becomes especially pronounced qualitatively when only the Fe (Fig. 4b) or the Co (Fig. 4c) 
sub-lattice is tilted. It needs to be pointed out that the energy scale is much smaller in this case compared to the 
case where both magnetic sub-lattices are tilted (Fig. 4a). The negative values of the energies arise due to the 
fact that the Ŵ-point configuration is a non-collinear state. The energy differences of the spin spirals in Fig. 4b,c 
do not depend on the inter-lattice exchange parameters since the angles between atomic moments belonging 
to different sub-lattices are constant. Hence, we can expect significant differences in the intra-lattice exchange 
parameters. Indeed the NSC-F intra-lattice parameters, obtained by the corrected frozen magnon method, in 
Fig. 4e,f, correspond much closer to the exchange parameters obtained by the transverse field method than the 
NSC– exchange parameters obtained by the conventional frozen magnon method. Also the nearest neighbour 
Fe-Co interaction is significantly stronger when obtained by methods that go beyond the LWA. It can be noted 
that the energy scales in Fig. 4d–f are similar to the corresponding graphs in Fig. 4a–c. We remind the reader that 
in the case of B2 FeCo, the spin-spiral energy dispersion cannot be directly related to the adiabatic magnon dis-
persions, due to the fact that we have two magnetic sub-lattices present in the system. Exchange parameters were 

Figure 3.   (a) Spin-spiral energy dispersion in fcc Ni. The blue circles and green triangles represent non-
self-consistent total energies calculated without- (blue) and with (green) constraining fields. The red squares 
represent self-consistent total energies. Dashed lines represent fitted polynomials. (b) Exchange parameters in 
fcc Ni. The green triangles and blue circles represent exchange parameters calculated non-self-consistently with- 
(green) and without (blue) constraining fields. The red squares represent exchange parameters calculated with 
the transverse field method.
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also obtained by KKR calculations using the Liechtenstein-Katsnelson-Antropov-Gubanov (LKAG) method9 
and found to be similar to the ones obtained by the conventional frozen magnon method (the black vs the blue 
symbols in Fig. 4d–f). Also previous KKR calculations by MacLaren et al.59 match our KKR results well. This 
shows that the conventional MFT calculations fail to describe the self-consistent energy landscape of FeCo due 
to the LWA, regardless of the specifics of the implementation. In the case of FeCo, there is no experimental value 
to compare to, since this compound undergoes a structural phase transition before losing the magnetic ordering.

Figure 4.   Spin-spiral energy dispersion curves in B2 FeCo, when: (a) both the magnetic moments on the Co 
and Fe sub-lattices are tilted, (b) with only the magnetic moments on the Fe magnetic sub-lattice tilted and (c) 
with only the magnetic moments on the Co magnetic sub-lattice are tilted. The blue circles and green triangles 
represent non-self-consistent total energies calculated without- (blue) and with (green) constraining fields. 
The red squares represent self-consistent total energies. Dashed lines represent fitted polynomials. Also shown 
are exchange interactions between: (d) the two magnetic sub-lattices, Fe and Co, (e) within the Fe magnetic 
sub-lattice and (f) within the Co sub-lattice. The green triangles and blue circles represent exchange parameters 
calculated non-self-consistently with (green) and without (blue) constraining fields. The red squares and black 
diamonds represent exchange parameters calculated with the transverse field method and the method of 
Lichtenstein et al.9, respectively.
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Beyond the Heisenberg model.  To assess the predictive power of the different models presented above 
(“Introduction”), a leave-one-out cross validation analysis is employed and it is shown that the extended models 
give a significantly increased accuracy for bcc Fe.

The predicted mean squared error (P-MSE) obtained from the differences between the predicted and actual 
data points provides a better measure of the predictive power of the models than the regular MSE. While the 
MSE decreases more or less monotonously with respect to the number of parameters regardless of model and 
material under study, the P-MSE has a global minimum that marks the onset of overfitting.

As seen in Fig. 5a, it is clear that the extended Heisenberg models are significantly superior to the regular 
Heisenberg model and that the accuracy of the models follow the expected complexity order, with H2 more 
accurate than H1 and H1 more accurate than H0 . In Fig. 5a, the global minimum of the P-MSE of the H2-model 
is not clear, contrary to the cases of H0 and H1 . However, if the number of parameters is increased beyond 200 
it is found that 198 parameters is the global minimum using the fixed ratios between the cutoff lengths for the 
bilinear and higher order terms. The result of Singer et al.45, that a single bilinear and bi-quadratic parameter 
give a better fit than any number of bilinear parameters, is reproduced as seen by the comparison between H1 
and H0 . Although it should be noted that their analysis is based on MSE rather than the P-MSE and a different 
sampling of non-collinear states. It is interesting to note that the predictive power of the multi-spin model H2 is 
significantly improved compared to H1 by the inclusion of hundreds of small three- and four-spin interactions. 
When the ratios are optimised it is found that the P-MSE cannot be significantly improved within cutoff-limits 
that give a parameterisation from the available data. It is possible that the optimisation for a more extensive col-
lection of data would make a larger difference between optimised and fixed ratios.

The ratio between the predicted ( B′C
i  ) and directly calculated ( BC

i  ) size of the transverse exchange fields is 
shown in Fig. 5b, in order to easily evaluate the accuracy of the different models. Here small fields might of course 
have a ratio significantly different from one and still not contribute with a large absolute error. But an overall 
sense of the accuracy for the bulk of the data points can nevertheless be obtained. For the extended models, the 
fields are predicted within 10% of the directly calculated fields and for the regular Heisenberg model the fields are 
predicted within 20% . The ratios have been evaluated with a number of parameters determined by the minimum 
of the P-MSE, i.e. 74, 38 and 198 parameters for H0 , H1 and H2 respectively.

The variations in the sizes of the magnetic moments were less than 15% for the data-set and insignificant for 
the smaller angles. It was investigated whether the Hamiltonians could be improved by including a bilinear scal-
ing with respect to the amplitudes of the moments. A version of every Hamiltonian where the parameters where 
multiplied by the moments mj rather than the directional vectors ej were tested and found to give significantly 
worse accuracy for all cases, perhaps contrary to expectations. A more thorough investigation of this matter is 
postponed for a future work.

The parameterisation for the H0 model is shown in Fig. 6a and for the H1 and H2 models in Fig. 6b–c. In 
general, the interactions are short ranged with the nearest neighbour being considerably larger than the rest. It 
is found that the DLM results match the self-consistent results for bcc Fe perfectly when employing the regular 
Heisenberg model as seen in Fig. 6a. The regular Heisenberg model does not capture features in the local spin 
density approximation (LSDA) total energy landscape that depends upon this particular use of the coherent 
potential approximation (CPA). Those features may be described by the higher order interactions and most 
importantly the strong bi-quadratic nearest neighbour interaction (see Fig. 6b–c).

In the work by Szilva et al.60, collinear exchange parameters for the bilinear and bi-quadratic spin Hamilto-
nian were derived. The obtained values in the case of bcc Fe compare very well qualitatively to our calculated 
exchange interactions for the same system, when using H1 model. It is expected that the two approaches give 

Figure 5.   (a) The mean squared differences between BC
i · BC

i  as obtained from direct ab initio calculations 
and B′C

i · B′C
i  as obtained from the parameterised models derived from the data-set excluding BC

i  . The regular 
Heisenberg model is labeled H0 ; H0 with bi-quadratic interactions added is labeled H1 and H1 extended by three- 
and four-spin interactions is labeled H2 . (b) The ratio BC

i /B
′C
i  , where B′C

i  is obtained from the parameterised 
models derived from the data-set excluding BC

i  . The color scheme in (b) is the same as in (a) for the different 
models.
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some quantitative differences since our approach is self-consistent while theirs is non-self consistent and since 
we also sample states far away from the collinear state when parameterising the model.

The Hamiltonian can be extended in the transverse-field method. To this end, we aim to model the magnetic 
phase space for itinerant magnetic systems by a single model. For fcc Ni, four different models are considered. 
Applying any of the exchange fields, Hni , defined in “Introduction” and sum over all moments mi yields

Adding to two of these models, E0 and E2 , a correction inspired by anisotropic and Stoner interaction

we obtain two additional models E′0 and E′2 . The results of these models are presented in Fig. 6d which shows 
15 different configurations for three different cone-angles ( θ ) with random azimuthal angles ( φ ). It is seen that 
including the ansiotropic and Stoner parameters in the model considerably improve the result, with the most 
complex model being more or less identical to the self-consistent results. The difference, of course, becomes 
larger with increasing non-collinearity.

Discussion and outlook
Much of the discussions regarding the accuracy of the exchange parameters determined with the MFT has 
revolved around the results for bcc Fe. This is a material where conventional MFT calculations in the LWA and 
self-consistent total energy calculations agree very well for small deviations in the magnetic structure and where 
the introduction of any correction scheme therefore has little room for improving the results. This excellent 
agreement can be understood to be partly due to the error cancellation between (i) the neglect of the constrain-
ing fields and (ii) the assumption of intra-atomic collinearity in the calculations. Therefore, the bcc Fe exchange 
parameters of the transverse field method agree very well with the results of calculations using the MFT in the 

(12)En =
∑

i

Hni ·mi .

∑

i

( Ii

2
+

Kim
2
i

4

)

m2
i ,

Figure 6.   The parameterisation of three different models are shown for bcc Fe. (a) shows the result for the H0 
model together with exchange parameters calculated using Lichtenstein et al.9 method, with and without the 
DLM formalism. (b) and (c) shows the result for the H2 and H1 models respectively. For the H2 and H1 models, 
the sums of the distances between the moment-quadrupoles are divided by four in order to make the distances 
of the exchange parameters Jij comparable with the Bijkl . (d) Total energy for a set of different non-collinear 
states with increasing cone-angle towards the right. For each cone-angle, there are five different configurations 
with random azimuthal angle.
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LWA, while the corrected frozen magnon method gives slightly different quantitative predictions for the exchange 
parameters. But for any material and state where BC(r) � BXC(r) , significant differences can be expected between 
non-self-consistent and self-consistent results. This is the case for the spin-spiral total energy calculations for 
fcc Ni and B2 FeCo, where the conventional use of the MFT does not result in a correct description of the total 
energy as a function of the directions of the moments. The neglect of the contributions of the constraining fields 
to the potential is crucial for this discrepancy as we can see from the comparison between our two different 
frozen magnon methods.

We can see that going beyond the LWA through the use of the corrected frozen magnon- or transverse field 
method does result in a critical temperature that is significantly closer to experiments for fcc Ni using LSDA. 
When larger angles were applied, the exchange tended to weaken which indicates that either the LSDA itself fails 
to give an accurate description of fcc Ni or a more complex treatment beyond the Heisenberg model is needed. 
This finding is consistent with previous studies that go beyond the LWA. Besides, turning to more accurate 
electronic structure methods, it would be interesting to see whether the theoretical predictions could be made 
more accurate by introducing longitudinal fluctuations of the magnetic moments into the effective Hamiltonian.

The corrected frozen magnon method gives an overall accurate description of the self-consistent energy land-
scape of all the three materials covered in this study, while the conventional method only works well for bcc Fe. 
This indicates that non-self consistent spin-spiral calculations are, in general, not the most efficient approach for 
the purpose of parameterising the total energy of non-collinear states in itinerant magnetic systems. This is due 
to the fact that the constraining fields that remove the differences to self-consistent total energies need to contain 
information of the parameterisation itself. However, the procedure can still make sense if the constraining fields 
are not fully self-consistently converged. In our corrected frozen magnon method the potential is kept fixed while 
the constraining fields are converged. This results in computational costs for the corrected frozen magnon method 
comparable with the transverse field method for the small magnetic systems considered in this study, while 
the transverse field method scales better and therefore is clearly favourable to use for larger magnetic systems.

The formalism of the transverse field method is simple to implement in any code that handles non-collinear 
magnetism. It can be used with or without the generalised Bloch theorem. The advantage of using the spin-spiral 
formalism is the possibility of calculating interactions between pairs of atoms that are not both contained in the 
unit cell. The method has several clear advantages over the conventional frozen magnon method besides the 
improved scaling and avoidance of the LWA. It is reasonable to expect the method to produce more accurate 
results than non-self-consistent approaches for systems where inter-atomic non-collinearity results in size-
able intra-atomic non-collinearity. Furthermore, more accurate results can be expected for systems with large 
induced moments, that depend sensitively on the directions of the surrounding moments. Simple rotations of 
the potentials at the sites of the magnetic sub-lattices are in these cases not likely to capture the intricate changes 
of the self-consistent potentials and corresponding total energy differences.

When the Heisenberg model is expanded and applied to supercell calculations, it is clear that higher order 
interactions play a crucial role in an accurate description of the non-collinear total energy landscape of bcc Fe. A 
significant increase in accuracy is obtained already when only bi-quadratic interactions are added to the regular 
Heisenberg model. The promising results obtained by the full multi-spin model indicates that the ambition to 
model the magnetic phase space for itinerant magnetic systems in a single model is reasonable. The advantages of 
the transverse field method is evident in the scaling and the possibility of evaluating and optimising the predic-
tive power of the derived model against self-consistently derived quantities using the cross-validation analysis. 
The present study supplies a fully automatic, affordable and self-consistent method to systematically investigate 
exchange interactions beyond the standard Heisenberg description. This approach lends itself naturally to mas-
sive high-throughput calculations to find new useful and exotic magnetic materials.

The perfect match between the self-consistent results for the regular Heisenberg Hamiltonian and the DLM 
results for bcc Fe is a subject for further studies. It would be interesting to see how general this phenomenon 
is. For materials where the longitudinal fluctuations are strong, this equality probably breaks down. A natural 
continuation of the present study is the formulation of a general framework that makes use of the transverse-
field method and includes longitudinal fluctuations as well. In this way, one can properly describe the magnetic 
properties of real materials including temperature effects.

The present work is important for the field of magnon-spintronics since it provides an efficient way of accu-
rately describing the exchange interactions. These interactions are crucial for designing realistic and efficient 
magnon-spintronic devices.
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