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Correlated electron states are at the root of many important phenomena including unconventional
superconductivity (USC), where electron pairing arises from repulsive interactions. Computing the
properties of correlated electrons, such as the critical temperature Tc for the onset of USC, efficiently and
reliably from the microscopic physics with quantitative methods remains a major challenge for almost all
models and materials. In this theoretical work, we combine matrix product states (MPS) with static mean
field (MF) to provide a solution to this challenge for quasi-one-dimensional (Q1D) systems: two- and three-
dimensional materials comprised of weakly coupled correlated 1D fermions. This MPSþMF framework
for the ground state and thermal equilibrium properties of Q1D fermions is developed and validated for
attractive Hubbard systems first, and further enhanced via analytical field theory. We then deploy it to
compute Tc for superconductivity in 3D arrays of weakly coupled, doped, and repulsive Hubbard ladders.
TheMPSþMF framework thus enables the quantitative study of USC and high-Tc superconductivity—and
potentially many more correlated phases—in fermionic Q1D systems based directly on their microscopic
parameters, in ways inaccessible to previous methods. This approach further allows one to treat competing
macroscopic orders, such as superconducting and insulating ones, on an equal footing. Benchmarks
of the framework using auxiliary-field quantum Monte Carlo techniques show that the overestimation of,
e.g., Tc due to its mean-field component, is near constant in microscopic parameters. These features of the
MPSþMFapproach to correlated fermions open up the possibility of designing deliberately optimizedQ1D
superconductors, from experiments in ultracold gases to synthesizing new materials.

DOI: 10.1103/PhysRevX.13.011039 Subject Areas: Strongly Correlated Materials,
Superconductivity

I. INTRODUCTION

Obtaining quantitative and reliable solutions to strongly-
correlated-fermion models from first principles is one of the
greatest challenges to the theory of quantum matter, arising

in many different areas, from solid-state physics to ultra-
cold atomic gases. Its prominence derives, to a large degree,
from the fundamental and technological importance of
many of the collective quantum states emerging from
electronic correlations.
Unconventional superconductivity (USC) epitomizes

this challenge: Repulsive interactions lead to electrons
forming correlated pairs which attain macroscopic phase
coherence and enter a superconducting state at the critical
temperature Tc. Crucially, the high-Tc superconducting
models and materials belong to this group [1–3].
These can be divided into two classes: the quasi-two-
dimensional (Q2D) models and materials, and the quasi-
one-dimensional (Q1D) ones. In both cases, the relevant
three-dimensional (3D) system is comprised of weakly
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coupled lower-dimensional subunits, 2D and 1D ones for
Q2D and Q1D, respectively.
The present work introduces a quantitative and efficient

theoretical framework for Q1D systems capable of calcu-
lating properties of unconventional and high-Tc super-
conductivity from microscopic parameters, as well treating
its competition with other correlated phases of fermions. As
the overestimation of, e.g., Tc that is inherent in the mean-
field component of the framework is by a constant factor,
this framework allows us to deliberately engineer high-Tc
superconductivity from the bottom up in such systems.
This is achievedby leveraging twounique advantageswith

respect toUSC that the 1D subunitswithin aQ1D system can
have compared to the known 2D subunits in the Q2D ones:
(1) The microscopic mechanism of pair formation from
repulsive interactions can typically beworkedout [4]. (2) The
pairing energy resulting from it can be computed accurately
from microscopic parameters [5,6]. These pairing energies
can moreover be very high. For doped two-leg Hubbard
ladders, pairing energies up to about 15% of electron
tunneling have already been demonstrated [5], as the 1D
nature of these ladders naturally enhances the repulsively
mediated effective attraction. As fluctuations preclude super-
conductivity in isolated 1D subunits, the coupling of these
ladders into a three-dimensional Q1D array is essential to
enable macroscopic ordering of pair phases.
Analysis of the resulting arrays has so far been limited to

Tomonaga-Luttinger-liquid (TLL) field theory [4] com-
bined with static mean-field (MF) techniques [5,7]. The
TLL approach has many uses, such as explaining repul-
sively mediated pairing, or mapping the low-energy theory
of Hubbard ladders to that of the simpler negative-U
Hubbard chains. However, it allows neither the computa-
tion of Tc of a Q1D array quantitatively nor the determi-
nation of whether it realizes USC or another correlated
phase from microscopic parameters. Furthermore, this
approach also disregards exchange processes between
1D subunits. Thus, it cannot inform the search for USC

and high-Tc systems in the Q1D space, be it for synthesiz-
ing candidate materials or guiding quantum simulations
toward analog states of USC within current experimental
capabilities. Both are intensely sought goals that remain
highly challenging for the theory of Q2D superconductors
with repulsively mediated pairing [1,2,8–14]. The latter
issue is acute for finding USC-like states in highly con-
trolled ultracold-gas experiments with fermions, i.e., analog
quantum simulators, for the 2D Hubbard models [15–20].
As current theory cannot efficiently determine where and
whether these experimental setups realize a USC state
within the achievable entropies, the impasse on classical
computational theory for 2D fermions still impedes
progress on the quantum simulation front.
Shifting focus to Q1D systems instead, this work

establishes a numerical theory framework capable of meet-
ing these aims. We further enhance the framework via novel
TLLþMF theory that allows us to compute Tc from
easier-to-obtain zero-temperature numerics. Briefly sum-
marized, the framework exploits that in the weak-coupling
regime between the 1D subunits, we can apply perturbation
theory in the ratio of the single-fermion tunneling in
between 1D subunits to the pairing energy. We show
how this ratio naturally controls the possible superconduct-
ing Tc. In this perturbative regime, which is different from
USC and high-Tc superconductivity in Q2D system such as
the cuprates, the full 3D array can be decoupled via static
MF theory. This treatment maps the problem to that of a
single 1D subunit with multiple MF amplitudes, which is
then solved self-consistently at the microscopic level. As
summarized in Fig. 1, these represent the various possible
injections or ejections of fermion pairs into or out of the 1D
subunit stemming from the 3D array, as well as the
previously neglected exchange processes. Single-fermion
tunneling in between 1D subunits is naturally suppressed in
this perturbative regime. While this reliance on a gap within
the 1D subunits might appear limiting, it is a key advantage
over USC systems based on Q2D subunits without such a

(a) (b)

FIG. 1. Overview of MPSþMF for fermions. A 3D array composed of weakly coupled 1D subunits is mapped onto a self-consistent
1D problem with mean-field amplitudes αi;k and βi;r;σ . (a) Array of negative-U Hubbard chains, with on-site attraction U, tunneling t
along the chain, and interchain tunneling t⊥. (b) Array of repulsive-U-doped Hubbard ladders. Doping levels are δ, n.n. tunneling
(nearest-neighbor tunneling) inside the ladders is t and t⊥ in between them.
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gap, as it breaks the task of understanding and optimizing
USC overall down into two separate, much better con-
trolled ones: how electrons pair within the 1D subunit,
which is already solved for many systems and where
pairing can be cheaply optimized for isolated 1D subunits,
and how the pairs then attain macroscopic phase coherence,
which is the main focus of the present work.
This framework is not limited to superconductivity. It

can be applied to any fermionic Q1D setup in which the 1D
subunits have some type of gap sufficient for intersystem
tunneling to be relevant first at second order. Such a regime
is realized, for instance, in the various insulating phases of
the Bechgaard and Fabre salts [21,22]. Alternatively, such
regimes may be found, with minor modifications, in the
recently proposed and partially realized mixed-dimensional
large-J systems in ultracold fermionic lattice gases [23,24].
At the same time, the quantitative study of USC regimes of
the same compounds, as well as of other Q1D materials
such as chromium pnictide [25,26] and the telephone-
number compounds [27,28], would require including
single-electron tunneling in between 1D subunits. This
would be beyond the MPSþMF framework described
here, necessitating an approach akin to chain dynamical
mean-field theory (chain DMFT) [29,30]. For many Q1D
systems of acute interest for designing novel high-Tc
superconductors, such as arrays of doped repulsive-U
Hubbard ladders, this approach would, however, necessi-
tate redeveloping chain DMFT with a MPS-based solver
such as to avoid the sign problem of quantum Monte Carlo
(QMC)-based solvers [31]. At present, for systems of
relevant size, we however envision the bipartite entangle-
ment to be prohibitively large.
The present work hinges on an efficient, reliable numeri-

cal method at the microscopic level for correlated-fermion
1D subunits including MF amplitudes. Algorithms using
matrix product states (MPS) [32], such as the density
matrix renormalization group (DMRG) [33,34] are
uniquely suited here. Frameworks using MPSþMF for
Q1D spin [35,36] and bosonic systems [37] have been
successfully employed, e.g., in experiments on spin-ladder
materials. They compare well to QMC algorithms, despite
the MF approximation in the weak-coupling directions, at
greatly increased efficiency.
Applying the MPSþMF approach to fermions is more

demanding than for spins or bosons, as the MF amplitudes
are more numerous than for those systems, which typically
have one such amplitude. Moreover, these amplitudes
range over multiple sites, raising the bond dimension of
the matrix product operator representing the total
Hamiltonian. When the 1D subunits have internal structure,
as the two-leg Hubbard ladder does, even higher perfor-
mance is required. Modern MPS implementations can treat
even such complex models with many long-range coupling
terms, despite the potentially large bipartite entanglement,
which sets computational complexity in MPS methods.

Work on DMRG for ground states of 2D Hubbard models
demonstrates this fact [9–13,38]. A recent DMRG imple-
mentation for distributed-memory architectures, parallel
DMRG (pDMRG), can treat very large clusters by MPS
standards, of, e.g., the 2D U-V Hubbard models of the
Bechgaard and Fabre salts [14]. Yet, calculations for corre-
lated fermions in Q1D systems cannot be handled in this
way; the bipartite entanglement in 3Dwould be far too large.
Auxiliary-field QMC (AFQMC) methods [39–42] are
applied in this work for the cases with attractive interactions,
but they are typically computationally intensive, and in
general, the fermionic sign problem prevents exact solutions.
The MF approximation within the MPSþMF scheme

for fermions thus allows the present work to study the
ground state and thermal properties of much larger corre-
lated Q1D systems, including those with repulsive inter-
actions, than either brute-force MPS methods or AFQMC.
Being primarily MPS based, the framework can also be
extended to nonequilibrium real-time problems, such as the
study of dynamically induced superconductivity in a Q1D
system [43].
The presentwork is structured as follows: Sec. II describes

a basic Q1D model of superconductivity, an array of
negative-UHubbard chains, and how to obtain a 1D problem
with self-consistent MF amplitudes from it. Section III
defines theMPSþMF algorithm used to solve this effective
1D model and motivates its various optimizations. The MF
order treated here is a superconducting one, but we briefly
discuss how the framework can be extended to address
multiple competing orders simultaneously. Then, Sec. IV
features an analytical treatment of the samemodel. In Sec. V,
results of the MPSþMF framework are shown. These are
compared to analytical methods, andwe show how these can
be used to obtain Tc from ground-state calculations.
Furthermore, we compare our results for a 2D version of
our basic Q1D model against AFQMC. Separately, Sec. VI
features all the developed tools beingused to solve an arrayof
weakly coupled, doped, repulsive-U Hubbard ladders in 3D,
whose low-energy properties are analogous to the array of
negative-U Hubbard chains, and the Tc for USC is obtained.
In Sec. VII, examples of the required resources for running
the different presented MPSþMF use cases are presented.
Finally, inSec.VIII the results are discussed and anoutlook is
given on future work.

II. MODEL

The two related models that are studied in this paper are
illustrated in Fig. 1. Both are Q1D arrays in 2D and 3D,
comprised of many identical 1D subunits in parallel (e.g.,
chains and ladders). They are described by a Hamiltonian
H0, and connected by a perturbing Hamiltonian H⊥ with
the general form

H ¼ H0 þ t⊥H⊥: ð1Þ
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The first model we consider is shown in Fig. 1(a) and
permits extensive testing and validation and is treated in
Secs. II–V. It features a 3D Hamiltonian with anisotropic
tunneling and interactions where H0 and H⊥ take the
following forms:

H0 ¼
X
fRig

H0ðRiÞ

¼ −t
XL−1
n

X
fRig;σ

ðc†nþ1;Ri;σ
cn;Ri;σ

þ H:c:Þ

− μ
XL
n

X
fRig;σ

c†n;Ri;σ
cn;Ri;σ

þ U
XL
n

X
fRig

nn;Ri;↑nn;Ri;↓

ð2Þ

and

H⊥ ¼ −
XL
n

X
fRig

X
â∈fŷ;ẑg

ðc†n;Riþâ;σcn;Ri;σ
þ H:c:Þ: ð3Þ

Here, fRig indicates a 2D subspace spanned by ŷ; ẑ. The
operator of c†n;Ri;σ

creates a fermion on site n in a chain at
Ri with spin σ. The parameters t, μ, and U denote hopping,
chemical potential, and on-site interaction, respectively.
The only higher-dimensional effect in this model is given
by H⊥.
The second model we consider is a generalization of the

first. It is made up of weakly coupled doped-Hubbard-
ladder systems with repulsive interactions shown in
Fig. 1(b). The definition of H0 and H⊥ differ somewhat
in appearance from the first and is specified further in
Sec. VI and Appendix E. The methods developed to treat
the first model in Secs. II–V will be used to treat this latter,
more complicated case in Sec. VI.
For both models, there are two fundamental energy

scales: the spin gap and the pairing energy. The former
measures the cost of energy to flip a spin in a single 1D
system at any position Ri. It is defined by

ΔEs ¼ EðN; S ¼ 1Þ − EðN; S ¼ 0Þ; ð4Þ

where EðN; SÞ is the ground-state energy of H0ðRiÞ (i.e., a
single 1D subunit) at charge and spin quantum numbers N
and S, respectively. Conversely, the pairing energy is the
cost to move one spin from an S ¼ 0 chain to a neighboring
1D subunit, also at S ¼ 0, creating two chains at S ¼ 1=2,

ΔEp ¼ 2E
�
N þ 1;

1

2

�
− EðN; 0Þ − EðN þ 2; 0Þ: ð5Þ

As we see in the following section, these energy scales and,
in particular, ΔEp, for which generally ΔEs ≤ ΔEp (see,

for instance, Ref. [5]), will govern the strength of higher-
dimensional effects.

A. Perturbation theory

The models presented in the previous section are
typically a challenge to solve numerically and analytically.
In particular, the doped Hubbard ladder with repulsive
interactions would be impossible to treat in a 3D array of
any meaningful size. However, restricting ourselves to the
case of the gaps in Eqs. (4) and (5) being large in
comparison to the strength of the perturbing Hamiltonian
H⊥, we can construct a perturbation theory in the ratio
t⊥=ΔEp; that is, in order to solve Hamiltonians of the form
Eq. (1) we specialize to the case where t⊥ ≪ 2ΔEs;ΔEp.
Specifically, when U < 0 and t⊥ ¼ 0 this model

describes a set of disconnected 1D Hamiltonians
H0ðRiÞ. Each such Hamiltonian exhibits a spectrum of
the form

jEi;α − Ej;αj ≪ jEi;α − Ej;βj; α ≠ β; ð6Þ

where α, β indicate changes to the state that induce a large
energy shift and i, j small shifts [4]. The labeling is used to
distinguish energy states i, j which lie in the same manifold
and α, β which denote what manifold the state is in. In the
case of our model, this manifold structure is related to a
spin-singlet pair forming by the parameter U < 0. The
subsequent breakup of such pairs by spin flip costs ΔEs in
the isolated 1D system, giving rise to Eq. (6), which is
illustrated in Fig. 2. Conversely, when a pair is broken by a
process like Eq. (3), two well-separated and unpaired spins
are left, which changes this cost to ΔEp.
When t⊥ is much smaller than the pairing energy, it is

possible to produce an effective Hamiltonian with perturba-
tion theory acting in manifold α with matrix elements [44]

FIG. 2. Schematic representation of the spectrum for Hamil-
tonians of form Eq. (1) which are considered. The gaps high-
lighted are the spin gap ΔEs and pairing energy ΔEp. Notably,
the spin gap and pairing energy are approximated as independent
of small variations in energy.
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hijHα
eff jji ¼ Ei;αδi;j þ hi; αjt⊥H⊥jj; αi þ

1

2
hi; αjt⊥H⊥

�
1

Ei;α −H0

þ 1

Ej;α −H0

�
t⊥H⊥jj; αi þOðt3⊥Þ: ð7Þ

The action of H⊥ on jj; αi changes the manifold of the
state. We assume that the energy differences between states
inside manifolds are much smaller than that of states in
different manifolds:

Ei;0 − Ej;2 ≈ −ΔEp; ð8Þ

where we let α ¼ 0 indicate the lowest manifold and α ¼ 2
the one reached byH⊥. In other words, we approximate the
energy difference between states of different manifolds to
be independent of the exact state in that manifold. This
yields the effective Hamiltonian

H0
eff ¼ H0P0 þ t⊥P0H⊥P0 −

t2⊥
ΔEp

P0H2⊥P0; ð9Þ

where Pα ¼
P

i ji; αihi; αj is a projector onto manifold α.
By design, H⊥ puts a state in manifold 0 into manifold 2.
This means that

hi; 0jt⊥P0H⊥P0jj; βi ¼ hi; 0jt⊥P0jk; 2i ¼ 0: ð10Þ

Thus, the first-order and odd-order contribution of the
effective Hamiltonian disappears, and we are left with

H0
eff ¼ H0P0 −

t2⊥
ΔEp

P0H2⊥P0 þOðt4⊥Þ: ð11Þ

In order to understand how H2⊥ acts on a state, we expand

H2⊥ ¼
XL
n;m

X
fRi;Rjg

X
â;b̂∈fŷ;ẑg

X
σ;σ0

ðc†
n;Riþâ;σ

c
n;Ri;σ

c†
m;Rjþb̂;σ0

c
m;Rj;σ0

þ c†
n;Riþâ;σ

c
n;Ri;σ

c†
m;Rj;σ0

c
m;Rjþb̂;σ0

þc†
n;Ri;σ

c
n;Riþâ;σ

c†
m;Rjþb̂;σ0

c
m;Rj;σ0

þ c†
n;Ri;σ

c
n;Riþâ;σ

c†
m;Rj;σ0

c
m;Rjþb̂;σ0

Þ; ð12Þ

obtaining a Hamiltonian describing two-particle tunneling
events. What characterizes the α ¼ 0 manifold is pair
formation of opposite spins due to attractive interaction.
Some terms within H2⊥ will put the state in a manifold
β > α and will subsequently be projected out. Most
importantly, any terms flipping spins in two chains simul-
taneously, such as c†n;Ri;↑

cn;Riþŷ;↑c
†
n;Riþŷ;↓cn;Ri;↓, which

would move two chains initially in their S ¼ 0 manifolds
into their S ¼ �1 manifolds, will be projected out due to
describing a state with at least energy 2ΔEs above the
lowest-energy manifold. In this manner, it is clear that each
chain in our model has to conserve spin and in particular
pair all spins such that total spin S ¼ 0.

The parts of H2⊥ which remain after projecting to α ¼ 0
must either move particles as pairs (simultaneous tunnel-
ing of an up-spin and down-spin particle) or exchange
them between chains (an up- or down-spin particle is
moved out of the chain and another of the same spin is
moved in). Any of these processes involve at most two
chains in order to conserve spin. While H2⊥ allows for
processes involving chains at arbitrary distance, these
would concern four separate chains, with a final state at
least 2ΔEp above the low-energy manifold, and thus
removed by projection.
With these restrictions, H2⊥ becomes heavily reduced:

H2⊥ ¼
XL
n;m

X
fRig

X
â∈fŷ;ẑg

X
σ

ðc†n;Riþâ;σcn;Ri;σ
c†m;Riþâ;−σcm;Ri;−σ þ c†n;Ri;σ

cn;Riþâ;σc
†
m;Ri;−σcm;Riþâ;−σÞ

þ
XL
n;m

X
fRig

X
â∈fŷ;ẑg

X
σ

ðc†n;Riþâ;σcn;Ri;σ
c†m;Ri;σ

cm;Riþâ;σ þ c†n;Ri;σ
cn;Riþâ;σc

†
m;Riþâ;σcm;Ri;σ

Þ

¼ Hpair þHexc: ð13Þ
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The first set of operators Hpair corresponds to pairs of
fermions jumping from one chain to another. This con-
serves spin but not the number of particles within a chain.
The second set of operators Hexc corresponds to fermions
of like spin switching chains (not necessarily at the same
site within a chain).
Within this Hamiltonian, there is still the degree of

freedom to pick how large jn −mj we include. This is
something that cannot be restricted by symmetry arguments
or the smallness of t⊥=ΔEp.

B. Mean-field theory

Notably, the perturbation theory has produced an effec-
tive quartic interaction from the single-particle tunneling
Hamiltonian. This can be further simplified by casting
Eq. (13) in a form where there is no explicit mention of
other chains. This allows us to solve an effective 1D model

instead of the full 3D system. We use an ansatz of quasifree
states:

hc†i c†jckcli ¼ hc†i c†jihckcli þ hc†i clihc†jcki − hc†i ckihc†jcli;
ð14Þ

which produces a mean-field Hamiltonian from the quartic
operators in Eq. (13). We further approximate the expect-
ation value of any operator creating or annihilating particles
on two different chains to zero; i.e., pair constituents cannot
live on different chains. This is motivated by choosing
small enough t⊥=ΔEp, amounting to the standard mean-
field approximation.

1. Pairing terms

For each chainRi of the pair-hopping HamiltonianHpair,
we obtain

Hpair;MF ¼ −
XL
n;m

X
â∈fŷ;ẑg

X
σ

ðhc†n;Riþâ;σc
†
m;Riþâ;−σicn;Ri;σ

cm;Ri;−σ þ c†n;Ri;σ
c†m;Ri;−σhcn;Riþâ;σcm;Riþâ;−σi

þhc†n;Ri−â;σc
†
m;Ri−â;−σicn;Ri;σ

cm;Ri;−σ þ c†n;Ri;σ
c†m;Ri;−σhcn;Ri−â;σcm;Ri−â;−σiÞ

¼ 2zc
XL
n;m

ðhcn;↑cm;↓icn;↑cm;↓ þ hcn;↑cm;↓ic†m;↓c
†
n;↑Þ; ð15Þ

where zc ¼ 4 is the coordination number for three dimensions. Notably, the mean field is performed on two dimensions
instead of the full three. We assume that

hcn;↑cm;↓i ¼ hc†m;↓c
†
n;↑i ¼ hcn;Ri;↑

cm;Ri;↓
i

¼ hcn;Riþpâ;↑cm;Riþpâ;↓i; ∀ p ∈ N; â ∈ fŷ; ẑg; ð16Þ

i.e., that all chains are identical and the mean field is real valued.

2. Exchange terms

For each chain Ri of the exchange Hamiltonian Hexc, we obtain

Hexc;MF ¼ −
XL
n;m

X
â∈fŷ;ẑg

X
σ

ðhc†n;Riþâ;σcm;Riþâ;σic†m;Ri;σ
cn;Ri;σ

þ hc†n;Ri−â;σcm;Ri−â;σic
†
m;Ri;σ

cn;Ri;σ

þhc†m;Riþâ;σcn;Riþâ;σic†n;Ri;σ
cm;Ri;σ

þ hc†m;Ri−â;σcn;Ri−â;σic
†
n;Ri;σ

cm;Ri;σ
Þ

¼ −zc
XL
n;m

X
σ

ðhc†n;σcm;σic†m;σcn;σ þ hc†m;σcn;σic†n;σcm;σÞ

¼ −2zc
XL
n

XL−n
r¼1

X
σ

ðhc†n;σcnþr;σic†nþr;σcn;σ þ hc†nþr;σcn;σic†n;σcnþr;σÞ; ð17Þ

which is similar to what we do in Eq. (16).
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C. Effective 1D Hamiltonian

To summarize: Within the MPSþMF approach, the
total Hamiltonian is described by its one-dimensional
subsets in a mean-field sense. It is sufficient to consider
the effectively 1D Hamiltonian

HMF ¼ H0ðRiÞ −
X
i;k

αi;kðci;↑ck;↓ þ c†k;↓c
†
i;↑Þ

þ
X
i;σ

XL−i
r¼1

βi;r;σðc†iþr;σci;σ þ c†i;σciþr;σÞ; ð18Þ

where

αi;k ¼
2zct2⊥
ΔEp

hci;↑ck;↓i ð19Þ

are the pair-MF parameters describing pair tunneling into
or out of the 1D system mediated by Hpair, and

βi;r;σ ¼
2zct2⊥
ΔEp

hc†iþr;σci;σi ð20Þ

are the exchange processes mediated byHexc [cf. Eq. (13)].
Notably, αi;k is proportional to the bound-state-pair wave
function. In practice, keeping all ranges will make the
problem intractable and limits must be introduced.
Fortunately, the existence of a spin gap causes α and β
to decay exponentially with distance controlled by the spin
correlation length [4]. This allows us to include a cutoff for
which amplitudes to keep. The choice of this value
ultimately depends on microscopic parameters (in particu-
lar, interaction strength) and is exemplified in Sec. V.
In addition, it is important to note that the zero-range

terms βi;0;σ ∝ hni;σi are absent in HMF as we assume

constant density in the superconducting order and exclude
potential insulating orders. We have already extended the
MPSþMF framework to study the competition of insu-
lating charge orders with superconducting ones, based on
adding βi;0;σ parameters, and are applying this to the
Hubbard-ladder arrays in forthcoming work.
Finally, as we discuss in Sec. II A, MF terms such as

hSþi iS−i cannot occur in HMF by construction, as such
magnetic exchange terms are suppressed through the
condition that kBT ≪ ΔEs for thermal fluctuations and
t⊥ ≪ 2ΔEs at zero temperature.

III. MPS +MF: NUMERICAL SOLUTIONS TO Q1D
SYSTEMS USING MEAN-FIELD THEORY

MPSþMF is developed to solve Q1D models by
relying on mean-field approximations of the full
Hamiltonian which converts it to an effectively 1D system.
The produced Hamiltonian in Eq. (18) may be solved
iteratively until self-consistency is reached for the mean-
field amplitudes as shown schematically in Fig. 3.
This framework is developed as an approach to aniso-

tropic systems in two or more dimensions for which the 1D
correlations are most important and where single-particle
tunneling and spin-flipping processes between chains can
be neglected on account of t⊥ ≪ ΔEp. The primary cost of
the routine comes from the repeated solutions of effective
1D mean-field Hamiltonian such as Eq. (18) using MPS-
based methods. Notably, any MPS method may be used to
iterate mean-field amplitudes, for example, original
DMRG, MPS-based DMRG, or imaginary-time evolution
on purified states to obtain thermal states. In practice, the
only requirement is that the mean-field amplitudes con-
verge. Thus, the framework scales as the utilized DMRG
method does with bond dimension and system size [32].
The actual run-time can be shortened by exploiting

FIG. 3. Schematic representation of the MPSþMF framework. Green boxes highlight the density-fixation part of the routine. Red
boxes denote the mean-field amplitude fixation part. The mean-field amplitude set is denoted by fα; βg where fαg represent pairing
amplitudes and fβg the exchange amplitudes.
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conserved quantities; for our calculations, we exploit the
spin quantum number S as a U(1) symmetry. In this paper,
we utilize MPS-based DMRG to solve for ground states
[32]. For thermal states, we utilize both Trotterized imagi-
nary-time evolution and the time-dependent variational
principle (TDVP) [45].
One common feature of states obtained with DMRG

ground-state algorithms is that the error of local quantities
scales linearly with the discarded weight [46]. Given that
the system under study is 1D, albeit representing a 3D
system, we might expect that such a linear scaling holds for
MPSþMF as well. In Fig. 4, we show an example of our
general finding that this holds true for quantities such as
energy and order parameter.

A. Achieving self-consistent convergence

When iterating a MF theory to self-consistency, the
required number of iterations becomes crucial as each one
may have significant cost. We consider a state converged
when the previous iteration’s self-consistent values agree
with the current iteration within the desired tolerance. For
this paper, the relative tolerance required for a converged
state is chosen as

jαn − αn−1j
jαn−1j

< 10−4; ð21Þ

where αn indicates any self-consistent value at iteration n.
The number of solutions required to achieve a self-
consistent state is not constant over parameter space as
shown in Fig. 5(a). However, it varies only modestly with
Hamiltonian parameters, such as t⊥. The notable increase
in loop number with larger t⊥ is primarily due to increased
difficulty fixing the density (see Sec. III D). Furthermore,
we find that the number of required iterations peaks
strongly around the phase transition from the supercon-
ducting to normal phase as shown in Fig. 5(b) where the

transition occurs around T ¼ 0.105 [37,47,48]. When the
superconductor is close to its transition to a metal, the MF
coupling between chains is weak but nonzero. We find this
slows down the convergence rate, explaining the increase in
the number of required loops for convergence.
In both this work and the primary uses to which the

MPSþMF framework would be applied, the interest in
phase transitions is central, and we have to resolve the
points which are difficult to obtain. This prompts the
development of several heuristics in this method to produce
a faster convergence.

B. Extrapolation

Convergence implies that the mean-field amplitudes
approach a set which no longer changes with further
iteration; i.e., the change of these amplitudes with each
iteration decreases. As can be seen from Fig. 6, we find
such an exponential behavior after an initial fluctuation
(related to the initial guess). Given the clear trend, an
extrapolation can be performed to attempt a prediction of
the converged amplitudes.
In practice, such fits seldom give precise results but

typically lead to a more converged amplitude compared to
simply iterating one more loop. As such, we employ a
strategy of repeated extrapolation in an attempt to speed up
the self-consistent iteration as shown in Fig. 6. The result of

FIG. 4. Example of truncation error extrapolation of order
parameter and ground-state energy for a chain of length L ¼ 100
at attractive interaction U ¼ −4t and density n ¼ 0.5 and
t⊥ ¼ 0.05t. The y axes represent difference of order parameter
δα ¼ αðϵψ Þ − αð0Þ and similarly for energy. The range of MF
terms taken into account is r ¼ 4.

(a)

(b)

FIG. 5. Number of self-consistent loops required for conver-
gence for (a) a ground-state calculation for different values t⊥ at
L ¼ 100, n ¼ 0.5, U ¼ −4t, χ ¼ 300, and MF term range r ¼ 4,
and (b) a finite-temperature calculation for different temperatures
at L ¼ 60, n ¼ 0.5, U ¼ −10t, t⊥ ¼ 0.3t, χ ¼ 200, and MF
terms with range r ¼ 1.
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five consecutive iterations is checked for sufficient expo-
nential behavior and is fitted to an exponential function

fðxÞ ¼ Ae−jBjx þ C; ð22Þ

where the fitting parameters A, B, C are determined by a
least-squares fit. In this manner, C is the fitted result when
approaching infinite iterations and is chosen as the ampli-
tude to use for the next iteration.
Typically, we find that this scheme reduces the number

of necessary iterations to a varying degree. In particular,
close to transitions, the slow convergence can be greatly
aided by skipping ahead using extrapolations. In effect, the
scheme is a method of breaking off the iterative procedure
in order to generate an improved initial guess using
exponential extrapolation. The amount of speedup depends
on how evenly and slowly the mean-field amplitudes
converge. If the convergence is quick, fitting to an
exponential form is less faithful. Conversely, if conver-
gence is too slow the extrapolated result makes predictions
far outside any region of reliability (e.g., using ten
iterations to predict what would happen after 1000 iter-
ations). In the best-case scenarios, we find the number of
iterations reduced by up to a factor of 5, and in the worst
case, it executes only once or not at all leading to small or
no speedup.

C. Initial guesses

As shown in Fig. 3, the routine has to be started with
some input mean-field amplitudes and chemical potential.
This indicates that the number of DMRG solutions is
dependent on the quality of the initial guess. In certain
cases, bosonization can be used to make estimations of

what the converged amplitudes would be, in particular,
where analytical control is good. However, in general, such
estimations will differ from the DMRG result and are often
harder to obtain than simple heuristic guesses.
What is always available for initial values is that of

previous solutions using the framework. Indeed, the best
guess is the set of converged amplitudes leading to an
immediate solution. This becomes useful when considering
that mean-field amplitudes should often change only
marginally when subject to a marginal shift in parameter
space (a notable exception is that of first-order transitions).
Hence, if we seek a point in parameter space that is close to
one which is already computed, the converged amplitudes
of the computed point serve as a guess which should be
close to the converged result.
This observation is of particular use when considering the

bond dimension. DMRG scales cubically in this quantity
[32]. It is imperative to keep this parameter large enough in
order for the obtained state to reasonably approximate the
targeted state. With the MPSþMF framework it is possible
to compute the self-consistent amplitudes at a lower bond
dimension starting with unguided guesses at low cost. When
high precision is desired,we use the cheap results to compute
amplitudes at higher bond dimension. We find that the
number of required iterations performed at higher bond
dimension drops significantly with this strategy, as exem-
plified inFig. 7. Thus,we start by converging the lowest bond
dimension considered. Subsequently, the higher bond
dimensions are launched with the converged values of the
lowest bond dimension.
Furthermore, this strategy may be applied to the issue of

phase transitions. For such cases, a dense grid of data is

FIG. 6. Example of the exponential trend when iterating to self-
consistency. The mean-field amplitude over loop number n is
denoted by αn and converged amplitude [as defined by Eq. (21)]
by α∞. The system parameters are L ¼ 60, U ¼ −10t, t⊥ ¼ 0.4t,
βt ¼ 6.4286, χ ¼ 200, and MF terms with range r ¼ 1.

FIG. 7. Comparison of loop count n andmean-field amplitudeαn
when using a simple, unguided guess at bond dimension χ ¼ 100
and when using the χ ¼ 100 converged amplitudes as a guess for
χ ¼ 200. The system parameters are L ¼ 60, U ¼ −10t,
t⊥ ¼ 0.3t, βt ¼ 9.5948, and χ ¼ 100 (blue circles) and χ ¼ 200
(orange crosses). The MF terms in both cases have range r ¼ 1.
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often necessary with amplitudes varying only modestly
between points. Once a grid of some sparsity has been
generated, a tighter one is cheaper due to the possibility of
interpolating between existing points, providing good
initial guesses.

D. Density fixing

While the original Hamiltonian Eq. (1) is explicitly
particle number conserving, the derived effective 1D
Hamiltonian Eq. (18) loses this property. Since carrier
density has been shown to affect superconductivity, it is
important to consider what density the converged solution
obtains. In practice, being able to fix the density is
important, since there is no guarantee that converged
solutions at different parameters have the same density
thereby making comparison difficult.
In Fig. 3, two classes of amplitudes are considered:

fα; βg, which represent the set of mean-field amplitudes,
and μ, the chemical potential, which may be used to control
the density of the system. However, there is no way to
determine which chemical potential to use for a given
density. In previous applications, this issue was resolved by
sampling a grid of exact data from exact diagonalization on
small systems in order to obtain a range of μ in which
interpolation to high precision was possible [37].
For models considered in this work, the number of mean-

field amplitudes is too great to attempt such a solution.
Instead, a heuristic algorithm is designed to obtain the
appropriate density as shown in Fig. 8. In essence, the
algorithm attempts to find a chemical potential μtarget such
that

nðμtargetÞ ¼ ntarget; ð23Þ

where computing the density nðμÞ for different μ neces-
sitates a full DMRG solution leading to a significant time

cost. To alleviate this issue, we assume that nðμÞ is a
monotonic function of μ and look for a range in which
nðμÞ ¼ ntarget. Once obtained, we use the secant method to
narrow the range until the desired tolerance is achieved. In
this paper, we require a relative tolerance of

jntarget − nðμÞj
ntarget

< 10−5: ð24Þ

It is notable that the density-fixing routine is most impor-
tant when the mean-field amplitudes are strongly varying
with each iteration. When approaching the self-consistently
converged solution, the density typically changes modestly,
allowing for loops without running the density-fixing
subroutine.

E. Self-consistent excited states

In a superconducting system, much information can be
obtained from the energy gap between the ground and the
first excited state. This is especially true in Q1D systems, as
shown in Sec. IVanalytically and confirmed numerically in
Sec. V C. Strikingly, finite-temperature properties such as
superconducting Tc can be obtained from this gap with
minimal computational effort, which is readily exploited in
Sec. VI. Thus, we employ the ability of DMRG to compute
the lowest-lying eigenstates orthogonal to the ground state.
This allows the computation of the first excited-state energy

Eexc ¼ hψ1jHjψ1i; hψ0jψ1i ¼ 0; ð25Þ

where jψ1i is the first excited state which minimizes the
energy Eexc with the constraint that it is orthogonal to jψ0i,
the ground state. The excitation gap may then be defined as

Δ ¼ Eexc − hψ0jHjψ0i: ð26Þ

FIG. 8. Schematic representation of the density-fixing routine. Chemical potential at different stages of the loop are named μi
and density ni.
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The excited statewill not generally obey the self-consistency
constraint, i.e., mean-field amplitudes measured in the
excited state

αmeasured ≠ α; ð27Þ

where α is the self-consistent amplitude obtained for the
ground state. Thismeans our numerics indicate a depletion of
the ground state of condensed pairs, in line with earlier
analytical theory [48].
Depletion of pairing can be a concern as the Hamiltonian

Eq. (18) does not conserve density. Using the above
procedure will yield whatever state of lowest energy that
is orthogonal to the ground state and could well be at
another density, as is exemplified in Fig. 9.
At the same time, the data also show the deviation

decreasing with system size. An extrapolation may thus be
performed using a general form of finite-size behavior

nðLÞ ¼ n∞ þ c0
L
þ c1
L2

þO
�
1

L3

�
: ð28Þ

Thus, we assume that energy gaps extrapolated to infinite-
size systems are comparisons of energy at the same density,
despite the fact that finite-size-system densities generally
differ. This strategy is verified in Sec. V C and Fig. 11, as
two methods to obtain superconducting Tc, one purely
numeric, the other using Δ, and the field theory of Sec. IV
are shown to coincide.
The upshot is that once a self-consistent Hamiltonian has

been produced from MPSþMF for ground states, excited
states will cost no more than one additional DMRG run,
making the computation of Δ relatively cheap.

IV. FIELD THEORY DESCRIPTION

Let us now turn to a field theory analysis of the
Hamiltonian Eq. (2). In 1D systems, the effects of inter-
actions are dramatically amplified. Additionally, in 1D the
quantum and thermal fluctuations prevent the breaking of
continuous symmetries [49]. The combination of these
effects leads to a unique universality class for interacting
1D quantum systems known as TLLs [50].
The low-energy physics of TLLs can be described in

terms of two bosonic fields ϕ and θ related to collective
excitations of density and currents. These field are related
by the canonical relation

½ϕðxÞ;∇θðx0Þ� ¼ iπδðx − x0Þ; ð29Þ

which expresses the duality in 1D between density and phase
fluctuations. In this bosonized representation, the single-
particle fermionic operator of fermions with spin ν reads

ψνðxÞ ¼ eikFxψR;νðxÞ þ e−ikFxψL;νðxÞ; ð30Þ

where ψR;L;νðxÞ are slowly varying fields describing exci-
tations close to the Fermi points�kF (right and left movers),
and ν ¼ ↑;↓ denotes the spin. These fields are expressed
as [4]

ψ r;νðxÞ ¼
Ur;νffiffiffiffiffiffiffiffi
2πα

p e−
iffiffi
2

p ½rϕρðxÞ−θρðxÞþνðrϕσðxÞ−θσðxÞÞ�; ð31Þ

where Ur;ν are Klein factors, r ¼ R, L, and α is a cutoff
proportional to the lattice spacing, which simulates a finite
bandwidth. The fields ϕρ;σ are given by

ϕρðxÞ ¼
1ffiffiffi
2

p ½ϕ↑ðxÞ þ ϕ↓ðxÞ�;

ϕσðxÞ ¼
1ffiffiffi
2

p ½ϕ↑ðxÞ − ϕ↓ðxÞ�; ð32Þ

and similarly for the field θ. In the basis fθρ;σ;ϕρ;σg, the 1D
Hubbard model has the peculiarity of decoupling charge and
spin sectors:

H ¼ Hρ þHσ: ð33Þ

Away from half filling (one particle per site) and for negative
interactionsU < 0, the spin sector is gappedwhile the charge
sector is gapless. In the bosonic language, the gapless
Hamiltonian is the universal TLL Hamiltonian

Hρ ¼
uρ
2π

Z
dx

�
Kρ(∇θρðxÞ)2 þ 1

Kρ
(∇ϕρðxÞ)2

�
; ð34Þ

and the spectrum is linear ω ¼ uρjkj. Such a Hamiltonian is
fully described by two nonuniversal parameters which

FIG. 9. Example of excited-state density extrapolated to infinite
system size for U ¼ −2t, t⊥ ¼ 0.08t, and density ntarget ¼ 0.5.
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depend on the microscopic model: uρ the charge velocity of
the collective excitation and Kρ the Luttinger parameter that
controls the algebraic decay of the correlations [4].
On the contrary, the gapped sector is described by a sine-

Gordon Hamiltonian which, with respect to Eq. (34), has an
additional term proportional to cos ð2 ffiffiffi

2
p

ϕσÞ that wants to
lock the field ϕσ to one of its minima:

Hσ ¼
uσ
2π

Z
dx

�
Kσ(∇θσðxÞ)2 þ 1

Kσ
(∇ϕσðxÞ)2

�

þ 2U
ð2παÞ2

Z
dx cos ½2

ffiffiffi
2

p
ϕσðxÞ�: ð35Þ

Physically, it means that the system tends to form Cooper
pairs with opposite spins and as a direct consequence
suppresses spin excitations. The energy of the bound state
is the gap Δσ in the spin sector. Notably, Δσ is kept distinct
in notation from ΔEs in Eq. (4) as their definitions differ.
The field theory spin gap can be computed from the sine-
Gordon model by various methods [4] and is exactly known
for the microscopic attractive Hubbard model with U < 0
by Bethe ansatz [51].
As we describe in the previous sections, we assume here

that the spin gap Δσ is larger than the interchain coupling
t⊥. Our system thus has a low- and high-energy sector. The
former relative to hopping in the transverse direction
(t⊥ ≪ t) and the latter to break the pairs.
Let us first consider the case when Δσ ≫ t (or jUj ≫ t).

In this case, it is necessary to eliminate the spin sector
before bosonizing the Hamiltonian. This can be achieved
by a Schrieffer-Wolff transformation [52]. The resulting
Hamiltonian is rewritten as

H∼H0 þ t⊥H⊥

¼H0 −
t2⊥
Δσ

X
hR;R0i

X
n;n0;s

½c†n;R0;scn;R;sc
†
n0;R0;−scn0;R;−s þH:c:�;

ð36Þ

where H0 is the 1D quadratic Hamiltonian Eq. (34). The
effective coupling is now proportional to the gained energy
over the cost of breaking the pair t2⊥=Δσ, and indeed it
expresses local pairs hopping in the transverse direction. The
spin excitations are exponentially suppressed, while the
charge sector is massless. In Eq. (36), we neglect the terms
corresponding to the formation of charge-density wave
(CDW), because the superconductive correlation (SS) decays
slower. Indeed, the corresponding correlations are [4]

hO†
SSðrÞOSSð0Þi ∼

�
1

r

� 1
Kρ
;

hO†
CDWðrÞOCDWð0Þi ∼

�
1

r

�
Kρ

; ð37Þ

where the corresponding operators are defined as OCDW ¼
ψ†
R;↑ψL;↑ þ ψ†

R;↓ψL;↓ andOSS ¼ ψ†
R;↑ψ

†
L;↓ þ ψ†

L;↑ψ
†
R;↓. For

negative U, the TLL charge parameter is larger than 1,
Kρ > 1, meaning that CDW formation is a subdominant
instability. By using Eq. (36) and considering the leading
terms n ¼ n0, since the spin gap is larger than the bandwidth
(approximation of local pairs), we now use the mean-field
approximation whose order parameter reads

hψ†
R;↑ðxÞψ†

R;↓ðxÞi ¼ Ce−i
ffiffi
2

p
θρðxÞ; ð38Þ

with C a constant that depends on the spin gap Δσ but is of
order one in this regime (seeAppendixG). In this limit, since
only the charge sector survives, the problem maps onto a
system of hard-core bosons (Cooper pairs) with a transverse
hopping described by the field

ffiffiffi
2

p
θðxÞ instead of θðxÞ.

Indeed, the physics is similar: The Pauli principle forbids
having two pairs in the same site, and two hard-core bosons
never occupy the same site.
All chains are now identical, and, in the bosonized

version, the 1D effective Hamiltonian reads

H¼Hρ−ρ20C
2
t2⊥
Δσ

zche−i
ffiffi
2

p
θρi

Z
L

0

dxcos ½
ffiffiffi
2

p
θρðxÞ�; ð39Þ

where zc is the number of nearest neighbors in the
transverse direction, L is the system size, and ρ0 is the
unperturbed density. We find a sine-Gordon-like
Hamiltonian, and therefore, at T < Tc, t⊥ opens a gap
in the spectrum because the cosine wants to lock the field
θρ to one of the minima. In the thermodynamic limit, the
zero-temperature gap Δρ is known analytically [53]. This
gap in the charge sector should equal the gap to the first
excited state in Eq. (26), yet the notation is kept distinct
due to the differing definitions of the gaps.
The dimensional crossover [37] that occurs in such

systems is represented by the mean-field critical temper-
ature Tc above which hψ†

↑ðxÞψ†
↓ðxÞi ¼ 0, and the system is

made of incoherent and decoupled 1D chains [48]. This
means that for T > Tc, the thermal fluctuations wash out
the transverse coherence due to the presence of t⊥. The
system behaves essentially as if it was an isolated chain.
Notably, the critical temperature scales like the charge gap
at zero temperature; see Appendix F for more details. Even
though the prefactors in both Tc and the charge gap are
partially unknown, because of the constant C, the ratio is
completely controlled by the Luttinger parameter Kρ only
which can be computed from numerical calculations
(DMRG, Bethe ansatz, etc.),

RðKρÞ ¼
ΔρðT ¼ 0Þ

Tc
ð40Þ
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¼ 2π

� Kρ tan ðπ2 1
4Kρ−1

Þ
2κ2ðKρ=2Þð4Kρ − 1Þ sinð π

2Kρ
ÞB2ð 1

4Kρ
; 1 − 1

2Kρ
Þ
� Kρ

2Kρ−1

sin

�
π

4Kρ − 1

�
; ð41Þ

with Bðx; yÞ the Beta function and κðKÞ a combination of
gamma functions ΓðKÞ defined in Eq. (F6).
An exact extrapolation of the Luttinger parameter Kρ can

be reached via the Bethe ansatz solution [51]. A first
successful attempt toward this direction for the XXZ model
was given by Ref. [54]. Then, the 1D repulsive Hubbard
correlation function exponents have been accessed directly
[55]. It can be shown that a unitary transformation [56]
allows us to map the problem from positiveU to negativeU
(of our interest). By computing exactly the ground-state
energy of the system, we extrapolate the charge stiffness
and compressibility. A twist of the boundary condition
gives the charge stiffness DρðU < 0Þ ¼ 2uρKρ, while the
response to the number of particles corresponds to the
charge compressibility χρðU < 0Þ ¼ 2uρ=Kρ. Therefore,
the parameter we inject in Eq. (40) is given by Kρ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dρ=χρ

p
[57].

A more challenging case arises when jUj ≪ t. Indeed, in
that case, since Δσ ≪ t the pairs are nonlocal, and the full
bosonized form of the Hamiltonian with both charge and
spin sectors [Eqs. (34) and (35)] must be used. To deal with
this situation, we use a renormalization-group (RG) pro-
cedure (see Appendix G), in which we eliminate all degrees
of freedom from the initial bandwidth of the system, down
to the spin gap. At that scale, since the running ultraviolet
cutoff is now identical to the spin gap, we are back to the
situation where “local” pairs (hard-core bosons) hop in the
transverse direction. The single-particle hopping thus dis-
appears at that scale and simply leads to an effective
Josephson coupling between the various 1D units. This
coupling can be computed from the RG as detailed in
Appendix G. The limit Δσ ≪ W, where W ∼ 2t is the
bandwidth of the 1D system, corresponds naturally to the
case of weak interactions jUj ≪ W. In this regime, the spin
gap either obtained from the Bethe ansatz for the Hubbard
model, or more generally from the RG [58], is naturally
exponentially small in the interactions Δσ ∼

ffiffiffiffiffiffiffijUjp
e−1=jUj.

Thus, in order to be in the relevant regime, for the whole
procedure to work, a very weak interchain hopping t⊥ is
needed. Specifically, the RG flow needs to be cut by the
spin gap, and it may not be cut by the interchain hopping. If
this condition is satisfied, we recover a model analogous to
the one of the strong coupling albeit with a different
Josephson parameter. As we discuss above, the ratio is
insensitive to the precise value of the coupling, and thus,
the ratio Eq. (40) is expected to hold for all values of U.

V. RESULTS

The primary focus of this section is to make use of and
test the developed MPSþMF framework of the study case
of negative-U Hubbard chain arrays. The methods
described in Sec. II are tested thoroughly to produce a
robust routine for determining critical temperature for the
onset of superconductivity in Q1D systems of fermions
with a gapped spin sector. These results are subsequently
leveraged in Sec. VI to obtain Tc for USC in weakly
coupled doped Hubbard ladders with repulsive interactions.
The negative-U Hubbard chain array results are split into
four subsections which are ordered as follows: (i) The
Hamiltonian Eq. (18) depends on a range parameter of the
mean fields which is studied in this subsection, (ii) a
numerical study of the ground-state superconducting
energy gap and critical temperature from thermal states,
as well as (iii) comparing those numerical results with a
more efficient mixture of analytics and numerics, and
finally (iv) benchmarking MPSþMF against AFQMC
in a 2D system where the latter approach yields quasiexact
results.
As there are enough parameters to consider already, in

the following results for chain arrays, we are targeting a
fixed density

n ¼ 1

L

XL
i

X
σ

hc†i;σci;σi ¼ 0.5; ð42Þ

i.e., a quarter-filled system. We expect other close-lying
densities will not yield markedly different results due to the
nature of the isotropic case having weak dependence on
density around this filling in the 2D case [59].

A. Hamiltonian range dependence

Considering the effective 1D Hamiltonian of Eq. (18), the
first question to be answered is how long range the mean-
field terms can be. Aswe discuss at the end of Sec. II, theMF
amplitudes will always decay with an exponential envelope
as a function of the distance between the operators appearing
in them. Since longer-range terms are more difficult to
simulate, wewant to find aminimal range for each parameter
set with which longer-ranged Hamiltonians agree. As a
metric for determining agreement, we use the order param-
eter and energy gap Δ: The former is defined by
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hc; cir ¼
1

il − if þ 1

Xil
i¼if

hci;↑ciþr;↓i; ð43Þ

with r ¼ 0 and where if and il are chosen to avoid boundary
effects of the open-boundary conditions typical in DMRG.
As can be seen from Fig. 10, the minimal range required
varies with the strength of interaction. This is natural since
weaker attraction makes electron pairs more dispersive and
thus less localized.
We note that longer-ranged terms can still be finite and

ignoring them should yield at the very least a difference in
ground-state energies. However, the primary question is
rather the degree at which these terms affect the ground-state
wave function and the critical temperature. In Fig. 10, we
show that the order parameter and excited-state gapΔ do not
change appreciably beyond the ranges that are displayed.
Whilewe find α terms at longer ranges to be finite,Δ and the
on-site order parameter are largely unaffected.
From the results in Fig. 10, we choose the range of

pairing and particle-hole terms to use in the calculations.
Notably, the same range is used for finite temperature as is
used for ground-state calculations. We motivate this usage
of range by considering the pairs formed prior to con-
densation. Such prior pair-forming is, in turn, motivated by
a pairing strength larger than the critical temperature. For
the interaction strengths studied at finite temperature, the
pairing energy ends up at least twice the critical temper-
ature and is equal to the spin gap in Table I. Such strong
pairing motivates us to use the same range at both zero and

finite temperature. Furthermore, the results of Fig. 10 can be
used to motivate a range for ladder systems (see Sec. VI).
These systems are close in behavior to weakly interacting
attractive Hubbard chains. Since range is a costly parameter,
we use r ¼ 3which is the smallest range that can feasibly be
considered having small difference with longer ranges as
seen in Fig. 10. This will improve run times while affecting
critical temperature adversely.

B. Numerical results

Using the minimal ranges, we may compute the ground
and finite-temperature states for the Hamiltonian Eq. (18)
using the MPSþMF framework. As shown in Fig. 11(a),
we find the critical temperature decreasing with transverse
tunneling t⊥, vanishing as expected for t⊥ → 0.
The excited-state gap Δ disappears in the same manner.

Notably, the zero-temperature gap in field theoryΔρ should
have the same meaning as the excited-state gap Δ, which is
verified. Thus, from field theory it is expected that both Tc
and Δ scale with t⊥ with the same exponent, as can be seen
from Eqs. (F4) and (F5).
In determining Tc numerically via state purification

within the MPS approach, we have to contend with the
increase in inverse temperature β ¼ 1=T required as t⊥ is
decreased. This results not just in longer imaginary-time
evolutions, but also in increased finite-size effects (see
Appendix A).
Reaching large system sizes for these thermal-state

calculations can be challenging. We use two different

FIG. 10. Range dependence of the order parameter defined in Eq. (43) and first excitation energy defined in Eq. (26) for different
values of interactionU=t ¼ −2;−4;−10 and density n ¼ 0.5. Notably, the difference between the two largest ranges is not visible which
indicates sufficient range in the Hamiltonian.
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approaches. In the first, used for U ¼ −10t, the infinite-
temperature purified starting state of the imaginary-time
evolution is constructed to be in the S ¼ 0 subspace, which
allows us to keep exploiting the conserved spin quantum
number during the evolution. The drawback is that this β ¼ 0
initial state has entanglement growing strongly with system
size, limiting the practically attainable system lengths.
The second approach, employed for U ¼ −2t;−4t, is to

sacrifice the spin conservation. This makes the purified
initial state into a trivial-to-construct product state, and thus
arbitrary system lengths are accessible. However, thismakes
the imaginary-time evolution more costly, as there are no
conserved quantum numbers anymore. In order to alleviate
this issue, we use the projected-purified (PP)-DMRG
framework [60] expounded upon in Appendix B. We
moreover rely on the ability of HMF to filter out the S¼0
subspace at temperatures at and below Tc. We ascertain this
to be correct, with violations of hSzi ¼ 0 reaching at most
10−2, and typically much less, across all calculations.

C. Numerical-analytical hybrid results

For the field theory of Sec. IV, it is difficult to quantify
the superconducting Tc or the excited-state gap Δ, due to
the unknown prefactors arising from the massive spin
sector. However, forming the ratio Δ=Tc ¼ RðKρÞ is free
from these unknown prefactors, depending just on the TLL
parameter Kρ (computed in Table I) and is, strikingly,
constant in t⊥.

Generating R from the numerically determined data of
Fig. 11(a) and the analytical expression Eq. (40) yields
Fig. 11(b). Notably, while the analytical ratio is not
agreeing with numerical estimates exactly, the constant
nature of the analytics is likely approximative. Achieving a
ratio which lies close enough to the data is sufficient in
order to obtain critical temperatures. With this knowledge,
the new Tc estimate becomes

Tc ¼
ΔðT ¼ 0Þ
RðKρÞ

: ð44Þ

Since the primary issues of the Tc computation come from
the imaginary-time evolution, we may now obtain Tc
estimates from ground-state DMRG by computing
ΔðT ¼ 0Þ. As shown in Fig. 11(a), the estimation scheme
Eq. (44) is agreeing very well with the numerical Tc values
obtained from thermal-state calculations.

(a) (b)

FIG. 11. A comparison of analytical methods and combination with numerical methods for several values of interaction. Panel
(a) shows critical temperature Tc vs transverse tunneling t2⊥=ΔEp. Circles show data obtained via direct calculation of thermal states,
while crosses show Tc computed from zero-temperature calculations using the excitation gap Δ and Eq. (40). Panel (b) shows the ratio
R ¼ Δ=Tc of ground-state excitation gap to critical temperature, both computed separately, compared with the analytical ratio Eq. (40)
(dashed lines) vs t2⊥=ΔEp.

TABLE I. Results from the Bethe ansatz solution of the 1D
Hubbard model with attractive interaction at quarter filling. Here,
we compute the TLL parameter of charge sector Kρ and the field
theory spin gap Δσ as a function of the interactions.

U=t Kρ Δσ=t

−2.0 1.26 0.289
−4.0 1.41 1.476
−10.0 1.51 6.671
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Since the more efficient ground-state DMRG is the main
tool of this alternative way to obtain Tc, it can be brought to
even lower values of t⊥ and greater system sizes, allowing
for greater precision at larger parameter ranges.

D. Comparison with AFQMC

In Eq. (18), the coordination number zc tracks the
dimensionality of the underlying Q1D array. For the
calculations on 3D Q1D systems, as performed so far,
we have zc ¼ 4. Lattices of other dimension can be
simulated just as well, just by changing zc to the appro-
priate value.
We exploit this for benchmarking the MPSþMF

approach against quasiexact results, which AFQMC is
able to obtain in the absence of a sign problem. These
benchmarks are necessarily done for 2D models, as the
finite-temperature algorithm uses scales cubically in the
number of lattice sites [41,42]. We stress that the MPSþ
MF method describes ordering in the Ginzburg-Landau
sense via the pairing mean fields αik, while AFQMC detects
the actual 2D Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition. We interpret the mean-field Tc of MPSþMF as an
approximation of the TBKT which occurs for the 2D model.
We compare the two algorithms both for ground-state

and finite-temperature calculations. For ground states,
which do achieve superconducting long-range order even
in 2D, the on-site order parameter is compared to the two
algorithms as shown in Fig. 12(a). Since 2D is the lower
critical dimension, quantum fluctuations around any mean
will be especially strong. Considering this fact, we note that
the smallest simulated t⊥ values have a modest overesti-
mation as MPSþMF neglects transverse quantum fluctu-
ations by design.
For finite-temperature states, we compute the BKT

transition temperature TBKT using AFQMC and compare
it to Tc from MPSþMF. The strategy for obtaining the
TBKT temperature from AFQMC is standard and elaborated
in Appendix D. Both TBKT and Tc, as well as their ratio, are
shown in Fig. 12(b). Over the range of t⊥ for which we
simulate, the near-constant ratio between Tc and TBKT is
striking, being approximately

TBKT

Tc
≈ 0.25: ð45Þ

This is in line with previous work where we also found such
a ratio to be robust to changes in parameters [37]. Similar to
the comparison to zero-temperature AFQMC, MPSþMF
will overestimate the transition due to the neglect of both
quantum and thermal fluctuations, and these will again be
especially pronounced, given that these are 2D systems.
Previous work on bosonic systems, as well as the generally
known dependence of phase transitions on spatial dimen-
sionality of a system, indicates that these fluctuations
will be strongly reduced for a Q1D 3D system [37].

Specifically, there we found that TQMC
c =TMPSþMF

c ≈ 0.7.
For 3D fermionic Q1D systems, we thus expect that a
correction factor for Tc computed from the MPSþMF
framework to obtain the true Tc will lie somewhere
between these two extremes, and probably closer to 0.7
than to 0.25.

VI. 3D ARRAY OF WEAKLY DOPED
REPULSIVE-U HUBBARD LADDER

With the MPSþMF framework for fermions developed
on 3D Q1D systems of negative-U Hubbard chains, this
section applies it to a much more demanding system: 3D
arrays of weakly coupled, doped, repulsive-U Hubbard
ladders. These systems have been investigated via field
theory as an alternative to Q2D systems in the study of USC
and high-Tc superconductivity. The microscopic mecha-
nism of repulsively mediated pairing is understood from
field theory, and the strength of this pairing can be
quantified reliably via MPS-based methods. Despite these

(a)

(b)

FIG. 12. Comparison of AFQMC and MPSþMF for
(a) ground-state order parameter at U ¼ −2t, n ¼ 0.5 and
(b) Tc from MPSþMF and TBKT from AFQMC at U ¼ −4t
and n ¼ 0.5. Black crosses denote the ratio TBKT=Tc.
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critical advantages over the Q2D models, there was no
quantitative method to study these 3D arrays that incorpo-
rates the pairing physics at the microscopic level, as the TLL
field theory in practice yields largely qualitative results.
The MPSþMF framework supplies that ability. Just like

the negative-U Hubbard chains, the isolated, doped,
repulsive-U Hubbard ladders have finite ΔEs and ΔEp,
manifesting the repulsively mediated pairing. Further,
when analyzed via renormalization-group theory within
the TLL approach, the low-energy physics of both these 1D
subunits is structurally analogous. Both exhibit an
ungapped charge sector characterized by a TLL coefficient
Kρ for the chain, and Kρ;þ for the ladder. Furthermore, both
can be computed from the microscopic Hamiltonians via
MPS methods. For the Hubbard ladders, there are three
additional gapped modes, a charge one and two spin ones,
the smaller having minimal energy ΔEs, as for the single-
spin mode in the negative-U chains.
The MPSþMF framework can thus be applied to the

Hubbard-ladder arrays. For a proof-of-principle treatment,
we focus on plainHubbard ladders depicted in Fig. 1(b), with
U ¼ 8t and average density fixed at n ¼ 0.9375. The
characteristic energy scales and TLL parameters can be
computed with DMRG which results in ΔEs ≈ 0.078t,
ΔEp ≈ 0.134t, and Kρ;þ ¼ 0.77 (the TLL parameter
extracted from Ref. [6]). The study of optimized Hubbard-
ladder arrays engineered for high Tc’s via deliberate opti-
mization of ΔEs, ΔEp, and Kρ, as well as examining the
possibility of charge-density order competing with USC
within two-channel MPSþMF, is the subject of forth-
coming future work.

As ladder geometries require much larger MPS resources
than chains, direct calculation of Tc, while feasible, is
challenging. We thus use MPSþMF combined with the
analytics developed and tested in Secs. II–V. In this manner,
we obtain Tc for USC in these arrays by computing excited-
state energy gaps Δ using DMRG for ground states, then
applying Eq. (44). Compared to Secs. IV and V, this
procedure requires only marginal adjustments for the ladder
as the negative-U chain and Hubbard ladder look largely
identical in the low-energy parts of their respective field
theories. For the former system, the order parameter scales

as e−i
ffiffi
2

p
θρðxÞ in the phase operator of the ungapped charge

mode, while for the latter it is e−iθρ;þðxÞ. From that, it follows
that the ratio function for the ladder is

RladderðKρ;þÞ ¼ Rð2Kρ;þÞ; ð46Þ

where R is given by Eq. (40). Thus, Rladder will retain its
dependence on a single TLL parameter: Kρ;þ. This is due to
the gapped spin sectors entering the order parameter in the
same manner both for Tc and Δ. These nonuniversal
contributions thus cancel when forming R, analogous to
the derivation in Sec. IV and Appendix F. The same
analysis yields that for the ladder we have

Tc ∝ t
4Kρ;þ

4Kρ;þ−1

⊥ : ð47Þ

The effective MF Hamiltonian for the Q1D array of the
ladders is given by

HHL ¼ −t
XL−1
i¼1

X1
j¼0

X
σ

ðc†iþ1;j;σci;j;σ þ c†i;j;σciþ1;j;σÞ − t
XL
i¼1

X
σ

ðc†i;1;σci;0;σ þ c†i;0;σci;1;σÞ

− μ
X
i;j

ni;j þ U
X
i;j

ni;j;↑ni;j;↓ −Hpair;MF −Hexc;MF; ð48Þ

where i, j are leg and rung indices, respectively, and
Hpair;MF and Hexc;MF are derived in Appendix E and
defined by

Hpair;MF ¼
X
i;i0;j;j0

αi;i0;j;j0 ðc†i;j;↓c†i0;j0;↑ þ ci0;j0;↑ci;j;↓Þ; ð49Þ

Hexc;MF ¼ −
X

i;i0;j;j0;σ

βi;i0;j;j0;σc
†
i;j;σci0;j0;σ; ð50Þ

and the pairing amplitudes are given by

αi;i0;0;0 ¼
2t2⊥
ΔEp

ðhci0;1;↑ci;1;↓i þ 2hci0;0;↑ci;0;↓iÞ; ð51Þ

αi;i0;1;1 ¼
2t2⊥
ΔEp

ðhci0;0;↑ci;0;↓i þ 2hci0;1;↑ci;1;↓iÞ; ð52Þ

αi;i0;1;0 ¼
4t2⊥
ΔEp

hci0;0;↑ci;1;↓i; ð53Þ

αi;i0;0;1 ¼
4t2⊥
ΔEp

hci0;1;↑ci;0;↓i; ð54Þ

whereas the exchange terms are given by

βi;i0;0;0;σ ¼
2t2⊥
ΔEp

ðhc†i;1;σci0;1;σi þ 2hc†i;0;σci0;0;σiÞ; ð55Þ
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βi;i0;1;1;σ ¼
2t2⊥
ΔEp

ðhc†i;0;σci0;0;σi þ 2hc†i;1;σci0;1;σiÞ; ð56Þ

βi;i0;1;0;σ ¼
4t2⊥
ΔEp

hc†i0;0;σci;1;σi; ð57Þ

βi;i0;0;1;σ ¼
4t2⊥
ΔEp

hc†i0;1;σci;0;σi: ð58Þ

In this work, we exclude the possibility for a CDW phase
such that density is independent of which rung we measure
and is constant throughout the system. This is obtained by
the restriction βi1;i1;j1;j1;σ ¼ βi2;i2;j1;j1;σ. We note that inclu-
sion of the exchange terms βi;i0;l;l0;σ has previously not been
possible by analytical methods.

In isolation, Hubbard ladders typically require large
bond dimensions for accurate simulations (see, e.g.,
Ref. [6]). With the included superconducting MF ordering
channel, we find this requirement to be relaxed. This is
expected, as any long-range order, be it in real space or
momentum space, requires fewer retained Schmidt com-
ponents than for that same system without such an order.
However, at these lowered bond dimensions, converged
MF amplitudes exhibit non-negligible dependence on
the bond dimension despite modest truncation errors.
Regardless of this, the linear scaling of energy with
truncation error, typically found in DMRG, remains intact
even here as shown in Fig. 13(a)–13(c). We note that while
we always find E0ðχÞ < E1ðχÞ, as has to be the case, the
lines interpolating in truncated weight ϵψ down to zero may
cross, giving the appearance of level crossing. However,

(a) (b) (c)

(d) (e)

FIG. 13. Energy gap to the first excited state and critical temperature of the Hubbard ladder forU ¼ 8t, n ¼ 0.9375, t⊥ ¼ 0.0489t, and
MF terms with range r ¼ 3. The panels show ground-state energy E0 (blue circles) and excited-state energy E1 (red circles) plotted
against their truncation error ϵψ and extrapolated to zero truncation error (blue and red lines) for a ladder with length (a) L ¼ 80,
(b) L ¼ 96, (c) L ¼ 112. While E1ðϵψ Þ > E0ðϵψ Þ can happen, this comparison is meaningless, as only energies at the same χ can be
compared (cf. main text), where we always find E0ðχÞ < E1ðχÞ. Continuing, (d) shows the critical temperature of the 3D ladder array
Tc ¼ Δ=RladderðKρ;þÞ ¼ ½E1 − E0=RladderðKρ;þÞ� extrapolated to infinite size where RladderðKρ;þÞ is given by Eq. (46) and Kρ;þ ¼ 0.77
[6], while (e) shows the critical temperature vs t⊥ exploiting the scaling known from Eq. (F4), using the Tc value obtained
in (d) (red cross).
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only energies at the same χ can be directly compared as
each value of χ corresponds to a separate optimization
problem in the MPS approach, with distinct effective
Hamiltonians. Thus, it is possible to compute the mean-
field amplitudes at modest bond dimension and obtain
energy measurements, and thus Δ extrapolated to zero
truncation error at different system sizes.
Finally, we obtain Δ, and thus Tc after rescaling with

Eq. (46), in the thermodynamic regime via infinite-size
extrapolation as shown in Fig. 13(d). We note that t⊥ is
chosen quite close to ΔEp and ΔEs. The primary reason is
the small energy gaps we need to resolve. At smaller values
of t⊥, the discrete energy gaps of the finite-length systems
mask Δ even for ladders with L ¼ 80 or even larger.
However, using Eq. (47) it is possible to extrapolate
thermodynamic Tc to smaller, physically more reasonable
values of t⊥ as shown in Fig. 13(e).

VII. RESOURCE REQUIREMENTS

In this section, we summarize time and resource con-
sumption for the different algorithms used in this work. The
MPSþMF routines feature repeated DMRG solutions.
Generally, the total number of CPU-core hours τ scales
with the same parameters as DMRG does, i.e.,

τMPS ∼ Ld2χ3; ð59Þ

where L is the number of lattice sites (and thus, MPS
tensors), d the size of the local Hilbert space, and χ is bond
dimension. The number of loops required to reach self-
consistency Ntot is shown for representative examples in
Fig. 5 and subject to the optimizations mentioned in
Sec. III C. The total resources consumed by the algorithm
are thus given by

τMPSþMF ∼ NtotτMPS: ð60Þ

For the ground states of the negative-U Hubbard chain with
MF amplitudes, we use MPS-based DMRG from the
Matrix Product Toolkit package [61]. The data are com-
puted using Intel Xeon E5 2630 v4 at 2.20-GHz CPU cores.
Most results are obtained at a bond dimension of χ ¼ 300.
A certain speedup is obtained using two CPU cores and
threads used in the LAPACK and BLAS routines on which the
algorithm rests. For a typical run, a single MF loop takes
about 8000s of wall-clock time for χ ¼ 300 and L ¼ 100.
Notably d ¼ 4 for the negative-U Hubbard chain. With two
CPU cores in use for this calculation, the total required
resources for solution are τMPSþMF ≈ 5Ntot CPU-core
hours.
Additionally, in order to obtain critical temperatures

directly, we calculate thermal states using imaginary-time
evolution of purified states. For simpler Hamiltonians
where a shorter range (maximum of 1) for both αi;k and
βi;r;σ is possible, Trotterized time evolution suffices

[32,45]. For this case, we use a time step of δτ ¼ 0.1
and a fourth-order Trotter discretization. With additional
linear scaling in the length of the imaginary time simulated
(equal to half the inverse temperature β), a typical solution
requires about 12 000s of wall-clock time for L ¼ 60,
χ ¼ 200, and β ¼ 9.5. Having used two CPU cores, the
required resources in total are τMPSþMF ≈ 7Ntot CPU-core
hours. Notably, the range of inverse temperature β to be
simulated to determine Tc changes markedly with t⊥,
leading to commensurate changes in τ.
In the case of Hamiltonians with long-range terms, it is

necessary to apply more advanced time-evolution schemes.
With that, the resource requirements increase significantly;
i.e., a typical solution requires about 32 000s on six CPU
cores for L ¼ 60, β ¼ 9.5, and χ ¼ 100, leading to an
overall τMPSþMF ≈ 53Ntot CPU-core hours. In part, this
increase is due to the longer-range couplings. Another
cause is the increased effective system size. This increase,
in turn, is down to the specific MPS implementation [62]
used, which always requires full quantum number con-
servation. In our use case, where both charge and spin
conservation are discarded (cf. Sec. V B), quantum num-
bers are restored artificially via the use of PP-DMRG [60]
at the price of a larger effective system. Further details on
obtaining finite-temperature results are provided in the
Appendixes A and B.
Exact ground-state order parameters in finite lattices are

computed with an AFQMC method using generalized
METROPOLIS with force bias [63]. This algorithm scales
quadratically with the number of electrons Ne and linearly
with the number of lattice sites Nl:

τAFQMC;GS ∼ NlN2
e: ð61Þ

For an Nl ¼ 40 × 4 ¼ 160 system with 80 electrons, we
perform calculations of 2000 sweeps for measurements
after ten sweeps of thermalization, with 100 independent
repeats. Such a calculation, with an imaginary propagation
time β set to 64, takes 49 hours of wall-clock time on 100
Intel Xeon E5-2640 v4 2.4-GHz cores yielding a require-
ment of τAFQMC;GS ≈ 4900 CPU-core hours.
In order to obtain exact values for TBKT in two-

dimensional Q1D as a benchmark for MPSþMF
(cf. Sec. V D), we use finite-temperature AFQMC. The
package utilized for this purpose is called Algorithms for
Lattice Fermions (ALF) [41,42]. Data are obtained with an
algorithm which scales cubically in the number of lattice
sites N and linearly with inverse temperature β:

τAFQMC ∼ βN3: ð62Þ

An improvement of this scaling is available [64], but it is
not implemented for our calculations. We find that a single
instance of sampling requires approximately 200s for N ¼
48 × 8 ¼ 384 and β ¼ 20 using an Intel Xeon E5-2698 v3
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2.30-GHz CPU core. Statistical error bars are sufficiently
small for a sample size of approximately 100 000 for the
parameter set we study, requiring τAFQMC ≈ 5000 CPU-
core hours. The ALF package, like most QMC implemen-
tations, can of course parallelize this workload near
perfectly.
When performing MPSþMF on the weakly coupled

repulsive-U Hubbard ladders, MPSþMF becomes more
resource intensive: As earlier, one conserved quantum
number is lost, and the matrix product operator represent-
ing the Hamiltonian is significantly larger than any for the
negative-U Hubbard chains. We use a DMRG implemen-
tation offering distributed-memory parallelism (pDMRG)
to obtain faster solutions [14]. Different from QMC-type
algorithms, any such parallelization will inevitably show
nontrivial communication overheads, and thus not scale
linearly in the number of MPI processes. For a single
converged ground state from pDMRG, we thus require
approximately 27 000s using 32 × 8 ¼ 256 Intel Xeon E5-
2698 v3 2.30-GHz CPU cores, at χ ¼ 1000 and L ¼ 96.
The total cost thus becomes τ ≈ 2000Ntot CPU-core hours.
The optimizations of Sec. III C particularly apply to the
Hubbard-ladder systems. Without these optimizations, Ntot
can be as high as Ntot ¼ 25, but by employing them, where
possible, it can drop as low as Ntot ¼ 6.

VIII. CONCLUSION

In this work, we develop a numerical framework combin-
ingMPS-based numerics withMFand perturbation theory to
solve correlated quasi-one-dimensional fermionic systems
constructed out of weakly coupled 1D subunits, in two and
three spatial dimensions. This method relies onMF-approxi-
mating tunneling processes occurring transverse to the 1D
subunits with amplitude t⊥. The requirement for this
approximation being reasonable is that t⊥ be weaker than
any gapon the 1D subunits that suppress first-order tunneling
between 1D subunits. Using the example of superconduc-
tivity in such Q1D arrays, we show how this framework
allows us to map otherwise difficult or even intractable
correlated-fermion models in 2D and 3D onto a self-con-
sistent 1D problem. We then demonstrate how these can be
effectively solved both for ground states and thermal states.
We test the framework on a model of attractive fermions

on a 1D chain extensively comparing to both analytical
methods and AFQMC.We obtain analytical expressions for
superconducting Tc of the model and the gap Δ to the first
excited state. Utilizing that a ratio R ¼ Δ=Tc of these two
quantities remains constant over t⊥, we obtain R analyti-
cally and greatly speed up the calculation of Tc via the use
of Δ and R. Comparing this value with Tc obtained directly
from thermal-state calculations shows that obtaining Tc
from Δ and R yields excellent agreement, especially at
small t⊥. This allows MPSþMF to obtain Tc without
using imaginary-time evolution, which is numerically more
costly than obtaining Δ via ground-state calculations.

Subsequently, we use the gap and ratio method to obtain
Tc from MPSþMF and compare with TBKT from
AFQMC. We find a semiconstant ratio of these temper-
atures over a range of t⊥, in line with previous comparisons
to QMC [37]. As expected, the MF approximation yields
greater overestimation of the ordering temperature for
lower-dimensional systems. With this in mind, the method
seems able to provide reliable estimates of Tc in fermionic
systems for an appropriate choice of parameters.
Utilizing the developed MPSþMF framework, we treat

the case of a 3D array of weakly coupled, doped Hubbard
ladders with strong repulsive interaction. With the tools
developed in this work, we are able to calculate Tc
quantitatively for the first time for these systems. The
MPSþMF framework thus allows the efficient simulation
of a subgroup of 3D systems of strongly correlated
fermions, namely, the Q1D models, which have been very
challenging to address for any quantitative method.
Notably, the 3D arrays of weakly coupled Hubbard

ladders studied in this work have not been optimized to
yield large critical temperatures. Previous work has indi-
cated that by modifying the ladder parameters, larger Tc’s
may be achieved [5]. With the MPSþMF framework, it is
possible to systematically search for improved critical
temperatures starting from the microscopic models. This
allows us to not only deliberately search for optimal high-
Tc prototype materials in the Q1D space, something that
remains elusive for Q2D materials, but it likewise permits
us to design ultracold-gas experiments capable of observ-
ing analog states of high-Tc superconductivity within
current or near-future experimental constraints. We are
pursuing both possibilities in current follow-up work.
In this work, we focus on the physics of superconduc-

tivity using the MPSþMF routine. However, MPSþMF
can be used for any Q1D system in which tunneling in
between 1D subunits is suppressed at first order by a gap.
This gap can be of any physical nature, such as, e.g., the
charge gap present in the insulating phases of the
Bechgaard and Fabre salts. The MPSþMF framework
can thus also be deployed to understand, e.g., the anti-
ferromagnet to spin-density wave transition in these mate-
rials. This potential application of the framework highlights
its power to incorporate multiple ordering channels simul-
taneously at the mean-field level, and thus its ability to
resolve the competition between competing orders.
Finally, the capacity of MPS numerics to address real-

time dynamics of many-body systems both near and far
from equilibrium opens the possibility to use the MPSþ
MF algorithm to study real-time dynamics of correlated
fermions in high-dimensional Q1D systems. Such forth-
coming work is currently in preparation on dynamically
induced superconductivity in such systems [43].
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APPENDIX A: FINITE-SIZE EXTRAPOLATION

The Q1D models we consider in this paper suffer from
finite-size effects like all numerics on finite systems. In
particular, as the connection between 1D systems weakens,
so does the strength of the resulting superconductor
resulting in increased healing lengths. Additionally, we
find that finite-size effects persist even at large t⊥ albeit
reduced in size. In order to accurately simulate these
systems, extrapolation has to be performed on the finite-
size observables to the limit of infinite size.
Using MPS numerics, we compute the observables to be

measured for several system sizes. We then utilize various
strategies to obtain infinite-size values depending on the
type of finite-size effect and observable. The strategies are
outlined in this appendix.

1. Local observables

For local quantities such as the order parameter and
energy, we use a common heuristic

OðLÞ ¼ O∞ þ c0
1

L
þ c1

1

L2
þOðL−3Þ; ðA1Þ

where OðLÞ is a measurement of any local observable for a
system size L and O∞ the thermodynamic limit of that
observable. Thus, we fit measurements at finite size to a
quadratic polynomial in inverse size. We find that the data
fit the heuristic pretty well as shown in Fig. 14.

2. Finite temperature at criticality

Several results in this work obtain the critical temper-
ature of a system by evolving in imaginary time. The
phase transition point is dependent on system size. For
the case of significant finite-size effects, we consider the

critical behavior of the superconducting order parameter in
particular, as that determines when the system enters
superconductivity.

a. Significant finite-size effects

When finite-size effects must be considered, we follow a
common strategy used, e.g., on QMC results [65] called
data collapse. We study a second-order phase transition,
where the critical behavior of the order parameter (here
named ψ for simpler notation) is given by

ψLðtÞ ¼ L−β=νψ̃ðL−1=νtÞ: ðA2Þ

The reduced temperature t is given by

t ¼ T − Tc

Tc
; ðA3Þ

and critical exponents β, ν are given by

ψ ∼ jtjβ; ðA4Þ

ξ ∼ jtjν; ðA5Þ

where ξ is the correlation length of the ordering field.
Notably, on the unordered side the order parameter is zero.
In order to extract Tc we assume that our system’s critical
behavior belongs to the mean-field universality class which
is consistent with fits to Eq. (A4) close to transition such
that β ¼ ν ¼ 0.5. Using these exponents, the finite-size
order parameter is rescaled by Lβ=ν and plotted over L1=νt,

ψ̃ðxÞ ¼ Lβ=νψLðL−1=νxÞ: ðA6Þ

(a) (b)

(c) (d)

FIG. 14. Examples of finite-size extrapolations of the gap from
the ground state to the first excited state (Δ) for (a) t⊥ ¼ 0.05t,
U ¼ −4t, (b) t⊥ ¼ 0.175t, U ¼ −4t, (c) t⊥ ¼ 0.2t, U ¼ −10t,
and (d) t⊥ ¼ 0.05t, U ¼ −2t. All data at n ¼ 0.5.
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The function ψ̃ðxÞ is the scaling function of the order
parameter and is system size independent. Thus, for a
correct choice of Tc all curves overlap close to transition
as shown in Fig. 15. The quality of the collapse is
determined using

s2ψ ¼ 1

xmax − xmin

×
Z

xmax

xmin

P
Lψ̃LðxÞ2
N

−
�P

Lψ̃LðxÞ
N

�
2

dx; ðA7Þ

where N is the number of system sizes, s2ψ is the variance
integrated over a range ½xmin; xmax�, and ψ̃LðxÞ is the scaling
function for size L given a Tc. The range is chosen to lie
around the proposed value of Tc. The critical temperature is
then obtained for different widths Δx of the integration
interval, and the resulting critical temperature is extrapo-
lated to its value at zero width. The final error bar shown in
values for Tc is taken to be the fitting error for decreasing
width Δx. This treatment ultimately gives a small error bar.
Added data for larger sizes might move the result outside
this error bar.
For parameter sets where t⊥ is particularly small,

generating data close to transition is tricky due to slow
convergence of the mean-field amplitudes. One conse-
quence of this is that the data used for collapse can end up
too far from transition for finite-size scaling to apply. On
such an occasion, the analysis fails to produce reliable
collapse of data and another strategy is needed.

b. Critical temperature interval

When the previous analysis fails to produce a reasonable
collapse, we generate a grid around the estimated phase

transition. Since the convergence close to the phase
transition is especially demanding, we focus on surround-
ing temperatures. In order to reduce the number of
necessary self-consistency iterations, we extrapolate the
order parameter via OðnÞ ¼ On→∞ þ a × expð−bnÞ in the
number of self-consistency iterations n. Those extrapola-
tions are shown as an example in the inset of Fig. 16 for
L ¼ 50, but for convenience, they are plotted over the
inverse number of iterations. The results of these extrap-
olations are then used within to fit the data with

OðTÞ ¼
�
ajT − Tcj12; if T < jTcj;
0; otherwise;

ðA8Þ

as can be seen in Fig. 16. The final result interval for the
critical temperature is then given by the estimated values
for different system sizes. This procedure causes significant
errors compared to the previous method and fails to account
for finite-size effects that may occur. Nevertheless, the
errors are small enough to permit analysis as can be seen
in Fig. 11.

APPENDIX B: FINITE-TEMPERATURE PP-DMRG

In order to use time-evolution methods that are designed
for long-range interactions, we choose the SYMMPS toolkit
[62]. This choice comes with the caveat that conserved U(1)
quantum numbers are necessary. Since the MPSþMF
Hamiltonian does violate those symmetries, we apply PP-
DMRG [60] to restore them. That means we not only double
the system size in order to represent density matrices instead

FIG. 15. The rescaled order parameter plotted against reduced
temperature t ¼ ðT − Tc=TcÞ for U ¼ −10t, t⊥ ¼ 0.3t, and
n ¼ 0.5. The critical temperature is obtained by minimizing
Eq. (A7).

FIG. 16. Example obtaining Tc from fits without finite-size
scaling for U ¼ −4t, t⊥ ¼ 0.4t, n ¼ 0.5. Symbols denote the on-
site order parameter extrapolated to infinite number of iterations
for L ¼ 20 (plus), L ¼ 50 (cross), and L ¼ 60 (star) computed
via MPSþMF for thermal states. Solid lines are guides to the
eye. Dashed lines are fits with ansatz Eq. (A8). Inset shows an
example of extrapolating the order parameter to infinite numbers
of iterations for L ¼ 50.
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of states, as is usually the case in state purification [66,67],
but also double it again in order to have an auxiliary bath to
restore the conservation laws via these added bath sites.
Hence, as can be seen in Fig. 17,we have the physical and the
ancilla system, which represent density matrices, and the
auxiliary and the ancilla-auxiliary system, which restore the
quantum number conservation.
Since the long-range interactions are thus increased in

their range by a factor of 4, another obstacle needs to be
circumvented: This is the loss of particles from the physical
(and its auxiliary) system into the ancilla (and its auxiliary)
system [45]. This leakage occurs due to the accumulation
of numerical errors, which we prevent by having the U(1)
symmetries conserved on the physical and the ancilla
system separately. To achieve that, we increase the local
basis from four to 16 states by adding a separate fermionic
particle species, which is supposed to occur only on the
ancilla systems.
Evolving a product state, such as an infinite-temperature

state, with TDVP leads to significant projection errors [45].
Hence, one needs to increase the bond dimension first via a
different time-evolution method [12,68]. We choose to use
two-site TDVP for the first ten time steps, which are chosen
to be very small δt ¼ 10−7. This way, the bond dimension
grows, but the projection error, which is scaled within the
exponential by the time step, stays small. Afterward, one
time step is performed to go to the usual time step grid
δt ¼ 0.05. Then, all following time steps are executed by
single-site TDVP, since that is faster.

APPENDIX C: TRUNCATION ERROR
EXTRAPOLATION

For any local quantity, it is possible to perform an
extrapolation in the truncation error. For large enough bond
dimension, a general measurement follows:

hOiðϵψÞ ¼ hOi þ c0ϵψ ; ðC1Þ

i.e., a measurement of a DMRG state typically depends
linearly on its truncation error [46,69,70].

APPENDIX D: AUXILIARY-FIELD QUANTUM
MONTE CARLO

There are a number of different flavors of the AFQMC
method, which are documented in the literature [39–42]. In
this work, the ground-state order parameters from AFQMC
are obtained using a generalized METROPOLIS approach
with force bias [63], while the TBKT is obtained with the
standard finite-temperature AFQMC method [71,59]. In
this appendix, we briefly describe our ground-state and
finite-temperature calculations in two separate subsec-
tions below.

1. Ground-state order parameter

Here we briefly describe our ground-state AFQMC
calculations and how the superconducting order parameters
are obtained. A comprehensive discussion of AFQMC can
be found in Refs. [40,72].
The ground-state AFQMC method solves the

Schrödinger equation of the quantum many-body problem
by projecting out the ground-state wave function jΨGi of
the system from an initial wave function jΨIi:

e−βHjΨIi ∝ jΨβi→β→∞ jΨGi: ðD1Þ

The initial wave function is generally obtained from a
mean-field calculation, for example, with the Hartree-Fock
method. When the imaginary-time β is sufficiently large,
the projected wave function jΨβi approaches the ground
state jΨGi of H.
Numerically, the propagator e−βH is rewritten in a one-

body form. This is achieved by first discretizing the
imaginary time into small time steps Δτ,

e−βH ¼ ðe−ΔτHÞm: ðD2Þ

In this work, Δτ is set to be 0.01 for the ground-state
algorithm. We verify this to give Trotter errors well within
our statistical error in the final results. Then we apply a
Trotter-Suzuki breakup for each small imaginary step,

e−ΔτH ¼ e−ΔτK=2e−ΔτVe−ΔτK=2 þOðΔτ3Þ; ðD3Þ

where K is the kinetic part of the Hamiltonian containing
only one-body terms, while V is the potential part, which
consists of two-body terms.
To rewrite all two-body terms into one-body terms, we

apply the Hubbard-Stratonovich transformation in a charge
decomposition form:

FIG. 17. Structure of MPS for thermal-state calculations using
state purification and imaginary-time evolution via TDVP, which
requires introducing ancilla sites. The use of the SYMMPS package
[62] for TDVP also requires using PP-DMRG [60], meaning
adding auxiliary sites for both physical and ancilla sites to recover
conserved charge and spin quantum numbers.
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e−ΔτUni;↑ni;↓ ¼ 1

2

X
xi¼�1

eðγxi−ΔτU=2Þðni;↑þni;↓−1Þ

≡ 1

2

X
xi¼�1

biðxiÞ; ðD4Þ

where coshðγÞ ¼ expð−ΔτU=2Þ. With the above trans-
formation, the short-time propagator can be written as

e−ΔτH ¼
Z

dxpðxÞBðxÞ; ðD5Þ

where BðxÞ ¼ e−ΔτK=2
Q

i biðxiÞe−ΔτK=2 is now a one-body
propagator, and pðxÞ is a probability density function,
which in the form above is uniform in the AF configura-
tions x ¼ fx1; x2;…; xNl

g.
Ground-state observables are given by

hOi ¼ hΨLjOjΨRi
hΨLjΨRi

; ðD6Þ

where hΨLj ¼ hΨIje−βLH and jΨRi ¼ e−βRHjΨIi. In our
calculations with the generalized METROPOLIS algorithm,
we choose a total projection time β, which defines a fixed
length of the imaginary-time path integral. The location
along the path where O is measured moves with our
sampling; for example, as we sweep from left to right,
we start measuring when βL > βeq, where βeq < β=2 is a
parameter which ensures that the asymptotic limit in
Eq. (D1) is reached (in a numerical sense), and
βR ≡ β − βL. Conversely, when we sweep from right to
left, the measurement starts when βR > βeq and stops when
βL ≡ β − βR reaches βeq. The expectation hOi is expressed
as path integrals in AF space:

hOi ¼
R hϕLjOjϕRi

hϕLjϕRi PðXÞhϕLjϕRidXR
PðXÞhϕLjϕRidX

: ðD7Þ

In Eq. (D7), X ≡ fxðMÞ;xðM−1Þ;…;xð2Þ;xð1Þg, which is an
MNl-dimensional vector, denotes the AF configuration of
the entire path, with M ≡ β=Δτ being the number of time
slices in the path, and the probability functionPðXÞ ¼ Q

m¼
1MpðxðmÞÞ. The wave functions jϕRi and jϕLi are single
Slater determinants (if we choose jΨIi to be a single Slater
determinant), and have the form jϕRi ¼

QMR
m¼1 BðxðmÞÞjΨIi

and, correspondingly, hϕLj ¼ hΨIj
QML

m¼1 BðxðM−mþ1ÞÞ, with
MR ≡ βR=Δτ andML ≡ βL=Δτ. A heat-bath-like algorithm
and a cluster update scheme are incorporated in our gener-
alized METROPOLIS algorithm, which is described in detail in
Appendix A of Ref. [63].
The pair correlator (the pair-pair correlation) can be

computed by the path integral above in Eq. (D7). For each
path, if we denote the expectation value hϕLjOjϕRi=
hϕLjϕRi by hOiL;R, then hc†i;↑c†i;↓cj;↓cj;↑iL;R can be

decomposed by Wick’s theorem into pair products of
one-body Green’s functions:

hc†j;σci;σiL;R ≡ hϕLjc†j;σci;σjϕRi
hϕLjϕRi

¼ ½Φσ
R½ðΦσ

LÞ†Φσ
R�−1ðΦσ

LÞ†�i;j; ðD8Þ

where ΦL and ΦR are the matrix representation of the kets
jϕLi and jϕRi, respectively.
We choose a reference site and then compute the pair

correlator between the reference site and other different
lattice sites, as shown in Fig. 18. We then average the pair
correlation of the sites that have the longest distance. To
further reduce statistical error, the reference point is
averaged over the whole lattice, since each lattice site is
equivalent under periodic boundary condition.

2. Kosterlitz-Thouless transition temperature

For finite-temperature results we use ALF. The structure
of the algorithm is similar to that of ground-state AFQMC
previously outlined, and we refer the reader to the ALF
documentation [41,42].
Using ALF we obtain results for any value of imaginary-

time β. From linear response theory, it is possible to relate
the superfluid weight to current-current correlators and
kinetic energy [59,71]:

Ds

4πe2
¼ 1

4
½h−kxi − Λxxðqx ¼ 0; qy → 0; iωm ¼ 0Þ�; ðD9Þ

0 ¼ h−kxi − Λxxðqx → 0; qy ¼ 0; iωm ¼ 0Þ: ðD10Þ

For the KT transition, we expect that [73]

FIG. 18. Example of on-chain pair correlator in ground-state
AFQMC for a 40 × 4 lattice with U ¼ −2t, t⊥ ≈ 0.14t, n ¼ 0.5.
We extract the effective order parameter for superconductivity
from the square root of the long-distance behavior (dashed line).
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lim
T→T−

BKT

T
ρs

¼ π

2
; ðD11Þ

where ρs ¼ ðDs=4πe2Þ is the helicity modulus. Thus, the
straight line in ρs − T space,

ρs ¼
2T
π
; ðD12Þ

intersects at T ¼ TBKT. An example of this is shown in
Fig. 19(a).
This calculation is performed for each size of the system,

yielding a trend of the finite-size TBKT which is then
extrapolated to the thermodynamic limit using the form [74]

TBKTðLÞ ¼ TBKT þ
A

lnL2
: ðD13Þ

An example of this fit is shown in Fig. 19(b).

3. Density

The AFQMC finite-temperature algorithm from the ALF
Collaboration uses the Blankenbecler-Scalapino-Sugar
algorithm [41,42,75]. This algorithm works in the grand
canonical ensemble as is necessary and will not have fixed
density. In general, we are interested in specifying the

density to work at as TBKT will have some dependence on
this quantity.
Precisely fixing the density requires simulation of a large

number of chemical potential values. In order to alleviate
this problem, we run simulations for a small number of
lattice points and determine the correct chemical potential
for a given temperature. We then use this value of chemical
potential for all lattice sizes and temperatures of that
parameter set. This will yield a notable error in density
as shown in Fig. 20. At the same time, we find that TBKT is
only modestly affected by density.

APPENDIX E: ARRAY OF HUBBARD LADDERS

We derive the effective 1D model for the weakly coupled
Hubbard ladders starting from the 3D array given by

H3D ¼
X
k;l

HHLðRk;lÞ þ t⊥H⊥; ðE1Þ

where

HHLðRk;lÞ ¼ −t
XL−1
i¼1

X1
j¼0

X
σ

ðc†iþ1;j;σðRk;lÞci;j;σðRk;lÞ þ c†i;j;σðRk;lÞciþ1;j;σðRk;lÞÞ − μ
X
i;j

ni;jðRk;lÞ

− t0
XL
i¼1

X
σ

ðc†i;1;σðRk;lÞci;0;σðRk;lÞ þ c†i;0;σðRk;lÞci;1;σðRk;lÞÞ þU
X
i;j

ni;j;↑ðRk;lÞni;j;↓ðRk;lÞ:

(a) (b)

FIG. 19. Strategy for obtaining TBKT for the parameters
U ¼ −4t, t⊥ ≈ 0.28t, and μ ¼ −0.6533t. In (a) an intersection
of ρs and 2T=π indicating TBKTðLÞ, and (b) the thermodynamic
limit of TBKT obtained through Eq. (D13). The aspect ratio is
chosen such that Ly ¼ Lx=4.

FIG. 20. The density over temperature for a given chemical
potential μ ¼ −0.6533t at parameters U ¼ −4t and t⊥ ≈ 0.28t.
The aspect ratio is chosen such that Ly ¼ Lx=4.
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The vector Rk;l denotes the position of the ladder in a 2D grid. We use the definition (Rk;l suppressed)

ni;j ¼
X
σ

c†i;j;σci;j;σ ¼
X
σ

ni;j;σ; ðE2Þ

and ci;j;σ follow the usual anticommutation relations.
So far, we have described only a set of Fermi-Hubbard ladders. The added Hamiltonian H⊥ is defined by

H⊥ ¼ −
XL
i;l

XL−1
k¼1

X
σ

½c†i;1;σðRk;lÞci;0;σðRkþ1;lÞ þ c†i;0;σðRkþ1;lÞci;1;σðRk;lÞ�

−
XL
i;k

X
j

XL−1
l¼1

X
σ

½c†i;j;σðRk;lÞci;j;σðRk;lþ1Þ þ c†i;j;σðRk;lþ1Þci;j;σðRk;lÞ�: ðE3Þ

Note that movement to neighboring ladders may change
what leg one is on. This is due to half of neighboring
ladders being side-by-side neighbors and the other half
being front-and-back neighbors.

1. Effective Hubbard-ladder Hamiltonian

When U is strongly repulsive and density is close to unit
filling, HHL and thus also the full set of ladders have a
spectrum which contains clusters of energy eigenstates
separated by large gaps. Thus, analogous to Eq. (9) it is
possible to derive an effective Hamiltonian

Heff
3D ¼

X
k;l

HHLðRk;lÞ −
t2⊥
ΔEp

P0H2⊥P0; ðE4Þ

where

ΔEp ¼ 2EðN þ 1; 1=2Þ − EðN; 0Þ − EðN þ 2; 0Þ ðE5Þ

is the pairing energy for a single ladder at particle number
N, and EðN; SÞ is the energy of a ladder at particle number
N and spin S. The operator P0 is a projector to the lowest-
energy manifold of the total system. As in Sec. II A, this
removes certain terms within H2⊥, such as two particles
moving to two separate ladders.
Expanding P0H2⊥P0 yields a new operator which is

quartic and acts like an effective interaction. Each inter-
action involves particles on two different ladders, e.g.,
moving two particles from one ladder to an adjacent one.

2. Mean-field Hamiltonian

With a quartic interaction where half the operators
involve one ladder and the other half involve the other,
we can make an ansatz of quasifree states:

hc†i c†jckcli ¼ hc†i c†jihckcli þ hc†i clihc†jcki − hc†i ckihc†jcli:
ðE6Þ

This allows us to create a mean-field Hamiltonian which
produces expectation values of this form. In the process, we
assume that expectation values involving operators on
different ladders are of negligible size and ignore them.
This leads to the mean-field Hamiltonian (for one ladder)

HMF ¼ HHL −Hpair −Hexc; ðE7Þ

where

Hpair ¼
X
i;i0;j;j0

αi;i0;j;j0 ðc†i;j;↓c†i0;j0;↑ þ ci0;j0;↑ci;j;↓Þ; ðE8Þ

Hexc ¼ −
X

i;i0;j;j0;σ

βi;i0;j;j0;σc
†
i;j;σci0;j0;σ; ðE9Þ

and the pairing amplitudes are given by

αi;i0;0;0 ¼
2t2⊥
Ep

ðhci0;1;↑ci;1;↓i þ 2hci0;0;↑ci;0;↓iÞ; ðE10Þ

αi;i0;1;1 ¼
2t2⊥
Ep

ðhci0;0;↑ci;0;↓i þ 2hci0;1;↑ci;1;↓iÞ; ðE11Þ

αi;i0;1;0 ¼
4t2⊥
ΔEp

hci0;0;↑ci;1;↓i; ðE12Þ

αi;i0;0;1 ¼
4t2⊥
ΔEp

hci0;1;↑ci;0;↓i; ðE13Þ

whereas the exchange terms are given by

βi;i0;0;0;σ ¼
2t2⊥
Ep

ðhc†i;1;σci0;1;σi þ 2hc†i;0;σci0;0;σiÞ; ðE14Þ
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βi;i0;1;1;σ ¼
2t2⊥
Ep

ðhc†i;0;σci0;0;σi þ 2hc†i;1;σci0;1;σiÞ; ðE15Þ

βi;i0;1;0;σ ¼
4t2⊥
Ep

hc†i0;0;σci;1;σi; ðE16Þ

βi;i0;0;1;σ ¼
4t2⊥
Ep

hc†i0;1;σci;0;σi: ðE17Þ

Note that the Hermiticity of Eq. (E9) is not apparent from
the expression but is hidden in the sum.

APPENDIX F: ANALYTICAL
Tc AND GAP ΔρðT = 0Þ

Here we give details on how to explicitly compute the
value of the ratio between Tc and the charge gapΔρðT ¼ 0Þ
when there is only one massless sector. For Tc, we study
how the mean-field order parameter approaches zero above
the critical temperature T > Tc. For the gap, the effective
Hamiltonian is sine-Gordon-like, and its spectrum is
largely studied in the literature. We thus rely on the exact
solution of the gap and the perturbative one of Tc.
The critical temperature can be estimated by noticing

that close to T ∼ Tc the order parameter approaches zero.
As stated in Ref. [48], we can expand the right-hand side of
the self-consistent condition Eq. (38) in powers of the (real)
order parameter itself Ψc ¼ hΨ†i ¼ hψ†

↑ðxÞψ†
↓ðxÞi. In the

path-integral formalism, the expansion in power of ΨcðT ≃
TcÞ ≪ 1 of the average reads

Ψc ¼
1

Zθρ

Z
Dθρe

−Sð0Þ
θρ
þt̄⊥Ψc

R
dr(ΨðrÞþΨ†ðrÞ)Ψðr0Þ

≃
R
Dθρe

−Sð0Þ
θρ et̄⊥Ψc

R
dr(ΨðrÞþΨ†ðrÞ)Ψðr0Þ

Zð0Þ
θρ
(1þOðΨcÞ)

≃ het̄⊥Ψc

R
dr(ΨðrÞþΨ†ðrÞ)Ψðr0Þi0

¼ t̄⊥Ψc

Z
drhΨ†ðrÞΨð0; 0Þi0 þOðΨ2

cÞ; ðF1Þ

where the integration over Dθρ stands for averaging
over all possible configurations and r ¼ ðx; τÞ, which
means that

R
dr ¼ R

L
0 dx

R β
0 dτ, with τ the imaginary time.

The letter S denotes the action andZ the partition function,
while the superscript “0” refers to the quadratic component
of the mean-field Hamiltonian. The effective coupling is
t̄⊥ ¼ ðt2⊥=ΔσÞzc. If we neglect second-order terms, the
resulting equation reads

1þ t̄⊥gR1 ðk ¼ ω ¼ 0; T ≃ TcÞ ¼ 0; ðF2Þ

with gR1 being the zero component Fourier transform of the
retarded correlation function. It is defined as

gR1 ðr; TÞ ¼ −hT τΨðrÞΨ†ð0; 0Þi0
¼ −ðAFρ0CÞ2hT τei

ffiffi
2

p
θρðrÞe−i

ffiffi
2

p
θρð0Þi0

¼ −ðAFρ0CÞ2e−h½θρðrÞ−θð0Þ�2i0 ; ðF3Þ

where we write explicitly the imaginary-time (τ) ordering
operator T τ. In the thermodynamical limit, such averages
h…i0 are well-known quantities and can be exactly
computed in 1D systems for quadratic Hamiltonians [4].
By analytically continuing to real time τ ¼ itþ ϵðtÞ, with
ϵðtÞ ¼ sgnðtÞϵ, the critical temperature is

Tc ¼
�
t2⊥
2Δσ

C2zc
ðρ0AFÞ2

uρ
sin

�
π

2Kρ

��
2πα

uρ

� 1
Kρ

�
uρ
2π

�
2

B2

�
1

4Kρ
; 1 −

1

2Kρ

�� Kρ
2Kρ−1

; ðF4Þ

with Bðx; yÞ ¼ ΓðxÞΓðyÞ=Γðxþ yÞ the beta function and AF a prefactor that depends on the specific microscopic model.
The choice of the cutoff α is arbitrary but should be sufficiently small so that the spectrum can be linearized. Moreover, the
nonuniversal constant AF is such that the final result is cutoff independent.
The charge gap is instead computed by noticing that the effective model is expressed by a sine-Gordon Hamiltonian. By

using the variational method, thus, approximating cos θ ∼ 1 − 1
2
θ2 and computing the action [4], we have that the spectrum

is gapped and behaves as EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðukÞ2 þ Δ2

var

p
. Even if the variational method gives the right scaling for the gap Δρðt⊥Þ,

here we use the exact formula [53] so we have also the exact prefactors

ΔρðT ¼ 0Þ ¼ uρ

�
ðρ0AFÞ2α

1
Kρ

Kρ=2

κ2ðKρ=2Þð4Kρ − 1Þ tan
�
π

2

1

4Kρ − 1

�
zc
uρ

t2⊥C2

2Δσ

� Kρ
2Kρ−1

sin

�
π

4Kρ − 1

�
; ðF5Þ

with κðKÞ a combination of gamma functions ΓðKÞ,
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κðKÞ ¼ 1

2
ffiffiffi
π

p Γð 1
8KÞΓð12 8K

8K−1Þ
Γð1 − 1

8KÞΓð12 1
8K−1Þ

: ðF6Þ

Notably, the unknown constants cancel out if we consider
the ratio Eq. (40). Moreover, this value depends only on the
interaction U, which modifies the Luttinger parameter Kρ.
We recall that this result is valid as long as t⊥ is the smallest
energy scale of the problem.

APPENDIX G: RENORMALIZATION-GROUP
THEORY

In this section, we give details on the RG procedure
implemented to describe an effective 1D Hubbard chain
when interactions are small and the pair size is much larger
than the microscopic cutoff (“lattice spacing”). The idea is
to integrate out all degrees of freedom corresponding to
energies between the bandwidth W (corresponding to
microscopic cutoff α0) and the spin gap Δσ (corresponding
to the pair size ξσ ¼ uσ=Δσ). It is important to underline
that the RG treatment is only valid when Δσ < W.

1. First step RG: Renormalization of charge and spins

In order to find the RG equations, we compute pertur-
batively (in the couplings) the correlation hψ†ðxÞψðxÞi
[4,76]. Let us start from the Luttinger parameter Kσ and the
dimensionless interaction g ¼ ðU=πvFÞ, with vF the Fermi
velocity

dKσðlÞ
dl

¼ −
K2

σðlÞg2ðlÞ
2

;

dgðlÞ
dl

¼ ½2 − 2KσðlÞ�gðlÞ: ðG1Þ

Because the system is spin isotropic, the equations are
equivalent to the ones from the XY problem [77]. For
U < 0, we flow toward larger g and smaller Kσ, and we
need to stop the flow when g ∝ Oð1Þ, say, at the RG length
l1. This fictitious length is defined from αðlÞ ¼ αðl ¼ 0Þel
with αðl ¼ 0Þ the original cutoff (lattice spacing).
In the presence of interchain tunneling, we need to

complete the above equations by the ones generated by the
interchain tunneling:

dt⊥ðlÞ
dl

¼
�
2 −

K̃ρ þ K̃σðlÞ
4

�
t⊥ðlÞ;

dJ̃ðlÞ
dl

¼
�
2 −

1

Kρ
− KσðlÞ

�
J̃ðlÞ þ J̃sðlÞ; ðG2Þ

where K̃ν ¼ Kν þ Kν
−1. The dimensionless couplings are

defined as

J̃ ¼ πα2

4uρ
ðρ0AFÞ2J and J̃s ¼

α2

2u2ρ
t2⊥; ðG3Þ

and the subscript s stands for source term. Note that the
transverse hopping is also, in principle, contributing to the
renormalization of the other parameters Eq. (G1) and ofKρ.
In practice, because we consider that the interchain tunnel-
ing is the smallest quantity in the problem and in particular
that t⊥ ≪ Δσ, we neglect such a renormalization in the first
step of the RG. In particular Kρ can be considered as
essentially constant in the first step of the RG. Note also
that the combination of interchain hopping and interactions
lead to a modification of the naive scaling of the interchain
tunneling. In addition to its own renormalization, the
single-particle interchain tunneling also generates via RG
the pair tunneling. This is due to the fact that pairs of
electrons that hop within a distance jr1 − r2j < αðlÞ are to
be considered local. Moreover, we need to enforce the
condition J̃ðl ¼ 0Þ ¼ 0 because the original Hamiltonian
Eq. (1) has only single-particle hopping, not pair hopping.
It is clear that, as we renormalize, the pair-hopping term is
generated and eventually will be the relevant coupling. It
easy to see that if from Eq. (G1) we flow toward smallerKσ,
then the 1=Kσ term in Eq. (G2) makes t⊥ an irrelevant
coupling.
We have to stop this first step of the flow when the

coupling constant in Eq. (G1) is of order one. At that scale
(l ¼ l1), the microscopic cutoff is of the order of the pair
size. Another estimation of l1 is the pair size αðl1Þ ∼ uσ=Δσ

where Δσ is the spin gap and uσ is the velocity of the spin
sector, before pairs become local. At that scale, the single-
particle tunneling is suppressed because of the gap in the
spin sector which can be formally seen in the RG equations,
Eq. (G2), by the fact that for small Kσ, t⊥ is formally
irrelevant.

2. Second RG step: Pair hopping
and dimensional crossover

In the second RG step l > l1, we have only pair hopping,
and spin excitations and single-particle hopping are sup-
pressed. The spin sector is out of the picture, and the RG
equation expressing the pair-hopping coupling becomes

dJ̃ðlÞ
dl

¼
�
2 −

1

Kρ

�
J̃ðlÞ: ðG4Þ

We thus see that at the scale l1we are now leftwith only the
charge sector as a massless sector and an effective Josephson
coupling between the chains. The situation is thus similar
to the one we had in the large spin-gap limit but with a
different Josephson coupling than the strong-coupling limit
J ∼ ðt2⊥=ΔσÞ. This has consequences for the absolute values
of the Tc and charge gap at zero temperature but the ratio is
unchanged compared to Eq. (40).
The absolute values of the Tc or the charge gap can

simply be computed by continuing the flow of Eq. (G4)
until the Josephson coupling itself becomes of order one.
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The scale at which the Josephson coupling reaches this
magnitude defines a second RG length l�. The condition is
set by J̃ðl�Þ ∝ Oð1Þ, which means that for l > l� the
coupling is so large that we are back to a 2D or 3D
system. From this length, we can define either the critical
temperature or the charge gap, because their ratio is fixed
from Eq. (40). By integrating Eq. (G4), we find that the RG
length l� at which the dimensional crossover occurs is

αðl�Þ ¼ αðl1Þ
�

1

J̃ðl1Þ
� 1

2−1=Kρ
; ðG5Þ

withαðl1Þ the pair size.Moreover, fromdimensional analysis
we know that energies scale as Δ̃ρð0Þ ¼ Δ̃ρðlÞe−l. We
observe that Δ̃ρðl�Þ ∝ J̃ðl�Þ ∼ 1, andwe find that the original
(dimensionless) charge gap Δ̃ρð0Þ reads

Δ̃ρð0Þ ¼ J̃ðl1Þ
1

2−1=Kρ
Δσ

uσ

vF
W

; ðG6Þ

where we define the lattice spacing from αðl ¼ 0Þ ¼ vF=W,
the bandwidth as W ¼ 2t, and the Fermi velocity
vF ¼ 2t sin ðπρ0=2Þ, with ρ0 the unperturbed density (1 at
half filling).
Finally, let us note that if we look directly at the pair

operator, we have

ψ†
R;↑ψ

†
L;↓ ∝ ei

ffiffi
2

p
θρ cosð

ffiffiffi
8

p
ϕσÞ: ðG7Þ

Averaging over the massive spin sector will lead to

ψ†
R;↑ψ

†
L;↓ ∝ Cei

ffiffi
2

p
θρ ; ðG8Þ

where the prefactor C could be related to

C ∝ hcosð
ffiffiffi
8

p
ϕσÞiHσ

: ðG9Þ

Because of the gap in the spin sector, this average is
nonzero.
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