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Abstract

The study of the properties of magnetic materials is of primary importance in the development of new
technologies. In this project, we aim to investigate the symmetries of some of the relevant properties of
a cobalt and platinum alloy that emerge from the symmetry of the crystal structure of the alloy. More
specifically, our goal is to calculate the magnetocrystalline anisotropy energy (MAE) for various orien-
tations of the magnetization. The MAE is computed through the implementation of density functional
theory (DFT) via the open-source package OpenMX.

The project consists of three main parts: Study on the convergence of the total energy of the system
as a function of some relevant parameters, computation of the energy, the spin magnetic moment and
the orbital magnetic moment as a function of the orientation of the magnetization, and a calculation of
the magnetocrystalline anisotropy energy of the studied alloy.

The studied system is an ordered compound of cobalt and platinum, with a tetragonal crystal structure.
The easy axis of magnetization was found to be along the c-axis of the crystal, and defined accordingly
towards the z-axis in cartesian coordinates. The compound exhibits angular symmetry for the energy,
the spin and orbital magnetic moments and the MAE, with a minimum energy along the easy axis of
magnetization and a maximum at spherical angles θ=90◦ and ϕ=45◦. Looking at the plots for the MAE,
this maximum can be interpreted as an energy barrier that must be surpassed in order to invert the
direction of the magnetization. Using an expression of the MAE in spherical angles, theoretical values
for the anisotropy constants K1, K2 and K3 are determined.
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1 Introduction

The last decades have seen the emergence of a new field inside of electronics that studies the intrinsic
spin of the electron and its associated magnetic moment, known as spintronics. Progress in this field,
which seemed only of academic concern at first, has supposed an increase in efficiency of data storage
and transfer [1].

Magnetoresistive random access memory (MRAM) is an emerging technology that is a consequence of
this progress. If the orientation of magnetization of a material can be regulated, it is then possible to store
bits of information that can later be read by passing a current through the magnetized material. MRAM
utilizes two magnetic layers separated by a thin insulating layer. The orientation of the magnetization
of one of the layers with respect to the other dictates which bit is written (if the layers are oriented in
the same way we have a 1, and if they are opposite to each other we have a 0) [2].
Magnets can lose or switch the orientation of their magnetization as a result of a small perturbation

of the system. Magnetocrystalline anisotropy energy (MAE) measures how ”hard” it is to magnetize
a material in a particular direction over the necessary to magnetize it along its easy axis. This makes
materials with a high MAE very useful for any type of magnetic recording or any other application of
permanent magnets, thus being the study of this quantity in different materials of particular interest.

The aim of this project is to study the magnetic properties of a cobalt-platinum ordered alloy (CoPt).
In particular, the magnetocrystalline anisotropy energy, which is expected to have an angular symmetry
that emerges from the symmetry of the tetragonal crystal. This in turn motivates a study on the energy,
the spin magnetic moment and the orbital magnetic moment.
The results were obtained from simulations performed using the open-source software OpenMX. OpenMX

uses non-collinear density functional theory (DFT) to numerically solve the DFT equation, which is sim-
ilar to the Schrösinger equation. Non-collinear DFT takes relativistic effects into account, including
spin-orbit coupling (SOC), which are necessary to perform the calculations [3-6]. Solving the numerical
problems is computationally heavy, requiring the use of powerful parallel computers. These computers
were provided by Tetralith, a HPC cluster at NSC, which is a part of Linköping University (LiU) and
the Swedish National Infraestructure for Computing (SNIC).

1.1 Crystal structure

Figure 1: Crystal struc-
ture of ordered CoPt
(L10). Here, the yel-
low spheres represent the
cobalt and the pink one
represents the platinum.
The unit cell contains only
one atom of cobalt and
one atom of platinum.

A crystal is an ordered and periodic arrangement of atoms that extends in
all three dimensions. The unit cell is the minimal structure of the crystal,
reflecting its symmetry and structure. The repetition of this unit cells along
the principal axes of the crystal defines the lattice. Mathematically, each
axis can be defined by a translation vector, a, b, c. By traversing integer
steps of the translation vectors, one can reach any lattice point from a given
starting position. This can be expressed as ka+lb+mc, where k, l and m are
integers [7].
The material used in this study is an ordered alloy of cobalt (Co) and

platinum (Pt). The crystalline structure of the so called L10 structure is
tetragonal, which implies that all three translation vectors are perpendicular
to one another, two being of the same length, different from the third [8].
By convention, the directions of the translation vectors are chosen to align
with the x, y and z axes, and specifically the z-axis is chosen to be the one
with different length. Additionally, for reference, the x-axis is defined in
Figure 1 to be along the dashed line that is perpendicular to the plane of
the paper. For the used alloy, the translation vectors have values of a=2.698
Å, b=2.698 Å, and c=3.727 Å. The volume of the unit cell can be calculated
from these values by following equation.

V = abc = 27.13Å3 (1)

1.2 Magnetocrystalline anisotropy energy (MAE)

Magnetocrystalline anisotropy is the dependence of the energy required to magnetize a material along
a certain direction, relative to the crystal lattice. A magnetically anisotropic material often has two
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preferred orientations of magnetization, corresponding to the lowest energy states. This direction is
labelled as the easy axis of magnetization (and often related with the z-axis in cartesian coordinates). The
MAE is the excess energy required to magnetize a material in a particular direction over the energy needed
to magnetize it along the easy axis. If this value is sufficiently high, the direction of the magnetization will
not spontaneously switch away from the easy one as a result of a perturbation of the system. Therefore,
materials with high MAE are widely used as permanent magnets.
The MAE for a tetragonal crystal, as is the case of the alloy used in this study, is given by the following

equation [9,10],
E

V
= K1 sin

2(θ) +K2 sin
4(θ) +K3 sin

4(θ) cos(4ϕ). (2)

Here, the coefficients K1, K2 and K3 are the so called anisotropy constants, which can be determined
either computationally or experimentally [9-11]. The angles, θ and ϕ, are the the ones from the spherical
coordinate system. As the easy axis is aligned with the z-axis, θ can be defined as the angle from the
easy axis toward the magnetization vector, and ϕ is the angle from the x-axis to the y-axis. For the
purposes of this project, it will be interesting to consider the previous equation at leading order [9],

E = K sin2(θ). (3)

Given the high symmetry of the crystal structure, a symmetry of the MAE depending on the angles is
expected. Calculating the MAE for two planes (which means fixing one angle while varying the other)
should manifest this expected symmetry, which would also mean that a sampling of only two planes is
sufficient to define the MAE in the entire space.
The expected symmetries of the MAE motivate a study on the relevant quantities that define the system

(namely the energy, the spin magnetic moment and the orbital magnetic moment) and their behavior as
θ and ϕ vary.

2 Method

This section gives an overview on the methods used to study the desired system and extract relevant
information from it.

2.1 Density Functional Theory (DFT)

Density Functional Theory (DFT) is a computational method used to perform numerical simulations of
quantum mechanical systems. In computational materials science, DFT is used to solve the Kohn-Sham
equation, which is similar to the Schrödinger equation, to calculate the total energy of the system.
Consider a system of N electrons and M nuclei, at positions ri and Rj. This system can be fully

described by the time-dependent Schrödinger equation [12], expressed as:

ĤeN = −
N∑
i=1

h̄2

2m
∇2

ri −
1

4πϵ0

N∑
i=1

M∑
j=1

e2Zj

|ri −Rj |
+

1

4πϵ0

N∑
i=1

N∑
j=i+1

e2

|ri − rj |

−
M∑
i=1

h̄2

2Mi
∇2

Ri
+

1

4πϵ0

M∑
i=1

M∑
j=i+1

e2ZiZj

|Ri −Rj |
.

(4)

From left to right, the terms correspond to the kinetic energy of the electrons, the Coulomb interaction
energy between electrons and nuclei, the Coulomb interaction energy between electrons, the kinetic
energy of the nuclei and the Coulomb interaction energy between nuclei.
Since the nuclei are many times more massive than the electrons,the Born-Oppenheimer approximation

can be used to simplify the Hamiltonian. This approximation considers the nuclei to be fixed in space,
so the Hamiltonian describes only the electrons [12]. The previous equation can thus written as:

Ĥe = −
N∑
i=1

h̄2

2m
∇2

ri −
1

4πϵ0

N∑
i=1

M∑
j=1

e2Zj

|ri −Rj |
+

1

4πϵ0

N∑
i=1

N∑
j=i+1

e2

|ri − rj |
. (5)

The non-relativistic Schrödinger equation fails to capture magnetism, as spin angular momentum does
not appear in this formulation. The most rigorous approach is to use the Dirac Hamiltonian, as it is
fully relativistic.
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A numerical resolution of this equation is not computationally plausible, given the sheer amount of
memory required to even store the wave function obtained from solving a many-body quantum mechan-
ical system. This problem can be solved by using DFT, which is able to quantify the ground state of
the system by knowing the electron density. In this approach, the electron density can be easily dis-
cretized, but its computation still requires the wave function. This issue can be circumvented by using
the Kohn-Sham equation, which uses non-interacting particles that generate the same density as an in-
teracting system. To do so, it uses and effective external potential that accounts for all relevant coupling
phenomena, including spin-orbit coupling (SOC) [12].

ĤKSΦ(r) = (− h̄2

2me
∇2 + VKS(n(r), r))Φ(r) = EΦ(r) (6)

In practice, an initial guess of the electron density is required to compute the Hamiltonian. The Kohn-
Sham equation is then solved, giving a new electron density function. The problem is considered solved
when the electron density function is sufficiently converged. The studied system requires SOC, which is
not supported in collinear DFT. Fortunately, the program used to run the simulation, OpenMX, supports
non-collinear DFT [3-6].

2.2 Convergence study

Before any physical study can be performed on the system, a convergence study is required. This study
aims to ensure the reliability of the results by making sure that the simulation is sufficiently accurate. In
order to estimate when the simulation is accurate, a study of the convergence of the total energy of the
system is performed, as this quantity is of prime importance to both the later study and the description
of the system.
The convergence study is performed in three steps in order to ensure the accuracy of the results. The

first step uses different resolutions of the grid size while maintaining the value of the energy cut-off set
to the default one. After the adequate size of the grid is determined, another study of the convergence
of the same quantity is performed, now varying the energy cut-off value. Lastly, another run on the grid
size is necessary to confirm the results.

2.2.1 K-grid

The first studied parameter is the k-grid, which refers to the discretization of the first Brillouin zone in
the k-space (reciprocal). The parameter consists of three positive integers, one referring to the number
of grid points in each direction. The length of a vector in the reciprocal lattice is inversely proportional
to its normal counterpart. Additionally, it is necessary for the grid to maintain the size ratios between
the three directions in order to keep the proper size of the first Brillouin zone. If we label the integers
that represent each of the three directions as a, b, and c, with a ratio of a:b:c, we can estimate the size
of the first Brillouin zone in the reciprocal space. In our study, the values of these parameters are as
follows: a=2.698, b=2.698, c=3.727. The values of the reciprocal parameters, and therefore the ratios,
are:

1

a
:
1

b
:
1

c
=

1

2.698
:

1

2.698
:

1

3.727
(7)

which is approximately equivalent to (4:4:3). During the convergence study, we increase the size of the
grid by this amount.

To show the convergence of the total energy, it is to be assumed that the last value is converged. Then,
all the data is offset so that the last value is 0 and two horizontal lines are plotted at ±1 mHa around
the last point. The total energy is considered to have converged when its value falls between these two
lines.

2.2.2 Energy cut-off

The second studied parameter during the convergence study is the energy cut-off, which is a value of the
energy used to prevent singularities from appearing during calculations of Fourier transformations. In
our study, we increase the value from 200 to 400 in steps of 25.
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2.3 Determining the symmetries of the system and the MAE

OpenMX allows for a constriction on the orientation of the spin along a certain axis. By solving the
problem described in section 2.1 with the spin constrained along evenly spaced orientations, the sym-
metries of the system can be calculated. Specifically, the study is performed by setting a value of ϕ and
then calculating said quantities for values of θ from 0◦ to 90◦ degrees, in intervals of 5◦. The values of
ϕ are also taken from 0◦ to 90◦, in intervals of 15◦.
The MAE of a system in a particular direction can be calculated by subtracting the energy along the

easy axis from the energy obtained in that particular direction. This means that the aforementioned
study is also relevant in determining the MAE, and might help show the expected symmetry of this
quantity.

3 Analysis of the results

3.1 Convergence study

The results of the convergence study are shown in figure 2. After the first step of the study, it is clear
that all grid sizes except for the smallest one, (4 4 3), have converged. Computational time increases
significantly with the grid size, so it is preferable to use the smallest possible value. Therefore, we choose
a grid size of (8 8 6). The second step of the study gives various options for the value of the energy
cut-off, as it converges at a cut-off energy of 300 Ha. Again, we want to choose the smallest possible
value of the energy cut-off, so we take 300 Ha. The third and last step confirms the value for the energy
cut-off chosen during the previous step of the convergence study.

Figure 2: Convergence study. Left: Convergence of the total energy of the system as a function of the
grid size. The points that fall between the two red lines (±1 mHa of the value of the last point, assumed
converged) are considered to be converged. Centre: Convergence of the total energy of the system as a
function of the energy cut-off with a set grid size of (8 8 6). Right: Confirmation of convergence study,
equivalent to the first step, but with the energy cut-off obtained from the second one.
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3.2 Symmetries

The result of the study on the symmetries of the system is shown in figure 3. The three observed
quantities show a specular angular symmetry for both angles θ and ϕ centered on 45◦. That is, for both
the energy and the spin magnetic moment, the values increase with ϕ from 0◦ to 45◦, and then decrease
from 45◦ to 90◦, mirroring the behavior from the first half of the values. The orbital magnetic moment
shows a similar behavior, but with a minimum at 45◦, instead of the maximum present on the other two
quantities. For the spin magnetic moment the system shows a notable variation with both angles, with

Figure 3: Calculated total energy, spin magnetic moment and orbital magnetic moment variation with
the angles θ and ϕ.

a maximum around the point where the system is the furthest away from θ=ϕ=0◦. The energy and the
orbital magnetic moment exhibit the same symmetry as the spin magnetic moment over ϕ, even if less
noticeably.
The magnetization depends on both the spin and orbital magnetic moments. It can be seen in figure

3 that the spin magnetic moment is around an order of magnitude larger than the orbital magnetic
moment, and that the latter orients itself in approximately the same direction as the former. Thus,
it can be stated that the direction of the magnetization is determined by the orientation of the spin
magnetic moment. It is important to note that the the spin and orbital magnetic moments are varied
along the same direction simultaneously.

3.2.1 Orbital and spin magnetic moment for cobalt and platinum

The individual contribution of cobalt and platinum to the orbital and spin magnetic moments is inter-
esting, as it allows for an easier comprehension of the relevance of each element in the studied alloy for
a given value of θ and ϕ. As it can be seen by both comparing figures 3 and 4 and by checking the
magnitude difference between both elements, it is clear that cobalt is the major contributor to both
quantities. The contribution of platinum is of minor relevance for both the orbital and spin magnetic
moment, even at their maximum values (θ=90◦ for the orbital magnetic moment and around θ=45◦ for
the spin magnetic moment). Therefore, it must be added to the last statement of the previous section
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Figure 4: Orbital (top) and spin (bottom) magnetic moment separated for cobalt (left) and platinum
(right) over the angles θ and ϕ.

that not only is the orientation of the total magnetization determined by the spin magnetic moment,
but that it is determined mostly by the spin magnetic moment of the cobalt.

3.3 Magnetocrystalline Anysotropy Energy (MAE)

Figure 5 shows the results of the MAE calculation. As expected, the system exhibits a symmetry over
ϕ, centered at 45◦. What is perhaps more relevant is the right plot from this figure, which allows for
a physical understanding of the consequences of this symmetry. Defining, as we have, the easy axis (or
z-axis) as the one where θ=ϕ=0◦, we see that in order to invert the direction of this axis, an energy
barrier is to be crossed. The plot corroborates that this definition of the easy axis is correct, as it is
where the energy is the lowest. Additionally, it gives an insight on the size of the barrier, this being of
0.4 meV/Co atom.
The results displayed on Figure 5 (left) exhibit maxima that vary from 0.002 to 0.0025 eV, depending

on the angle ϕ. These values are, respectively, of 11.81 and 14.76 MJ/m3. Other studies have found
values of similar magnitudes [8,13,14]. Specifically, Daalderop et al [13] non-self consistently computed a
MAE of 2.0 meV per unit cell, whereas Oppeneer [14] computed the MAE self consistently and obtained
1.0 meV per CoPt cell.
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Figure 5: Left: MAE variation over the angles θ and ϕ. Right: MAE variation over ϕ with a fixed value
of θ=90◦.

3.3.1 Anisotropy constants

The anisotropy constants can be calculated from equation (2) [9-11]. By considering only the equation
up to quadratic order, that is reducing it to equation (3), the first anisotropy constant can be calculated.
The value of K1 is the slope of the curve shown in Figure 6 (left) which plots the MAE per unit volume
as a function of sin2(θ). The other plot in this same figure shows the variation of the constant with the
angles θ and ϕ. It is to be noted that the value of K1 has a high dependency on ϕ as θ increases. This
is caused by the nature of the approximation and so the value of K1 must be taken as the one close to
θ=0◦ as possible. Therefore, we can consider K1 to be roughly equal to 87.6 µeV/Å3 (2.38 meV/unit
cell).
The obtained value is significantly larger than the one obtained in previous experimental studies, that

being of around 17.05 µeV/Å3 [15]. The causes for this difference can be a result of either the purity of
the sample, the size of the bulk or the temperature at which the experiment was performed.

Figure 6: Left: MAE per unit volume up to quadratic order. Right: Value of the anisotropy constant
K1 as a function of the angles θ and ϕ.

Next, we can calculate the third anisotropy constant, K3. In order to do so, we must take θ=90◦, so that
sin (θ)=1. This case is the one plotted in Figure 5 (right). K3 can be calculated by taking the maximum
and minimum values of the right plot of Figure 5 and calculating the semi-difference. The obtained value
for K3 is 8.73 µeV/Å3 (0.237 meV/unit cell).
This same figure allows us to estimate the second anisotropy constant, K2. By taking into consideration

the equation that defines it:
E

V
= K1 +K2 +K3 cos(4ϕ), (8)

we see that K1+K2 is a constant value that is not tied to any variable of the system. This allows us to
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calculate it as the sum between the third anisotropy constant and the minimum value of the MAE for
θ=90◦. K2 is thus equal to -6.52 µeV/Å3 (-0.177 meV/unit cell).
Lastly, we can check the accuracy of the determined values for the three anisotropy constants by plotting
the total energy per unit volume obtained by introducing the aforementioned values of K1, K2 and K3

into equation (2) against the one obtained through the computation performed with OpenMX. The black
continuous line in Figure 7 shows the ideal behavior of the plotted values if they where to be equal at
every point, for every value of θ and ϕ. However, even though this is true for small energies (which
means small values of θ), we can observe a deviation from the ideal behavior that can be due to the
approximations taken into consideration for the calculation of the three anisotropy constants to avoid the
apparent angular dependence. By taking the exact value of K1 at every value of θ and ϕ, as displayed
in Figure 6 (right), we obtain a value for the total energy that adjusts better to the ideal behavior.

Figure 7: Comparison between the computed values of the total energy (obtained with OpenMX) and
the calculated ones (obtained by introducing the values of K1, K2 and K3 into equation (2). The plot
on the right uses the values of K1 displayed in Figure 6.

4 Conclusion

The study on the energy, the spin magnetic moment and the orbital magnetic moment confirmed the
expected angular symmetry emerging from the crystal structure. It is of particular relevance the results
extracted from the study of the energy, as the direction of the easy axis is confirmed to be the one
pointing toward the c-axis of the tetragonal structure. This confirmation can also be extracted from the
magnetocrystalline anistropy energy analysis.

The studies of both the spin and the orbital magnetic moments are of great interest, as they allow us
to point out to Cobalt as the major contributor to these quantities and to the spin magnetic moment
as the major contributor to the total magnetic moment, as was expected given the magnetic ordering of
both components of the studied sample.

The magnetocrystalline anisotropy energy was found to be of the same order of magnitude (1-2 meV) as
previous computational studies. The obtained results confirm the fact that the studied alloy is a good
permanent magnet.

The study also found the values for the three anisotropy constants of lowest order. The first constant, K1,
was found to be 87.5 µeV/Å3, which is considerably greater than the one found in previous experimental
studies. The causes for this difference can be a result of either the purity of the sample, the size of the
bulk or the temperature at which the experiment was performed. The third anisotropy constant was
found to be 8.73 µeV/Å3 and K2 was found to be -6.52 µeV/Å3.
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