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Summary

� Salinity is detrimental to plants and developmental adjustments limiting salt uptake and

transport is therefore important for acclimation to high salt. These parameters may be influ-

enced by xylem morphology, however how plant root xylem development is affected by salt

stress remains unclear.
� Using molecular and genetic techniques and detailed phenotypic analyses, we demonstrate

that salt causes distinct effects on Arabidopsis seedling root xylem and reveal underlying

molecular mechanisms.
� Salinity causes intermittent inhibition of protoxylem cell differentiation, generating pro-

toxylem gaps, in Arabidopsis and several other eudicot seedlings. The extent of protoxylem

gaps in seedlings positively correlates with salt tolerance. Reduced gibberellin signalling is

required for protoxylem gap formation. Mutant analyses reveal that the xylem differentiation

regulator VASCULAR RELATED NAC DOMAIN 6 (VND6), along with secondary cell wall pro-

ducing and cell wall modifying enzymes, including EXPANSIN A1 (EXP1), are involved in pro-

toxylem gap formation, in a DELLA-dependent manner.
� Salt stress is likely to reduce levels of bioactive gibberellins, stabilising DELLAs, which in turn

activates multiple factors modifying protoxylem differentiation. Salt stress impacts seedling

survival and formation of protoxylem gaps may be a measure to enhance salt tolerance.

Introduction

Survival of plant seedlings is affected by many environmental
parameters such as available water and soil salinity. Salt has a neg-
ative impact on the plant both through its osmotic effect, which
may result in reduced ability for water uptake, and because of ion
toxicity (Munns & Tester, 2008). It affects many important pro-
cesses including photosynthesis, respiration, ion uptake and
membrane integrity (West et al., 2004; Tavakkoli et al., 2011;
Talei et al., 2012; Mansour, 2013; Awlia et al., 2021; Zhao
et al., 2021). Salt stress tolerance is expected to involve avoidance
mechanisms and reduced uptake and transport of salt ions
(Møller et al., 2009). The initial response to saline conditions is a
growth arrest of both primary and lateral roots followed by a
temporally dynamic acclimation process in which growth is
restored and salt tolerance mechanisms activated (Geng
et al., 2013). Therefore, it is conceivable that salt stress also affects
the development of the water transporting tissue, the xylem, as
that would impact salt uptake. However, how salt affects xylem
development is not well known.

The xylem harbours vessel strands of hollow cells reinforced
with lignified secondary cell walls (SCW). In the Arabidopsis
root the xylem forms an axis traversing the stele. The two
outer strands of the xylem axis differentiate as protoxylem with

annular or helical SCW, whereas metaxylem with pitted SCW
occupies the central positions of the axis (Fig. 1a). The diame-
ter and shape of the SCWs are thought to influence hydraulic
conductance, and the xylem shape correlates with drought
resistance in many different species (Arend & Fromm, 2007;
Awad et al., 2010; Tang et al., 2018; Yu et al., 2021). Recently,
we and others showed that xylem formation is plastic and
responds to water availability. Under conditions of reduced
water availability, extra protoxylem strands form, and
metaxylem differentiates closer to the root tip (Ramachandran
et al., 2018, 2021; Bloch et al., 2019). The hormone abscisic acid
(ABA) mediates these developmental responses by at least two
different mechanisms. Firstly, ABA promotes the production
of miR165 in the endodermis (Ramachandran et al., 2018;
Bloch et al., 2019). This miRNA moves into the stele to
reduce homeodomain leucine zipper class III (HD-ZIP III)
mRNA levels, eventually leading to protoxylem formation in
place of metaxylem (Carlsbecker et al., 2010; Miyashima et al.,
2011). Secondly, ABA directly promotes the expression of
VASCULAR RELATED NAC DOMAIN (VND) transcrip-
tion factors within the immature xylem cells, where VND7
promotes protoxylem formation, and VND2 and VND3
metaxylem differentiation closer to the root tip (Ramachandran
et al., 2021).
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Fig. 1 Protoxylem gaps are formed in response to salt. All images depict roots of 6-d-old Arabidopsis seedlings grown for 3 d on 140mM NaCl or under
mock conditions. (a) Cartoon of Arabidopsis seedling root xylem in longitudinal view and stele + endodermis in cross-section. imx, inner metaxylem; omx,
outer metaxylem; px, protoxylem. (b) Differential interference contrast (DIC) images of root xylem. White arrows indicate a protoxylem gap. Bar = 50 lm.
(c) Quantification of roots exhibiting different amounts of protoxylem gaps. Number of roots showing the phenotype are indicated in the graph; letters
indicate statistical significance considering no protoxylem gaps and any amount of protoxylem gaps with multiple Fisher’s exact test and Benjamini–
Hochberg (BH) correction, P < 0.05. (d) Quantification of soil-grown roots exhibiting protoxylem gaps. Number of analysed roots (n) is indicated on the
bars; letters indicate statistical significance with multiple Fisher’s exact test and BH correction, P < 0.05. (e–h) DIC and confocal micrographs of root xylem.
White arrows indicate protoxylem gaps. Arrowheads point at nuclei in protoxylem gap cells. Numbers indicate fraction of analysed gaps that showed (e)
cellulose secondary cell wall (SCW) pattern, (f) nuclear signal within the gap, (g) pANT:histone-YFP expression within the gap, (h) pVND7:YFP-NLS.
Turquoise, Calcofluor White staining cellulose; red, Basic Fuchsin staining lignin; blue, DAPI staining nucleus; green, pANT:histone-YFP or pVND7:YFP-
NLS. Bar = 20 lm.
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Salt stress also triggers ABA signalling, but recent research has
in addition highlighted the importance of gibberellin (GA) levels
and signalling. Reduced GA levels or signalling may result in salt
stress tolerance (Colebrook et al., 2014), whereas the absence of
the DELLA repressors of GA signalling make Arabidopsis less salt
tolerant (Achard et al., 2006). In line with these findings, salt
stress leads to a reduction in bioactive GA levels, which in turn
stabilises DELLAs (Achard et al., 2006; Magome et al., 2008).
Under normal conditions, GAs affect xylem lignification in both
primary and secondary development in several different species
(Eriksson et al., 2000; Mauriat & Moritz, 2009; Gou et al., 2011;
Ragni et al., 2011; Guo et al., 2015; Wang et al., 2017; Singh
et al., 2019), GAs promote xylem formation in secondary devel-
opment and are important for fibre development (Mauriat &
Moritz, 2009; Ragni et al., 2011; Felipo-Benavent et al., 2018).
Furthermore, DELLAs are implicated in the regulation of cell
wall synthesis and remodelling in Arabidopsis (Locascio et al.,
2013; Felipo-Benavent et al., 2018).

Here, we analyse the effect of salt stress on Arabidopsis
seedling root xylem development. We show that salt stress results
in discontinuous differentiation of the protoxylem strands gener-
ating protoxylem gaps. The capacity to form protoxylem gaps
correlates with salt tolerance, indicating that gaps promote sur-
vival under high salinity. We also show that the formation of pro-
toxylem gaps under salt stress requires DELLA-mediated
repression of GA signalling. Under salt stress, DELLAs promote
the expression of VND6 and genes encoding SCW enzymes, as
well as genes encoding multiple cell wall modifying enzymes
including alpha-expansins such as EXP1, also called EXPA1. The
loss of VND6 or EXP1 consequently results in less protoxylem
gaps forming under salt stress.

Materials and Methods

Plant material and growth conditions

Seeds were surface sterilised using 70% ethanol for 20 min and
95% ethanol for 2 min, and then rinsed four times for 2 min in
sterile water. The seeds were plated on half-strength Murashige
and Skoog (½MS) medium (Murashige & Skoog, 1962),
pH 5.7–5.8, with 0.05% MES monohydrate and 1% Bactoagar,
and stratified for 48 h at 4°C. Plants were grown in long day con-
ditions, with cycles of 16 h light at 110 lE light intensity and 8 h
darkness. Temperatures were 22°C (light), 20°C (darkness). For
all experiments, plants were grown vertically on 25 mm pore
Sefar Nitex 03–25/19 mesh, and transferred to new plates by
transferring the mesh supporting the plants for minimal distur-
bance. For GA3, a stock solution in 99.9% EtOH was prepared;
for GA4+7 and paclobutrazol (PAC) stock solutions were pre-
pared in dimethyl sulphoxide (DMSO). For plates with NaCl, a
3M stock solution was used and diluted in the medium to the
indicated concentration. Mannitol was added directly into the
medium after autoclaving. For Arabidopsis xylem phenotyping
experiments, 3-d-old seedlings were transferred to treatment
plates (including NaCl, mannitol, gibberellin and ABA) for 3 d.
For tolerance assays, 3-d-old plants were left on NaCl-plates for

4–7 d, as indicated. For RNA-sequencing analysis, 5-d-old
seedlings were used and exposed to salt for the indicated time. All
material was collected at the same time in the afternoon, to avoid
circadian clock effects. For phenotyping of Solanum lycopersicum
L. cv Moneymaker, Beta vulgaris L. cv Davinci, and Eutrema
salsugineum (Pall.) Al-Shehbaz & Warwick seedlings were grown
until roots reached c. 1 cm in length before transfer to salt for
3 d. For treatment on soil, seeds were sterilised, stratified and
then sown on soil. Here, 3-d-old seedlings were watered with
200 mM NaCl solution once per day during a 3-d period.
Seedlings were then removed from the soil, washed and mounted
in chloral hydrate (see below) for xylem morphology analysis.
Detailed information about all genotypes can be found in Sup-
porting information Methods S1.

Root length measurements

Root lengths were measured using FIJI/IMAGEJ software.

Xylem phenotype analysis

For analysis of xylem morphology, roots were mounted in chlo-
ralhydrate solution, 8 : 3 : 1 chloralhydrate : water : glycerol (w/v/
v), and visualised, as previously described, using a Zeiss Axio-
scope A1 microscope at 940 magnification with differential
interference contrast (DIC) optics (Ramachandran et al., 2018,
2021). Frequency of plants exhibiting the protoxylem gap pheno-
type was scored, and the number of gaps per root was counted.

Salt tolerance assay

Colouring of cotyledons of seedlings grown on high salt concen-
trations was determined after 4 or 7 d, as indicated. Plants
exhibiting white, pale green or green cotyledons were counted
separately. From the fraction of each category a survival score was
calculated multiplying white with 1, pale with 3 and green with 5
divided by the sum, following (Gibbs et al., 2011). Data from
one experiment with 3–5 replicates per genotype-treatment com-
bination is presented. The experiment was repeated two or three
times (Table S1).

Confocal analysis

For parallel staining of Basic Fuchsin and Calcofluor White or
DAPI, we followed a modified fixation protocol from Ursache
et al. (2018). Here, 6-d old seedlings were fixed with 4% PFA in
19 PBS, for 1 h for Basic Fuchsin and Calcofluor White, 10–
15 min for Basic Fuchsin and DAPI staining or 10–15 min for
Basic Fuchsin stain and transcriptional reporter lines. This was
followed by twice washing for 1 min with 19 PBS, and then
clearing overnight with ClearSee (10% xylitol, 15% sodium
deoxycholate and 25% urea in water). For the Basic Fuchsin
stain, seedlings were then stained with 0.2% Basic Fuchsin (in
ClearSee) overnight, and washed with ClearSee twice. For Cal-
cofluor White staining, seedlings were stained with 0.1% Cal-
cofluor White for 30 min, and washed with ClearSee for 30 min.
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For visualisation with confocal microscopy, roots were mounted
directly in ClearSee. For DAPI staining, seedlings were mounted
in 0.4 ll of 5 mg ml�1 DAPI solution in 10 ml H2O and visu-
alised directly. For pRGA:GFP-RGA reporter analysis, roots were
mounted in 40 mM propidium iodide (PI) solution between two
coverslips and imaged immediately.

Confocal micrographs were captured using Zeiss LSM780
inverted Axio Observer microscope with supersensitive GaAsP
detectors or an LSM800 inverted confocal microscope. For Cal-
cofluor White, a 405 nm laser was used for excitation and emis-
sion and wavelengths at 410–475 nm were captured. For Basic
Fuchsin images, wavelengths were 561 nm excitation and 600–
700 nm emission. For DAPI images, wavelengths were 405 nm
excitation and 410–511 emission. For reporter lines expressing
GFP and stained with PI, 561 nm excitation and 650–700 nm
emission were used for PI and 488 nm excitation and 410–
523 nm emission for GFP. For reporter lines expressing YFP,
514 nm excitation and 518–544 emission were used. For quan-
tification of fluorescence intensity all imaging parameters were
kept the same when imaging mock or treated roots. Fluorescence
intensity of pRGA:GFP-RGA in the provascular cells of the meris-
tem was quantified using CELLSET (Pound et al., 2012). Fluores-
cence intensity of pRGA:GFP-RGA in the vascular cells at the
transition zone was measured using IMAGEJ software (Schindelin
et al., 2012). From a z-stack the plane that transverse the centre
of the stele was selected, the vascular tissue was marked and the
intensity values were extracted using the plot profile function.
From all values the average was calculated. Selected pictures rep-
resent the average of all biological replicates.

RNA-sequencing analysis

Here, 5-d-old Arabidopsis seedlings of Landsberg erecta (Ler;
wild-type) and gai-t6 rga-t2 rgl1-1 rgl2-1 rgl3-4 (della5x), were
grown on 140 mM NaCl or under mock conditions for 1 or 8 h.
For the 8 h timepoint, ga4 and gai were grown in parallel. Three
biological replicates, each consisting of 50–100 seedlings, were
collected for each treatment–genotype combination. The lower
part of the root (1 cm) was collected directly into RLT buffer
(Qiagen) and frozen in liquid nitrogen. RNA was extracted using
the RNeasy Plant Mini Kit (Qiagen). RNA concentration was
measured using the Qubit BR RNA assay and quality and integ-
rity of the RNA was analysed using the Agilent Bioanalyser 2100
system (Agilent Technologies, Santa Clara, CA, USA). In total,
1000 ng RNA per sample were used for library preparation.
Library preparation and sequencing were performed by Novo-
gene (UK) on their Illumina sequencing platform with paired-
end read lengths for the 150 and 250–300 bp cDNA library,
resulting in 5.9–8.3 G raw data per sample (241.9 G total). FASTP
was used for quality assessment and adapter trimming (Chen
et al., 2018). Mapping to the Arabidopsis thaliana reference gen-
ome (TAIR10) was carried out using HISAT2 (Kim et al., 2019).
Here, 96% of the total reads were mapped to the Arabidopsis
genome, whereby 93% of the total reads were uniquely mapped.
Count files were generated using HTSEQ-COUNT (Anders
et al., 2015). Differential expression analysis was done using

DESEQ2 in BIOCONDUCTOR (Huber et al., 2015). For statistical
analysis of the effect of NaCl on the different genotypes com-
pared with wild-type, a DESEQ2 model including a combinato-
rial effect was used (~genotype + genotype : condition). Log2 fold
changes (FC) were extracted from the pairwise comparison of
mock vs treatment for each genotype, while P-values and adjusted
P-values were extracted from the comparison between the
mutants and wild-type. The effect of the different genotypes
under mock conditions was analysed in a separate differential
expression analysis and all values were extracted from the pairwise
comparison of wild-type vs mutant. A cut-off > 0.5 or <�0.5
log2FC was applied.

Gene Ontology (GO) term analysis was performed using the
PANTHER classification system (Mi et al., 2019, 2021) using Ara-
bidopsis thaliana as a reference and the GO annotation dataset
‘biological process complete’. Fisher’s exact test was selected as
test type and Bonferroni correction for multiple testing was per-
formed. Gene Ontology term clustering was performed using
REVIGO and P-values (Supek et al., 2011). Arabidopsis thaliana
was used as a reference, obsolete GO terms were removed and
SIMREL was used as semantic similarity measure.

Statistical analysis

For categorical data, Fisher’s exact test using the fisher.mult-
comp() function of the RVAIDEMEMOIRE package (Herv�e, 2021)
in R was performed and P-values < 0.05 were considered sig-
nificant. The P-values were corrected for multiple testing
using the Benjamini and Hochberg correction (Benjamini &
Hochberg, 1995). For other data, two-way ANOVA, using
the aov() function in R combined with a Tukey post hoc test
or t-tests using the t.test() function were used as indicated.
Statistical tests and significance thresholds are mentioned in
figure legends. Number of roots analysed are mentioned in
the corresponding figures.

Results

Salt stress inhibits local protoxylem differentiation causing
discontinuous xylem strands

To assess how salt stress affects seedling root xylem development
we grew 3-d-old Arabidopsis Col-0 seedlings on 140 mM NaCl
for 3 d and then analysed primary root growth and xylem mor-
phology in the now 6-d-old plants. This concentration is high
but nonlethal for 5-d-old plants (Dinneny et al., 2008). Consis-
tent with previous findings, in which transfer to salt resulted in
an initial growth inhibition relieved after some time of acclima-
tion (Geng et al., 2013), root growth on salt was substantially
reduced (Fig. S1b). We found that the predominant effect on
xylem morphology was an appearance of discontinuous pro-
toxylem, seen as protoxylem gaps spread along the part of the
xylem, which had differentiated during growth on high salt
(Figs 1b, S1a). Therefore, the protoxylem gaps were likely to be
not an effect of an initial root growth inhibition upon transfer to
high salt concentrations, but rather an effect of the salt stress
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itself. In 75% of the seedlings analysed, up to four protoxylem
gaps on either one or both xylem strands were induced, with an
average of 1.4 gaps per root (Fig. 1c). Growth for 3 d on concen-
trations ranging from 80 to 140 mM of NaCl revealed a concen-
tration dependence in the frequency of plants displaying
protoxylem gaps (Fig. S1d). Growth on 280 mM mannitol, iso-
osmolaric to 140 mM NaCl, only occasionally resulted in pro-
toxylem gap formation (Fig. S1d) suggesting that xylem gap for-
mation is mainly linked to ionic stress rather than the osmotic
stress. Formation of protoxylem gaps was also observed in the
primary roots of older, 14-d-old plants grown for 3 d on
140 mM salt (Fig. S1c) and in soil-grown 3-d-old seedlings
watered with 200 mM NaCl solution once a day for 3 d and then
rinsed and analysed (Fig. 1d).

While the formation of xylem gaps was consistently observed
in response to salt stress, it is possible that this is merely a symp-
tom of the toxicity of the salt ions in combination with the
osmotic stress causing collapsed cells rather than a developmen-
tally controlled response suppressing local xylem differentiation.
To distinguish between these possibilities, we analysed xylem
strands double stained with Basic Fuchsin and Calcofluor White
to visualise lignin and cellulose (Ursache et al., 2018). This
revealed that while lignin was absent in the gaps, cellulose was
detected. In two of nine gaps we observed cellulose with SCW
patterns (Fig. 1e) reminiscent of the fully lignified neighbouring
cells, while other gaps displayed a thin cell wall, indicating that
these cells only had a primary cell wall. This suggests that salt
impacted on SCW formation and lignin deposition. Following
SCW formation a xylem cell would undergo programmed cell
death (PCD) to form a hollow tube for water transport (Schuetz
et al., 2013). To analyse if the gap cells maintained a nucleus we
fixed and stained salt-grown roots with DAPI for DNA and Basic
Fuchsin for lignin. In the lignified xylem cells surrounding a gap
we could not detect DAPI staining, indicating that these cells had
undergone PCD. However, in three of five nonlignified xylem
gap cells, we detected localised DAPI staining indicating an intact
nucleus (Fig. 1f). Furthermore, pANT:histone-YFP, a reporter for
AINTEGUMENTA active in procambium, immature xylem cells
and vascular cambium (Randall et al., 2015), was expressed in
two out of five of the salt-induced gap cells, suggesting that these
cells displayed procambial or immature xylem cell identity
(Fig. 1g). In one out of eight protoxylem gaps, we observed
the expression of pVND7:YFP-NLS (Kubo et al., 2005), indicating
that some protoxylem gap cells had protoxylem identity (Fig. 1h).
As certain xylem gap cells apparently were living, we tested if gap
cells could resume differentiation if the plants grown on salt were
allowed to continue growth on normal medium. After transfer to
normal conditions, we observed few gaps in the part of the root
grown under normal conditions, indicating that xylem differenti-
ation then became continuous. However, the root section previ-
ously grown under high salt conditions exhibited similar
amounts of gaps as for those plants kept on salt, suggesting that
the gaps could not continue differentiation upon transfer to non-
salt conditions (Fig. S1e). Therefore, our analyses suggest that
salt triggers a local nonreversible suppression of xylem cell differ-
entiation.

Xylem gap formation is not ABA mediated

Extended growth on 140 mM NaCl for 3, 5 or 7 d revealed that
the formation of xylem gaps is a relatively early response, fol-
lowed by the formation of additional protoxylem strands
(Fig. S2a,b). Additional protoxylem formation also occurs under
water deficiency or after treatment with ABA (Ramachandran
et al., 2018; Bloch et al., 2019). To test if ABA signalling is simi-
larly important for the generation of xylem gaps we made use of
the dominant negative abi1-1C mutant, in which ABA signalling
is suppressed (Leung et al., 1994; Meyer et al., 1994). As previ-
ously found, abi1-1C reduced the frequency of additional pro-
toxylem formed upon osmotic stress (Fig. S2c,d), and it also
partially suppressed the formation of metaxylem closer to the
root tip that happens under growth on both salt and on mannitol
(Fig. S2e,f; Ramachandran et al., 2018, 2021). By contrast, pro-
toxylem gap formation upon growth on salt was not affected by
abi1-1C or reduced ABA signalling in the snrk2.2 snrk2.3 mutant
(Fig. S2g,i,j), nor did ABA treatment cause xylem gaps
(Fig. S2h). We note that half of the snrk2.2 snrk2.3 and 10% of
abi1-1C seedlings form protoxylem gaps under control condi-
tions (Fig. S2g,i), indicating that ABA signalling is needed for
continuous xylem differentiation consistent with our earlier
results (Ramachandran et al., 2018). Therefore, whereas forma-
tion of additional protoxylem and earlier metaxylem differentia-
tion are ABA-mediated effects also under growth on salt, xylem
gap formation appeared not to require ABA signalling.

Salt stress induces root xylem gaps in several eudicot
species

To elucidate if high salinity-induced protoxylem gap formation
is a general phenomenon in eudicot seedlings, we studied three
additional species. We selected tomato (Solanum lycopersicum;
Solanaceae, subclass Asteridae) that, like Arabidopsis (Brassi-
caceae, subclass Rosidae), is considered moderately salt sensitive
(Munns & Tester, 2008; Sun et al., 2010), sugar beet (Beta vul-
garis; Amaranthaceae, subclass Rosidae) that is salt tolerant (Sko-
rupa et al., 2019) and the halophyte Eutrema salsugineum
(Brassicaceae) (Yang et al., 2013). Similar to Arabidopsis, tomato
seedlings formed gaps in at least one of the protoxylem strands in
most roots analysed when grown on 140 mM NaCl (Fig. 2a,d).
For sugar beet and E. salsugineum seedlings roots 140 mM NaCl
did not significantly enhance gap formation, whereas growth on
200 mM NaCl did (Figs 2b,c,e,f, S3a,b). In E. salsugineum,
growth on 200 mM salt also induced additional protoxylem
strand formation (Fig. S3c). These results indicated that xylem
gaps formed upon salt stress in distantly related eudicot species,
regardless of whether these were salt sensitive, salt tolerant or even
halophytes, if exposed to a high enough salt concentration.

Gibberellin levels affect protoxylem gap formation

Several studies have indicated that levels of bioactive GAs are
reduced under saline conditions (Magome et al., 2008; Colebrook
et al., 2014). We therefore tested if altered GA levels could affect
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protoxylem gap formation upon growth on salt in Arabidopsis.
For this, we first grew plants on either 10 lM GA3, 1 lM GA4+7

or on paclobutrazol (PAC), which inhibits GA biosynthesis (Lee
et al., 1985), with and without 140 mM NaCl. Growth on GA
alone did not affect xylem development but, when we combined
GA and salt, we repeatedly noted a tendency of a lower number
of plants forming protoxylem gaps, compared with salt-grown
plants without GA added (Figs 3a, S4a,b). PAC on its own, and
in particular PAC together with salt, significantly enhanced the
number of plants forming xylem gaps (Figs 3b, S4c). These
effects were not observed when PAC was added together with
GA3, confirming that the effect of PAC on protoxylem gap for-
mation both under control conditions and on salt was due to its
effect on GA levels (Figs 3b, S4c). Consistent with these findings,
the ga4 mutant (Koornneef & van der Veen, 1980; Talon

et al., 1990), defective in a late step in the synthesis of bioactive
GA, displayed protoxylem gaps that could be restored by the
addition of GA3 (Figs 3c, S4d). Upon growth on salt, a signifi-
cantly higher frequency of the mutant plants formed protoxylem
gaps compared with wild-type (Figs 3c, S4d). Similarly, ga1-3
and ga1-5, defective in an earlier GA-biosynthesis step (Sun
et al., 1992), displayed an increased frequency of protoxylem gap
formation upon growth on salt, although not when grown under
control conditions (Figs S4e,f). Therefore, these findings sug-
gested that the reduction in GA levels was linked to the pro-
toxylem gap phenotype in Arabidopsis.

To test if gap formation occurred via similar mechanisms as in
Arabidopsis, we treated tomato seedlings with 10 lM PAC or
10 lM GA3. As in Arabidopsis, the PAC treatment induced pro-
toxylem gap formation in more plants than in the control,
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Fig. 2 Protoxylem gaps are formed in several eudicot species upon salt. (a) Differential interference contrast (DIC) images of tomato seedling root xylem
after growth on NaCl or under mock conditions for 3 d. (b) Sugar beet seedling root xylem after growth on NaCl or under mock conditions for 3 d. (c)
Eutrema seedling root xylem after growth on NaCl or under mock conditions for 3 d. White arrows indicate protoxylem gaps. mx, metaxylem; px,
protoxylem. Bar = 50 lm. (d) Quantification of tomato roots exhibiting protoxylem gaps. (e) Quantification of sugar beet roots exhibiting protoxylem gaps.
(f) Quantification of Eutema roots exhibiting protoxylem gaps. Numbers in the bars indicated n; letters indicate statistical significance with multiple Fisher’s
exact test and Benjamini–Hochberg (BH) correction, P < 0.05.
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Fig. 3 Reduced gibberellin (GA) levels and signalling induce protoxylem gap formation. (a–h) Quantification of roots exhibiting protoxylem gaps of 6-d-old Ara-
bidopsis or c. 6-d-old tomato seedlings of the indicated genotypes grown under indicated conditions for 3 d. Gid3x is gid1a-2 gid1b-3 gid1c-1; della5x is gai-t6
rga-t2 rgl1-1 rgl2-1 rgl3-4. Numbers in bars are n; letters show statistical significance with multiple Fisher’s exact test and Benjamini–Hochberg (BH) correction,
P < 0.05. (i) Confocal micrographs of pRGA::GFP-RGA in root transition zone of 5-d-old Arabidopsis seedlings after 6–9 h on 140mMNaCl, 280mMmannitol
or mock conditions. Red, propidium iodide (PI) stain; Green, GFP. Bar = 20 lm. (j) Quantification of mean stele pRGA::GFP-RGA intensity. Horizontal lines indi-
cate median, whiskers indicate 1.5 interquartile range (IQR), numbers indicate n; letters indicate statistical significance with two-way ANOVA, P < 0.05.
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whereas GA3 had a lesser effect, with a tendency to reduce the
number of plants forming protoxylem gaps both under control
conditions and upon treatment with 140 mM NaCl (Fig. 3d,e).
These results suggested that GA levels played a role in protoxylem
gap formation in tomato similarly to that in Arabidopsis.

DELLAs are required for protoxylem gap formation upon
salt

Gibberellin is sensed by GID receptors and, consistent with our
findings on altered GA levels, the gid1a-2 gid1b-3 gid1c-1 triple
mutant, defective in GA perception (Griffiths et al., 2006), dis-
played both increased frequency of plants with protoxylem gaps
and of gaps per root when grown on salt (Figs 3f, S5a). Upon GA
perception, DELLAs, which act as transcriptional co-regulators,
become degraded to allow GA responses (Locascio et al., 2013).
The DELLA-protein GAI is stabilised in the gai mutant and
therefore acts as a constitutive GA-signalling repressor (Koorneef
et al., 1985). Consistent with the involvement of DELLA-
mediated signalling for xylem gap formation, this mutant dis-
played an enhanced frequency of xylem gap-forming plants upon
salt (Fig. 3g). Previously, it was shown that the two DELLA pro-
teins, RGL3 and RGA, are stabilised upon exposure to salt
(Achard et al., 2006; Geng et al., 2013; Shi et al., 2017). To anal-
yse if growth on salt may affect RGA accumulation also in the
stele of the transition zone and the root meristem, we grew the
pRGA::GFP-RGA translational reporter lines on 140 mM NaCl
or 280 mM mannitol and analysed GFP signal intensity. This
revealed that salt, but not mannitol, significantly enhanced RGA
accumulation in the vascular stele cells of the transition zone and
the root meristem (Figs 3i,j, S5f,g), consistent with the previous
study.

The five DELLAs appeared to function redundantly in the
control of xylem gap formation. The single della mutants gai-td1
(Sessions et al., 2002), rgl3-5 and rga-28 (Tyler et al., 2004) had
no effect on gap formation upon salt stress (Fig. S5b,c), whereas
higher order mutants such as rgl3-5 rga-28 and the gai-t6 rga-t2
rgl1-1 rgl2-1 (della4x) mutant (Cheng et al., 2004), led to a grad-
ual increase in the suppression of protoxylem gap formation
(Fig. S5d,e). The DELLA quintuple (della5x) gai-t6 rga-t2 rgl1-1
rgl2-1 rgl3-4 mutant, defective in all five DELLA genes (Koini
et al., 2009), did not form significantly more protoxylem gaps
upon salt stress than under mock conditions (Fig. 3h). This sug-
gests that protoxylem gap formation induced by high salinity
requires multiple DELLA proteins.

DELLA-activated VND6 contributes to protoxylem gap
formation upon salt stress

To further understand the processes regulated by altered GA
levels and DELLA proteins in roots under salt stress, we analysed
global gene expression changes in roots of 5-d-old wild-type, del-
la5x, gai and ga4 seedlings after exposure to 140 mM NaCl for
1 h and/or 8 h compared with control conditions (Figs 4a, S6d).
The time points were selected to show the response at the initial
stress response phase, and when the plants had acclimatised and

resumed growth and development (Geng et al., 2013). Corrobo-
rating our results suggesting that salt reduced levels of active GAs
in the roots, we found several GA-2 oxidases, which inactivate
bioactive GAs, upregulated upon exposure to salt in the initial
stress response phase (Table S2). As salt affects protoxylem differ-
entiation, we focused our attention on genes previously found to
be expressed in immature xylem in two different single cell tran-
scriptomes (Denyer et al., 2019; Wendrich et al., 2020). Consis-
tent with the notion that a subset of the early stress responding
genes are under DELLA regulation, we found GO terms such as
‘response to stress’, ‘response to stimulus’ and ‘response to other
cellular components’ enriched among genes that were upregu-
lated in wild-type and differentially expressed in the della5x
mutant, among the xylem-active genes (Table S3). Genes down-
regulated in wild-type upon salt exposure, differentially regulated
by della5x and expressed in immature xylem were enriched for
processes such as ‘genes encoding enzymes involved in hemicellu-
lose synthesis’ (Fig. S6e–g). Therefore, cell wall modifications
may happen rapidly, but we expected most of the factors underly-
ing gap formation to primarily express at the acclimation phase
at 8 h. At the 8 h time point, 2887 genes were activated after
salt exposure in wild-type (log2FC > 0.5/log2 FC <�0.5,
Padj < 0.05). Of these 450 had a reported xylem expression, of
which 184 were differentially expressed in della5x, ga4 and/or gai
(P < 0.05) (Fig. 4b). These genes were enriched in GO terms
related to ‘response to stress’ but also ‘cell wall organisation and
biosynthesis’ (Fig. 4c), whereas the corresponding downregulated
genes included, for example, ‘stress response’, ‘water transport’
and ‘cellular processes’ (Fig. S6a,b). As the cell walls were altered
in the protoxylem gap cells, we focused our attention on the ‘cell
wall organisation and biosynthesis’ group of genes (Fig. 4d).
Among these were several encoding proteins with functions
related to cellulose and hemicellulose biosynthesis, along with the
xylem master regulator VND6, as well as several alpha-expansins.
The xylem expressed list with differential expression in GA
mutants included also the previously described VND6 target
MYB DOMAIN PROTEIN 83 (MYB83) (McCarthy et al., 2009;
Fig. 4d). Whereas these genes were activated by salt, the della5x
mutant displayed less strong activation and/or expression was fur-
ther upregulated in gai or ga4. This result is in agreement with
our finding that della5x suppressed xylem gap formation, and
also indicated that one or more of the DELLAs directly or indi-
rectly activates transcription of these xylem regulator genes in the
wild-type under salt stress. Several genes that were activated
under salt stress, but less so in the della5x mutant, including
VND6, displayed instead elevated expression levels in della5x
compared with wild-type under control conditions (Fig. S6c;
Table S2).

VND6 is reported to be active in metaxylem and as a
metaxylem master regulator (Kubo et al., 2005). However, recent
single cell analyses highlights also its activity in protoxylem cells
(Fig. S6h) To examine the potential influence of VND6 on
xylem development upon salt stress, we analysed the vnd6 mutant
(Kubo et al., 2005). Although it did not exhibit any apparent dif-
ferences in xylem development under control conditions, signifi-
cantly less protoxylem gaps were formed in vnd6 upon salt stress
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compared with wild-type (Fig. 4e), suggesting a role for VND6
in salt-induced protoxylem gap formation. The gap reduction in
vnd6 was relatively limited, indicating that additional factors con-
tributed to the xylem gap formation under salt. VND7 is a
VND6 paralogue, a well known regulator of protoxylem develop-
ment (Kubo et al., 2005), and therefore another candidate for the
observed protoxylem phenotype. However, VND7 expression
was not changed in our analyses and, in contrast with vnd6, the
vnd7 mutant did not affect protoxylem gap formation upon salt
stress (Fig. S6i).

Expansins may be involved in DELLA-dependent xylem gap
formation

Xylem gaps were not only observed upon salt stress, but certain
genotypes displayed gaps also under normal conditions. This
included protoxylem gaps in ga4 (Fig. 3c) and metaxylem gaps
upon inhibition of ABA signalling in the ground tissue caused by
driving abi1-1 by the ground tissue-specific J0571 enhancer line
(J0571>>abi1-1 vs C24>>abi1-1; Ramachandran et al., 2021).
We searched for a common set of genes that were differentially
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expressing in genotypes exhibiting xylem gaps and in our salt-
treatment datasets, and identified three genes: EXP1,
XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE
(XTH20) and a peroxidase family gene (At2G18150) (Fig. 5a,b).
Neither EXP1 nor XTH20 were found in the immature xylem sin-
gle cell transcriptomes (Denyer et al., 2019; Wendrich et al., 2020),
but previous expression data indicated that both were upregulated
in the stele in response to salt (Fig. S7a) (Geng et al., 2013). As sev-
eral genes encoding expansins were upregulated in response to salt
in our analyses (Figs 4d, S7b) and expansins previously had been
related to salt stress tolerance and vascular development (Jadamba
et al., 2020), we focused on EXP1. Whereas the expa1-1 mutant
did not display any xylem deviations under normal conditions, this
mutant could partially suppress protoxylem gap formation upon
salt stress (Fig. 5c), linking EXP1 also to modifications in xylem
development upon salt stress. To test the link between GA and
VND6 and EXP1, we treated the mutants with PAC. Both vnd6
and expa1-1 mutants displayed subtle tendencies to reduce the
effect of PAC (Fig. S7c), in line with VND6 and EXP1 acting
downstream of GA signalling.

Taken together, these results connected the xylem develop-
mental regulator VND6, along with several of its well known tar-
gets including genes encoding SCW-modifying enzymes, as well
as with one or more alpha-expansins as GA-regulated factors
important for the formation of protoxylem gaps under salt stress.
The relatively subtle effect of vnd6 on gap formation in response
to salt and PAC further indicates that other, as of yet unidenti-
fied, transcriptional regulators also are important for intermittent
repression of xylem differentiation.

Xylem gaps correlate with better survival under salt stress

Next, we asked if the xylem gaps might help the plant withstand
salt stress. As we had observed enhanced and reduced protoxylem
gap formation in the gid3x and the della5x mutants, respectively

(Fig. 3f,h), we first tested the salt tolerance of these, along with the
expa1 and vnd6mutants, displaying partially suppressed gap forma-
tion (Figs 4e, 5c). We grew 3-d-old seedling mutants along with
wild-type on medium containing 200mM NaCl for 4 d, and then
scored the survival of the 7-d-old plants by the colour of the cotyle-
dons (white vs green or pale green). The survival rate of the della5x
mutant was significantly worse than wild-type upon salt stress,
whereas gid3x survived significantly better upon salt stress com-
pared with wild-type (Figs 6a,b, S8a,b). For the vnd6 and expa1-1
mutants we did not observe a significant difference in tolerance
compared with wild-type (Fig. S8h–j). We noted that treatment
with 200mM NaCl severely compromised root growth (Fig S8a,b,
c,f,i). Therefore, the formation of new xylem is limited under these
extreme conditions. Furthermore, it has previously been reported
that DELLAs promote salt tolerance by reducing reactive oxygen
species (ROS) levels (Achard et al., 2008). Therefore, it is possible
that the effects on survival observed in the GA-signalling mutants
were independent of their capacity for xylem gap formation.

To further test the hypothesis that xylem gaps promote salt tol-
erance, we next assessed the salt tolerance of genotypes with no
known connection to GA signalling, but exhibiting excessive pro-
toxylem gap formation under normal conditions. We selected
ahp6-1, which affects protoxylem specification by interfering with
the auxin–cytokinin balance (M€ah€onen et al., 2006) and a multiple
vnd mutant, vnd1 vnd 2 vnd3 vnd7 (vnd1237), displaying both
protoxylem and metaxylem gaps, along with the vnd7 mutant
showing no deviant xylem phenotypes under normal conditions
(Tan et al., 2018; Ramachandran et al., 2021; Figs S6i, S8d,e,g).
Both ahp6-1 and vnd1237 survived significantly better upon salt
stress compared with the wild-type, whereas vnd7 behaved like the
wild-type (Figs 6c,d, S8c,f,j). We next tested if also older plants
benefitted from extensive protoxylem gaps, and analysed tolerance
of ahp6-1 transferred to salt when 7-d old, and analysed the sur-
vival in 11-d-old plants, exposed to high salt for 4 d. At this age we
did not find a significant difference in salt stress tolerance
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compared with the wild-type (Fig. S8l), indicating that protoxylem
gaps may be particularly important for young seedlings.

We next attempted to test if we could associate gap formation
in response to salt with tolerance. Because of the severe effects of
200 mM NaCl we instead assessed the effects of prolonged expo-
sure to 140 mM NaCl, which allows root growth, in Col and Ler
seedlings. Interestingly, for both wild-type ecotypes there was a
significantly higher amount of plants displaying protoxylem gaps
and green cotyledons compared with those with white cotyledons
(Fig. S8k), showing a correlation with xylem gap formation in
response to salt and salt tolerance.

Discussion

Protoxylem gaps may promote seedling survival under high
salinity

High soil salinity strongly impairs crop productivity and is a
major problem in agriculture (Shannon & Grieve, 1999).

Although salt affects plants at all developmental stages, the
seedling establishment phase may be particularly vulnerable, and
genetic traits affecting the performance of early life stages con-
tribute strongly to selection and local adaptation (Postma &
�Agren, 2016). Here, we provide results showing that the extent to
which young seedlings form protoxylem gaps correlates with salt
tolerance. We cannot exclude that other parameters also influence
salt tolerance but, supporting the relevance of protoxylem gaps,
such gaps are induced by high salinity not only in wild-type Ara-
bidopsis seedlings (Col-0 and Ler ecotypes), but also in seedlings
of other eudicot species. Previous studies have found that pro-
cesses that inhibit the transport of salt ions to the shoot via the
xylem promote salt tolerance (Møller et al., 2009; Jiang et al.,
2012). This may be seen in relatively salt tolerant Arabidopsis
accessions that respond to salt by developing smaller vessels and
less well developed xylem compared with phloem in the stem,
potentially reducing hydraulic conductivity (Sellami et al., 2019a).
The formation of protoxylem gaps may be another measure to
prevent or delay salt ion distribution within the seedling. By
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contrast, the acl5 mutant that developed extensive xylem was salt
hypersensitive (Shinohara et al., 2019). The protoxylem gaps
formed in response to salt stress may be particularly important
during the seedling establishment phase, as 11-d-old ahp6
seedlings with excessive protoxylem gaps, but after the onset of
secondary growth (Smetana et al., 2019), behaved similarly to
wild-type plants on salt. In very young seedlings, water transport
relies relatively more on the protoxylem, whereas most transport
would occur via metaxylem and secondary xylem vessels in later
developmental stages, probably decreasing the relative relevance
of the protoxylem strands.

Protoxylem gap formation upon high salinity requires
reduced GA signalling

Previously, we and others have found that plants exposed to
water-limiting conditions or elevated ABA levels respond by
forming additional protoxylem strands and metaxylem closer
to the root tip (Ramachandran et al., 2018, 2021; Bloch et al.,
2019). Here we show that these ABA-mediated responses also
occur upon exposure to salt stress, but only relatively late. A more
rapid response is the formation of protoxylem gaps, which hap-
pens independently of ABA signalling. Instead, multiple lines of
evidence point towards reduced GA levels and/or signalling as
critical for the formation of protoxylem gaps in response to salt
stress. In particular, a mutant defective in all five DELLA genes,
and therefore with de-repressed GA signalling, did not form pro-
toxylem gaps upon salt stress. Previous data have shown that high
levels of GA render plants more sensitive to salt, and that GA-2-
oxidases, which normally are upregulated by salt, reduce GA
levels and protect against salt stress (Achard et al., 2006; Magome
et al., 2008; Colebrook et al., 2014). Consequently, della mutants
are less salt tolerant, whereas stabilisation of RGL3, along with
the auxin-signalling repressor IAA17, confers salt stress resistance
(Achard et al., 2006, 2008; Shi et al., 2017). Whereas multiple
studies connect GA signalling with various steps of xylem devel-
opment (Ashraf et al., 2002; Colebrook et al., 2014; Guo et al.,
2015; Yamazaki et al., 2018; Singh et al., 2019), it has not been
clear if GA’s effects on xylem morphology and differentiation
impact salt tolerance. Therefore, our findings here contribute a
link between GA’s effects on xylem differentiation and salt
sensitivity.

Xylem master regulator VND6 is used in gap formation
under salt stress

A relatively large set of previously identified xylem-active genes
were upregulated in a DELLA-dependent manner under salt,
including genes encoding the xylem differentiation master regula-
tors VND6 and MYB83 (Kubo et al., 2005; McCarthy et al.,
2009), along with multiple genes known to act downstream of
these regulators encoding, for example, SCW cellulose synthases.
This was a puzzling observation, as the protoxylem gaps had
reduced SCW differentiation. However, the vnd6 mutant dis-
played a reduced capacity for gap formation, suggesting that the
activation of VND6 upon salt indeed was connected to

intermittently inhibited protoxylem cell differentiation. There-
fore, these results suggested that VND6 activated under salt con-
ditions may have a different and additional role rather than
governing metaxylem differentiation, and instead contribute to
the modification of protoxylem differentiation. How VND6
orchestrates this feat is currently unknown, and will be an impor-
tant question for future research. Intriguingly, our transcriptome
data suggest that DELLAs repressed VND6 under control condi-
tions, but activated it upon salt stress. It is known that DELLAs
can act both as transcriptional activators and repressors depend-
ing on the interaction partner (Locascio et al., 2013; Yoshida
et al., 2014). Discontinuous xylem has previously been observed
when overexpressing WRKY15 (Ge et al., 2020). In our tran-
scriptome, we see an induction of WRKY15 upon growth on salt,
however this appears to be DELLA independent. It will be rele-
vant to further assess a potential connection between WRKY15
and VND6, as well as identifying DELLA interacting partners
under normal and high salt conditions to elucidate how VND6
may shift activity to contribute to the promotion of protoxylem
gaps under salt stress.

It is likely that other factors in addition to VND6 act down-
stream of the DELLAs, as the vnd6 mutant could not completely
suppress gap formation under salt. We found that a mutant of
EXP1 also partially could repress xylem gap formation, indicating
that cell wall remodelling also contributes to xylem gap forma-
tion. Previous studies have similarly found elevated expansin
levels under salt stress, and cell walls may undergo extensive
remodelling under salt acclimation (Shen et al., 2014). Altered
SCW composition with a higher cellulose and hemicellulose con-
tent and reduced lignin was observed in the Arabidopsis stem
after salt stress, resulting in enhanced vessel elasticity, and pre-
venting collapse due to the osmotic stress (Sellami et al., 2019b).
In rice, overexpression of OsEXPA7 led to changes in the vascula-
ture and increased salt tolerance (Jadamba et al., 2020). From
our results, we cannot tell if cell wall modifications happened
exclusively in the xylem or also in other tissues, and it will be rele-
vant to further assess cell-specific effects upon salt stress.

Conclusion

Salt stress induces the local inhibition of protoxylem differentia-
tion, causing protoxylem gaps in young Arabidopsis seedlings.
Gap formation requires the DELLA-mediated repression of GA
signalling, and it is likely that salt stress triggers a reduction in
bioactive GA levels, therefore stabilising DELLA proteins. Under
salt stress, DELLAs promote a set of VND6-regulated factors,
which may include SCW differentiation enzymes. DELLAs also
promote other enzymes, such as alpha-expansins, as depicted in
the model in Fig. 6d. Mutational analysis of VND6 and EXP1
linked these factors to the formation of protoxylem gaps under
salt, as the mutants partially suppressed gap formation. The
xylem gaps may confer salt tolerance to young seedlings and
therefore provide an adaptive advantage. Seedlings of several
other, distantly related, eudicot species similarly formed pro-
toxylem gaps upon salt stress, and tomato seedlings responded
similarly to Arabidopsis to reduced GA levels. These findings
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suggested that protoxylem gap formation and the mechanisms
governing this trait are not specific to Arabidopsis.
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