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H I G H L I G H T S  

• use wave energy as the power for transportation ships. 
• A novel wave energy prediction method based on GRU. 
• The features of the model are assigned different weights.  
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A B S T R A C T   

Efficient use of renewable energy is one of the critical measures to achieve carbon neutrality. Countries have 
introduced policies to put carbon neutrality on the agenda to achieve relatively zero emissions of greenhouse 
gases and to cope with the crisis brought about by global warming. This work analyzes the wave energy with 
high energy density and wide distribution based on understanding of various renewable energy sources. This 
study provides a wave energy prediction model for energy harvesting. At the same time, the Gated Recurrent 
Unit network (GRU), Bayesian optimization algorithm, and attention mechanism are introduced to improve the 
model’s performance. Bayesian optimization methods are used to optimize hyperparameters throughout the 
model training, and attention mechanisms are used to assign different weights to features to increase the pre
diction accuracy. Finally, the 1-hour and 6-hour forecasts are made using the data from China’s NJI and BSG 
observatories, and the system performance is analyzed. The results show that, compared with mainstream 
prediction algorithms, GRU based on Bayesian optimization and attention mechanism has the highest prediction 
accuracy, with the lowest MAE of 0.3686 and 0.8204, and the highest R2 of 0.9127 and 0.6436, respectively. 
Therefore, the prediction model proposed here can provide support and reference for the navigation of ships 
powered by wave energy.   

1. Introduction 

Maritime transportation is the most widely used mode of transport in 
international trade. Ships are means of maritime transportation. At 
present, ships are powered mainly by burning fossil fuels. However, with 
the increase of demand, the exhaustion of fossil energy is inevitable [1]. 

Because of fuel consumption, a large amount of nitrogen oxide, carbon 
dioxide and other greenhouse gases will be produced in the process of 
shipping [2]. Greenhouse gases such as carbon dioxide generated by 
large-scale energy consumption are one of the main causes of current 
global climate change [3 4]. In recent years, more and more countries 
have taken carbon neutrality as an important task in the future [5 6]. 
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Carbon neutrality refers to the gradual offset of people’s carbon dioxide 
emissions by various mitigation [7]. By 2060, the Chinese government 
wants to be carbon neutral [8]. Therefore, it is very important to seek a 
new type of ship power energy that can replace traditional fossil fuels to 
reduce pollutant emissions and promote carbon neutrality [9]. 

The ocean is abundant in resources and has enormous development 
potential [10]. According to the report published by the International 
Energy Organization (IEA), different marine energy technologies can 
meet the current global electricity demand of nearly 20,000 TWh [11]. 
Ocean waves contain huge energy, belonging to renewable energy. The 
wave energy can be converted into electric energy through the wave 
energy converter (WEC) [12]. Ocean wave power generation has four 
advantages compared with traditional power generation methods based 
on analyzing the economic feasibility and components of wave power 
generation. (1) Energy density is higher [13]; (2) WEC has less impact on 
the environment during operation; (3) the wave loses little energy 
during propagation [14]; (4) the power generation efficiency is higher. 
Statistics show that the power generation rate of wave power generation 
devices is as high as 90 % [15]. Therefore, the application of wave en
ergy on ships has unique advantages, is economically feasible, and has a 
low cost. At the same time, using wave energy as the power source of 
ships can greatly reduce the pollutant emissions of ships during trans
portation, thereby realizing green ocean transportation [16 17]. In 
2006, Norway proposed the E/S Orcelle ship model, which uses wind, 
solar and wave energy as the power source [18]. In 2007, the American 
company Liquid Robotics developed a water vehicle powered by wave 
energy, which can sail for a long time on the water surface [19]. In 2011, 
Boston University built a wave-powered ship with autonomous sailing 
capabilities. 

In order to effectively utilize the wave energy in shipping lines, this 
paper proposes to use wave energy as the power source of ships. The 
contributions and innovations of this research are as follows.  

• Currently, there is a large amount of nitrogen oxides, carbon dioxide, 
and other greenhouse gases during shipping, increasing carbon 
emissions. To this end, a wave energy prediction model based on 
Gated Recurrent Unit network is proposed to achieve relatively zero 
greenhouse gas emissions. 

• In order to solve the problem of difficult selection of model hyper
parameters, we use the Bayesian optimization algorithm to optimize 
the hyperparameters. Through this algorithm, the best parameter 
combination can be obtained in a short time.  

• During the training process of the model, we use the attention 
mechanism to assign different weights to the features to achieve a 
more accurate prediction effect.  

• In the 1-hour and 6-hour prediction, we compare the model proposed 
in this article with the current popular algorithms, and the experi
mental findings demonstrate that our proposed model outperforms 
them. 

The rest of this paper is structured as follows. Section 2 introduces 
the recent related researches on wave energy prediction by related 
scholars and highlights the significance of this research by analyzing its 
advantages and disadvantages. Section 3 introduces the principle of 
gated recurrent units, Bayesian optimization and attention mechanisms. 
Section 4 describes the proposed wave energy prediction method, 
including the GRU wave energy prediction model based on Bayesian 
optimization and attention mechanism, the dataset used in the test, the 
data preprocessing process, the hyperparameters and evaluation met
rics. Section 5 evaluates the model’s prediction accuracy and discuss the 
prediction results. Section 6 is the conclusion of this paper. 

2. Recent related research 

Historically, numerical models were used to forecast wave elements. 
This method establishes an energy balance equation by simulating the 

wave evolution process generated by the wind field acting on the ocean 
surface, so as to achieve relatively satisfactory forecast results [20]. At 
the same time, the numerical models have the disadvantages of complex 
implementation, many inputs, and long processing time, which is not 
conducive to the accurate and rapid prediction of waves [21]. In recent 
years, in order to solve the shortcomings of numerical models, re
searchers have begun to use artificial intelligence algorithms to study 
the marine environment. In 2018, James et al. proposed a Multi-Layer 
Perception (MLP) model that can replace the numerical model SWAN 
based on the ocean data of Monterey Bay [22]. Although the MLP has 
better performance than the numerical models, the pros and cons of the 
MLP model are too dependent on the sample data of the training process. 
The research of Mahjoobi and Mosabbeb believes that support vector 
machine (SVM) has better generalization performance [23]. In addition, 
Mahjoobi and Etemad-Shahidi’s research believes that decision tree has 
better interpretability than MLP, and decision tree determines the 
relative importance of parameters by inputting branches, which is more 
suitable for wave element prediction [24]. The long short-term memory 
(LSTM) network improved from the recurrent neural network (RNN) has 
a unique chain structure, it is ideal for processing marine time series 
data [25]. In 2020, Fan et al. used the LSTM network to forecast the wave 
height of ten stations with different environmental conditions, and 
compared it with the results of algorithms such as random forest (RF), 
SVM and MLP, demonstrated the superiority of LSTM in wave height 
prediction [26]. Ni and Ma combined LSTM with principal component 
analysis (PCA) for continuous prediction of wave height under polar 
conditions [27]. The Gated Recurrent Unit (GRU) based on the improved 
LSTM simplifies the structure and computation of neurons [28]. 
Currently, GRU has been shown to outperform LSTM in several applied 
studies [29]. In 2022, Li et al. used the GRU network to forecast wave 
height for 6 stations along the coast of China [30]. Although the per
formance of GRU network is better than that of LSTM, a single neural 
network cannot select a small part of useful information from a large 
number of inputs to focus on processing. By combining an attention 
mechanism with a neural network, the model can be made to pay more 
attention to useful information [31]. In addition, the selection of 
hyperparameters is an important link in determining the prediction 
accuracy of the model. The same algorithm with different hyper
parameters will bring different results. In the past, hyperparameter se
lection mostly relied on manual search and empirical setting, but this 
method is time-consuming, and the results obtained may not be optimal 
hyperparameters. Bayesian optimization algorithms can obtain optimal 
hyperparameter combinations in fewer iterations [32 33]. 

Although wave energy shows many advantages over other renewable 
energy sources, it is difficult to characterize and predict because of its 
randomness. According to existing research, wave energy can be 
expressed by the equation F = 0.49•H2 • T, where H is the wave height 
and T is the wave period [34]. Therefore, accurate prediction of wave 
height and wave period is an important prerequisite for wave energy 
power prediction. 

3. Relevant technical theoretical knowledge 

3.1. Gated recurrent unit network (GRU) 

The GRU network is improved from RNN. By associating neurons 
between layers in the network, RNN solves the problem that the front 
and rear inputs in the traditional neural networks are independent of 
each other. Therefore, RNN offers certain advantages in learning the 
sequence’s nonlinear features, making it more suitable for dealing with 
time problems. Natural language processing, time series forecasting, and 
other domains make extensive use of RNN. In 1991, Hochreiter 
discovered that RNN has a long-term dependence problem, which means 
that while learning a long sequence, the network would exhibit gradient 
disappearance and gradient explosion, making it unable to understand 
the nonlinear relationship of long time span [35]. In order to solve the 
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long-term dependency problem, improved neural networks based on 
RNNs continue to emerge, including LSTM and GRU. 

Hochreiter and Schmidhuber proposed LSTM network in 1997 [36]. 
LSTM controls the transmission of information in the network through 
three gate devices (forget gate, input gate, and output gate). A sigmoid 
function (σ) and a dot product operation are included in each gate. σ 
outputs a number between 0 and 1, indicating how much information 
may travel through, 0 indicates no information is permitted to pass 
through, 1 means information is allowed to pass through, and the 
calculation equation is shown in equation (1). In contrast to the RNN’s 
recursive calculation for the system state, the three gates form a self-loop 
to the LSTM unit’s internal state. The input gate determines the current 
time step’s input as well as the update of the internal state of the pre
vious time step’s system state; the forget gate determines the update of 
the internal state of the previous time step to the internal state of the 
current time step; the output gate determines the internal state to update 
the system state. The structure of LSTM is shown in Fig. 1 [37]. 

σ(x) =
1

1 + e− x (1) 

Google’s testing suggests that three gates in an LSTM contribute 
differentially to its learning abilities, with the forgetting gate being the 
most essential, followed by the input gate, and lastly the output gate 
[38]. As a result, removing the gate with a tiny contribution and its 
related weight can simplify the neural network structure and increase 
learning efficiency. Based on the above concepts, Cho et al. proposed 
GRU in 2014 [39]. Only update gates and reset gates are included in the 
GRU. The update gate is analogous to the LSTM’s forget gate and output 
gate. It is used to govern how much of the preceding moment’s state 
information is carried into the present state. The greater the value of the 
update gate, the more prior state information is brought in. The reset 
gate is comparable to the LSTM’s input gate in that it influences how 
fresh input information is integrated with old memory; the smaller the 
reset gate, the less information from the previous state gets recorded. 
The structure of GRU is shown in Fig. 2. The rt in the update gate and the 
zt in the reset gate are obtained by equation (2) and equation (3), 
respectively. Among them, U and W are weight parameters. 

Rt = σ(Wrxt + Urht− 1) (2)  

Zt = σ(Wzxt + Uzht− 1)# (3) 

The current hidden state ht is obtained by Equation (4), where the 
calculation process of the candidate set h̃t is shown in Equation (5). The 
tanh is a hyperbolic tangent function whose expression is shown in 
equation (6). 

Ht = (1 − zt)ht− 1 + zth̃t # (4)  

H̃t = tanh(Whxt + Uh(rt ⊙ ht− 1) ) (5)  

tanh(x) =
ex − e− x

ex + e− x (6)  

3.2. Bayesian optimization 

The optimization of the hyperparameters of the model is one of the 
important factors influencing the final prediction effect. Currently, the 
commonly used hyperparameter optimization methods in research are 
grid search, random search and Bayesian optimization. Grid search is 
time-consuming because it needs to iterate through all combinations of 
candidate hyperparameter values. Random search is similar to grid 
search, but unlike grid search, which traverses all parameter value 
combinations, random search randomly selects a fixed number of 
hyperparameter value combinations within a given parameter value 
range to find the optimal parameter value or an approximation of the 
optimal parameter value for the purpose. Random search has a faster 
search speed, but the resulting hyperparameter values may not be 
optimal. The difference between random search and grid search is 
shown in Fig. 3 [40]. 

The Bayesian parameter tuning method was proposed by Snoek et al. 
in 2012 [41]. Its optimization strategy is to obtain the posterior distri
bution of the given objective function through the Gaussian process for 
the parameter value combination selected by sampling. After that, the 
following parameter value combinations are continuously selected ac
cording to the posterior distribution of the previous parameter value 
combination until the posterior distribution matches the real distribu
tion. For the search space Xn, the optimal solution xbest of Bayesian 
optimization can be expressed by equation (7), where f is the objective 
function. Compared with grid search and random search, the Bayesian 
optimization method has fewer iterations, faster speed, and more robust 
performance. And the Bayesian optimization method can continuously 
update the prior through the Gaussian process, using the historical pa
rameters The combination of values makes decisions about the next 
choice. 

Fig. 1. LSTM network unit structure.  

Fig. 2. GRU network unit structure.  

Fig. 3. Comparison of random search and grid search.  
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xbest = argminXn
f (Xn) (7) 

The Gaussian process of Bayesian optimization consists of mean and 
covariance functions, as shown in Equation (8), where μ is the mean and 
k(x, x′

) is the covariance function. For dataset D =

{(x1, f(x1) ), (x2, f(x2) ),⋯, (xt , f(xt) ) }, the Gaussian distribution is 
shown in equation (9). 

f (x) gp(μ, k(x, x′

) )# (8)  
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⋮
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# (9) 

For the new sample xt+1, the Gaussian distribution is shown in 
equation (10). The posterior probability distribution of ft+1 is shown in 
equation (13). 
[

f1:t

ft+1

]

gp

(

μ,
[

K kT

k k(xt+1, xt+1)

])

# (10)  

K =

⎡

⎢
⎢
⎣

k(x1, x1) ⋯ k(x1, xt)

⋮ ⋱ ⋮

k(xt, x1) ⋯ k(xt, xt)

⎤

⎥
⎥
⎦# (11)  

k = [((xt+1, x1), (xt+1, x2)⋯(xt+1, xt) ) ]# (12)  

P(ft+1|D,xt+1) = gp
(
u(xt+1), δ2(xt+1)

)
# (13)  

u(xt+1) = kK − 1f1:t# (14)  

δ2(xt+1) = k(xt+1, xt+1) − kK − 1kT# (15) 

where u, δ2 represents obeying xi N(u,δ2). The Bayesian optimization 
procedure is as follows:  

1) Randomly initialize a set of hyperparameter value combinations in 
the search space, and calculate the value of the objective optimiza
tion function.  

2) Continue to randomly select the hyperparameter combination, 
calculate the objective function value, and save the point if the value 
is better than the best value obtained in history.  

3) Repeat step 2 until the set number of iterations is reached. 

3.3. Attention mechanism 

The attention mechanism stems from the research of human vision. 
Since the bottleneck of information processing, people will selectively 
focus on the part of the information they wish to view while disregarding 

other observable information; this mechanism is known as the attention 
mechanism in cognitive research [42,43]. 其中，Fig. 4 illustrates the 
principle of attention mechanism applied to visual information 
processing. 

In Fig. 4, the input data consists of features and corresponding 
quantized values. The similarity between the input data and each feature 
is calculated as the weight coefficient of the input data information on 
each feature. Finally, the attention score is obtained by weighting and 
summing the weight coefficients on all features. Therefore, the essence 
of the attention mechanism is the weighted summation of the weights of 
different features. 

Nowadays, attention mechanism is widely used in the field of arti
ficial intelligence, such as image recognition and natural language 
processing. In neural networks, the attention mechanism is the focus on 
the assignment of input weights. The attention mechanism can assign 
weights to elements according on their relevance, focusing on crucial 
information with high weights and disregarding unimportant informa
tion with low weights. In addition, it can continuously adjust the 
weights, so that important information can also be selected in different 
situations, so it has higher scalability and robustness [44]. In the time 
series prediction problem, the attention mechanism can prevent 
important features from being ignored with increasing of time step. The 
weight allocation method can be expressed by equations (16) and (17), 
where ht is the state vector of the hidden layer in the neural network at 
time t, et is the attention probability distribution value, at is the attention 
score, ua and Wa are the attention weight vectors, ba is the attention bias 
vector. 

at =
exp(et)
∑t

k=1
ek

# (16)  

et = uatanh(Waht + ba)# (17)  

4. Improved GRU wave energy prediction model 

4.1. Model structure 

This study analyzes wave energy with high energy density and wide 
distribution to achieve relatively zero emissions of greenhouse gases to 
cope with the crisis brought about by global warming. In addition, the 
GRU algorithm, Bayesian optimization algorithm, and attention mech
anism are adopted to provides a model for predicting wave energy that 
can be used to harvest energy. The structure of the GRU wave energy 
prediction model based on the Bayesian optimization and the attention 
mechanism is shown in Fig. 5. 

The specific prediction process of the model in Fig. 5 is as follows. 
First, the input features of the predictive model are determined. Second, 
the Bayesian optimization algorithm is used to determine the hyper
parameters of the model. In the hidden layer of the model, different 
weights are assigned to the features through the attention mechanism. 
Then, after training with a large amount of data, the wave height and 
wave period prediction models are obtained respectively. We use the 
test set to compare the prediction results of the model with the observed 
values to determine whether the optimization end condition of the 
Bayesian optimization algorithm is reached. If yes, we use the models to 
forecast the wave height and the wave period separately; if not, we 
continue the hyperparameter optimization. Finally, we use the wave 
energy conversion equation to convert the predicted wave height and 
wave period into the predicted value of wave energy. 

This work chooses the mean square error (MSE) as the loss function 
during the model training process, as given in equation (18), where n is 
the number of samples, yi is the observed value, and xi is the predicted 
value. The update of the weight parameters is done by the Adam opti
mizer. The Adam optimizer combines the advantages of RMSProp and 
AdaGrad algorithms that are good at dealing with sparse gradients and 
non-stationary objectives, and it can achieve good results at a fast speed. 

Fig. 4. The principle of attention mechanism applied to visual informa
tion processing. 
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To prevent overfitting during model training, we adopted the Early 
Stopping algorithm, which stops training if the error on the validation 
set increases as the training rounds increase. 

MSE =
1
n

∑n

i=1
(yi − xi)

2
# (18)  

4.2. Experimental environment 

The system was built on the Matlab network simulation platform to 
verify the performance of the GRU wave energy prediction model based 
on Bayesian optimization and attention mechanism constructed here. In 
the experiment, the neural network was built using the Tensorflow 
framework open source by Google. This framework is a machine 
learning and deep learning programming framework based on vector 
flow graph. The matrix operation was completed by using Numpy and 
Pandas open source toolkit. Pandas library provides excellent assistance 
for data cleaning and data preprocessing in data analysis. In the soft
ware, the operating system is Linux 64bit, the Python version is Python 
3.6.1, and the development platform is PyCharm. In hardware, the CPU 
is Intel core i7-7700@4. 2 GHz 8 cores, the memory is Kingston DDR4 
2400 MHz 16G, and the GPU is Nvidia GeForce 1060 8G. 

4.3. Ocean observation data 

This paper selects the observation data of two observation stations in 
the coastal waters of China to achieve accurate prediction of wave en
ergy. The data comes from Marine Professional Knowledge Service 
System (https://ocean.ckcest.cn/). The time interval of the observation 
data is 1 h and the precision is 0.1. The selected dataset contains ob
servations for all time frames of the year. As a result, the model’s pre
diction ability under various environmental situations may be tested. 
Table 1 contains information on the two stations, and Fig. 6 depicts their 

geographic distribution. 

4.4. Data preprocessing 

4.4.1. Missing value padding 
The observation station is not a perfect ocean monitoring system. 

Since factors such as the design life of the equipment and the natural 
wear and tear of the instruments, observation interruption and missing 
data are common, and the original observation data has a large number 
of missing values. In order to improve data quality and reduce the 
impact of missing values on model prediction accuracy, this paper fills 
missing values in the data set using the before and after average value 
filling method, which takes the average value of the attribute value at 
the moment before the missing value and the attribute value at the 
moment after the missing value is taken as the filling value at the 
missing moment. When multiple consecutive values are missing, the 
average value of the two adjacent non-null values is used to fill in. 

4.4.2. Feature selection 
Since ocean waves are waves of sea water caused by the action of 

wind, there is a close relationship between wind and ocean waves. 
Previous studies have also shown that wind speed and direction are 
important factors affecting ocean waves [45,46]. Based on past research, 
in order to train a model with high prediction accuracy without 
consuming many computing resources, the wind speed and wind di
rection data within 2 h of history are selected as the characteristics of the 
prediction model. In addition, the wave height and wave period within 
2 h of history are also added. Therefore, the 8 features of the model are 
historical 1-hour wind speed, historical 1-hour wind direction, historical 
1-hour wave height, historical 1-hour wave period, historical 2-hour 
wind speed, historical 2-hour wind direction, historical 2-hour wind 
direction Wave height, historical 2-hour wave period. 

Fig. 5. The structure of the GRU wave energy prediction model based on the Bayesian optimization and the attention mechanism.  

Table 1 
Details of selected site data.  

Station Latitude longitude Time Maximum wind speed (m/s) Maximum wave height (m) Data size 

NJI 27.5 N 121.1E 2018.07.01–2019.07.31  23.7  7.5 9504 
BSG 26.7 N 120.3E 2019.08.01–2020.08.31  21.6  4.5 9504  
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4.4.3. Feature normalization 
In a model with multiple features, different units of measurement of 

features will lead to different calculation results. Large-scale features 
will play a decisive role, while small-scale features may be ignored. In 
order to reduce the impact of the measurement unit and scale differences 
between different features, this paper adopts zero-mean normalization 
to process feature data. This method can speed up the speed of gradient 
descent to find the optimal solution. The mean of the standardized data 
is 0 and the standard deviation is 1, which follows a standard normal 
distribution. Its calculation equation is shown in (19), where n is the 
sample size, X* is the processed data, X is the original data, X is the 
original data’s mean, and δ is the original data’s standard deviation. The 
standard deviation is calculated as equation (20). 

X* =
X − X

δ
# (19)  

δ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Xi − X)2

√

# (20)  

4.5. Model hyperparameters 

In this section, the hyperparameters of the GRU wave energy pre
diction model and the hyperparameters of the other three comparison 
algorithms are optimized based on the Bayesian optimization algorithm, 
and the number of optimization iterations is 30. The value range and 
final value of the hyperparameters to be optimized are shown in Table 2 
and Table 3, among them, time_step is the time step, and its value range 
is (2, 128); units is the number of neurons, and its value range is (2, 128); 
dense is the number of fully connected layer nodes, and its value range is 
(2, 128); the number of n estimators trees, and its value range is (10 
200); max depth is the maximum depth of the tree, and its value range is 
(5, 10). Moreover, the hyperparameters of the GRU model and LSTM 
model constructed here include time_step, units, dense; the hyper
parameters of MLP model include units; the hyperparameters of the RF 
model include N estimators and Max depth. In addition, the learning 
rates of the neural networks GRU, LSTM, and MLP are all 0.001, and the 

training rounds are all 100. The activation function of GRU and LSTM is 
tanh, as shown in equation (4), and the activation function of MLP is 
linear rectification function (ReLU), as shown in equation (21). 

ReLU(x) = max(0, x) (21)  

4.6. Model evaluation index 

In order to test the model’s prediction performance completely, this 
study uses MSE, root mean square error (RMSE), mean absolute error 
(MAE), mean absolute percentage error (MAPE), Pearson correlation 
coefficient (R) and coefficient of determination (R2) as evaluation 
indices. We can easily assess the performance of the prediction model in 
the test set using these evaluation indicators, which include the differ
ence between the observed and predicted values as well as the degree of 
correlation between the observed and predicted values. The evaluation 
indices are represented by equations (18), (22), (23), (24), (25) and 
(26), where n is the number of samples, yi is the observed value, xi is the 
predicted value, yi is the mean of yi, and xi is the mean of xi. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − xi)

2

√

# (22)  

MAE =
1
n
∑n

i=1
|yi − xi|# (23)  

MAPE =
∑n

i=1

⃒
⃒
⃒
⃒
yi − xi

yi

⃒
⃒
⃒
⃒×

100
n
# (24)  

R =

∑n

i=1
(yi − yi)(xi − xi)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1
(yi − yi)

2
∑n

i=1
(xi − xi)

2
√ # (25)  

R2 = 1 −

∑n

i=1
(yi − xi)

2

∑n

i=1
(yi − yi)

2# (26)  

Fig. 6. Geographical location of selected sites.  

Table 2 
Hyperparameter optimization values of NJI site model.  

Algorithm Hyperparameter Optimization range 1-hour wave height 1-hour wave period 6-hour wave height 6-hour wave period 

GRU time_step (2, 128) 47 21 4 19 
units (2, 128) 33 19 128 22 
dense (2, 128) 37 6 100 57 

LSTM time step (2, 128) 12 26 40 85 
units (2, 128) 24 11 108 61 
dense (2, 128) 7 3 82 89 

MLP units (2, 128) 53 37 110 40 
RF n estimators (10, 200) 64 181 137 31 

max depth (5, 10) 6 5 5 8  
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5. Results and discussion 

5.1. Analysis of 1-hour prediction results of different algorithms 

Table 4 shows the 1-hour wave height prediction results of the wave 
height prediction model at the two stations after the training of the four 
algorithms is completed. The best outcomes are shown in bold. The re
sults show that because both LSTM and GRU are improved from RNN, 
they can effectively learn historical information. So, their prediction 
performance is better than MLP and RF. Among them, all the evaluation 
indicators based on the improved GRU proposed in this paper are 
optimal at the two stations. The prediction accuracy of the MLP is higher 
than that of the RF. It can be seen that in the prediction of the wave 
height, the prediction effect of the neural network is better than that of 
the traditional machine learning algorithm. Compared with the LSTM 
algorithm, in the wave height prediction of the NJI station, the MSE of 
the GRU based on the Bayesian optimization and attention mechanism is 
reduced by approximately 8.3 %, the RMSE is reduced by approximately 
3.8 %, the MAE is reduced by approximately 10.9 %, the MAPE is 
reduced by approximately 12.4 %, the R is improved by approximately 
12.4 %, and the R2 is improved by approximately 0.5 %. 

Observation data for a period of time at the two stations is compared 
with the prediction data of the four algorithms to reflect the model’s 1- 
hour wave height prediction impact clearly, as shown in Fig. 7. 

As shown in Fig. 7, the prediction data of the four algorithms are 
compared with the observation data of NJI and BSG stations for a period. 
It can be seen that the fitting effect of the GRU algorithm based on 
Bayesian optimization and attention mechanism outperforms other al
gorithms. Among them, the performance of LSTM and GRU is similar, 
and the prediction effect is satisfactory. In contrast, the prediction curve 
of MLP and RF algorithms fluctuates dramatically. In particular, the 
prediction effect of RF is not as good as that of GRU and LSTM, which 
may be related to the simpler model structure. Therefore, the GRU al
gorithm based on Bayesian optimization and attention mechanism re
ported here can predict the wave height more accurately. 

Table 5 presents the 1-hour wave period prediction results of the four 
different algorithms at two different stations, with the best results 
highlighted in bold. Similar to the wave height prediction, the evalua
tion indicators of the GRU algorithm based on the Bayesian optimization 
and attention mechanism proposed in this article are the best, followed 
by LSTM and MLP, and RF is the worst. Compared with the LSTM 

algorithm, in the wave period prediction of the NJI station, the MSE of 
the GRU based on Bayesian optimization and attention mechanism is 
reduced by approximately 3.4 %, the RMSE is reduced by approximately 
1.8 %, the MAE is reduced by approximately 0.6 %, the MAPE is reduced 
by approximately 0.5 %, the R is improved by approximately 0.2 %, and 
the R2 is improved by approximately 0.4 %. 

Fig. 8 depicts a comparison of the predicted and observed values of 
the four algorithms. From the NJI station, we can see that when the wave 
period changes smoothly, the prediction gap between the four algo
rithms is not large; from the BSG station, when the wave cycle fluctuates 
frequently, the deviation between the prediction curve of MLP and RF 
and the observation curve is large. The prediction accuracy has dropped. 
Since the GRU and the LSTM can make decisions in the future according 
to the changing laws of historical time series information, they can 
better fit the observations. 

Table 6 displays the 1-hour wave energy forecast performance of the 
four algorithms using various evaluation indices, with the best results 
highlighted in bold. From the comparison of algorithms, the four algo
rithms have shown satisfactory results in the 1-hour wave energy pre
diction, and their R are all greater than 91 %. The GRU based on the 
Bayesian optimization and attention mechanism has the best perfor
mance in all evaluation metrics. In the NJI station, the MAE is 0.5555, 
and the R2 is 91.27 %. Compared with the wave height and the wave 
period prediction, the prediction results of LSTM and MLP are similar, 
and there is no obvious difference. The above results verify that the four 
algorithms GRU, LSTM, MLP, and RF all have high prediction accuracy 
in 1-hour wave energy prediction, and the improved GRU proposed in 
this article is superior in 1-hour wave energy prediction. 

Fig. 9 depicts a comparison of the predicted values and observed 
values of wave energy for the four algorithms in the 1-hour prediction. It 
can be seen from Fig. 8 that the wave energy in the NJI observatory 
shows a trend of first increasing and then decreasing with time, while 
the wave energy in the BSG observatory shows a trend of first decreasing 
and then basically stable. The prediction effect of each algorithm is 
similar to that of wave height prediction. The prediction value of GRU 
and LSTM is the best, which is closer to the observed value; the pre
diction value of MLP and RF is poor and tends to fluctuate and large 
errors. 

Table 3 
Hyperparameter optimization values of BSG site model.  

Algorithm Hyperparameter Optimization range 1-hour wave height 1-hour wave period 6-hour wave height 6-hour wave period 

GRU time_step (2, 128) 79 33 69 6 
units (2, 128) 34 11 35 31 
dense (2, 128) 127 16 127 38 

LSTM time step (2, 128) 25 48 68 10 
units (2, 128) 16 37 13 103 
dense (2, 128) 86 12 34 73 

MLP units (2, 128) 21 48 99 3 
RF n estimators (10, 200) 53 13 34 31 

max depth (5, 10) 6 7 8 5  

Table 4 
1-hour wave height forecast results.  

Station Algorithm MSE RMSE MAE MAPE R R2 

NJI GRU  0.0100  0.1002  0.0667  0.0658  0.9695  0.9397 
LSTM  0.0109  0.1042  0.0749  0.0751  0.9676  0.9347 
MLP  0.0116  0.1078  0.0778  0.0802  0.9644  0.9301 
RF  0.0139  0.1180  0.0865  0.0868  0.9577  0.9163 

BSG GRU  0.0085  0.0925  0.0612  0.0824  0.9583  0.9179 
LSTM  0.0090  0.0949  0.0649  0.0905  0.9564  0.9135 
MLP  0.0099  0.0997  0.0692  0.0944  0.9536  0.9045 
RF  0.0101  0.1005  0.0725  0.1011  0.9506  0.9029  
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5.2. Analysis of 6-hour prediction results of different model algorithms 

Table 7 summarizes the 6-hour wave height forecast results from the 

four algorithms at the two stations, with the best findings in bold. The 
table shows that when the predict time interval increases, the prediction 
accuracy of each method diminishes. Taking the GRU based on the 

Fig. 7. 1-hour wave height forecast comparison.  

Table 5 
1-hour wave period forecast results.  

Station Algorithm MSE RMSE MAE MAPE R R2 

NJI GRU  0.1457  0.3816  0.2422  0.0440  0.9484  0.8993 
LSTM  0.1508  0.3884  0.2436  0.0442  0.9465  0.8957 
MLP  0.1545  0.3931  0.2557  0.0466  0.9452  0.8932 
RF  0.1510  0.3886  0.2534  0.0463  0.9468  0.8956 

BSG GRU  0.1233  0.3512  0.2643  0.0504  0.9355  0.8737 
LSTM  0.1290  0.3591  0.2690  0.0509  0.9326  0.8679 
MLP  0.1405  0.3748  0.2825  0.0540  0.9276  0.8561 
RF  0.1442  0.3797  0.2820  0.0535  0.9256  0.8523  

Fig. 8. 1-hour wave period forecast comparison.  

Table 6 
1-hour wave energy forecast results.  

Station Algorithm MSE RMSE MAE MAPE R R2 

NJI GRU  1.1170  1.0569  0.5555  0.1552  0.9554  0.9127 
LSTM  1.2459  1.1162  0.5882  0.1651  0.9522  0.9027 
MLP  1.1537  1.0741  0.5943  0.1794  0.9540  0.9099 
RF  1.5407  1.2412  0.6694  0.1920  0.9389  0.8796 

BSG GRU  1.3733  0.1719  0.3686  0.1876  0.9180  0.8422 
LSTM  1.4531  1.2055  0.3805  0.2001  0.9161  0.8330 
MLP  1.4534  1.2056  0.4143  0.2157  0.9177  0.8330 
RF  1.4579  1.2074  0.3973  0.2161  0.9166  0.8324  

Fig. 9. 1-hour wave energy forecast comparison.  
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Bayesian optimization and the attention mechanism proposed in this 
article as an example, at the NJI station, compared with the 1-hour wave 
height prediction, its MSE increased by about 409 %, RMSE increased by 
about 125 %, MAE increased is about 143 %, MAPE is increased by about 
144 %, R is decreased by about 13.8 %, and R2 is decreased by about 26 
%. Even so, the performance of the GRU based on the Bayesian opti
mization and attention mechanism proposed in this article is still the 
best in all evaluation metrics. The prediction accuracy of LSTM is similar 
to that of the GRU. 

Fig. 10 depicts a comparison of the predicted values of wave heights 
and the observed values of the four algorithms in the 6-hour prediction. 
The figure shows that as compared to the 1-hour prediction, the pre
dicted value curve of each algorithm has a relatively obvious deviation 
compared with the observed value curve, and the deviation shows a 
slight hysteresis. When the wave height fluctuates, the forecast devia
tion is more serious. When multiple algorithms are compared, it is clear 
that the predicted value curve of GRU is closer to the observed value, 
which is notably noticeable at the BSG station. 

Table 8 summarizes the 6-hour wave period prediction results from 
the four algorithms at the two stations, with the best results in bold. The 
table shows that, as with the 6-hour wave height prediction, increasing 
the forecast time interval reduces the forecasting accuracy of each 
method, but the forecasting accuracy remains within the acceptable 
range. The performance of the GRU based on Bayesian optimization and 
attention mechanism proposed in this article is still the best in all 
evaluation indicators. Compared with the 1-hour wave period predic
tion, at the NJI station, the MSE of the GRU increased by about 240 %, 
the RMSE increased by about 84.5 %, the MAE increased by about 115 
%, the MAPE increased by about 111.6 %, the R decreased by about 13.9 
%, and the R2 decreased by about 27.1 %. 

Fig. 11 compares the predicted and observed curves for the four 
methods for the 6-hour wave period. Compared with Fig. 8, the pre
diction deviation of each algorithm increases, and the RF algorithm is 
the most serious. In the curve graph of the NJI station, although the 
observed value of the wave period has been decreasing, the numerical 
fluctuation is small, and the deviation between the predicted curve and 
the observed value curve of each algorithm is also small, especially the 
GRU, the fitting effect is better. In the curve graph of the BSG station, the 
observed value of the wave period fluctuates frequently up and down. In 
this case, the deviation between the predicted curve of each algorithm 
and the observed value curve is also larger. As a result, the model’s 

prediction accuracy under numerical fluctuation still has to be 
improved. 

Table 9 presents the 6-hour wave energy forecast results of the four 
algorithms at two stations using the wave height, period, and power 
conversion equation, with the optimum result highlighted in bold. As 
seen in the table, the accuracy of each algorithm has dropped when 
compared to Table 6. Because the GRU based on the Bayesian optimi
zation and attention mechanism proposed in this article is the best in the 
prediction of 6-hour wave height and period, its prediction accuracy is 
still the highest in wave energy prediction. 

Fig. 12 depicts a comparison of the four algorithms’ 6-hour wave 
energy predicted values with the observed values. From the NJI station, 
since numerical fluctuations, the predicted values of each algorithm 
have obvious deviations compared with the observed values. At the BSG 
station, since the wave energy changes relatively smoothly, the predic
tion effect of each algorithm is better. In summary, in the case of stable 
numerical fluctuations, the prediction accuracy of the algorithm is 
higher. 

5.3. Discussion 

In this study, the data of two selected NJI and BSG observatories 
were experimentally analyzed to evaluate the performance of the GRU 
wave energy prediction model based on Bayesian optimization and 
attention mechanism. The results indicate that in the one-hour wave 
height and wave period prediction, the model can well fit the actual 
observed values. This is because the Bayesian optimization algorithm is 
used to optimize the hyperparameters of the model. Besides, the atten
tion mechanism assigns different weights to the model features, so that 
the model can obtain excellent prediction results after a lot of training. 
Similarly, the 6-hour wave height and wave prediction curve of the 
model reported here can fit the observed value curve better than models 
such as LSTM, MLP and RF. Therefore, the 1-hour and 6-hour forecast 
result of the model reported here is compared with the current popular 
algorithms. The experimental results suggest that this model out
performs them. This fully reflects the hyperparameter optimization ef
fect of Bayesian optimization algorithm and the improvement of model 
prediction performance after the introduction of attention mechanism, 
which is consistent with the research of Zeng et al. (2022) [47]. 
Therefore, this study can provide a reference for the realization of car
bon neutrality in the shipping process through the prediction of wave 
energy. 

Table 7 
6-hour wave height forecast results.  

Station Algorithm MSE RMSE MAE MAPE R R2 

NJI GRU  0.0509  0.2255  0.1619  0.1604  0.8354  0.6957 
LSTM  0.0516  0.2271  0.1680  0.1732  0.8323  0.6915 
MLP  0.0522  0.2284  0.1668  0.1681  0.8298  0.6879 
RF  0.0557  0.2361  0.1731  0.1723  0.8264  0.6667 

BSG GRU  0.0392  0.1980  0.1383  0.1880  0.8107  0.6274 
LSTM  0.0414  0.2035  0.1463  0.2176  0.7956  0.6067 
MLP  0.0474  0.2178  0.1644  0.2520  0.7772  0.5492 
RF  0.0463  0.2151  0.1605  0.2450  0.7823  0.5603  

Fig. 10. 6-hour wave height forecast comparison.  
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6. Conclusion 

In recent years, many countries have proposed the goal of achieving 
carbon neutrality. Greenhouse gas emissions from the combustion of 
fossil fuels by transport ships place a significant pressure on the envi
ronment. It is crucial to develop a clean ship power source that can 
replace conventional fuels, which could contribute to carbon neutrality. 
The wave energy is one of the most important clean energy sources in 
the ocean and has many advantages over other energy sources. There
fore, this study combines wave energy prediction with ship driving. A 
Bayesian optimization algorithm is added to the original GRU to opti
mize the hyperparameters. At the same time, an attention mechanism is 
introduced to construct a GRU wave energy prediction model optimized 
by Bayesian optimization and attention mechanism. Finally, this study 
selects data from two Chinese stations to analyze the performance of the 
model. It is found that, the model reported here has the highest accuracy 

in predicting wave height, wave period, and wave energy compared 
with the three mainstream algorithms of LSTM, MLP and RF. In addition, 
in the 1-hour and 6-hour wave energy forecasts of the two stations, the 
minimum values are 0.3686 and 0.8204, and the maximum values are 
0.9127 and 0.6436, respectively. The GRU based on Bayesian optimi
zation and attention mechanism reported here can achieve accurate 
prediction of 1-hour and 6-hour wave energy power, providing strong 
support for ships to navigate using wave energy. 

Still, this study has some shortcomings. For example, this study 
selected the GRU algorithm as one of the core algorithms, which is a 
relatively basic algorithm. However, more advanced improved or com
bined algorithms will appear as computer science advances. Therefore, 
the follow-up research will improve the performance of the core algo
rithm in the model. Secondly, the two observation stations selected here 
are specific locations in the South Sea of China, so it is unclear whether 
the Bohai Sea or the Yellow Sea will have an impact on the results. 

Table 8 
6-hour wave period forecast results.  

Station Algorithm MSE RMSE MAE MAPE R R2 

NJI GRU  0.4958  0.7041  0.5218  0.0931  0.8170  0.6556 
LSTM  0.5039  0.7099  0.5243  0.0960  0.8163  0.6499 
MLP  0.5028  0.7091  0.5260  0.0951  0.8183  0.6507 
RF  0.5679  0.7536  0.5544  0.1000  0.7910  0.6055 

BSG GRU  0.4411  0.6642  0.5011  0.0957  0.7511  0.5554 
LSTM  0.4774  0.6910  0.5145  0.0963  0.7359  0.5188 
MLP  0.4597  0.6780  0.5164  0.0999  0.7441  0.5367 
RF  0.5122  0.7157  0.5505  0.1063  0.7141  0.4838  

Fig. 11. 6-hour wave period forecast comparison.  

Table 9 
6-hour wave energy forecast results.  

Station Algorithm MSE RMSE MAE MAPE R R2 

NJI GRU  4.6245  2.1505  1.2011  0.3561  0.8045  0.6436 
LSTM  4.6835  2.1641  1.2490  0.4088  0.7997  0.6390 
MLP  4.8384  2.1996  1.2631  0.3891  0.7932  0.6271 
RF  5.4742  2.3397  1.3616  0.4093  0.7722  0.5781 

BSG GRU  5.7110  2.3898  0.8204  0.4272  0.6653  0.3549 
LSTM  8.1342  2.8520  0.8533  0.5028  0.5600  0.0812 
MLP  6.1702  2.4840  0.9070  0.6285  0.6471  0.3031 
RF  6.7340  2.5950  0.9249  0.6176  0.6112  0.2394  

Fig. 12. 6-hour wave energy forecast comparison.  
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Therefore, the number and location of observation stations can be 
further increased in the future to achieve the practical application of the 
constructed model as soon as possible. 
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