Search for Higgs boson pair production in the two bottom quarks plus two photons final state in \(pp \) collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 23 December 2021; accepted 1 August 2022; published 6 September 2022)

Searches are performed for nonresonant and resonant di-Higgs boson production in the \(b\bar{b}\gamma\gamma \) final state. The dataset used corresponds to an integrated luminosity of 139 fb\(^{-1}\) of proton–proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No excess above the expected background is found and upper limits on the di-Higgs boson production cross sections are set. A 95% confidence-level upper limit of 4.2 times the cross section predicted by the Standard Model is obtained excluding \(pp \rightarrow HH \) nonresonant production, where the expected limit is 5.7 times the Standard Model predicted value. The expected constraints are obtained for a background hypothesis excluding \(pp \rightarrow HH \) production. The observed (expected) constraints on the Higgs boson trilinear coupling modifier \(\kappa \) are determined to be \([−1.5, 6.7]\) \([−2.4, 7.7]\) at 95% confidence level, where the expected constraints on \(\kappa \) are obtained excluding \(pp \rightarrow HH \) production from the background hypothesis. For resonant production of a new hypothetical scalar particle \(X \) (\(X \rightarrow HH \rightarrow b\bar{b}\gamma\gamma \)), limits on the cross section for \(pp \rightarrow X \rightarrow HH \) are presented in the narrow-width approximation as a function of \(m_X \) in the range \(251 \) GeV \(\leq m_X \leq 1000 \) GeV. The observed (expected) limits on the cross section for \(pp \rightarrow X \rightarrow HH \) range from 640 fb to 44 fb (391 fb to 46 fb) over the considered mass range.

DOI: 10.1103/PhysRevD.106.052001

I. INTRODUCTION

Since the discovery of the Higgs boson in 2012 [1,2], one of the priorities of the ATLAS and CMS Collaborations has been to better understand the properties of the Brout-Englert-Higgs mechanism [3–8]. The Higgs boson self-coupling provides information about the structure of the Higgs potential. It is possible to directly probe the self-coupling of the Higgs boson by studying Higgs boson pair (\(HH \)) production. Furthermore, any deviation of the Higgs boson pair production rate from the Standard Model (SM) prediction would point to new physics beyond the Standard Model (BSM) and may be within the sensitivity reach of the di-Higgs boson production cross sections.

At leading order (LO), the production of Higgs boson pairs via gluon–gluon fusion (ggF) proceeds through the two diagrams shown in Fig. 1. These diagrams interfere destructively, leading to a small-production cross section [10–12]. For 13 TeV \(pp \) collisions and a Higgs boson mass \(m_H = 125.09 \) GeV [13], the ggF cross section, calculated at next-to-next-to-leading-order (NNLO) accuracy in the finite top-quark mass approximation (FTapprox), is \(\sigma_{HH}(ggF) = 31.02^{+2.2\%}_{−3.4\%} \) (Scale) \(\times 3^{+4\%}_{−5\%} \) \(m_{t\bar{t}} \) \(\times 3.0\%(\alpha_s + PDF) \) fb [14–17], where “Scale” represents the uncertainty due to the finite order of the quantum chromodynamics (QCD) calculation, “\(m_{t\bar{t}} \)” the uncertainty related to the top-quark mass scheme [17,18] which is added linearly to the Scale uncertainty, and “\(\alpha_s + PDF \)” the effect of uncertainties in the strong coupling constant and parton distribution functions.

The di-Higgs vector-boson fusion (VBF) production cross section, calculated at next-to-next-to-next-to-leading order (NNLLO) for \(m_H = 125.09 \) GeV, is \(\sigma_{HH}(VBF) = 1.72^{+0.03\%}_{−0.04\%} \) (Scale) \(\times 2.1\%(\alpha_s + PDF) \) fb [14], which is one order of magnitude lower than the cross section of the ggF process. The VBF production mode provides the analysis with additional sensitivity to the Higgs trilinear coupling, as shown in Fig. 2. Both the ggF and VBF production modes of Higgs boson pairs are considered as signal modes in this paper. The other production modes have lower cross sections [19] and are neglected.

Nonresonant enhancements to the Higgs boson pair cross section can originate either from loop corrections involving new particles, such as light, colored scalars [20], or from non-SM couplings between the Higgs boson and other SM particles. The nonresonant production cross section can also be altered by the trilinear self-coupling, \(\lambda_{HHH} \), being different from the SM prediction, as discussed

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
Such an effect can be captured by a scale factor \(\kappa_\lambda \) defined as \(\kappa_\lambda = \frac{\lambda_{HHH}}{\lambda_{SM}} \), where \(\lambda_{SM} \) is the SM value of the parameter.

In addition to the nonresonant enhancements, searching for resonant production of Higgs boson pairs is well motivated. Figure 3 shows a ggF production diagram possible in BSM theories predicting the existence of heavy scalar particles that can decay into a pair of Higgs bosons. Such theories include models with two Higgs doublets [23], such as the minimal supersymmetric extension of the SM [24], twin Higgs models [25], and composite Higgs models [26], adding a second complex scalar doublet to the Higgs sector. Alternatively, the Randall-Sundrum model of warped extra dimensions [27] predicts spin-0 radions that could couple to a Higgs boson pair.

This paper presents a search for di-Higgs production in the \(b\bar{b}\gamma\gamma \) final state, including dedicated assessments of nonresonant and resonant contributions. The analysis considers the full Run 2 dataset of 139 fb\(^{-1}\) at 13 TeV. For both the nonresonant and resonant \(HH \) searches, the analysis employs a multivariate method designed to reject background processes, and the statistical results are obtained from a fit of the diphoton invariant mass, \(m_{\gamma\gamma} \). For the nonresonant search, data are divided into different categories based on the four-body invariant mass to target different \(\kappa_\lambda \) ranges. The resonant search focuses on probing the existence of a narrow-width scalar particle \(X \) in the mass range \(251 < m_X < 1000 \) GeV decaying into a pair of Higgs bosons. The selection criteria depend on the mass of the probed scalar particle. The main background processes are diphoton-plus-jets production and processes where a Higgs boson is produced and decays into a pair of photons. In the context of the resonant search, nonresonant \(HH \) production is considered as a background.

Previous results from the ATLAS Collaboration were obtained in this channel with an integrated luminosity of 36 fb\(^{-1}\) of data at 13 TeV collected during Run 2, and they were found to be consistent with SM expectations within uncertainties [28]. The search for nonresonant enhancements of Higgs boson pair production set an observed (expected) 95% confidence level (C.L.) upper limit on the \(HH \) cross section of 0.73 (0.93) pb, corresponding to 22
II. THE ATLAS DETECTOR

The ATLAS detector [32] at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadron calorimeters, and a muon spectrometer incorporating three large superconducting air-core toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle tracking in the range $|\eta| < 2.5$. The high-granularity silicon pixel detector covers the vertex region and typically provides four measurements per track, the first hit normally being in the insertable B-layer installed before Run 2 [33,34]. It is followed by the silicon microstrip tracker, which usually provides eight measurements per track. These silicon detectors are complemented by the transition radiation tracker (TRT), which enables radially extended track reconstruction up to $|\eta| = 2.0$. The TRT also provides electron identification information.

The calorimeter system covers the pseudorapidity range $|\eta| < 4.9$. Within the region $|\eta| < 3.2$, electromagnetic calorimetry is provided by barrel and end cap high-granularity lead/liquid-argon (LAr) calorimeters, with an additional thin LAr presampler covering $|\eta| < 1.8$ to correct for energy loss in material upstream of the calorimeters. Hadron calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into three barrel structures within $|\eta| < 1.7$, and two copper/LAr hadron end cap calorimeters. The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules optimized for electromagnetic and hadronic energy measurements respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring the deflection of muons in a magnetic field generated by the superconducting air-core toroidal magnets. The field integral of the toroids ranges between 2.0 Tm and 6.0 Tm across most of the detector. A set of precision chambers covers the region $|\eta| < 2.7$ with three layers of monitored drift tubes, complemented by cathode-strip chambers in the forward region, where the background is highest. The muon trigger system covers the range $|\eta| < 2.4$ with resistive-plate chambers in the barrel and thin-gap chambers in the end cap regions.

Interesting events are selected by the first-level trigger system implemented in custom hardware, followed by selections made by algorithms implemented in software in the high-level trigger [35]. The first-level trigger accepts events from the 40 MHz bunch crossings at a rate below 100 kHz, which the high-level trigger reduces in order to record events at rate of about 1 kHz. An extensive software suite [36] is used in the reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.

III. DATA AND SIMULATION SAMPLES

This analysis uses pp collision data collected by the ATLAS experiment from 2015 to 2018 with proton beams colliding at a center-of-mass energy of $\sqrt{s} = 13$ TeV. After data quality requirements [37] the full dataset represents an integrated luminosity of 139.0 ± 2.4 fb$^{-1}$ [38,39]. The mean number of inelastic pp interactions per bunch crossing is 34.2 [40].

Monte Carlo (MC) simulations are available for the signal as well as most background processes as detailed in the rest of this section. The reducible backgrounds from final states with jets wrongly identified as photons (γ-jet and dijet backgrounds) are, however, estimated using a data-driven technique detailed in Sec. IV C.

Events from ggF nonresonant HH production were generated at next-to-leading-order accuracy in QCD with finite top-quark mass in both the real and virtual corrections (NLO FT) [11], using the POWHEG BOX v2 [41] generator in the finite top-quark mass approximation [42,43] with the
PDF4LHC 15 parton distribution function (PDF) set [44]. The PYTHIA 8.244 generator was used for parton showering, hadronization and underlying-event simulation. HERWIG 7.1.6 was used as an alternative generator to calculate the theoretical uncertainty from the parton shower. Samples were generated for coupling modifier values $\kappa_1 = 1$ and 10.

For ggF nonresonant HH production, a reweighting method based on the di-Higgs invariant mass m_{HH} is used to provide predictions on the cross section at different k_2 values, starting from the existing $k_2 = 1$ sample. The reweighting method derives the scale factors as a function of k_2 in bins of m_{HH} by performing a linear combination of samples generated at different k_2 values [45]. Histograms of the true m_{HH} distribution are produced for each k_2 sample and the distributions of the other relevant kinematic variables are obtained applying an event-per-event weight based on the ratio between the binned m_{HH} distribution for the targeted k_2 by the binned m_{HH} distribution for the SM ($k_2 = 1$) sample.

This method was validated by comparing the event yields and the distributions of the relevant Higgs boson kinematic variables, including the $m_{\gamma\gamma}$ variable, of the sample generated with $k_2 = 10$ to the sample generated with $k_2 = 1$ and reweighted to $k_2 = 10$. Good agreement is obtained in all categories. A systematic uncertainty in the range of $3\%-4\%$ is associated with the reweighting process, based on the maximum differences of signal yields observed in this validation. For each k_2 value, the inclusive cross section is normalized according to Ref. [46]. A fit with a second order polynomial to the MC prediction is performed in each analysis category, in order to parametrize the event yields as a function of k_2.

For VBF nonresonant HH production, MadGraph5, aMC@NLO 2.6.0 [47] was used to generate events at LO [47,48]. The NNPDF3.0NLO PDF set [49] was used in the matrix element, interfaced to PYTHIA 8.244. The cross section of the VBF HH process is evaluated at N3LO in QCD [50–52], as outlined in Sec. I. Since samples were generated at LO for four values of the coupling modifier, $k_2 = 0, 1, 2$ and 10, the N3LO-to-LO cross section ratio at the SM value is calculated and this factor is applied to the VBF HH cross section. These samples are used to derive a parametrization of the signal yields in the signal region as a function of k_2 by fitting a second-order polynomial to the MC predictions in each analysis category, as described in Sec. IV B 2.

The production of a heavy spin-0 resonance X via ggF and its decay into a pair of Higgs bosons, $pp \rightarrow X \rightarrow HH$, was simulated using MadGraph5, aMC@NLO 2.6.1 [47] at LO accuracy with the NNPDF2.3LO PDF set. The event generator was interfaced with HERWIG7.1.3 [53,54] to model the parton shower, hadronization, and underlying event. No specific theoretical model for the phenomenology of the new particle is assumed in the process generation. The mass of X was varied between 251 GeV and 1000 GeV in the simulation, while its width was set to 10 MeV. In total 25 m_X mass hypotheses have been generated, corresponding to $m_X = 251, 260, 270, 280, 290, 300, 312.5, 325, 337.5, 350, 375, 400, 425, 450, 475, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000$ GeV. The interference with nonresonant Higgs boson pair production was neglected.

Production of single Higgs bosons via ggF, VBF, WH, ZH ($qq \rightarrow ZH$ and $gg \rightarrow ZH$), $t\bar{t}H$, tH (tH and $t\bar{t}H$), and bbH was modeled using the same set of MC samples as described in Ref. [55]. For single Higgs boson production, as well as both nonresonant and resonant di-Higgs production, a Higgs boson mass of 125.09 GeV was assumed [13]. The analysis assumes a branching ratio of 0.227% for the Higgs boson decay into two photons and a branching ratio of 58.2% for the Higgs boson decay into two b-quarks [56,57]. The inclusive cross sections of these processes are normalized to the most precise available theoretical values [56].

The $\gamma\gamma + \text{jets}$ process was simulated with the SHERPA 2.2.4 [58] generator. QCD NLO-accurate matrix elements for up to one parton, and LO-accurate matrix elements for up to three partons, were calculated with the Comix [59] and OPENLOOPS [60–62] libraries. These were calculated in the five-flavor scheme including b-quarks in the massless approximation and merged with the SHERPA parton shower [63] using the MEPS@NLO prescription [64,65] with a dynamic merging cut [66] of 10 GeV. Within the parton shower, b-quarks were then treated as being massive. Finally, events from $t\bar{t}\gamma\gamma$ processes were produced with MadGraph5, aMC@NLO in the four-flavor scheme [47]. The simulation samples used in the analysis are listed in Table I.

Different pileup conditions from additional interactions in the same and neighboring bunch crossings were simulated by overlaying the hard-scattering event with inelastic pp events generated by PYTHIA8.186 using the NNPDF2.3LO PDF set and the A3 tune [85]. Differences between the simulated and observed distributions of the number of interactions per bunch crossing are corrected for by applying pileup scale factors to simulated events. A full simulation of the ATLAS detector [86] based on GEANT4 [87] was used to reproduce the detector response to single-Higgs-boson processes. The continuum background and signal samples were processed by AtlFast [88], a fast simulation of the ATLAS detector response which was shown to be able to accurately simulate diphoton events.

IV. OBJECT AND EVENT SELECTIONS

A. Object selection

Photons are reconstructed from topologically connected clusters [89] of energy deposits in the electromagnetic calorimeter in the region $|\eta| < 2.37$. The transition region between the barrel and end cap electromagnetic calorimeters, $1.37 < |\eta| < 1.52$, is excluded. Photon candidates matched to conversion vertices or tracks that are consistent with originating from photon conversions are classified as
converted photons. Those without a matched conversion vertex or track are classified as unconverted photons.

The calibration of the photon energy is based on a multivariate regression algorithm trained with MC samples, where the input variables are corrected with data-driven techniques. The calibrated energy is finally corrected by applying scale factors derived from a multivariate regression algorithm trained with MC samples.

Events are required to have at least one reconstructed collision vertex, defined as a vertex associated with at least two tracks with transverse momentum \(p_T \) larger than 0.5 GeV. The primary vertex is selected from the reconstructed collision vertices using a neural-network algorithm based on the extrapolated photon trajectories and the tracks associated with each candidate vertex.

Photon identification is based on the lateral shower profile of the energy deposits in the first and second electromagnetic calorimeter layers and on the energy leakage fraction in the hadronic calorimeter. It reduces the misidentification of hadronic jets containing large neutral components, primarily \(\pi^0 \) particles, which decay into a pair of highly collimated photons. “Tight” identification criteria, which are tuned for converted and unconverted photons separately, are applied.

To further improve the rejection of misidentified photons, two isolation variables are defined to quantify the activity around a photon. Calorimeter-based isolation \(E_T^{iso} \) is defined as the sum of the transverse energy of topological clusters within a cone of size \(\Delta R = 0.2 \) around the photon, correcting for the energy of the photon candidate itself as well as for an average expected pileup contribution. Track-based isolation \(E_T^{track} \) is defined as the scalar sum of the transverse momenta of all tracks with \(p_T > 1 \) GeV that originate from the primary vertex and are within a cone of \(\Delta R = 0.2 \) around the photon. Isolated photons must have \(E_T^{iso} < 0.065 \cdot E_T \) and \(p_T^{iso} < 0.05 \cdot E_T \) (the “loose” working point [90]), where \(E_T \) is the transverse energy of the photon. For isolated photons with transverse momenta between 30 GeV and 250 GeV, the identification efficiency for unconverted and converted photons ranges from 84% to 98% [90].

Electrons are reconstructed from energy deposits measured in the electromagnetic calorimeter which are matched to ID tracks [90]. They are required to satisfy \(|\eta| < 2.47 \), excluding the calorimeter transition region \(1.37 < |\eta| < 1.52 \), and have a transverse momentum \(p_T > 10 \) GeV.

Electrons are required to satisfy a “medium” identification criterion based on the use of shower shape, track-cluster matching and TRT parameters in a likelihood-based algorithm [90]. Muons are reconstructed from high-quality tracks found in the MS [92]. A matching of these tracks to ID tracks is required in the region \(|\eta| < 2.5 \). Muons are required to have \(|\eta| < 2.7 \) and \(p_T > 10 \) GeV, and to satisfy a “medium” identification criterion [93]. Both the electrons and muons are matched to the primary vertex via requirements on the tracks’ longitudinal and transverse impact parameters, \(|z_0| \) and \(|d_0| \), respectively. These requirements are \(|z_0| \sin \theta < 0.5 \) mm (where \(\theta \) is the polar angle of the track) for electrons and muons and \(|d_0|/\sigma_{d_0} < 5(3) \) for electrons (muons).

Reconstructed jets are based on particle-flow objects built from noise-suppressed positive-energy topological clusters in the calorimeter and reconstructed tracks [94]. The anti-\(k_T \) algorithm [95,96] with a radius parameter of \(R = 0.4 \) is used. They are required to have rapidity \(|y| < 4.4 \) and
$p_T > 25$ GeV. To further suppress jets produced in concurrent $p\bar{p}$ interactions, each jet within the tracking acceptance of $|\eta| < 2.4$, and with $p_T < 60$ GeV, is required to satisfy the “tight” jet-vertex tagger [97] criteria used to identify the jet as originating from the selected primary vertex of the event.

The flavor of jets is determined using a deep-learning neural network, DL1r. The DL1r b-tagging is based on distinctive features of b-hadron decays in terms of the impact parameters of the tracks and the displaced vertices reconstructed in the inner detector [98]. The inputs of the DL1r network also include discriminating variables constructed by a recurrent neural network (RNNIP) [99], which exploits the spatial and kinematic correlations between tracks originating from the same b-hadron. For high-p_T jets, this approach is found to give better performance [100] than a previously used multivariate technique [101]. Operating points are defined by a single selection value on the discriminant output distribution and inclusive $t\bar{t}$ performance [100] was adopted in 2017 to cope with the increased pp interaction rate. Once the full diphoton event selection described in this section is applied, the average trigger efficiency for $H \rightarrow \gamma\gamma$ events is found to be greater than 99% for the 2015–2016 data-taking period, and greater than 98% for the 2017–2018 data-taking period.

On top of the trigger requirements, events are selected if:

(i) At least two photons satisfy the object selection criteria detailed in Sec. IV.A.

(ii) The diphoton invariant mass, built with the two leading photons, satisfies 105 GeV < $m_{\gamma\gamma}$ < 160 GeV.

(iii) The leading (subleading) photon p_T is larger than 35% (25%) of the mass of the diphoton system.

(iv) Exactly two b-tagged jets are present. In order to remain statistically independent of the ATLAS search for $HH \rightarrow b\bar{b}b\bar{b}$ [105], any event with more than two b-jets passing the 77% efficient working point is rejected.

(v) No electrons or muons are present.

(vi) Fewer than six central ($|\eta| < 2.5$) jets are present. This helps to reject $t\bar{t}H$ events where the top quarks decay hadronically.

The acceptance times efficiency of the common preselection for the SM ggF HH simulation sample is 14% and it is 8.5% (14%) for a resonant scalar particle with $m_X = 300$ GeV ($m_X = 500$ GeV). Multivariate techniques are used to target the nonresonant ggF production mode or the resonant production mode of Higgs boson pairs. For both the nonresonant and resonant analyses, events are selected if they satisfy a common set of preselection requirements; they are then required to fulfill different requirements for the nonresonant search and the resonant search. Both analyses employ a fit of the diphoton invariant mass distribution to extract the HH signal contribution.

1. Common preselection

Both the nonresonant and resonant HH searches employ multivariate analysis techniques to select events. Events are selected if they satisfy a common set of preselection requirements; they are then required to fulfill different requirements for the nonresonant search and the resonant search. Both analyses employ a fit of the diphoton invariant mass distribution to extract the HH signal contribution.
fit to the distribution of the diphoton invariant mass, \(m_{\gamma\gamma} \). The data sideband region is defined as the range 105 GeV < \(m_{\gamma\gamma} \) < 160 GeV, excluding 120 GeV < \(m_{\gamma\gamma} \) < 130 GeV.

The invariant mass of the diphoton plus b-tagged jets system, \(m_{bb\gamma\gamma} \), is defined as \(m_{bb\gamma\gamma} = m_{bb} - m_{\gamma\gamma} + 250 \) GeV (where 250 GeV is about twice the Higgs boson mass value and \(m_{bb} \) is the invariant mass of the two jets with the highest b-tagging score). It is used to implement selection criteria for both the nonresonant and resonant analyses. Figure 4 shows that, compared with \(m_{bb\gamma\gamma} \), the \(m_{bb\gamma\gamma} \) variable improves the four-object mass resolution, particularly for resonant signal particles decaying into a pair of Higgs bosons, due to detector resolution effects canceling out.

2. Nonresonant selection

Following the preselection, events are divided into two regions using the value of the \(m_{bb\gamma\gamma} \) variable. A high-mass region, with \(m_{bb\gamma\gamma} > 350 \) GeV, targets the SM signal (\(\kappa_i = 1 \)), while a low-mass region, with \(m_{bb\gamma\gamma} < 350 \) GeV, is used to retain sensitivity for BSM signals (\(\kappa_i = 10 \)). The dependence of \(m_{bb\gamma\gamma} \) on \(\kappa_i \) can be seen in Fig. 5.

In each mass region, a dedicated BDT is trained using XGBoost [106] to discriminate between a benchmark \(HH \) signal and a combination of \(\gamma\gamma, t\bar{t}H \), \(ggH \), and \(ZH \) simulated backgrounds. In the high-mass region, the SM \(HH \) sample is used as signal, while in the low-mass region, the \(\kappa_i = 10 \) sample is used as signal.

The BDT input variables are summarized in Table II. Identical variable sets are used for high-mass and low-mass categories. The BDT combines several input variables that exploit the different kinematic properties of signal and background events, as well as the b-tagging information. Observables based on the kinematic properties of the reconstructed photons, such as the leading and subleading photon’s angular information, and the transverse momentum of the diphoton system divided by its invariant mass, are combined with jet-based information. The “single topness” variable (\(\chi_{Wt} \)) is also used. It is defined as

\[
\chi_{Wt} = \min \left(\frac{(m_{j_1,j_2} - m_W)}{m_W^2} \right)^2 + \left(\frac{(m_{j_1,j_2} - m_t)}{m_t^2} \right)^2,
\]

where the minimum is taken over all combinations of three jets in the event (with no requirements on b-tagging status), \(m_W = 80 \) GeV, and \(m_t = 173 \) GeV. Among the input variables in Table II, \(m_{bb} \) and \(H_T \) show the highest discriminating power against the \(\gamma\gamma + \text{jets} \) continuum background. Particular care was taken to ensure that the BDT event selection does not lead to biases in the \(m_{\gamma\gamma} \) background distribution. Variables which have a strong...
correlation with the diphoton invariant mass are avoided in the training in order to prevent the BDT event selection from biasing the \(m_{\gamma\gamma} \) background distribution. To this end, the transverse momentum values of the photons are divided by \(m_{\gamma\gamma} \) before being used as BDT input variables. A check for potential biases in the \(m_{\gamma\gamma} \) background distribution is described in Sec. VB. The BDT score distributions in the low-mass and high-mass regions are shown in Fig. 6 for events passing the common preselection. In each mass region, two categories based on the BDT score are defined. The boundaries of the categories are chosen by maximizing the combined number-counting significance [107] using signal and background yields in the mass window \(120 \text{ GeV} < m_{\gamma\gamma} < 130 \text{ GeV} \) in the chosen categories. The four resulting BDT categories are defined in Table III.

3. Resonant selection

The resonant search uses a multivariate analysis based on a BDT technique. A potential limitation of a BDT-based selection is the low number of background events for higher resonance masses. To overcome this limitation, BDTs are trained jointly for all resonance masses hypotheses and background. The signal events corresponding to the different mass hypotheses are combined. The signal events are reweighted event-by-event to match the \(m_{b\bar{b}\gamma\gamma} \) distribution of the background events, such that the training is independent of the resonant signal mass hypothesis, but it still retains information of the correlation with the rest of the event variables. The procedure allows to reduce the fluctuations of the BDT performance between nearby mass points. It was checked that the procedure provides similar or better performance than employing separated BDT trainings for each individual signal mass hypothesis.

Using the TMVA toolkit [108], two BDTs are trained to better separate the signal from backgrounds of different nature; the \(\gamma\gamma \) and \(t\bar{t}\gamma\gamma \) backgrounds (BDT \(\gamma\gamma \)) and the single-Higgs-boson background (BDT Single \(H \)), where the \(ZH \) and \(t\bar{t}H \) processes produce the dominant resonant backgrounds.

TABLE II. Variables used in the BDT for the nonresonant analysis. All vectors in the event are rotated so that the leading photon \(\phi \) is equal to zero, while their relative azimuthal angular differences are kept unchanged.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon-related kinematic variables</td>
<td></td>
</tr>
<tr>
<td>(p_T/m_{\gamma\gamma})</td>
<td>Transverse momentum of each of the two photons divided by the diphoton invariant mass (m_{\gamma\gamma})</td>
</tr>
<tr>
<td>(\eta) and (\phi)</td>
<td>Pseudorapidity and azimuthal angle of the leading and subleading photon</td>
</tr>
<tr>
<td>Jet-related kinematic variables</td>
<td></td>
</tr>
<tr>
<td>(b)-tag status</td>
<td>Tightest fixed (b)-tag working point (60%, 70%, or 77%) that the jet passes</td>
</tr>
<tr>
<td>(p_T, \eta) and (\phi)</td>
<td>Transverse momentum, pseudorapidity and azimuthal angle of the two jets with the highest (b)-tagging score</td>
</tr>
<tr>
<td>(p_{T,bb}, \eta_{bb}) and (\phi_{bb})</td>
<td>Transverse momentum, pseudorapidity and azimuthal angle of the (b)-tagged jets system</td>
</tr>
<tr>
<td>(m_{bb})</td>
<td>Invariant mass of the two jets with the highest (b)-tagging score</td>
</tr>
<tr>
<td>(H_T)</td>
<td>Scalar sum of the (p_T) of the jets in the event</td>
</tr>
<tr>
<td>Single topness</td>
<td>For the definition, see Eq. (1)</td>
</tr>
<tr>
<td>Missing transverse momentum variables</td>
<td></td>
</tr>
<tr>
<td>(E_{\text{miss}}^{\text{mass}}) and (\phi^{\text{mass}})</td>
<td>Missing transverse momentum and its azimuthal angle</td>
</tr>
</tbody>
</table>

FIG. 6. The BDT distribution of the di-Higgs ggF signal for two different values of \(k_j \) and the main backgrounds in the (a) low-mass region and (b) high-mass region. Distributions are normalized to unit area. The dashed lines denote the category boundaries. Events with a BDT score below 0.881 in the low-mass region or below 0.857 in the high-mass region are discarded.
The nonresonant HH process is not included in the training of the BDTs. A complete list of the variables used for the BDT training is given in Table IV. The E_T^{miss} information is used in the training because it is useful in rejecting the single-Higgs-boson background ($t\bar{t}H$ in particular) and the $t\bar{t}\gamma\gamma$ background.

The combined BDT score of an event is obtained by combining the two BDT scores in quadrature, as shown in Eq. (2),

$$B_{\text{tot}} = \frac{1}{\sqrt{C_1^2 + C_2^2}} \times \sqrt{C_1^2 \left(\frac{B_{\text{BDT single H}} + 1}{2} \right)^2 + C_2^2 \left(\frac{B_{\text{BDT single tH}} + 1}{2} \right)^2}. \tag{2}$$

The two coefficients C_1 and C_2 ($C_2 = 1 - C_1$) and B_{tot} take values in the range [0, 1]. Only events passing a minimum requirement on the value of B_{tot} are considered in the analysis. To reduce the effect of limited statistics of the Monte Carlo samples in the determination of the BDTnull requirement values for the various mass points. A second scan is done to select all coefficients providing a significance within 5\% of the maximum value, for each of the resonance mass values. From those possible combinations a common C_1 coefficient is sought (resulting in $C_1 = 0.65$) across all the resonances so that the selection will have common coefficients for all resonance mass points, but different B_{tot} values. For each of the resonance mass hypotheses, a requirement is set on the $m_{b\bar{b}\gamma\gamma}$ value to select events within $\pm 2\sigma$ of the expected mean value for signal events (where σ is the standard deviation parameter of the Crystal Ball function that best fits the $m_{b\bar{b}\gamma\gamma}$ distribution). In the case of the 900 GeV and 1000 GeV mass hypotheses, the requirement is relaxed to $\pm 4\sigma$ to increase the number of events used for the signal extraction. The B_{tot} distributions are shown in Fig. 7 for two signal hypotheses ($m_X = 300$ GeV and 500 GeV).

Table III. Definition of the categories used in the HH nonresonant search. Before entering the BDT-based categories, events are required to satisfy the common preselection.

<table>
<thead>
<tr>
<th>Category</th>
<th>Selection criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>High mass BDT tight</td>
<td>$m_{b\bar{b}\gamma\gamma} \geq 350$ GeV, BDT score $\in [0.967, 1]$</td>
</tr>
<tr>
<td>High mass BDT loose</td>
<td>$m_{b\bar{b}\gamma\gamma} \geq 350$ GeV, BDT score $\in [0.857, 0.967]$</td>
</tr>
<tr>
<td>Low mass BDT tight</td>
<td>$m_{b\bar{b}\gamma\gamma} < 350$ GeV, BDT score $\in [0.966, 1]$</td>
</tr>
<tr>
<td>Low mass BDT loose</td>
<td>$m_{b\bar{b}\gamma\gamma} < 350$ GeV, BDT score $\in [0.881, 0.966]$</td>
</tr>
</tbody>
</table>

Table IV. Variables used in the BDT for the resonant analysis. For variables depending on b-tagged jets, only jets b-tagged using the 77\% working point are considered as described in Sec. IVA.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T^{\gamma\gamma}$, $y^{\gamma\gamma}$</td>
<td>Transverse momentum and rapidity of the diphoton system</td>
</tr>
<tr>
<td>$\Delta\phi_{\gamma\gamma}$ and $\Delta R_{\gamma\gamma}$</td>
<td>Azimuthal angle and ΔR between the two photons</td>
</tr>
<tr>
<td>m_{bb}, p_T^{bb} and y_{bb}</td>
<td>Invariant mass, transverse momentum and rapidity of the b-tagged jets system</td>
</tr>
<tr>
<td>$\Delta\phi_{bb}$ and ΔR_{bb}</td>
<td>Azimuthal angle and ΔR between the two b-tagged jets</td>
</tr>
<tr>
<td>N_{jets} and $N_{b\text{-jets}}$</td>
<td>Number of jets and number of b-tagged jets</td>
</tr>
<tr>
<td>H_T</td>
<td>Scalar sum of the p_T of the jets in the event</td>
</tr>
<tr>
<td>$m_{b\bar{b}\gamma\gamma}$</td>
<td>Invariant mass of the diphoton plus b-tagged jets system</td>
</tr>
<tr>
<td>$\Delta y_{\gamma\gamma,bb}$, $\Delta\phi_{\gamma\gamma,bb}$ and $\Delta R_{\gamma\gamma,bb}$</td>
<td>Distance in rapidity, azimuthal angle and ΔR between the diphoton and the b-tagged jets system</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>Missing transverse momentum</td>
</tr>
</tbody>
</table>
C. Comparison of data and predictions

The analysis selection described in Sec. IV B requires two “tight” photons and this region is mainly composed of $\gamma\gamma$, γ-jet, and dijet events, where either one or two jets are misidentified as photons. The fractional contribution of each component can be estimated using a data-driven approach [109] based on the photon identification and isolation distributions from genuine and misidentified photons. After the common preselection, $(85 \pm 3)\%$ of sideband events are genuine diphoton events, with the remaining $(15 \pm 4)\%$ consisting of γ-jet events and a negligible number of dijet events. The uncertainties in the above fractions include both the statistical and systematic uncertainties, where the systematic uncertainty is estimated by using different photon identification criteria. In the BDT-based categories, the proportion of genuine diphoton events increases but the method suffers from a low event count for both the nonresonant and resonant cases.

Figure 8 shows the level of agreement between data and the background prediction for the $m_{\gamma\gamma}$ and $m_{\gamma\gamma}^*$ distributions, after the common preselection. The continuum background is scaled by the $\gamma\gamma$, γ-jet, and dijet fractions and normalized to the data sideband. The $\gamma\gamma$ + jets continuum background is further divided according to the flavors of the two jets (for example $b\bar{b}$ or other jets). This decomposition is taken directly from the proportions predicted by the SHERPA event generator, as described in Sec. III, and it is shown for illustration. Figures 9 and 10 show the $m_{\gamma\gamma}$ distribution after the nonresonant and resonant BDT categorization and for two benchmark mass points $m_X = 300$ GeV and $m_X = 500$ GeV. The figures illustrate the signal and background composition. The background distributions shown in these figures are not directly used to model the background processes in the analysis workflow explained in Sec. V.

V. SIGNAL AND BACKGROUND PARAMETRIZATION

The signal and backgrounds are extracted by fitting analytic functions to the diphoton invariant mass distribution in the range $105 < m_{\gamma\gamma} < 160$ GeV in both the resonant and nonresonant HH searches.

A. $H \rightarrow \gamma\gamma$ parametrization

For the di-Higgs signal and single-Higgs-boson background distributions, the parameterized forms are determined through fits to simulated samples and the expected normalizations are obtained from their theoretical cross sections multiplied by the product of the acceptance times efficiency from the simulation. The diphoton invariant mass distribution shapes are modeled with a double-sided Crystal Ball function [91,110], which is characterized by a Gaussian core and asymmetric power-law tails. This function allows the modeling of event distributions in which non-Gaussian tails can arise from experimental effects, such as photon-energy mismeasurements.

The shape parameters are determined by fitting the diphoton mass distribution in simulation for each category. The width of the fitted function is largely insensitive to the specific signal processes considered in the analysis, with maximum variations of approximately 10%. For the nonresonant search, the parameterized form of $m_{\gamma\gamma}$ is obtained from the simulation of the ggF and VBF HH processes with $k_\gamma = 1$, described in Sec. III. No significant dependence of the functional form on k_γ was found. For the resonant search, the functional form is obtained from the simulation of the heavy-resonance signals. Table V shows...
the resolution parameter of the double-sided Crystal Ball functional form fit to the $m_{\gamma\gamma}$ distribution for simulated Higgs boson pair events in the nonresonant categories and for two different mass hypotheses for a heavy resonant signal. For both searches, the chosen functional forms are found to model both the single Higgs and di-Higgs boson events well. As no statistically significant bias is observed in injection tests between the input and fitted signals, the same parametrized functions are used for both the single Higgs and di-Higgs boson processes.

B. Background parametrization

The continuum diphoton background is modeled using a functional form chosen by fitting a highly populated MC
background template. Given the high $\gamma\gamma$ purity quoted in Sec. IV C, the background template is constructed in each category from the $\gamma\gamma + \text{jets}$ simulation which is normalized to the data sideband in the mass windows of 105 GeV–120 GeV and 130 GeV–160 GeV in the $m_{\gamma\gamma}$ spectrum.

The potential bias associated with the choice of a specific analytic function to model the continuum background is estimated for each category as prescribed in Refs. [91,111]. It is obtained as the signal event yield extracted from a signal-plus-background fit to the background-only diphoton invariant mass distribution in the range 105 GeV < $m_{\gamma\gamma}$ < 160 GeV. This bias is also called the “spurious signal”. The number of fitted signal events is computed for Higgs boson masses in intervals of 1 GeV from 121 GeV to 129 GeV. The bias is taken as the largest number of fitted spurious signal events in this 8 GeV mass window. Of the different analytic functions that are tested, the one with the smallest number of parameters is chosen from the functions with a spurious signal smaller than 20% of the data’s statistical uncertainty plus two times the MC statistical uncertainty.

In each category of the nonresonant search and in all the analysis regions defined in the resonant HH search, an exponential function $\exp(a \cdot m_{\gamma\gamma})$ is found to be the best choice since it has the smallest number of degrees of freedom and yields a consistently small bias. Wald tests [112] on data show that the data do not prefer a higher-degree functional form to the exponential form. The bias is found to be at most 40% (60%) of the expected error on the fitted signal yield originating from the data statistics for the nonresonant (resonant) search. The difference in shape between the simulated events and the exponential form measured in the sidebands is found to have a negligible impact on the spurious signal. To study the impact on the spurious signal from the difference in shape between the MC background template and the data sideband, the MC spurious signal from the difference in shape between the simulated events and the exponential form is found to be at most 40% (60%) of the expected error on the fitted signal yield originating from the data statistics for the nonresonant (resonant) search. The difference in shape between the simulated events and the exponential form measured in the sidebands is found to have a negligible impact on the spurious signal. To study the impact on the spurious signal from the difference in shape between the MC background template and the data sideband, the MC template is reweighted to data using a linear function of $m_{\gamma\gamma}$ derived from the MC-data difference. The spurious signal value evaluated from the reweighted MC template is found to be compatible with the nominal one used as the systematic uncertainty.

VI. SYSTEMATIC UNCERTAINTIES

The sensitivity of the analysis is limited by the statistical precision. The assessment of the systematic uncertainties is described below and their impact on the results is discussed in Sec. VII D. The uncertainty in the integrated luminosity of the full Run 2 dataset is 1.7% [39], obtained using the LUCID-2 detector [38] for the primary luminosity measurements.

The continuum background processes of the analysis are estimated from data and are subject to uncertainties related to the potential bias arising from the chosen background model, as described in Sec. V B. The background functional form bias is assessed as an additional uncertainty in the total number of signal events in each category. For the single

<table>
<thead>
<tr>
<th>Category</th>
<th>σ_{DSCB} [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>High mass BDT tight</td>
<td>1.33 ± 0.01</td>
</tr>
<tr>
<td>High mass BDT loose</td>
<td>1.47 ± 0.02</td>
</tr>
<tr>
<td>Low mass BDT tight</td>
<td>1.50 ± 0.06</td>
</tr>
<tr>
<td>Low mass BDT loose</td>
<td>1.64 ± 0.03</td>
</tr>
<tr>
<td>Resonant $m_X = 300$ GeV</td>
<td>1.78 ± 0.02</td>
</tr>
<tr>
<td>Resonant $m_X = 500$ GeV</td>
<td>1.46 ± 0.01</td>
</tr>
</tbody>
</table>
Higgs boson and di-Higgs boson production processes, both of which are estimated using simulation, experimental and theoretical systematic uncertainties are propagated through the full analysis procedure, as described in the following.

The efficiency of the diphoton trigger used to select events is evaluated in simulation and data using a bootstrap method and radiative Z decays [113]. The difference between data and MC is taken as a systematic uncertainty. In the diphoton invariant mass range of 105 < m_{\gamma\gamma} < 160 GeV, the trigger efficiency uncertainty affects the acceptance by 1% in each category. The uncertainty in the vertex selection efficiency is assessed by comparing the efficiency of finding photon-pointing vertices in Z → e^+e^- events in data with that in simulation [114]. The resulting uncertainty is found to have a negligible effect on the signal selection efficiency.

The systematic uncertainties from the photon identification and isolation efficiencies are estimated following the prescriptions in Ref. [90]. They are evaluated by varying the correction factors for photon selection efficiencies in simulation by the corresponding uncertainties and affect the diphoton selection efficiency. The experimental uncertainties in the photon-energy scale and resolution are obtained from Ref. [90].

The jet-energy scale and resolution uncertainties affect the m_{bb} distribution, while flavor-tagging uncertainties affect the acceptance of the analysis categories. The experimental uncertainties in jet energy scale and resolution are propagated to the E_{Tmiss} calculation. In addition, the uncertainties in the scale and resolution of the E_{Tmiss} soft term are evaluated by using the method described in Ref. [103]. The flavor-tagging uncertainties for b- and c-jets are estimated in \bar{t}t events [98,116], while the misidentification uncertainty of light-flavor jets is determined using dijet events [117]. Additional uncertainties from the b-jet momentum correction accounting for the presence of muons and neutrinos are found to be negligible.

For single Higgs boson and SM HH production, the effects of theoretical scale uncertainties due to missing higher-order corrections on the production rates are estimated by varying the factorization and renormalization scales up and down from their nominal values by a factor of two, recalculating the cross section in each case, and taking the largest deviation from the nominal cross section as the uncertainty. The uncertainties in SM HH ggF production arising from the choice of renormalization scheme and scale of the top-quark mass and their combination with those from factorization and renormalization scale variations are based on Ref. [117]. The uncertainties in the cross sections, including effects of PDF + \alpha_s uncertainties, and the uncertainties in the H → \gamma\gamma and H → b\bar{b} branching fractions, are taken from Refs. [14,56]. The uncertainty in the value of the Higgs boson mass is considered [13]. An additional 100% uncertainty is assigned to the single-Higgs-boson ggF and VBF production modes and to Higgs boson production in association with a W boson. This is motivated by studies of heavy-flavor production in association with top-quark pairs [118,119] and of W boson production in association with b+jets [120].

No additional heavy-flavor uncertainty is assigned to the single-Higgs-boson \(\bar{t}t\)H and ZH production modes, where the dominant heavy-flavor production is already accounted for in the LO process. For all samples, the uncertainty related to the choice of parton showering model is evaluated by comparing the predictions of the nominal MC samples and alternative samples using a different parton showering model. In addition, for the nonresonant HH production processes, a systematic uncertainty is assigned to the \(\kappa_j\) reweighting, as discussed in Sec. III.

In the resonant search, the systematic uncertainty sources considered are the same as for the nonresonant case, except that uncertainties due to the finite order of the QCD calculations are not assigned to the resonant signal cross section. In this search the SM HH production processes are considered as background.

VII. RESULTS

The statistical framework used to derive the results for both the nonresonant and resonant searches is described in the following.

A. Statistical framework

For both the nonresonant and resonant searches, the results of the analysis are obtained from a maximum-likelihood fit of the m_{\gamma\gamma} distribution in the range 105 GeV < m_{\gamma\gamma} < 160 GeV, performed simultaneously over all relevant categories described in Sec. IV B. The likelihood function is defined in Eq. (3),

\[
\mathcal{L} = \prod_c \left(\text{Pois}(n_c | N_c(\theta)) \cdot \prod_{i=1}^{n_c} f_c(m_{\gamma\gamma}^i, \theta) \cdot G(\theta) \right),
\]

where for each event \(i\) in a category \(c\), \(n_c\) is the observed number of events, \(N_c\) is the expected number of events, \(f_c\) is the value of the probability density function, \(\theta\) are nuisance parameters, and \(G(\theta)\) are constraint pdfs for the nuisance parameters.

The expected number of events \(N_c(\theta)\), defined in Eq. (4), is the sum of the expected yields from di-Higgs boson production processes, single Higgs boson production, the nonresonant background, as well as the spurious-signal uncertainty,

\[
N_c(\theta) = \mu \cdot N_{HH,c}(\theta_{HH}^{\text{field}}) + N_{\text{res,bkg,c}}(\theta_{\text{res}}^{\text{field}})
+ N_{SS,c} \cdot \theta_{SS,c}^{\text{field}} + N_{\text{nonres,bkg,c}},
\]

where \(\mu\) is the expected number of signal events, \(N_{HH,c}\) is the expected number of background events, \(N_{\text{res,bkg,c}}\) is the expected number of nonresonant background events, \(N_{SS,c}\) is the expected number of spurious-signal events, and \(\theta_{SS,c}^{\text{field}}\) is the field value of the nuisance parameter.
where μ is the signal strength, $\theta^\text{SS,c}$ represent the nuisance parameters associated with the background function bias and θ^yield represent the nuisance parameters affecting the event yield, as detailed in Sec. VI. Correlation of the nuisance parameters across different signal and background components, as well as categories, is taken into account. In the case of the nonresonant search, $N^\text{res}_{\text{bkg,c}} = N_{H,c}$, while in the case of the resonant analysis $N^\text{res}_{\text{bkg,c}} = N_{H,c} + N^\text{SMHH,c}$.

The probability density function f_c represents the shape information. The sum of the double-sided Crystal Ball functions modeling the HH production processes, single Higgs boson production, and the spurious signal, and of the analytic function modeling the nonresonant background as described in Sec. V B, is shown in Eq. (5),

$$
 f_c(m_{T_T}, \theta) = \left[\mu \cdot N_{H,c}(\theta^\text{yield}) \cdot f_{H,c}(m_{T_T}, \theta^\text{shape}) + N^\text{res}_{\text{bkg,c}}(\theta^\text{yield}) \cdot f^\text{res}_{\text{bkg,c}}(m_{T_T}, \theta^\text{shape}) + N^\text{SS,c} \cdot f^\text{SS,c}_{HH}(m_{T_T}, \theta^\text{shape}) + N_{\text{nonres}} \cdot f_{\text{nonres}}(m_{T_T}, \theta^\text{shape}) \right] / N_c(\theta^\text{yield}),
$$

where θ^shape represent nuisance parameters related to the shape variations of the functional forms. When a nuisance parameter is related to shape and yield variations at the same time, the two effects are correlated.

The nominal yields of the resonant background processes are initially set to values from simulation. The likelihood function includes all the nuisance parameters that describe the systematic uncertainties. The signal strength is a free parameter in the fit. The measurement of the parameter of interest is carried out using a statistical test based on the profile likelihood ratio [107], as shown in Eq. (6),

$$
 \Lambda(\mu) = \frac{\mathcal{L}(\mu, \hat{\theta}(\mu))}{\mathcal{L}(\hat{\mu}, \hat{\theta})},
$$

where μ and θ are respectively the parameter of interest and the nuisance parameters. In the numerator, the nuisance parameters are set to their profiled values $\hat{\theta}(\mu)$, which maximize the likelihood function for a fixed value of the parameter of interest μ. In the denominator, the parameter of interest and the nuisance parameters are set to the values $\hat{\mu}$ and $\hat{\theta}$, respectively, which jointly maximize the likelihood.

In the absence of signal, exclusion limits are set on Higgs boson pair production in the $b\bar{b}\gamma\gamma$ final state. The limits for both nonresonant and resonant production are calculated.
TABLE VI. The number of data events observed in the 120 GeV < m_{T2} < 130 GeV window, the number of \(HH \) signal events expected for \(\kappa_2 = 1 \) and for \(\kappa_2 = 10 \), and events expected for single Higgs boson production (estimated using MC simulation), as well as for continuum background. For the single Higgs boson, “Rest” includes the following production modes: VBF, WH, tHW, and tH.

<table>
<thead>
<tr>
<th></th>
<th>High mass</th>
<th>Low mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BDT tight</td>
<td>BDT loose</td>
</tr>
<tr>
<td>Continuum background</td>
<td>4.9^{+1.1}_{-1.3}</td>
<td>9.5^{+1.5}_{-1.7}</td>
</tr>
<tr>
<td>Single Higgs boson background</td>
<td>0.67^{+0.59}_{-0.13}</td>
<td>1.6^{+0.6}_{-0.2}</td>
</tr>
<tr>
<td>(ggF + bbH)</td>
<td>0.26^{+0.28}_{-0.16}</td>
<td>0.4^{+0.3}_{-0.2}</td>
</tr>
<tr>
<td>(t\bar{t}H)</td>
<td>0.19^{+0.03}_{-0.03}</td>
<td>0.49^{+0.09}_{-0.07}</td>
</tr>
<tr>
<td>(ZH)</td>
<td>0.142^{+0.035}_{-0.025}</td>
<td>0.48^{+0.09}_{-0.07}</td>
</tr>
<tr>
<td>Rest</td>
<td>0.074^{+0.014}_{-0.014}</td>
<td>0.16^{+0.07}_{-0.03}</td>
</tr>
<tr>
<td>SM (HH(\kappa_2 = 1)) signal</td>
<td>0.87^{+0.10}_{-0.18}</td>
<td>0.37^{+0.04}_{-0.07}</td>
</tr>
<tr>
<td>(ggF)</td>
<td>0.86^{+0.10}_{-0.18}</td>
<td>0.35^{+0.04}_{-0.07}</td>
</tr>
<tr>
<td>VBF</td>
<td>((12.6^{+1.2}_{-1.2}) \times 10^{-3})</td>
<td>((16.1^{+1.4}_{-1.4}) \times 10^{-3})</td>
</tr>
<tr>
<td>Alternative (HH(\kappa_2 = 10)) signal</td>
<td>6.5^{+1.0}_{-0.8}</td>
<td>3.6^{+0.6}_{-0.4}</td>
</tr>
<tr>
<td>Data</td>
<td>2</td>
<td>17</td>
</tr>
</tbody>
</table>

using the CLS method [121], with the profile-likelihood-ratio-based test statistic \(\bar{q}_\mu \), defined in Eq. (7) [107],

\[
\bar{q}_\mu = \begin{cases}
-2 \ln \frac{\Lambda(\hat{\mu}|\hat{\theta}(\mu))}{\Lambda(\hat{\theta}(0))} & \hat{\mu} < 0, \\
-2 \ln \frac{\Lambda(\hat{\mu}|\hat{\theta}(\mu))}{\Lambda(\hat{\mu}|\hat{\theta}(\mu))} & 0 \leq \hat{\mu} \leq \mu, \\
0 & \hat{\mu} > \mu.
\end{cases}
\]

The asymptotic approximation [107] is used for the test-statistic distribution. The inaccuracy of the asymptotic approximation is checked with pseudoexperiment studies for the key results reported in this paper.

B. Nonresonant search results

Figure 11 shows the background fits to the data. No significant excess over the SM background expectations is found, as summarized in Table VI. The statistical analysis sets a 95% C.L. upper limit on the nonresonant \(HH \) production cross section at 130 fb, while 180 fb is expected. An observed (expected) upper limit at 95% C.L. on the signal strength of 4.2 (5.7) times the SM prediction is obtained. The expected constraints are obtained for a background hypothesis excluding \(pp \rightarrow HH \) production. For the upper limits on the cross section, all theoretical uncertainties are included, except those related to the signal cross section itself, while constraints on the signal strength are computed including uncertainties in the predicted signal cross section. A check of the results that quantifies the upper limits by using pseudoexperiments is performed and the increase of the limit value relative to the asymptotic approximation is found to be less than 8% for both the observed and expected upper limits. A check of the expected upper limits using prefit values for the nuisance parameters associated with the systematic uncertainties is

![Figure 12](image-url)
performed and an increase of 4% relative to the nominal result is found. The difference is dominated by the contribution from the spurious signal.

Upper limits on the HH production cross section are also computed as a function of κ_λ, as shown in Fig. 12. For this purpose, single-Higgs-boson production cross sections and Higgs boson decay branching ratios are assumed to have SM values, and the coupling strength between the Higgs boson and other particles are also set to their SM values [55]. The theory uncertainties related to the signal cross section are not included.

The expected constraints on κ_λ at 95% C.L., as obtained with a background hypothesis excluding $pp \to HH$ production, are $[-2.4, 7.7]$, whereas the observed constraints are $[-1.5, 6.7]$ at 95% C.L. The inclusion of the VBF HH production mode tightens the constraints by about 5% relative to an alternative fit considering only the ggF production mode.

An alternative statistical analysis consists in determining the best-fit value of the κ_λ coupling modifier. The best-fit value of κ_λ and its uncertainty are obtained by means of a negative log-likelihood scan. The coupling strengths of the Higgs boson to fermions and gauge bosons are set to their SM values. The values of the negative log-likelihood ratio,
corresponds to a similar fitted signal yield with respect to the second minimum in the expected likelihood scan curve. The value corresponds to κ_λ.

HH uncertainties, including those of the theoretical prediction of the Asimov dataset [107] is generated under the SM signal-line represents the expected upper limits. The black solid line represents the observed upper limits. The dashed line represents the expected upper limits. The $\pm 1\sigma$ and $\pm 2\sigma$ variations about the expected limit due to statistical and systematic uncertainties are also shown.

$\approx -2 \ln \Lambda(\mu)$, as a function of κ_λ are shown in Fig. 13. The Asimov dataset [107] is generated under the SM signal-plus-background hypothesis, $\kappa_\lambda = 1$. All systematic uncertainties, including those of the theoretical prediction of the HH production cross section, are included. The best-fit value corresponds to $\kappa_\lambda = 2.8^{+2.0}_{-2.2} \left(^{+3.8}_{-4.3} \right)$ for the 1σ (2σ) confidence interval. The expected value corresponds to $\kappa_\lambda = 1.0^{+5.5}_{-2.4} \left(^{+7.3}_{-4.2} \right)$ for the 1σ (2σ) confidence interval. The second minimum in the expected likelihood scan curve corresponds to a similar fitted signal yield with respect to the κ_λ point at the first minimum, which is a consequence of a higher cross section, but lower acceptance and worse signal-to-background separation. The m_{HH} distribution has a different shape at each of the two minima, as shown in Fig. 5.

C. Resonant search results

Figure 14 shows the fit to the data of the resonant search for two benchmark values of the mass m_X of a hypothetical scalar particle. No significant excess over the SM background expectations is found, as shown in Table VII. Figure 15 shows the observed and expected upper limits at 95% C.L. on the production cross section of a narrow-width scalar resonance. The observed (expected) upper limits vary between 640–44 fb (391–46 fb) in the range 251 GeV $\leq m_X \leq 1000$ GeV. A check on the upper limits using pseudoexperiments is performed. For the expected limits, the results based on the pseudo-experiments are found to be up to 10% higher compared with those derived based on the asymptotic approximation. As for the observed limits, the pseudoexperiments yield typically 10% higher results compared with the asymptotic approximation in most of the m_X range explored, and the difference increases to 15% for the $m_X = 700$ GeV signal hypothesis.

D. Impact of systematic uncertainties

The dominant systematic uncertainties are listed in Table VIII for both the nonresonant and resonant searches. The main uncertainties are related to the choice of functional form for the continuum background (spurious signal), to the parton showering model, and to the photon energy resolution.

![Graph showing observed and expected limits at 95% C.L. on the production cross section of a narrow-width scalar resonance](image)

FIG. 15. Observed and expected limits at 95% C.L. on the production cross section of a narrow-width scalar resonance X as a function of the mass m_X of the hypothetical scalar particle. The black solid line represents the observed upper limits. The dashed line represents the expected upper limits. The $\pm 1\sigma$ and $\pm 2\sigma$ variations about the expected limit due to statistical and systematic uncertainties are also shown.

$\sum \ln \Lambda(\mu)$, as a function of κ_λ are shown in Fig. 13. The Asimov dataset [107] is generated under the SM signal-plus-background hypothesis, $\kappa_\lambda = 1$. All systematic uncertainties, including those of the theoretical prediction of the HH production cross section, are included. The best-fit value corresponds to $\kappa_\lambda = 2.8^{+2.0}_{-2.2} \left(^{+3.8}_{-4.3} \right)$ for the 1σ (2σ) confidence interval. The expected value corresponds to $\kappa_\lambda = 1.0^{+5.5}_{-2.4} \left(^{+7.3}_{-4.2} \right)$ for the 1σ (2σ) confidence interval. The second minimum in the expected likelihood scan curve corresponds to a similar fitted signal yield with respect to the κ_λ point at the first minimum, which is a consequence of a higher cross section, but lower acceptance and worse signal-to-background separation. The m_{HH} distribution has a different shape at each of the two minima, as shown in Fig. 5.

C. Resonant search results

Figure 14 shows the fit to the data of the resonant search for two benchmark values of the mass m_X of a hypothetical scalar particle. No significant excess over the SM background expectations is found, as shown in Table VII. Figure 15 shows the observed and expected upper limits at 95% C.L. on the production cross section of a narrow-width scalar resonance. The observed (expected) upper limits vary between 640–44 fb (391–46 fb) in the range 251 GeV $\leq m_X \leq 1000$ GeV. A check on the upper limits using pseudoexperiments is performed. For the expected limits, the results based on the pseudo-experiments are found to be up to 10% higher compared with those derived based on the asymptotic approximation. As for the observed limits, the pseudoexperiments yield typically 10% higher results compared with the asymptotic approximation in most of the m_X range explored, and the difference increases to 15% for the $m_X = 700$ GeV signal hypothesis.

D. Impact of systematic uncertainties

The dominant systematic uncertainties are listed in Table VIII for both the nonresonant and resonant searches. The main uncertainties are related to the choice of functional form for the continuum background (spurious signal), to the parton showering model, and to the photon energy resolution.

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Nonresonant analysis</th>
<th>Resonant analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HH</td>
<td>$m_X = 300$ GeV</td>
</tr>
<tr>
<td>Experimental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photon energy resolution</td>
<td>Norm. + Shape</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Jet energy scale and resolution</td>
<td>Normalization</td>
<td><0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Flavor tagging</td>
<td>Normalization</td>
<td><0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Theoretical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factorization and renormalization scale</td>
<td>Normalization</td>
<td>0.3</td>
<td><0.2</td>
</tr>
<tr>
<td>Parton showering model</td>
<td>Norm. + Shape</td>
<td>0.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Heavy-flavor content</td>
<td>Normalization</td>
<td>0.3</td>
<td><0.2</td>
</tr>
<tr>
<td>$B(H \to \gamma \gamma, b \bar{b})$</td>
<td>Normalization</td>
<td>0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>Spurious signal</td>
<td>Normalization</td>
<td>3.0</td>
<td>3.3</td>
</tr>
</tbody>
</table>
VIII. CONCLUSIONS

Searches for nonresonant and resonant Higgs boson pair production are performed in the $b\bar{b}γγ$ final state using 139 fb$^{-1}$ of 13 TeV pp collision data collected with the ATLAS detector at the LHC. No significant excess above the Standard Model background expectation is observed. A 95% C.L. upper limit of 130 fb is set on the $pp → HH$ nonresonant production cross section, where the expected limit is 180 fb. The observed (expected) limit corresponds to 4.2 (5.7) times the cross section predicted by the Standard Model. Constraints on the Higgs boson self-coupling are also derived and limits of $-1.5 < κ_λ < 6.7$ are obtained, where $-2.4 < κ_λ < 7.7$ is expected. The expected constraints on the HH nonresonant production cross section and on $κ_λ$ are obtained with a background hypothesis excluding $pp → HH$ production. For resonant production of a scalar particle $X → HH → b\bar{b}γγ$, upper limits on the production cross section are obtained for the narrow-width hypothesis as a function of m_X. The observed (expected) upper limits are in the range $640–44$ fb ($391–46$ fb) for 251 GeV $≤ m_X ≤ 1000$ GeV. Compared to the previous ATLAS result based on 36 fb$^{-1}$ of 13 TeV pp collisions, the present analysis uses a dataset about four times larger, incorporates a categorization based on $m_{b\bar{b}γγ}^2$ and multivariate event selections, and expands the analyzed mass range of the resonance search to lower values. The results improve upon the previous ATLAS limits on the $HH → b\bar{b}γγ$ production cross section by up to a factor of five, and the allowed $κ_λ$ range shrinks by about a factor of two. For the resonant search, the expected limit on the cross section improves by a factor of two to three depending on the m_X value. Of those improvements, a factor of two arises from the increase in integrated luminosity, while the additional improvement can be attributed to the use of multivariate techniques, more precise object reconstruction and calibration and, for the nonresonant search, the categorization based on $m_{b\bar{b}γγ}^2$. The present analysis also sets constraints that are tighter than those from a combination of ATLAS searches for HH production in up to 36 fb$^{-1}$ of 13 TeV data.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DFNRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; Norwegian Financial Mechanism 2014–2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafsson Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/ GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [122].

SEARCH FOR HIGGS BOSON PAIR PRODUCTION IN THE TWO … PHYS. REV. D 106, 052001 (2022)

[43] G. Heinrich, S. Jones, M. Kerner, G. Luisoni, and L. Scyboz, Probing the trilinear Higgs boson coupling in di-
Higgs production at NLO QCD including parton shower effects, J. High Energy Phys. 06 (2019) 066.

ATLAS Collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb$^{-1}$ of proton–proton collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS experiment, Phys. Rev. D 101, 012002 (2020).

K. Mimasu, V. Sanz, and C. Williams, Higher order QCD predictions for associated Higgs production with

[82] G. Luisoni, P. Nason, C. Oleari, and F. Tramontano, $HW^\pm/Hz^\pm + n$ and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO, J. High Energy Phys. 10 (2013) 083.

SEARCH FOR HIGGS BOSON PAIR PRODUCTION IN THE TWO ... PHYS. REV. D 106, 052001 (2022)

1Department of Physics, University of Adelaide, Adelaide, Australia
2Department of Physics, University of Alberta, Edmonton, Alberta, Canada
3Department of Physics, Ankara University, Ankara, Turkey
4LAPP, Univ. Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
5High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
6Department of Physics, University of Arizona, Tucson, Arizona, USA
7Department of Physics, University of Texas at Arlington, Arlington, Texas, USA
8Physics Department, National and Kapodistrian University of Athens, Athens, Greece
9Department of Physics, University of Texas at Austin, Austin, Texas, USA
10Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
11Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
12Institute of Physics, University of Belgrade, Belgrade, Serbia
13Institute of Physics, University of Bern, Bern, Switzerland
14School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
15Department of Physical and Astrophysical Research, University of Helsinki, Helsinki, Finland
16Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
17Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
18Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20Department of Physics, Technische Universität Wien, Vienna, Austria
21Department of Physics, University of Bern, Bern, Switzerland
22Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
23Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
24Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovakia
25Physics Department, Brookhaven National Laboratory, Upton, New York, USA
Department of Physics, Indiana University, Bloomington, Indiana, USA
INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
ICTP, Trieste, Italy
Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine, Italy
INFN Sezione di Lecce, Italy
Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
INFN Sezione di Milan, Italy
Dipartimento di Fisica, Università di Milano, Milano, Italy
INFN Sezione di Napoli, Italy
Dipartimento di Fisica, Università di Napoli, Napoli, Italy
INFN Sezione di Pavia, Italy
Dipartimento di Fisica, Università di Pavia, Pavia, Italy
INFN Sezione di Pisa, Italy
Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
INFN Sezione di Roma, Italy
Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
INFN Sezione di Rome Tor Vergata, Italy
Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
INFN Sezione di Roma Tre, Italy
Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
INFN-TIFPA, Italy
Università degli Studi di Trento, Trento, Italy
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City, Iowa, USA
Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
Joint Institute for Nuclear Research, Dubna, Russia
Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil
Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan
AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Egham, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston, Louisiana, USA
Fysiska institutionen, Lunds universitet, Lund, Sweden
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
Departamento de Física Teórica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
Department of Physics, McGill University, Montreal, Québec, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, University of Michigan, Ann Arbor, Michigan, USA
Department of Physics, Shinshu University, Nagano, Japan
Department Physik, Universität Siegen, Siegen, Germany
SLAC National Accelerator Laboratory, Stanford, California, USA
Department of Physics, Royal Institute of Technology, Stockholm, Sweden
Departments of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA
Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Tomsk State University, Tomsk, Russia
Department of Physics, University of Toronto, Toronto, Ontario, Canada
TRIUMF, Vancouver, British Columbia, Canada
Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Department of Physics, University of Illinois, Urbana, Illinois, USA
Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia—CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven, Connecticut, USA

aDeceased.
bAlso at Department of Physics, King’s College London, London, United Kingdom.
cAlso at Istanbul University, Department of Physics, Istanbul, Turkey.
dAlso at Instituto de Física Teorica, IFT-UAM/CSIC, Madrid, Spain.
eAlso at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
fAlso at TRIUMF, Vancouver, British Columbia, Canada.
gAlso at Physics Department, An-Najah National University, Nablus, Palestine.
hAlso at Department of Physics, University of Fribourg, Fribourg, Switzerland.
iAlso at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.
jAlso at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
kAlso at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
lAlso at Faculty of Physics, Sofia University, ‘St. Kliment Ohridski’, Sofia, Bulgaria.
mAlso at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel.
nAlso at Università di Napoli Parthenope, Napoli, Italy.
oAlso at Institute of Particle Physics (IPP), Canada.
pAlso at Bruno Kessler Foundation, Trento, Italy.
qAlso at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
rAlso at Borough of Manhattan Community College, City University of New York, New York, New York, USA.
sAlso at Department of Physics, California State University, Fresno, USA.
tAlso at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
uAlso at Centro Studi e Ricerche Enrico Fermi, Italy.
SEARCH FOR HIGGS BOSON PAIR PRODUCTION IN THE TWO …

PHYS. REV. D 106, 052001 (2022)

Also at Department of Physics, California State University, East Bay, USA.

Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.

Also at Graduate School of Science, Osaka University, Osaka, Japan.

Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.

Also at University of Chinese Academy of Sciences (UCAS), Beijing, China.

Also at Yeditepe University, Physics Department, Istanbul, Turkey.

Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.

Also at CERN, Geneva, Switzerland.

Also at Joint Institute for Nuclear Research, Dubna, Russia.

Also at Hellenic Open University, Patras, Greece.

Also at Center for High Energy Physics, Peking University, China.

Also at The City College of New York, New York, New York, USA.

Also at Department of Physics, California State University, Sacramento, USA.

Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.

Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.

Also at National Research Nuclear University MEPhI, Moscow, Russia.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

Also at Giresun University, Faculty of Engineering, Giresun, Turkey.

Also at Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.