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Abstract

Recent experiments have shown that the magnon velocity over nanoscale distances
in certain antiferromagnetic materials, with NiO in particular, far exceeds the pre-
vious theoretical maximum. Antiferromagnetic insulators are excellent candidates
for spintronic nanodevices due to their exceptionally low energy dissipation, which
could benefit the future speed at which information is stored. These magnons,
which have since been dubbed ”superluminous-like magnons”, are classically not
expected, and it is hypothesized that the presence of a damping term in the equa-
tion of motion of the magnetic moment accounts for this anomalous behaviour.
In this work, spin dynamics simulations are done using the UppASD software pack-
age in order to verify the existence of these superluminous-like magnons, where the
magnon velocity in NiO is determined through a variety of ways. Analyzing simu-
lated magnon spectra around high-symmetry points where the dispersion is linear
allows for an extraction of magnon velocities, which shows no abnormal behaviour
for bulk NiO, as well as for large wavelength (low energy) magnons. Other ways to
determine the magnon velocity have been performed by studying the propagation
of magnons that are excited through various methods. These studies also show that
the magnon velocity does not far exceed the previous theoretical limit. While these
magnons propagate slightly faster than they would in bulk, it is shown that these
magnons very rapidly decelerate to their known bulk speeds.
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Populärvetenskaplig sammanfattning

I de flesta elektroniska apparater idag lagras information i s̊a kallade magnetiska
bitar, som antar ett av tv̊a möjliga värden: 1 eller 0. Genom att kontrollera bitar-
nas värde kan information avläsas och lagras. Informationshanteringen genomförs
av kvasipartiklar, s̊a kallade magnoner, som skapas genom att applicera externa
magnetfält till lagringsmediet. Magnoner beter sig som partiklar, trots att de inte
formellt betraktas som s̊adana - därav klassificeras de som kvasipartiklar. Ju högre
magnonhastigheten är, desto snabbare är informationslagringen. Därför eftersträvas
s̊a höga hastigheter som möjligt.

I nyligen utförda experiment har det p̊avisats att magnonhastigheten över väldigt
korta avst̊and i vissa magnetiska material kan överskrida de teoretiska förutsägelserna
avsevärt. Dessa specifika magnoner, vars hastighet är markant högre än man tidi-
gare förutsätt, kallas ”överljusfarts aktiga partiklar”. Det anmärkningsvärda med
dessa partiklar är att rörelseekvationerna som beskriver magnoners rörelse i mag-
netiska material inte förutsp̊ar en möjlig överljushastighet. En hypotes som har
presenterats för att förklara fenomenet, är att en dämpning i rörelseekvationerna
utgör källan för magnoner som rör sig med överljushastighet. Denna förklaring kan
dock tyckas vara kontraintuitiv eftersom en dämpande faktor innebär ett minskande
av energi fr̊an magnonerna, vilket borde leda till lägre hastigheter.

För att verifiera existensen av magnoner med överljusfart, simuleras magnetiska sys-
tem p̊a atomniv̊a genom att använda mjukvarupaketet UppASD. Magnonhastigheten
för ett stort antal olika dämpningsfaktorer beräknas med olika metoder. Eftersom
det finns ett direkt samband mellan magnonens energi och dess hastighet, bestäms
energispektrumet för magnoner med l̊ag energi, Spektrumet beskriver magnonernas
energi p̊a flera ställen i de enskilda kristallerna, som tillsammans utgör bulken för
det magnetiska materialet. De andra metoderna skapar magnoner genom att införa
lokala störningar i den magnetiska ordningen, antingen manuellt eller genom att
indirekt lägga p̊a korta laserpulser vilka sedan följs d̊a de fortskrider genom mate-
rialet. Genom att undersöka hur länge det tar för varje magnon att n̊a specifika
atomer i materialet kan en bra uppskattning göras för hur snabbt magnonerna har
färdats.

Intressant nog verkar det som att magnonhastigheten i alla olika undersökta fall inte
är i närheten av att n̊a extremt höga värden. Dessutom verkar dämpningkoefficienterna
- som borde vara orsaken till överljushastigheten - ha en minimal inverkan p̊a
magnonhastigheten. Denna observation stämmer väl överens med s̊aväl klassiska -
som den kvantmekaniska teorin. Det visar sig att ett möjligt misstag kan ha gjorts
under utförandet av de fysiska experimenten. S̊aledes är det enda sättet att verifiera
existensen för magnoner som rör sig med överljusfart att reproducera dem genom
att utföra samma experiment igen, men den här g̊angen med större noggrannhet in
i minsta detalj.
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1 Introduction

Spintronics is a rapidly developing technology that exploits the spin of the electron
and the associated magnetic moment thereof. Its most prominent use nowadays is
in the field of high-speed data storage and reading of hard drives. The magnetic
storage of information on various media is governed by single-domain magnetic
nanoparticles [1]. The storage medium can be divided into various sections, also
known as bits. Due to the quantized nature of the magnetic moment, there are only
two types of bits. For bits in which a magnetic field is measured, a ’1’ is detected,
whereas, for bits in the absence of a magnetic field, a ’0’ is detected. In order
to store information, one needs to be able to manipulate the value of these bits.
This is achieved through a variety of magnetic excitations. One such excitation is
a spin wave. When a magnetic system gets excited, its ordered magnetic moments
start precessing. On a slightly bigger scale, it looks as if neighbouring magnetic
moments propagate as a wave through the lattice, due to the presence of a constant
phase difference between neighbours. Similar to how phonons are the quanta for
lattice excitations, spin waves are also quantized, and have their own quanta; the
magnon. A different description of magnetism depending on the itinerant nature
of the valence electrons gives rise to a different kind of magnetic excitation. Stoner
excitations arise between electrons and holes in different bands [2]. When an elec-
tron gets excited in a system having more electrons than holes, the electron will
leave behind a hole in the valence band, which essentially means that the sign of the
magnetic moment gets flipped. Stoner excitations are hence also known as spin-flip
excitations. This excitation is of crucial importance in allowing the changing of bits
in the storage medium. Spin waves and Stoner excitations are also related. Finite
energy spin waves decay into Stoner excitations, which then account for the finite
lifetimes of the spin waves.

As the amount of data that needs to be stored is continuously increasing, faster
methods to store this data are of crucial importance. One promising approach is
the use of antiferromagnetic (AFM) materials in spintronics over the more conven-
tional ferromagnetic (FM) materials. AFMs have a fundamentally different lattice
structure compared to regular FMs. While their chemical structure can be similar,
their magnetic ordering is vastly different as the magnetic moments for AFMs align
in a regular pattern directed opposite to their neighbouring magnetic moments.

Figure 1: Illustration of the magnetic ordering of both ferromagnetic and antifer-
romagnetic materials.

As a result, AFMs have no net magnetization and as a consequence will be insen-
sitive to external magnetic fields. Recent discoveries have shown that AFMs can
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be controlled electrically, similar to FMs, making them promising candidates for
all kinds of spintronic nano-devices, as they are far more common in nature than
their FM counterparts [3]. AFM materials have several other benefits in the field
of spintronics over using FM materials as their magnetic dissipation is low, which
is of considerable interest when aiming to construct energy-efficient devices.

1.1 Superluminal-like magnons in NiO

Recent experiments have shown that certain AFM materials, with nickel oxide
(NiO) in particular, can excite magnons that could potentially reach ”superluminal-
like” speeds at nanoscale distances [4]. For this experiment one typically starts with
a non-magnet (NM)/FM bilayer, as seen in figure 2 below. Optical excitation of
the FM induces a spin current that propagates through the NM. Analogous to how
electric currents have their purpose in electronics, spin currents serve as a way to
carry information in spintronics. Upon reaching the NM this spin current is then
converted into a charge current via spin-charge-conversion through for example the
inverse spin Hall effect [5]. This charge current is time-dependent due to the short-
pulsed optical excitation of the FM and hence it emits radiation, typically with
frequencies in the range of terahertz (THz) [6]. These signals can be observed and
studied using THz spectroscopy.
A similar setup is used to study the magnonic properties of AFM materials. This
time the AFM is insulated between the FM/NM bilayer, forming a trilayer. Typical
widths of this AFM layer are in the range of several dozens of nanometers. Once
again the FM layer will be optically excited, but now the spin current generated in
the FM will induce a magnon current in the AFM. The magnon current transfers
some angular momentum to the NM, which then generates the measurable THz
signal like before.
The introduction of the AFM layer introduces a time delay when measuring the
THz signal due to the time it takes the magnon to propagate through the AFM.
Measuring this time delay, and using the width on the insulated AFM makes it
possible to determine the magnon velocity in the AFM, simply by dividing the
width of the AFM layer by the measured time delay. High magnon velocities are
critical in the construction of these nanodevices as it allows for higher operating
speeds. This results in lower operation times and hence also less power consumption
by these devices. Measured magnon velocities in several materials have shown to far
exceed theoretical estimates, giving rise to the name ”superluminous-like magnons”.
Interestingly enough it turns out that the measured magnon velocity also has a
non-trivial dependence on the thickness of the AFM, which requires some further
investigation.
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Figure 2: Experimental set-ups for the measurement of superluminal-like magnons.
The upper setup is the FM/NM bilayer, whereas the lower setup also contains the
insulated AFM. Figure taken from [4].

Repeated measurements of the magnon velocities with varying thicknesses of the
AFM layer suggest that the maximum magnon velocity is related to the improved
AFM ordering in the AFM, as the thickness increases. It has been hypothesized
that a dampening term in the equations of motion governing the spin dynamics can
account for these superluminous magnons as it would make dispersion anomalous
for large wavelength magnons. While it may sound counter-intuitive for a dampen-
ing effect to have a beneficial contribution to magnon velocities, it is not a novelty
as superluminal-like group velocities have been previously known to exist for various
dissipative materials in the fields of optics and electronics [7]. This phenomenon
is of considerable interest as it allows for pushing the fundamental limit of these
spintronic nanodevices.

1.2 Thesis outline

Classically, these superluminal-like magnon velocities are not expected. As such,
the original paper on these superluminous magnons is of considerable interest and
deserves a closer look. This thesis will investigate these superluminal-like magnon
velocities, as well as try to reproduce these magnon velocities, if not produce classi-
cally expected ones, through spin dynamics simulations. Chapter two of this thesis
presents the necessary parts of the theories of magnetism and spin dynamics and
relates them with magnon velocities. In chapter three, UppASD and the various
methods to compute magnon velocities through spin dynamics simulations are elab-
orated. Chapters four and five present and discuss the obtained results, respectively.
Additionally, comparisons between magnon velocities with the original paper [4] are
made.
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2 Magnetism and NiO

Magnetism in its most fundamental form is the study of magnetic moments in
materials. Solids get their magnetic properties from the magnetic moments of
valence electrons so that our current understanding of magnetism has its roots in
quantum mechanics, without which static magnetism would not even exist in the
first place. The two kinds of quantized angular momenta of electrons, the spin part,
and the orbital momentum part, together make up for its total angular momentum.
These two are further linked together by the relativistic spin-orbit coupling (SOC).
When coupled to the gyromagnetic ratio, γ, the total angular momentum also makes
up the total magnetic moment of electrons. While nuclear spins also give rise to
magnetic moments, they are much smaller in size than the electronic spin due to
the significantly higher nucleon mass and are hence often negligible. Aside from the
relativistic corrections to the energy spectrum of hydrogen, SOC also gives rise to a
handful of magnetic interactions and nanostructures, such as magnetic anisotropies
and skyrmions. The former, together with a handful of other magnetic interactions,
will be of particular interest to this study.
This section will build the framework for studying magnon velocities within NiO.
First, the various relevant kinds of magnetic interactions will be elaborated on.
Then the crystal structure of NiO will be explored some more. This will be followed
up by deriving the classical dispersion relation and group velocity for magnons in
NiO, using the so-called Landau-Lifshitz-Gilbert (LLG) equation of motion for the
magnetic moments. Finally, spin correlation functions of magnetic moments are
connected to the magnon dispersion relation.

2.1 Magnetic interactions

The Hamiltonian of magnetic systems consists of a variety of magnetic interactions,
which, coupled with the LLG equation, completely, in a classical sense, describe
the dynamics of magnetic moments within them. Some of these interactions are
quite exotic and can for instance arise when systems lack certain symmetries, such
as the Dzyaloshinskii-Moriya interaction [8, 9]. NiO, however, is highly symmetric
and will not be subject to this interaction. Other interactions are the result of
relativity, like magnetocrystalline anisotropy (MCA). Often, the most dominant
magnetic interaction is quantum mechanical in nature. This exchange interaction
only affects indistinguishable particles, such as electrons. All in all, the relevant
interactions are contained in the magnetic Hamiltonian, which is given by

H = HEX +HZ +HMCA +HD, (1)

where HEX is the exchange interaction, HMCA is the contribution due to MCAs,
HD is the regular dipole energy and HZ is the classical Zeeman term, all of which
will be clarified in their respective sections below.

2.1.1 Exchange interaction

The Pauli exclusion principle forbids two electrons from occupying the same state.
Instead, each electron will occupy a state with a different spin configuration, either
of them slightly different in their respective energies. The repulsion due to the
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Coulomb interaction, together with these split states, is the origin of the exchange
interaction.
To further clarify this, it is useful to consider a system consisting of two electrons,
such as the helium atom. Again the Pauli exclusion principle requires the total wave
function of this system, denoted by Ψ, to be completely antisymmetrical under the
exchange of the two electrons. If the Hamiltonian of the system does not explicitly
contain a term involving spin, then Ψ is made up of two separate parts

Ψ = ψ ⊗ χ, (2)

in which ψ is a spatial contribution, and χ is a spin contribution. Antisymmetriza-
tion of Ψ forces it to take one of two forms

Ψ1 = ψs ⊗ χa or Ψ2 = ψa ⊗ χs, (3)

where the subscripts s and a mean are symmetric and antisymmetric under the
exchange of two electrons, respectively. For spin-12 particles, such as the electron,
these symmetric and antisymmetric take the form of the usual triplet and single
states, due to how the spin representation of the composite system decomposes [10].
Magnetism affects many electrons at the same time. This requires some electrons
to occupy excited states. The energy necessary to push these electrons to this state
is provided by the repelling Coulomb interaction. The two different antisymmetric
wave functions have different energies associated with them depending on the parity
of the spatial projection. The energy of the states can simply be computed as the
ground state energy through the expectation value of the Hamiltonian, whose poten-
tial part is given by the Coulomb interaction. Explicit evaluation of these energies
in one’s favourite basis yields that the Coulomb interaction prefers antisymmetric
spin configurations of the wave function, as these tend to have lower energies. The
contribution of the spatial projection of the wavefunction to the energy in a basis
of position eigenstates takes the form of

E =

∫
ψ∗
s,a(r1, r2)Hψs,a(r1, r2)dr

3
1dr

3
2, (4)

where the integrals are taken over the configuration space of both electrons. One
can define a corresponding exchange parameter J as half of the energy difference
between the energies of the antisymmetric- and symmetric spin configurations so
that the exchange energy is given by

∆E = −2Jm1 ·m2, (5)

where m1,2 is the dimensionless spin configuration of the first and second electron,
respectively, which ensures that the exchange parameter takes on the units of energy.
The inner product that arises here is a result of the norm in the spin space.
This energy was later generalized by Heisenberg to many-electron systems, giving
rise to the classical Heisenberg Hamiltonian, which for a lattice with atoms on sites
i and j reads,

H = −
∑
i,j
i ̸=j

Jijmi ·mj , (6)
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where Jij is the exchange parameter between atoms on sites i and j. From hence-
forth, for brevity, whenever magnetic moments are mentioned, these always mean
magnetic moments specified at sites on a lattice. Note that the factor in front- and
the sign of exchange parameter is ambiguous and there exists no clear consensus on
which to use, so this explicit form of the Hamiltonian, in which the factor of 2 is ab-
sorbed within the J , will be used throughout this work. This exchange mechanism
is also responsible for spontaneous magnetization. The sign of the exchange param-
eters is of crucial importance in a material’s magnetic ordering. Materials that have
Jij > 0 are said to behave ferromagnetically, whereas materials that have Jij < 0
behave antiferromagnetically. It is seemingly impossible to directly experimentally
determine the values of the exchange parameters, meaning that one typically has
to resort to studying experimentally determined magnon spectra. Alternatively,
the values of the exchange parameters can be computed more rigorously via a first-
principle approach using local spin density functionals, where the linear response of
the ground state energy subject to small excitations of on-site magnetic moments
has been thoroughly analyzed and computed [11–13].

While there exists no classical analogue to the exchange interaction, this Hamilto-
nian is still seen as classical, but this is due to the fact that it can be quantized
even further, where the spin operators are transformed into creation and annihila-
tion operators [14]. The Heisenberg Hamiltonian generalizes the well-known Ising
model, whose original purpose was to act as the simplest description of FM, as well
as the identification of phase transitions.

Even though the Coulomb interaction is a fairly long-ranged interaction, the re-
sulting exchange interaction is short-ranged, with nearest neighbour- (NN) and
next-nearest neighbour (NNN) couplings bringing in the predominant contribu-
tions. The exchange interaction in NiO works just a bit differently than it would
in body-centered cubic iron (bcc Fe). The d-electrons in insulators and transition
metals such as NiO are localized, and hence there is not a lot of overlap between the
3d-orbitals of nickel atoms. Nickel atoms are too far separated in order to allow a
strong direct exchange interaction, meaning that NN exchange parameters in NiO
are practically negligible if not zero. In bcc Fe, the iron atoms are sufficiently close
to each other to allow a direct exchange interaction. However, nickel 3d-orbitals
hybridize with oxygen 2p-orbitals, as seen in figure 3 below, forming, what looks like
an ”oxygen bridge”, between NNN nickel atoms. This oxygen bridge then admits
what is known as a superexchange interaction, allowing electrons to move freely
between NNN nickel atoms, using the oxygen atoms which results in a stronger ex-
change coupling [15]. This mechanism is further made possible because the oxygen
ions gladly give up an electron to the neighbouring nickel ions, while they them-
selves gladly receive an extra electron. Superexchange acts over larger distances
than the direct exchange interaction, which makes this exchange so ”super”.
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Figure 3: Visualization of the hybridization of oxygen 2p- and nickel 3d-orbitals.
Nickel ions are gray, while oxygen ions are red.

2.1.2 Extensions to the Heisenberg model

While the Heisenberg Hamiltonian does an excellent job at describing magnetism
through the exchange interaction, other magnetic interactions exist, which, de-
pending on their magnitude, have to be taken into consideration. One of the more
straightforward of such interactions occurs when a homogeneous magnetic field is
applied in the vicinity of a system that is being studied. This magnetic field then
breaks the rotational symmetry that is often present. The interaction between
magnetic moments and this applied magnetic field is given through the Zeeman
Hamiltonian

HZ = −
∑
i

mi ·Bext, (7)

where the sum runs over all sites in the lattice.

Other magnetic interactions take the form of anisotropic effects, whose sources can
vary depending on their kind. Among these are the MCA, as well as the magnetic
anisotropy due to dipole interactions. Physical properties in crystals are in gen-
eral anisotropic, meaning that they depend on the crystallographic directions, as
is the case for some magnetic effects, although there also exist important isotropic
quantities, such as the Curie temperature. As a result of this magnetic anisotropy,
the quantization axis takes on a preferred direction. There are various kinds of
magnetic anisotropy, but the discussion here will be limited to MCA and shape
anisotropy.

Whereas the origin of the exchange interaction is quantum mechanics, MCA is re-
ally a consequence of relativity. Its effects were first experimentally determined
and described phenomenologically, and only later on the origin of this anisotropy
was linked to the SOC, where it acts as a link between crystal symmetries and the
orbital angular momentum [16]. Due to MCA, the magnetic moments in a lattice
have a preferred crystallographic direction they want to lie in so that the total en-
ergy is minimized. In the presence of an external magnetic field, the spin of the
electron realigns so that it minimizes the Zeeman energy, as given in equation (7).
As a consequence of SOC, also the orbital angular momentum of the electron will
want to start to realign, but since this is strongly coupled to the lattice, it is a bit
more rigid and experiences some resistance. Most materials have a weak SOC, and
hence MCA is significantly weaker than the exchange interaction, as is the case for
NiO [17].
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Anisotropy is typically accounted for through anisotropy constants and phenomeno-
logical models. The easiest way to do this is through uniaxial anisotropy, in which
a crystal possesses a single preferred magnetization direction. In this case, the
contribution to the total energy by the anisotropy is given by

Euni = K sin2 θ, (8)

for some magnetization angle θ and the anisotropy constant K. The sign of K is
important when translating this contribution into something physical. For K > 0,
EUni has minima at θ = 0 and θ = π, indicating that the crystal is easiest to
magnetize parallel to this magnetization direction. This direction is often referred
to as the ”easy axis”, in the case that this axis coincides with the quantization
axis. For the case that K < 0, the energy takes a minimum value in the plane of
θ = π

2 . Physically, this means that the magnetization is free to rotate without any
additional energy costs in this plane, which gives rise to ”easy plane”/”hard axis”
anisotropy so that the preferred magnetization direction can be anywhere within
this plane.

Depending on the symmetries of the crystal, most of them possess more, and of-
ten, non-uniaxial anisotropies. For crystals with low symmetry, a second-order
anisotropy contribution to the energy takes the form of

E = K1 sin
2 θ +K2 sin

2 θ cos 2ϕ, (9)

in which K1 and K2 are the anisotropy constants, and θ and ϕ are the magnetiza-
tion angles, which again need not necessarily be aligned with the crystallographic a,
b, and c axes [18]. This description of anisotropy works well for rhombohedral and
monoclinic crystals. Due to crystallographic distortions, for NiO in particular, it
becomes rhombohedral [19] so equation (9) is suitable. However, these distortions
are so small that they are hard to observe experimentally. Anisotropy constants
can also possess some kind of dependence on internal/external stresses and strains,
meaning that further deformations can occur when crystals are externally magne-
tized, which again is negligible for NiO.
In order to use equation (9) in the magnetic Hamiltonian, it is key to write it in a
coordinate-free way, so that effectively the energy due to MCA takes the form of

HMAE = K1

∑
i

(mi · x̂)2 +K2

∑
i

(mi · ŷ)2, (10)

where x̂ and ŷ are the unit vector along the easy- and hard anisotropy axes, respec-
tively. These unit vectors need not necessarily be the Cartesian x and y directions.

A different source for magnetic anisotropies are magnetic interactions. Magnetized
crystals generate a demagnetization field which further tries to minimize the total
energy [20]. Like the Coulomb interaction, magnetostatic interactions are long-
ranged, meaning that this demagnetization process heavily depends on the shape
and orientation of the crystals, which naturally creates easy axes within the crys-
tal. However, these shape anisotropic effects only become relevant for systems small
enough to not break up into smaller magnetic domains, where magnetization inho-
mogeneities play an important role, which makes this anisotropy not relevant for
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NiO [21].

The interactions between electrons can to good precision be described by a mag-
netic dipole interaction, and also contribute to the magnetic anisotropy. From the
multipole expansion in basic magnetostatics, one can compute the energy from this
dipole to be [22]

Hd =
−µ0
8π

∫∫
3(m(r1) · r12)(m(r2) · r12)−m(r1) ·m(r2)r

2
12

r512
d3r1d

3r2. (11)

Here r12 = r1 − r2, r12 = |r12| and m(r1) and m(r2) are the magnetic moments
of each of the dipole contributions. The dipole correction generally only yields a
small contribution to the total energy, allowing us to approximate its contribution,
analogous to Schrön et al [23]. For transition metal oxides such as NiO this integral
expression can be rewritten to a sum over the nickel sites in the crystal. Oxygen
sites do not contribute to the dipole energy as their dipole moment vanishes. In this
case, the dipole contribution can effectively be modeled as a uniaxial anisotropy

Hd = Kd

∑
i

(mi · ẑi)2, (12)

in which Kd is the dipole anisotropy constant, which by definition is always nega-
tive, thus leading to a hard axis anisotropy, with ẑi being the anisotropy axis.

Collecting all relevant magnetic interactions, the magnetic Hamiltonian in its most
general form becomes

H = −
∑
i,j
i ̸=j

Jijmi ·mj +K1

∑
i

(mi · x̂)2 +K2

∑
i

(mi · ŷ)2+

Kd

∑
i

(mi · ẑi)2 −
∑
i

mi ·Bext.

(13)

Simplifications can still be made when the anisotropy axes in NiO are identified, as
well as determining the number of relevant exchange parameters.

2.2 Nickel oxide

NiO crystallizes in the rocksalt structure in its paramagnetic phase. For tempera-
tures lower than its Néel temperature, NiO is AFM ordered due to the aforemen-
tioned dominant superexchange interaction [24]. Since the exchange interaction is
short-ranged for insulators, like NiO, the exchange interaction can be limited to
only NN and NNN exchange couplings between nickel atoms. While oxygen atoms
also carry nonzero magnetic moment, they do not contribute to the total spin dy-
namics, due to the vanishing time-averaged magnetic moment of the oxygen atoms.
The NN coupling is several orders of magnitude smaller than NNN [25], but even
though they can be neglected, they are still taken into account.

NiO has different three contributions to its magnetic anisotropies, two of which
are MCAs, while the other one is due to dipole interactions [23]. Calculations

9



have found ⟨−110⟩ to be the easy anisotropy axis, which has been experimentally
verified [26], however, other experiments have also found ⟨−1 − 12⟩ as the easy
axis [27]. Both directions are coplanar, with a negligible energy cost of rotating in
this plane, so either of them can be used effectively. However, the former will be
considered here since it is easiest to work with. The other two anisotropies are both
hard axes, and while different in origin, they are both along the same ⟨111⟩ axes.
This hard axis anisotropy forces the magnetic moments in the {111} planes [28],
which are then stacked antiferromagnetically throughout the lattice, as can be seen
in figure 4 below.

Figure 4: Crystal lattice of AFM NiO. Nickel atoms are drawn in grey, whereas
oxygen atoms are drawn in red. The direction of the magnetic moments is indicated
with the blue and green arrows.

2.3 Atomistic spin dynamics

Classical mechanics teaches us that a torque on a system induces a change in orbital
angular momentum. Likewise, a magnetic moment in a magnetic field experiences
a torque, which makes the magnetic moment precess, according to

dmi

dt
= −γmi ×Beff,i, (14)

where Beff,i is the ambient effective induced magnetic field that the magnetic mo-
ment at site i in the lattice experiences. When an external magnetic field is absent,
a magnetic field is induced through the various magnetic interactions as present in
the magnetic Hamiltonian, given by

Beff,i = − ∂H
∂mi

, (15)

which generalizes the case of an externally applied magnetic field, so that equation
(14) is still valid. In the absence of a damping term, this would mean that the
magnetic moment would precess indefinitely, and one would not observe saturation,
a reaching of thermal equilibrium, of the magnetic moment, as is experimentally
observed [29]. In order to account for this, equation (14) needs to include a phe-
nomenological dissipation term, as proposed by Gilbert in 1955, so that after some
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finite time the magnetic moment would align with the effective magnetic field. The
easiest way to impose this would be to slightly alter the external field to include a
dissipation along the lines of

Beff,i → Beff,i −
α

γmi

∂mi

∂t
, (16)

where α is the phenomenological damping term. Inserting equation (16) into equa-
tion (14) yields

dmi

dt
= −γmi ×Beff,i +

α

mi
mi ×

∂mi

∂t
(17)

which is known as the Landau-Lifshitz-Gilbert (LLG) equation [30]. In the regime of
low damping, this equation accurately describes the dynamics of magnetic moments
and collective local excitations thereof, more commonly known as magnons.

2.4 Magnons in NiO

In order to arrive at an expression for the group velocity of magnons in NiO, one
must solve the LLG equation for the Hamiltonian of equation (13). Under the
assumptions made regarding the anisotropy and exchange interaction, the Hamil-
tonian becomes

H = −J1
∑

i,j∈NN
i ̸=j

mi ·mj − J2
∑

i,j∈NNN
i ̸=j

mi ·mj +K1

∑
i

(mi · x̂)2+

K̃
∑
i

(mi · ŷ)2 −
∑
i

mi ·Bext.

(18)

Here J1 and J2 are the NN and NNN exchange parameters, respectively, and
K̃ = K2 + Kd is the hard axis anisotropy constant, which now accounts for both
MCA as well as anisotropy due to dipole interactions. Ideally, one would like to in-
clude both NN and NNN exchange interactions, however in light of the complexity
of the obtained magnon dispersion relation, and since |J2| ≫ |J1| because of su-
perexchange, NN coupling will be neglected. The effective induced magnetic field,
computed through equation (15), is given by

Beff,i = 2J2
∑

i∈NNN

mi − 2K1(mi · x̂)x̂− 2K̃(mi · ŷ)ŷ +Bext, (19)

which together with the LLG equation fully describes the spin dynamics within
NiO. In order to obtain an expression for the magnon velocity, first, an expression
for their energy needs to be derived. To achieve this, a spin-wave ansatz for the
magnetic moments is made through which the corresponding dispersion relation is
derived [31]. For either of the sublattices A and B, the magnetic moments take the
form of

mA
i = (mA

i,xe
i(qx−ωt),m,mA

i,ze
i(qx−ωt))

mB
i = −(mB

i,xe
i(qx−ωt),m,mB

i,ze
i(qx−ωt)),

(20)

with m the magnetic moment for the nickel atom at the i-th site, ω the magnon
frequency, k the wave number and x the distance of the site coupled to the i-th site.
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The ansatz describes magnons traveling in the positive x direction, but for it to be
valid, the amplitudes of the spin waves need to be small, i.e.

|mA/B
i,x |, |mA/B

i,z | ≪ 1. (21)

This linearizes equation (17), as this allows for products between amplitudes to
be neglected, but note, however, that the solution that is obtained is an approx-
imate one. Only couplings between lattice sites need to be considered that have
a contribution parallel to the propagation direction of the excited magnon. Next,
this ansatz is plugged into equation (17) and the amplitudes are collected. This
linearized system of equations, in the absence of an external magnetic field, takes
the form of

−iω X1 0 −4J2mγ cos qa0
X2 −iω 4J2mγ cos qa0 0
0 −4J2mγ cos qa0 iω X1

4J2mγ cos qa0 0 X2 iω




mA
i,x

mA
i,z

mB
i,x

mB
i,z

 = 0,

(22)

where for brevity

X1 = iωα+ 2(J2 + K̃)mγ,

X2 = −iωα− 2(2J2 −K1 + K̃)mγ
(23)

have been defined. Non-trivial solutions for the magnon frequency, and hence also
energy, arise when the determinant of the above matrix vanishes. Since this char-
acteristic equation is quartic in ω, four complex solutions exist. However, two of
these solutions have a negative real part and are hence non-physical solutions. The
other two solutions represent the optical and acoustical magnon modes. The

ω± =
1

1 + α2
(−m2γ2(8J2(K1 − 2K̃) + 4(K1 − K̃)K̃ +K2

1α
2+

8J2(−1 + α2)(∓K1 cos qa0 + J2 cos 2qa0)
1/2

(24)

2.5 Spin-spin correlation functions

Magnon spectra will play a pivotal role in the determination of the magnon veloc-
ities. In order to get a better grasp of what these spectra entail and how they are
constructed, it is important to discuss some more about spin-spin correlation func-
tions. Statistically, correlation functions merely measure how similar two quantities
in a system behave. Physically, correlation functions are much more intricate, hav-
ing a more widespread range of applications, varying from describing high-energy
scattering processes, all the way up to the study of phase transitions [32, 33]. The
field of magnetism also holds a few useful pair correlation functions. For systems in
thermal equilibrium, one can measure the so-called spatial pair correlation function,
which is used as a measure for the range of the magnetic order within the system.
In the study of the dynamics of magnetic systems, typically thermal equilibrium
is not reached and one needs to also take into account temporal fluctuations. The
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pair correlation function then takes on a time dependence and is given by

Cαβ(r, τ) =
〈
mα(R, t)mβ(R+ r, t+ τ)

〉
R,t

− ⟨mα(R, t)⟩
〈
mβ(R+ r, t+ τ)

〉
R,t

,

(25)
in which the subscriptsR and t denote averaging over all sites and observation times
in the system, while superscripts α and β denote the Cartesian components of the
magnetic moments. The pair correlation function hence allows for a description of
how the magnetic order evolves in systems over space and time. The most prominent
application of the pair correlation function comes from its ties to experiments where
neutrons or electrons are inelastically scattered on magnetic systems [34]. The
pair correlation function can be Fourier transformed in its spatial and temporal
coordinates in order to arrive at the dynamical structure factor (DSF). The DSF is
given by

Sαβ(q, ω) =
1

2π

∑
r

eiq·r
∫
R
Cαβ(r, t)e−iωtdt, (26)

which relates the wave vectors q and the frequencies ω of magnons. For non-
collinear systems, the DSF is a 3 by 3 matrix, however, in the case of collinear case,
only the diagonal entries remain of interest. The aforementioned inelastic neutron
scattering experiments only measure fluctuations perpendicular to the quantization
axis of the system. Thus, when relating the DSF to experiments, one merely has to
consider the orthogonal projections of the DSF to the quantization axis and relate
those to the magnon excitations.
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3 Spin dynamics simulations & implementation

By studying magnetism and its effects at an atomic level, one quickly enters the field
of spin dynamics. Spin dynamics simulations are essential to computing magnon
velocities, and as such, the Uppsala atomistic spin dynamics (UppASD) software
package has been used throughout this thesis [35]. UppASD evolves the atomic
magnetic moments in solids according to the previously mentioned LLG equation.
Due to the small timestep used to numerically solve these equations, UppASD is
ideal for the study of ultrafast magnon dynamics of AFMs, which typically have
their resonance frequencies in the THz range [36]. Using various features included
in UppASD, a trio of methods has been devised that allows for a good estimation
of the magnon velocity.
The implementation and correct setup of NiO within UppASD is quite straightfor-
ward. NiO crystallizes in the rock salt structure, in which the nickel atoms form a
face-centered cubic (fcc) lattice, which makes a primitive fcc unit cell sounds like an
ideal choice to set up the simulations with. However, the presence of the oppositely
directed {111} planes of atomic magnetic moments breaks the threefold rotational
symmetry and could yield a more tedious working experience within UppASD. In-
stead, a more conventional unit cubic unit cell has been chosen, which completely
nulls any potential issues in correctly setting up the MCAs and the rest of the
system.

Figure 5: Implemented unit cell of NiO within UppASD. Indicated are the crys-
tallographic a, b and c axes. Nickel- and oxygen atoms are again drawn in grey
and red, respectively. The direction of the magnetic moments is indicated by the
arrows.

The first of three ways to obtain the magnon velocity is by studying simulated
magnon spectra, as was hinted at near the end of the previous section. UppASD
contains a feature to calculate the DSF at all points for any given path through
the Brillouin Zone (BZ). For this method, some small tweaks had to be done to the
setup in order for UppASD to produce a correct linear spin wave spectrum, due
to AFM systems initially being incompatible with the way the simulated magnon
spectra were obtained [37]. Typically, a path is chosen through the BZ which passes
through a lot of its high symmetry points, which are the most interesting. Since
the DSF relates the magnon frequencies and wave vectors, it allows for the magnon
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dispersion to be extracted from it. For each fixed wave vector q∗, the DSF S(q∗, ω),
then, merely depending on the magnon frequency, takes the shape of a Lorentzian
(or double Lorentzian in some cases), peaking at the resonance frequency of the
magnons, which are to be extracted, as seen below. Additionally, the FWHM of
this Lorentzian is related to the lifetime of the magnon.

Figure 6: Lorentzian distribution of S(q∗, ω) as a function of ω, for a fixed wave
vector q∗.

Doing this for all wave vectors included in the selected path through the BZ and
collecting all the resonance frequencies, one is able to arrive at a relation between
the magnon energies, up to a factor of ℏ, and the wave vectors.

Now that the numerical magnon dispersion is obtained, the next step is to use it to
be able to compute the magnon velocity. Similar to how the wave group velocity is
defined in optics, the magnon velocity is defined to be

vm =
∂ω(q)

∂q
, (27)

since after all, it is a collective wavelike excitation. Note that the magnon dispersion
for AFM systems needs to scale linearly with q for small q in order to get a non-
vanishing group velocity in this regime [38]. This is fundamentally different than
the magnon dispersion for FM systems, such as for bcc Fe, as the magnon dispersion
scales quadratically with the wave vector near the center of the BZ, Γ, so that the
magnon velocity vanishes. The group velocity near Γ is of particular interest, as it
attains its maximum value here since dissipation plays no role due to the vanishing
wave vector.
Even though the magnon velocity can be computed analytically, it translates a bit
differently when computing it from the numerical data obtained through UppASD.
Numerically, derivatives become slopes, so that near Γ it suffices to just compute
the slope of the dispersion. Due to some troubles regarding the implementation of
dissipation through complex frequencies and wave vectors, the group velocity has
not been computed analytically, and instead, we resort to numerical computations.
This issue will get some more elucidation in the discussion at the end.
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The original paper on superluminous magnons [4] includes the magnon velocities for
a small number of damping coefficients. In trying to most accurately replicate these
computed superluminous magnon velocities, a wider range of damping coefficients
has been used in order to extend the analysis.

The two other ways to numerically compute the magnon velocity both rely on
analyzing local excitations to the magnetic structure of NiO. There exist several
different ways to apply local excitations, but within the possibilities in UppASD,
only two such methods have been considered. In order to mimic the setup [4] as
closely as possible, the other two sets of simulations are done within a system of
about 40 nm long, 4 nm wide, and 4 nm tall, which is the supposed range in which
these superluminous magnon velocities can be measured.

Figure 7: Snapshot of the setup used for the simulations, which consists of 100 by 10
by 10 unit cells. Different colours indicated differently directed magnetic moments,
with the red and blue colours being the two extrema. A spin wave can be seen
propagating through the system.

By manually flipping the direction on one, or more, magnetic moments on one end
of the system, the neighbouring spins will, in turn, react to this sudden change, as
they are coupled through the exchange interaction, and they themselves will start
to flip. This ”spin-flip” indeed excites magnons within the system, as on a bigger
scale this front-end excitation starts to propagate through the system. The greater
the number of magnetic moments flipped on the excited end of the system, the
stronger the cascading effect will be throughout the rest of the system, and the
more magnons get excited.

UppASD has the ability to track the magnetic moments of individual lattice sites
over time. By selecting a specific trajectory of lattice sites in the system and tracking
their magnetizations over time, a rough estimate of the time when the excitation is
reached at each site can be made. Since the goal is to study magnon propagation
over nanoscale distances, the relevant path is chosen to be in the center of the front
end, along the length of the system. For one such sites, the magnetization evolves
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like figure 8a below.
The ”excitation time”, as indicated by the red cross in both plots in figure 8, is
determined at which point in time the magnetization deviates more than a set
relative amount from the initial value at the start of the simulation. As a nice
cross-check, one can see that the magnetization over time slowly starts restabilizing
around its ground state value, as is physically expected. The magnon velocity at
the j-th site away from the excitation can simply be computed as

vm,j =
ja0
τj
, (28)

where a0 is the lattice parameter of NiO and τj is the excitation time at the j-th site.

Aside from spin-flips, magnons can also be excited thermally, or due to externally
applied magnetic fields. The second way magnons are excited in this thesis is
through externally pulsing a magnetic field on one end of the system. In order to
stay as close to the pulsing in [4] as possible, the pulsing in UppASD is done with an
externally applied harmonic magnetic field with an angular frequency in the THz
range. Moreover, the pulsing time is 120 fs, and a large magnitude has been applied
in order to fully saturate the excited end. Similar to the spin-flip, the magnetization
of specific sites can be tracked in order to estimate the excitation time, after which
again the magnon velocity at specific sites can be computed through equation (28).
While pulses are repeated at a certain frequency in [4], the decision has been made to
limit the number of pulses to one, as to guarantee only individual excited magnons
are observed.

(a) (b)

Figure 8: (a), Magnetization as a function of time for a specific lattice site in the
system. Indicated with the red cross is the time at which the spin-flip excitation has
reached this site. (b), Magnetization as a function of time for a specific lattice site
in the system. Indicated with the red cross is the time at which the pulsed magnetic
excitation has reached this site. Note that this lattice site need not necessarily be
the same one.
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4 Results

Ideally, one would like to exhaust all possible ways to determine the magnon velocity
in order to maximize the reliability of the simulations. More methods for exciting
magnons exist, such as introducing impurities in the magnetic lattice as it would
destabilize the magnetic order. This would excite singular magnons, which quickly
dissipate over time as the magnetic order is re-established. However, considering the
number of methods that are used, the three methods should deem adequate in order
to give a sufficiently accurate judgement on the behaviour of magnon velocities at
nanoscale length scales. This section will present and analyse the simulation results
of each of the three methods.

4.1 Magnon spectra

Naturally, one starts by looking for abnormal magnon behaviour on the biggest
scale and slowly tries to narrow it down. For a start, the spectrum of bulk NiO
is simulated and investigated. Its theoretical magnon spectrum is readily available
[39], allowing for easy comparisons between the two of them. One should note that
the theoretical spectrum uses slightly higher values for the exchange parameters, as
a slightly different system is studied there, which accounts for the slightly smaller
simulated magnon spectra. This would in turn also result in slightly smaller magnon
velocities. The path traversed through the truncated octahedral BZ of the fcc unit
cell passes several high symmetry points as indicated by the labels along the x-axis.

Figure 9: Simulated magnon spectrum for bulk NiO for various damping coefficients.

At first glance, these spectra do not look out of the ordinary, and though a different
path through the BZ is taken as compared with the theoretical spectrum, the general
shape agrees rather well. Even more so, the spectra overlap for the various damping
coefficients, indicating that the magnon dispersion seems to have a relatively weak
dependence, if any at all, on the damping coefficients. Computing the magnon
velocity through the slope of the spectra close to Γ for these bulk spectra hence
gives again a not-so-surprising result.
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Figure 10: Magnon velocity as a function of damping for the bulk spectra.

The magnon velocities appear independent of the damping coefficient, but this
might be due to a lower sampling frequency, as is elaborated on in the discussion.
Moreover, their magnitudes are a bit lower than previous determinations of magnon
velocities in NiO [34, 40], but when taking into account the extra factor that devi-
ates the simulated spectra from the experimental ones, they are in good agreement.

Suggested in [4] is that these superluminous magnon velocities occur only for
magnons with rather small wave vectors, and hence large wavelengths, in the range
of several 106 cm−1. More simulations of bulk NiO are done with an increased sys-
tem size which allows for these long wavelength magnons to be properly sampled.

Figure 11: Simulated magnon spectra with an increased resolution for smaller wave
vectors.

Once more, the simulated spectra for simulations with nonzero damping show no
deviating behaviour from the undamped one, as they all still overlap. Their shapes
and energy ranges are well in accordance with previous theoretical works [41]. For
increasing damping, the spectra start becoming less clear and more scattered, which
is to be expected, as bigger damping ensures a faster return of the system to its
ground state so that it stops properly contributing to the spin-spin correlation
functions. These spectra are fitted in the ”tail”, which is the steepest part of the
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spectrum, and hence visually should yield the highest possible magnon velocity, as
is done in the figure below.

Figure 12: Linearly fitted (red) simulated magnon spectrum for small wave vectors.

Attempts to plot the acoustical magnon mode from equation (24) have been done,
but these were unsuccessful and have been commented on in the discussion. Collec-
tively, this yields the following plot for the magnon velocity for the various damping
coefficients.

Figure 13: Magnon velocity as a function of damping for the small wave vector
spectra.

Although seemingly minimal, there seems to be a downward trend of the magnon
velocity for increasing damping, which is what is classically expected. The presence
of damping allows for the dissipation of energy, which classically should not yield
increasing magnon velocities. This is observed, as the maximum magnon velocity
occurs for the undamped case. Furthermore, these computed magnon velocities
come nowhere close to exceeding this ”superluminous barrier” of measuring at least
one order of magnitude over the current known magnon velocity in NiO. From
analysing the various magnon spectra within NiO, it can, however, be established
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that the magnon velocity does not depend on the damping in such a way that it
allows for this superluminous behaviour to occur.

4.2 Local spin-flips

Due to its instantaneous nature, the spin-flip excitation might not be the most
physically realizable one, but it will still prove to be useful to study magnon dy-
namics. Instead of flipping a singular magnetic moment on one end of the system,
simulations are done where the entire front plane is flipped in order to strengthen
the effects of the excitation. For the same set of damping coefficients, the magnon
velocities at the lattice sites away from the initial excitation are computed.

Figure 14: Magnon velocity as a function of the interatomic distance due to a spin-
flip excitation, for various damping coefficients.

Note that the first site after the excitation is missing from this plot. It turns
out that the spin-flip excitation transfers the excitation infinitesimally fast to its
NN. Due to this non-harmonic behaviour, the excited magnon would then reach
velocities that are physically not realistic, which is enough to exclude it. As such,
the NNN of the excited site would then act as the site at which the maximum
physical magnon velocity can be computed through the simulations, under the
logical assumption that the NN will still hold the actual maximum velocity, which
is then slightly higher. Moreover, the magnon velocity yet again looks like it is
minimally dependent on the damping coefficient. The maximum computed magnon
velocity is slightly higher than double that of the maximum magnon velocity as
observed in the bulk NiO spectrum. In some way, this is strange as there do not exist
different kinds of magnons, as all magnons are expected to propagate with the same
maximum velocity. One can also see that the magnon velocity steadily decreases
as it propagates through the system, up to the point where it starts to settle at
around 30 km/s, which is nicely in accordance with the computed bulk magnon
velocity. The magnon decelerates due to the energy dissipation, but its deceleration
rapidly decreases after it has passed several lattice sites. Some inconsistencies in
the decreasing trend seem to occur at the sixth site from the excitation where the
magnon velocity increases, but this interesting result can be quickly negated by
noting that the simulations also include an external stochastic field, which accounts
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for randomness in the simulations. The most notable observation from studying this
spin-flip excitation, however, remains the low dependence of the magnon velocity
on the damping coefficient. This agrees nicely with the classical theory as well
as with the conclusions from the observed magnon spectra. Simulations have also
been done with large systems in order to capture the behaviour of low wavelength
magnons, however, these produced no new results.

4.3 Pulsed magnetic excitations

Magnon excitations due to a pulsed externally applied magnetic field most closely
resemble the experiment in [4] and therefore make for the most promising attempt
to try to reproduce its results. This excitation is physically more realizable than
the spin-flip, and due to its harmonic time dependence, this excitation does not
transfer infinitesimally fast onto its NN. As a result, the NN site will be able to
measure a physical and useful magnon velocity. Interestingly, as the magnetic pulse
starts, the magnetic moments on the excited end start spinning out of control up
to the point where the pulse ends, after which they slowly restabilize back into the
ground state.

Figure 15: Magnon velocity as a function of the interatomic distance due to a pulsed
magnetic excitation, for various damping coefficients.

This figure looks very similar to figure 14, which checks out nicely with the results
from the spin-flip, though one should not forget that the latter excludes one lattice
site. Once more, the magnon velocities seem independent on the damping coeffi-
cients, as indicated by the strong overlap of the velocities at each lattice site. The
maximum computed velocity reaches about the same as for the spin-flip, coming
nowhere near exceeding the bulk magnon velocity and entering the superluminous
regime. As the excitation propagates through the system, the velocity saturates
again at around the value it has in bulk, which is consistent with what was found
before.
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5 Conclusion and Outlook

In this thesis, spin dynamics simulations in NiO are done as a response to previous
experimental work where magnon velocities were measured that exceeded previous
theoretical maxima by significant amounts, in order to verify their existence. A
classical derivation of the magnon spectrum within NiO, supported by simulations
of the magnon spectra for high wavelength magnons, both show no anomalous
behaviour for the magnon velocities. Magnon velocities remain in the same or-
der of magnitude as previously experimentally determined values, coming nowhere
near the value of the superluminous magnons. Moreover, the magnon dispersion
is more or less independent of the damping coefficients, whence the superluminous
magnons supposedly originated, only showing a small decrease in the magnon veloc-
ity for increasing damping coefficients, which agrees with the classical expectations.
Magnons are excited and tracked over nm distances by locally flipping individual
magnetic moments, as well as ultrafast externally pulsed magnetic fields. Maxi-
mally computed magnon velocities are slightly higher than the values they would
have been in bulk, but again show no superluminous behaviour and remain rela-
tively independent of the damping coefficients. Moreover, these magnon velocities
rapidly decelerate back to their bulk values, which is consistent with previously
obtained results.

While additional simulations could be done that determine the magnon velocity in
alternative ways, it remains to be seen to what extent these would produce new
results. Previous methods all indicate that the presence of damping in the LLG
cannot be the origin of these superluminous magnons. This then raises the question
of what could instead be their source, if they exist at all. It might be interesting
to apply an external pulsed magnetic field in the center of the system and see the
magnon dynamics that arise from that, in order to compare with the spin dynam-
ics simulations in [4]. Obtained results agree with an alternative approach, which
is fundamentally different, as it is quantum mechanical in nature, in which mag-
netic moments are mapped to bosonic creation and annihilation operator as per
the Holstein-Primakoff transformations. Here, the magnon dispersion is computed
straight from diagonalizing the magnetic Hamiltonian. This avoids the magnonic
dissipation in the LLG altogether, while energy dissipation to electrons and phonons
may still be included, which again produces no superluminous magnons [41].

It might be interesting to attempt to recreate the original experiment in which su-
perluminous magnons are measured in order to rule out any experimental mistakes
and inaccuracies. Any failed attempts to recreate superluminous magnon would
then immediately rule out their existence. Spin dynamics simulations are also done
in [4] in order to support their findings regarding superluminous magnons, however,
a different code is used than UppASD. It might be worth trying to repeat the var-
ious methods to determine magnon velocity, but this time using the spin dynamics
code that was used in the original paper.
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6 Discussion

A thorough analysis of the magnon velocity in NiO using UppASD has shown no
existence of superluminous magnons. Still, two different conclusions are drawn in
two different studies, which require some discussion and clarification.

Starting off with the experimental part [4], just like any other experiment, it is
prone to mistakes, inaccuracies, and uncertainties. A potential reason for measur-
ing significantly higher magnon velocities than expected is that the skin depth of
the laser is too large, which means that it penetrates the FM, as seen in figure
2. As a result, the laser, although briefly, excites spin currents prematurely. This
results in a premature magnon current, which in turn also makes the NM emits a
premature signal so that measured magnon velocities become slightly inaccurate.
Additionally, there is a possibility for interface effects between the various elements
of the trilayer, which could influence the velocities of the different kinds of currents
that arise through the various layers.

Spin dynamics simulations are also done in [4]. Here, instead of exciting the one
end of the setup with externally pulsed magnetic fields, the center is excited, which
is odd, since mimicking their experimental setup seems well within the capabilities
of their code. Due to the unknown nature of the code that has been used, no fur-
ther comments can be made. Supporting their results from the simulations are the
analytically derived magnon dispersion and magnon velocity. In order to take into
account the dissipative nature of the magnon dynamics, one has to complexify either
the magnon frequencies or magnon wave vectors, which ended up being a bit more
tedious to work with than expected. While the analytical magnon dispersion can be
reproduced, troubles arise when trying to obtain the magnon velocities. Interesting
to note is that the derivation is done only using the NNN exchange coupling, which
is justified due to the dominant superexchange. Even though this might account
for some inaccuracy in the magnon spectra, it does not account for a fundamentally
different magnon behaviour. If one decides to work with a complex wave vector,
equation (27) can be used to derive the magnon velocity, with the subtle change that
one needs to take the derivative with respect to the projection along the real part of
the wave vector. Attempts to do this with the magnon dispersion in equation (24)
have been done using Mathematica, however, no functional form similar to the ones
in [4] have been reached. Since no additional information regarding the derivation
is supplied, it makes it a bit dubious, while still, the analytical magnon velocity
matches nicely with the spin dynamics simulations. Moreover, the spin dynamics
simulations for various damping coefficients do not all sample the same wavelength
magnons. This should be at the expense of the predictive power of the low wave
vector magnon spectra, but, maybe unrightfully, conclusions are still drawn.

Small inaccuracies also occurred during the analysis using UppASD, however, none
of which are able to substantially influence the general obtained results. The simu-
lated magnon spectra contain some ”dead points”. For these points, S(q∗, ω) does
not measure a proper signal, resulting in incorrectly computed resonance frequen-
cies, which in the end need to be filtered out. This makes it seem like the magnon
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spectra have a low sampling frequency in some ranges. The determination of the
magnon velocity using the magnon spectra relied on fitting data points twice, once
in the determination of resonance frequencies, and the other in the actual deter-
mination of the magnon velocity. For poor data, these fits often converged pretty
poorly. Instead on most occasions, the maxima of the DSF were used to avoid hav-
ing to fit it with a Lorentzian, which mostly improved the obtained results for the
magnon velocity. The theoretically derived magnon dispersion also does not quite
match the simulated results. While being in the correct order of magnitude for the
magnon frequencies, the value at Γ is significantly lower for the simulated magnon
spectra, which indicates that something might have gone wrong when setting up the
anisotropies. Moreover, the simulated magnon spectra are much steeper than the
theoretical ones, which then yields much higher magnon velocities for the former.
Since the magnon velocities from the simulated magnon spectra are corresponding
quite well to previous experimental work, one can conclude that something erro-
neous occurs in the theoretical derivation of the magnon dispersion. Furthermore,
in the analysis of studying locally excited magnons, the excitation times were sus-
ceptible to the chosen absolute error. This usually resulted in a few extra/less km/s
of the magnon velocity at each lattice site. The same phenomenon occurred when
different projections of the magnetization at each lattice site were chosen, however,
yet again this only resulted in a minor difference in the magnon velocity. Lastly,
one limitation of the latter two methods is that only the magnon velocity could
be computed on the individual lattice sites, which resulted in rather discrete plots
for the magnon velocity. It would have made the analysis more complete if a more
continuous interval could be considered.
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