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Comparison of EM-seq and PBAT methylome library methods for low-input DNA
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Amanda Raineb, Maria Needhamsena, and Maja Jagodica

aDepartment of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, 
Sweden; bDepartment of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden

ABSTRACT
DNA methylation is the most studied epigenetic mark involved in regulation of gene expression. 
For low input samples, a limited number of methods for quantifying DNA methylation genome- 
wide has been evaluated. Here, we compared a series of input DNA amounts (1–10ng) from two 
methylome library preparation protocols, enzymatic methyl-seq (EM-seq) and post- 
bisulfite adaptor tagging (PBAT) adapted from single-cell PBAT. EM-seq takes advantage of 
enzymatic activity while PBAT relies on conventional bisulfite conversion for detection of DNA 
methylation. We found that both methods accurately quantified DNA methylation genome-wide. 
They produced expected distribution patterns around genomic features, high C-T transition 
efficiency at non-CpG sites and high correlation between input amounts. However, EM-seq 
performed better in regard to library and sequencing quality, i.e. EM-seq produced larger insert 
sizes, higher alignment rates and higher library complexity with lower duplication rate compared 
to PBAT. Moreover, EM-seq demonstrated higher CpG coverage, better CpG site overlap and 
higher consistency between input series. In summary, our data suggests that EM-seq overall 
performed better than PBAT in whole-genome methylation quantification of low input samples.
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Introduction

DNA methylation is a well-studied epigenetic 
mark, where a methyl-group is covalently bound, 
most commonly at the 5th carbon of cytosine 
within CpG dinucleotides. By regulating gene 
expression, genomic imprinting, X-chromosome 
inactivation and transposon repression, 5-methyl
cytosine (5mC) participates in essential develop
mental processes, and abnormal methylation states 
can lead to various diseases [1–3].

Several methods have been developed to iden
tify and quantify DNA methylation across the 
genome. Among them, whole-genome bisulfite 
sequencing (WGBS) uses bisulfite conversion to 
detect methylation at single-base resolution. 
Unmethylated cytosines are converted to uracils 
after treatment with sodium bisulfite, while 5mC 
and 5-hydroxymethylcytosine (5hmC) are pro
tected and remain unchanged. Although widely 
used, a major disadvantage of bisulfite conversion 
is substantial DNA degradation, which compro
mises input DNA quality and can introduce bias 

[4]. Different library strategies are available for 
whole-genome single-base 5mC quantification 
but only few can be utilized on samples with low 
DNA input. DNA amounts obtainable from tissues 
and cells can be quite low, and at the same time 
those cells may play a vital role in developmental 
processes or disease pathogenesis. Post-bisulfite 
adaptor tagging (PBAT) has been optimized to 
identify genome-wide methylation even at the sin
gle-cell level [5]. But this method, as other com
monly used protocols, often leads to high 
duplication rate with low library complexity, 
a common disadvantage of BS-based methods. 
Another method suitable for low-input DNA 
amounts is enzymatic methyl-seq (EM-seq) [6], 
a newly developed enzyme-based method. The 
method uses ten-eleven translocation dioxygenase 
2 (TET2) to convert 5mC into 5hmC, 5-formylcy
tosine and 5-carboxycytosine (5caC) in three con
secutive processes. Simultaneously, T4 phage 
b-glucosyltranferase is applied to convert 5hmC 
to 5-(β-glucosyloxymethyl) cytosine (5gmC). In 
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the final step, apolipoprotein B mRNA editing 
enzyme, catalytic polypeptide-like 3A, converts 
unmethylated cytosines into uracils, while 5caC 
and 5gmC remain unchanged. Consequently, 
methylated and unmethylated cytosines can be 
distinguished by subsequent sequencing. This 
enzyme-based method circumvents bisulfite- 
induced damage to the DNA, consequently redu
cing sample loss [7].

Here, we evaluated two different whole-genome 
methylome library strategies designed for low- 
input amounts, single-cell adapted PBAT [5] and 
EM-seq protocols [6]. Libraries were constructed 
from series of diluted input DNA amounts (1, 2, 5 
and 10ng) derived from two independent samples, 
which were subsequently sequenced, evaluated and 
compared.

Materials and methods

Low-input DNA samples

Lumbar puncture was conducted in 2015/16 to 
collect cerebrospinal fluid (CSF) from two females 
diagnosed with inflammatory disease, aged 60 and 
29, respectively. CSF samples, which contained 
approximately 2.96 and 1.30 million cells, respec
tively, were collected in 2x15ml size Falcon tubes 
and centrifuged immediately at 440 g for 10 min
utes at RT to separate cells and larger particles 
from CSF supernatants. CSF cells were subse
quently pooled, concentrated to a volume of 20– 
60 µl and transferred to a 2 ml polypropylene tube, 
snap-frozen on dry-ice and stored at −80°C until 
further use. DNA was isolated using QIAmp DNA 
Mini kit (Qiagen) according to the manufacture’s 
protocol and DNA concentrations were measured 
using the DNA high sensitivity Qubit assay 
(Thermo Fisher Scientific). Each sample was 
divided in two for EM-seq and PBAT library 
methods, respectively. In total, 16 whole-genome 
methylome libraries were generated. In EM-seq 
libraries, prior to library preparation, the DNA 
was sheared (sonicated) with Covaris E220 aiming 
for an average insert size of ~350 bp. And for 
PBAT libraries, the DNA was fragmented in the 
BS-conversion step. The study was approved by 
the Regional Ethical Board (2009/2107-31/2) and 
all participants signed the informed consent.

EM-seq library preparation

Libraries were prepared with 1, 2, 5 or 10ng DNA 
using the NEBNext® Enzymatic Methyl-seq (EM- 
seq™) kit and Unique Dual Index Primer pairs 
(New England Biolabs) input according to manu
facturer’s instructions (NEB #E7120 S/L v6.0_3/2). 
Unmethylated lambda phage DNA and plasmid 
pUC19 DNA, methylated at CpG sites, were 
added as negative and positive controls, respec
tively. A total of 12 amplification cycles were 
used for 1ng of input DNA and 10 cycles for 
other input amounts. Libraries were pooled equi
molarly and then sent for sequencing.

PBAT library preparation

1, 2, 5 or 10ng of DNA was bisulfite converted using 
the Imprint DNA Modification Kit (Sigma) followed 
by incubation at 99°C for 6 min, 65°C for 
80 min, 95°C for 3 min and 65°C for 20 min and 
purified according to the manufacturer’s protocol. 
DNA was eluted in 10 mM Tris-Cl (pH 8.5) and 
mixed with 0.4 mM dNTPs, 0.4 µM oligo 1 (Biotin) 
(CTACACGACGCTCTTCCGATCTNNNNNNNN
N) and 1X NEBuffer to a final reaction volume of 
24 µl. Samples were incubated at 65°C for 3 min 
followed by 4°C pause, 5 U of Klenow exo – (New 
England Biolabs) was added and the incubation was 
continued at 4°C for 5 min, +1°C/15s to 37°C, 37°C 
for 90 min. Samples were then incubated with 20 U 
exonuclease I (New England Biolabs) for 1 h at 37°C. 
DNA was purified with 0.8X Agencourt Ampure XP 
beads (Beckman Coulter), eluted in 10 mM Tris-Cl 
(pH 8.5) and incubated with washed M-280 
Streptavidin Dynabeads (Invitrogen) for 30 min with 
rotation at RT. Beads were washed twice with 0.1 N 
NaOH, twice with 10 mM Tris-Cl (pH 8.5) and resus
pended in 47 µl of 0.4 mM dNTPs, 0.4 µM oligo 2 
(TGCTGAACCGCTCTTCCGATCTNNNNNNNN
N) and 1X NEBuffer 2. Samples were then incubated 
at 95°C for 45s followed by 4°C pause before addition 
of 10 U Klenow exo – and then incubated at +1°C/15s 
to 37°C, 37°C for 90 min. Beads were washed with 
10 mM Tris-Cl (pH 8.5) and resuspended in 50 µl of 
0.4 mM dNTPs, 0.4 µM PE1.0 forward primer 
(AATGATACGGCGACCACCGAGATCTACACT
CTTTCCCTACACGACGCTCTTCCGATCT), 
0.4 µM indexed iPCRTag reverse primer, 1 U KAPA 
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HiFi HotStart DNA polymerase (Roche) in 1X HiFi 
Fidelity Buffer. Libraries were amplified by PCR as 
follows: 95°C 2 min, 10–12 cycles of 98°C 80s, 65°C 
30s, 72°C 30s, followed by 72°C 3 min and 4°C hold. 
12 amplification cycles were used for 1ng of input 
DNA and 10 cycles for other input amounts. 
Amplified libraries were purified using 0.8X 
Agencourt Ampure XP beads. Quality and quantity 
of each library was determined using High-Sensitivity 
DNA chips on the Agilent Bioanalyzer, and the KAPA 
Library Quantification Kit (Roche). Libraries were 
pooled equimolarly and then sent for sequencing.

Sequencing

All libraries of each type were pooled and 
sequenced 2 × 150 bp paired end on one SP flow 
cell, NovaSeq 6000 system (v1.0). 10% spike-in 
phage PhiX was included both in EM-seq and 
PBAT sequencing runs.

Data analysis

The Nf-core/methylseq bioinformatics pipeline 
was applied to fastq sequencing files of all 16 
samples with default parameters[8,9]. Taken into 
consideration that EM-seq generates longer frag
ments than conventional WGBS libraries, the beta 
version of nf-core/methylseq, was used with -- 
em_seq parameter. The normal version 1.5 was 
applied to PBAT with --pbat --clip_r1 9 --clip_r2 
9 --three_prime_clip_r1 9 --three_prime_clip_r2 
9. Versions and references of tools called by Nf- 
core/methylseq have been listed in Table S1. 
Briefly, raw reads were trimmed with Trim 
Galore to remove adapters and low-quality reads. 
Trimmed reads were then mapped to the GRCh38 
reference genome by Bismark [10] and duplicated 
reads were removed. Methylation sites were then 
extracted by Bismark. Upon CpG site identifica
tion, coverage and DNA methylation levels were 
retrieved. Reads mapped to both strands were 
merged to the coverage of specific CpGs. 
Methylation levels were calculated by dividing the 
number of methylated reads by the sum of methy
lated and unmethylated reads. During data proces
sing, multiple quality control tools were applied: 
FastQC to identify reads quality, Qualimap [11] to 
report the alignment quality, Preseq to examine 

sample complexity and multiQC [12] was applied 
for the integrated quality control. Genomic fea
tures files were downloaded from Ensembl [13].

Plots were generated in local R primarily with 
package ggplot2. R Package eulerr was used to 
produce Venn diagrams. Ggpubr was used to 
arrange sub graphs into one main figure. UpSetR 
was used to illustrate intersecting sites between 
libraries in Fig. S3. The landscape plots were pro
duced by CpGtools [14]. All software and 
R package versions were listed in Table S1.

Results

Characteristics of EM-seq and PBAT libraries

A series of low input amounts, 1, 2, 5 and 10ng, 
derived from samples of two individuals were 
evaluated with EM-seq and PBAT, which was 
adapted from the single-cell method [5,6] 
(Figure 1(a)). The diagrams of these two methods 
are illustrated in Fig. S1. Library details, including 
number of PCR cycles, library concentrations and 
fragment sizes, are provided in Table S2. We cal
culated methylation level of detected cytosines in 
CHG and CHH context to approximate the con
version efficiency. Conversion rates of all libraries 
exceeded 97.1% (mean: 99.2%, median: 99.0%) 
(Table S3). Concordantly, the calculated methyla
tion levels of unmethylated lambda control DNA 
in EM-seq were low (less than 0.22% in all samples 
except individual 1 1ng with 2.88% methylation 
level) while the pUC CpGs were hyper- 
methylated (≥94.87%) as expected (Table S3). 
The numbers of raw, clean, aligned, duplicate 
and unique reads for all 16 libraries are provided 
in Table S4.

Furthermore, all 16 libraries showed high 
sequencing quality with average Phred scores 
higher than 30 (Fig. S2A). They performed simi
larly in regards to the R1 strand quality, while for 
the R2 strand, EM-seq consistently showed higher 
Phred scores than all four PBAT libraries in both 
individuals (Fig. S2A). EM-seq produced longer 
fragments as illustrated by the insert size distribu
tion, where both individuals displayed the majority 
of inserts >300bp, compared to PBAT libraries, 
where the majority of inserts were <300bp (Fig. 
S2B). The mean insert size of EM-seq libraries 
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Figure 1. EM-seq libraries performed better in regards to library and sequencing quality. (a) Samples from two individuals 
(yellow and green) were collected and split into two for EM-seq and PBAT libraries, respectively. Each method included 1, 2, 5 
and 10ng input amounts. (b) Stacked bar plots illustrate unique (green), ambiguous (yellow) and no (orange) alignment based on % 
reads. (c) Illustration of unique (dark turquoise) and duplicate (yellow) reads. (d) Complexity curves of EM-seq (blue) and PBAT (red) 
library methods. The dashed grey line illustrates maximum library complexity.
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peaked at 349bp while the mean insert size for 
PBAT peaked at 148bp (Fig. S2B). In addition, 
EM-seq demonstrated higher unique alignment 
rate compared to PBAT libraries in both indivi
duals and across all four input amounts with the 
average unique alignment of 84.9% and 43.0%, 
respectively (Figure 1(b), Fig. S2C). The majority 
of libraries displayed duplication rates below 25%, 
except 1ng and 2ng PBAT libraries for individual 
2, where 52% and 35% of the reads were duplicates 
and consequently removed (Figure 1(c), Fig. S2D). 
This observation suggests a duplication discor
dance for low-input PBAT libraries, however, 
technical replicates, which were not conducted in 
this study, would be needed to confirm this. 
Moreover, the EM-seq libraries displayed higher 
complexity across all four input amounts 
(Figure 1(d)). From this evaluation, libraries built 
by the EM-seq protocol had longer fragments, 
were more diverse and more consistent across 
input amounts from both individuals.

EM-seq covered more CpG sites

We then investigated which method produced overall 
higher coverage. The majority of CpG sites were 
covered by the two methods. In total, 28.0, 28.2, 28.1 
and 28.0 million CpGs on average were covered in 
EM-seq inputs of 1, 2, 5 and 10ng, respectively, while 
24.0, 26.3, 24.2 and 24.7 million CpGs were covered in 
PBAT libraries. All input EM-seq libraries yielded 
higher coverage than the four PBAT libraries in 
both individuals in particularly at low-end coverage 
cut-offs (Figure 2(a), Fig. S4A). At 5X coverage cut- 
off, 20.1, 22.5, 21.1 and 18.8 million CpGs were cov
ered by EM-seq libraries, while only 3.2, 8.5, 4.4 and 
4.1 million CpGs were covered by PBAT libraries 
calculated as the mean of two individuals in the four 
input amounts. For the 10X cut-off, 4.0, 6.5, 4.4 and 
2.7 million CpGs were covered in EM-seq while 76.7, 
513.2, 177.6 and 100.4 thousand CpGs in PBAT 
libraries. Noticeably, CpG sites showed high overlap 
among different inputs in both individuals 
(Figure 2(b), Fig. S4B). The mean percentage of 
PBAT CpGs that were also detected with EM-seq 
was 99.1%, 99.3%, 99.2% and 99.0% corresponding 
to 1, 2, 5 and 10ng, respectively. Furthermore, CpG 
sites overlapping in all four libraries were the main 
group compared to other intersection groups both for 

the EM-seq and PBAT libraries in the two individuals 
(Fig. S3). The coverage of EM-seq libraries was higher 
than PBAT libraries not only overall in the whole 
genome, but also across various genomic features 
including CpG islands, CTCF binding site regions, 
enhancers, open chromatin, promoters, transcription 
factor (TF) binding regions and gene regions from 
transcriptional start sites (TSS) to transcriptional end 
sites (TES) (Figure 2(a), Fig. S4A). Furthermore, over
lap analysis revealed a large fraction of common CpG 
sites between the two methods (Figure 2(b), Fig. S4B). 
Moreover, IGV genome browser snapshots of the 
L1MB4, L1M4 and L1PA3 region, which is classified 
as a LINE-1 retrotransposable element, revealed that 
EM-seq displayed higher coverage compared to 
PBAT in this challenging region (Fig. S5). Taken 
together, EM-seq covered more CpG sites and con
tained the majority of CpGs detected by PBAT.

EM-seq and PBAT generated expected DNA 
methylation patterns

Next, we wanted to know if the two methods captured 
expected DNA methylation patterns across different 
genomic features. We applied CpGtools to analyse the 
methylation landscape for all 16 libraries. Distinct 
genomic features displayed different DNA methyla
tion patterns in a similar manner between individuals 
(Figure 3, Fig. S6C). Within gene regions, introns 
displayed higher DNA methylation levels, especially 
among internal introns and 5' UTR regions (Fig. S6A, 
Fig. S6B). Other genomic features, such as open chro
matin and enhancers, also displayed characteristic 
patterns with overall higher DNA methylation levels, 
except for central CTCF binding regions, promoter 
regions, and upstream TSS which were as expected 
lower (Figure 3, Fig. S6C). This general pattern was 
observed in all libraries. In some genomic features, 
like enhancers and TF binding regions, the two meth
ods performed similarly (Figure 3, Fig. S6C). 
However, for some regions, different features per
formed slightly different between EM-seq and PBAT 
libraries (Figure 3, Fig. S6C). For example, the four 
EM-seq libraries showed somewhat higher DNA 
methylation levels compared to the four PBAT 
libraries in upstream gene regions and upstream 
CTCF binding regions (Figure 3, Fig. S6C). But 
these differences were limited and not observed in 
other features and coverages. In summary, expected 
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DNA methylation distribution was demonstrated in 
all libraries, which suggests that reliable DNA methy
lation patterns were detected with both methods and 
all four input amounts.

EM-seq showed higher correlation of DNA 
methylation levels

Our final evaluation was the comparison of DNA 
methylation levels between samples. We calculated 
Pearson’s and Spearman’s rank correlation coeffi
cients between the two library protocols, EM-seq 

and PBAT, and the four input amounts, 1, 2, 5 and 
10ng, respectively (Figure 4, Fig. S7). CpG sites with 
at least 5X coverage were considered, for which 
DNA methylation distribution was demonstrated 
in Fig. S8. All EM-seq libraries displayed Pearson’s 
correlation coefficients ≥0.91 and PBAT libraries 
≥0.85, while Spearman’s rank correlation coeffi
cients were ≥0.82 for EM-seq and ≥0.74 for PBAT 
libraries, respectively. Of note, even the 1ng library 
displayed good correlation with ≥0.91 for EM-seq 
and ≥0.85 for PBAT Pearson’s and ≥0.82 EM-seq 
and ≥0.74 PBAT Spearman’s rank correlation 

Figure 2. CpG coverage and overlap. (a) Number of CpG sites and sequencing coverage in EM-seq (blue) and PBAT (red) for all input 
amounts for individual 1 encompassing whole genome and genomic features such as CpG islands, CTCF binding sites, enhancers, 
open chromatin, promoters, transcript factor (TF) binding sites and gene regions. (b) Overlap (purple) of EM-seq (blue) and PBAT 
(red) CpG sites from input amounts of 1, 2, 5 and 10ng in individual 1. M (million) for whole genome and gene region, K (thousand) 
for other features.
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coefficients, respectively (Figure 4, Fig. S7). 
Application of the 10X coverage filter revealed con
cordant Pearson’s and Spearman’s correlation coef
ficients (Figure 4, Fig. S7). Furthermore, EM-seq 
also presented more bimodal distribution of DNA 
methylation levels than PBAT (Fig. S8). Overall, 
both methods performed well with low input 
amounts, when considering Pearson’s correlation 
coefficients, and again the EM-seq method dis
played a measurable better performance over PBAT.

Discussion

We compared two methods that are suitable for 
low input amounts, namely EM-seq [6] and single- 
cell adapted PBAT [5]. Both methods estimated 
DNA methylation genome-wide, produced 
expected DNA methylation landscapes around 
genomic features and displayed high level of cor
relation across input amounts. However, we found 
that EM-seq performed quantitatively better in all 
comparisons. Firstly, EM-seq libraries showed 

longer insert sizes, higher alignment rates and 
lower duplication rates. Secondly, EM-seq covered 
more CpG sites and encompassed nearly all CpG 
sites detected by PBAT. Thirdly, EM-seq illu
strated higher DNA methylation level correlation 
between libraries across all DNA input amounts 
(1–10ng).

Accuracy of estimated DNA methylation levels 
is influenced by the sequencing coverage as pre
viously demonstrated for PBAT [15,16]. EM-seq 
encounters the same situation due to the same 
calculation principle. PCR amplification and con
version efficiency can also bring bias [16]. In our 
study, EM-seq generally displayed a higher level of 
library complexity (Figure 1(d)), which upon addi
tional sequencing, could have increased the cover
age. On the other hand, low complexity libraries 
are not expected to gain much in regards to cover
age with additional sequencing, due to a likely, 
concordant increase in read duplication, which 
would consequently be filtered during pre- 
processing. Hence, better precision and capturing 

Figure 3. Landscapes of DNA methylation levels within genomic features. Illustration of methylation levels around CTCF binding site 
regions, enhancers, open chromatin, promoters, TF binding regions, and gene region from TSS to TES. EM-seq libraries are illustrated 
in blue and PBAT in red for different input amounts (1, 2, 5 and 10ng) in individual 1. CpGs with at least 5X were considered.
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of additional CpGs are expected with higher com
plexity libraries. The slight discrepancy we detect 
in DNA methylation levels between EM-seq and 
PBAT in some genomic features could indeed be 
due to a compromised coverage. To gain an ade
quate number of sites for comparison, we included 
a 5X threshold, which is in the low-end for DNA 
methylation estimation. However, the discrepancy 
was small and overall DNA methylation land
scapes for both methods and all input amounts 
performed as expected (Figure 3). Furthermore, 
we tested that the higher DNA methylation levels 
detected for EM-seq were not due to an insuffi
cient enzymatic reaction, which could potentially 
fail to properly distinguish methylated and 
unmethylated sites. For this, we tested percentages 
of methylated cytosines in non-CpG (i.e., CHG 
and CHH) context and detected an efficiency 
above 97.1% in all libraries (Table S3). For PBAT 
libraries, we detected a comparable conversion 

efficiency (Table S3). Hence, we could conclude 
that in our EM-seq and PBAT libraries non- 
methylated cytosines were sufficiently converted 
for all input amounts, which is crucial for accurate 
estimation of DNA methylation levels.

Bisulfite treatment is relatively harsh on geno
mic DNA and can cause widespread degradation. 
A major difference between EM-seq and PBAT, of 
which the latter is based on bisulfite-conversion, 
was indeed fragmentation as illustrated when plot
ting the insert size (Supp. Figure 1(b)). Paired-end 
sequencing with read lengths of 150nt should opti
mally present the majority of insert sizes > 300bp, 
which was indeed the case for EM-seq. However, 
PBAT library insert sizes peaked <300bp, suggest
ing that sequencing conditions were not optimal. 
Due to lower complexity of in silico converted 
reference genomes used for mapping of EM-seq 
and PBAT data, paired-end and longer sequencing 
reads are an advantage to avoid ambiguous 

Figure 4. Correlation of DNA methylation levels. Heatmaps illustrating Pearson’s correlation coefficients between input amounts (1, 
2, 5 and 10ng) and library methods (EM-seq and PBAT). CpGs covered by at least 5X and 10X were considered.

1202 Y. HAN ET AL.



mapping [17]. Hence, longer insert sizes, and 
thereby less degraded genomic DNA, as demon
strated by EM-seq, is preferential.

To estimate conversion rates for EM-seq 
libraries, unmethylated lambda phage DNA and 
CpG methylated pUC19 vector DNA, were added 
as controls. Furthermore, we estimated conversion 
rates based on CHG and CHH methylation for 
both EM-seq and PBAT libraries. Lambda phage, 
CHG and CHH methylation were all <3%, thus, 
the conversion efficiency was >97%. Noticeably, 
lambda phage and non-CpG methylation were all 
highly compatible. Although the majority of EM- 
seq samples showed higher conversion efficiency 
compared to PBAT, the 1ng sample in individual 1 
had lower efficiency. Noticeable, EM-seq 1ng indi
vidual 2 had good conversion efficiency, hence, the 
EM-seq method could potentially be more fluc
tuant in low-input samples.

EM-seq is a comparatively new method but has 
been successfully used in other studies too and 
previously shown to perform well by its higher 
mapping efficiency [6,18–21]. In a study on 
Arabidopsis thaliana, EM-seq was for example 
recommended over WGBS due to its higher map
ping rate and coverage, lower duplication rate, 
lower influence by experimental condition, and 
higher consistency between replicates [21]. Here, 
we also found that EM-seq performed better than 
PBAT for low input amounts.

Although PBAT overall did not perform as well 
as EM-seq in our study, the methodology may be 
better adapted for specific applications such as 
quantification of DNA methylation on the single- 
cell level [5], potentially for some specific cell 
types etc. The lowest reported input for EM-seq 
libraries on the other hand is 100pg, which suf
fered from high duplicate rate [5,6]. Since EM-seq 
is a relatively new method, further exploration 
and optimization may bring the input down. 
Here we show that for the input ranges between 
1–10ng, roughly corresponding to 200 to 2000 
cells, EM-seq outperformed PBAT. Hence, the 
balance between advantages and drawbacks 
between different methods should be thoroughly 
considered based on sample situation and 
study aim.

An advantage of EM-seq is the enzymatic dea
mination step, which is more gentle than bisulfite 

and thereby causes less damage to the DNA com
pared to PBAT, which relies on the much harsher 
bisulfite treatment for C > T conversion. However, 
an advantage of the PBAT protocol is the post- 
bisulfite adapter tagging, which circumvents bisul
fit-induced degradation of sequencing templates. 
In the future, it would be interesting to see the two 
methods combined, i.e., enzymatic deamination 
followed by adapter tagging, which would protect 
the DNA and potentially generate more complex 
sequencing libraries that are crucial for low-input 
samples.
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