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Making use of the recently derived, all-spin, opposite-helicity Compton amplitude, we calculate the
classical gravitational scattering amplitude for one spinning and one spinless object atOðG2Þ and all orders
in spin. By construction, this amplitude exhibits the spin structure that has been conjectured to describe
Kerr black holes. This spin structure alone is not enough to fix all deformations of the Compton amplitude
by contact terms, but when combined with considerations of the ultrarelativistic limit we can uniquely
assign values to the parameters remaining in the even-in-spin sector. Once these parameters are determined,
much of the spin dependence of the amplitude resums into hypergeometric functions. Finally, we derive the
eikonal phase for aligned-angular-momentum scattering.
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Introduction.—Recent years have seen a large mobili-
zation within the scattering amplitudes community toward
describing the gravitational coalescence of compact
objects. This stems from the necessity for ever-more precise
gravitational wave templates in current and upcoming
gravitational wave observatories [1–7], and because scat-
tering amplitudes are eminently suited to calculating
classical observables in the post-Minkowskian (PM) expan-
sion [8–16]. While scattering-amplitude methods are most
directly related to scattering observables, the PM effective-
one-body [8,17] and theboundary-to-bound [13,14,18]maps
allow for a translation of these observables to quantities
pertinent to the inspiral phase of bound systems. Indeed,
studies of the energetics of the scattering process demonstrate
that scattering information at higher PM orders leads to
increasingly accurate predictions for the binding energy—a
quantity directly necessary for the generation of gravitational
waveforms—particularly when the PM data has been proc-
essed through the effective-one-body mapping [9,16].
A huge recent effort has led to unprecedented precision in

the PM description of spinless scattering [19–32], tidal
effects [33–39], and radiation [18,25–27,40–42]. In this
Letter, we focus on yet another pertinent property affecting
the dynamics of a binary: the rotational angular momenta of
its constituents. The connection between classical rotational

angularmomentumandquantumspin appearing in scattering
amplitudes is by now well understood [11,43–45]. Classical
scattering at 1PM is known to all orders in the spinvectors for
Kerr black holes [46–50] and general spinning bodies [45].
Dynamics at 2PM have been understood up to quartic order
in spin [39,44,47,51–58]. Until recently, progress past
quartic order at 2PM has been restricted owing partly to
the absence of a physical opposite-helicity Compton ampli-
tude above this spin order [59]. Several approaches have been
taken to remedy these unphysicalities [52,60–63]. Results
including spin at 3PM have also begun to emerge [64,65].
Recently, Refs. [63,66] have pushed the state of the art in

the scattering of spinningobjects at 2PMpast the fourth order
in spin. In the former Letter, we applied the heavy on-shell
variables of Ref. [50] to focus on the classical limit of the
Compton amplitude. Doing so allowed us to determine the
classical opposite-helicity Compton amplitude free of
unphysical poles. We subsequently evaluated the 2PM
amplitude up to eighth order in spin, fixing nearly all contact
terms by imposing the so-called “black hole spin structure
assumption” on the 2PM amplitude; see Eq. (1). Contrasting
with our on-shell approach, the authors of Ref. [66] started
from a local Lagrangian including operators at fifth order in
spin. This enabled them to bypass the issues with unphysical
poles in the Compton amplitude and construct the 2PM
Hamiltonian for two general spinning bodies up to the fifth
order in spin. The shift symmetry proposed in Ref. [66] to
describe Kerr black holes is equivalent to imposing the black
hole spin structure assumption, and the results of these two
works are in agreement where there is overlap.
In this Letter, we present the amplitude at OðG2Þ,

all orders in spin, and with an arbitrary mass ratio for
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spinning-spinless scattering based on the Compton ampli-
tude determined in Ref. [63]. Many of the observations
made about the 2PM amplitude at finite spin in Ref. [63] are
elucidated and shown to hold to all orders in spin.
Our eventual ambition is to find the amplitude describing

Kerr black hole scattering. Pinpointing this amplitude lies
outside the scope of the effective approachwehave taken, but
the all-spin amplitude we compute here suggests special
values for the contact-term freedoms remaining in the
Compton amplitude. In conjunction with the black hole spin
structure assumption, consideration of the ultrarelativistic
limit of the 2PM amplitude allows for the unique determi-
nation of the remaining contact-term coefficients in the even-
in-spin sector of the Compton amplitude. The resulting 2PM
amplitude is surprisingly simple, with much of the spin
dependence resumming into hypergeometric functions.
While we cannot conclude that the amplitude presented here
describes Kerr black hole scattering, it provides a conjecture
that can be tested by future high-spin computationswhere the
identities of the scattering objects may be clearer.
The amplitude presented here expands the analytical

knowledge of the two-body problem at 2PM and high-spin
orders, and is one part of the pipeline toward precise
analytical templates. The next step is the conversion of the
amplitude to observables. This can be done using a variety
of methods [10,11,14,44]. One approach passes through the
eikonal phase [44,47,57,61,65,67–69], which we present
for aligned-angular-momentum scattering.
Let us begin by writing the opposite-helicity Compton

amplitude in the form most convenient for our present
analysis.
Compton amplitude for heavy spinning particles.—The

all-spin, opposite-helicity gravitational Compton amplitude
at leading order in ℏwas presented by the present authors in
Ref. [63]. A vast majority of contact-term contributions
were fixed by imposing the black hole spin structure
assumption on the 2PM amplitude, which demands that
spin structures (parametrized in terms of the ring radii aμi ≡
Sμi =mi for S

μ
i the classical spin vectors and mi the masses)

appear in the combination

ðq · aiÞðq · ajÞ − q2ðai · ajÞ; i; j ¼ 1; 2: ð1Þ

This assumption is equivalent to the shift symmetry imposed
on the 2PM amplitude above Oða3Þ in Ref. [66]. In fact,
requiring that the 2PM amplitude possesses this symmetry is
equivalent to requiring that the opposite-helicity Compton
amplitude is invariant under the shift [70]

aμ → aμ þ ξ
qμ3 þ qμ4
s34

: ð2Þ

At leading order in ℏ, the most general arbitrary-spin,
opposite-helicity Compton amplitude invariant under this
shift is (modulo the overall coupling)

Ms
cl ¼ e−s1

X2s
n¼0

1

n!
K̄n þm2ðw · aÞ4C; ð3Þ

where

K̄n ≡
�
Kn; n ≤ 4;

K4Ln−4 − K3s2Ln−5; n > 4;
ð4Þ

C≡X2s−4
n¼0

Xbð2s−4−nÞ=2c

j¼0

dn;jsn1ðs21 − s2Þj; ð5Þ

with

Kn ≡ y4

s34t13t14

�
t14 − t13

y
w · a

�
n
; ð6Þ

Lm ≡ Xbm=2c

j¼0

�
mþ 1

2jþ 1

�
sm−2j
1 ðs21 − s2Þj; ð7Þ

and

s1 ≡ ðq3 − q4Þ · a; ð8Þ

s2 ≡ −4ðq3 · aÞðq4 · aÞ þ s34a2: ð9Þ

The spin structuresw · a, s1, ands2 are individually invariant
under Eq. (2). Therefore, Eq. (3) is itself manifestly invariant
under this shift.
We have taken both graviton momenta to be outgoing

and the initial massive momentum to be incoming. The
graviton labeled by 3 carries negative helicity, and that
labeled by 4 carries positive helicity. The momenta are
grouped into the Mandelstam variables s34 ¼ ðq3 þ q4Þ2
and t1i ¼ ðp1 − qiÞ2 −m2

1. Finally, we have defined the
four-vector wμ ≡ ½4jσ̄μj3i=2 and y≡ 2p1w.
We have rearranged the contact terms with unfixed

coefficients compared to Ref. [63]. As a consequence,
the unfixed coefficients here are different from those there.
The coefficients here contribute at order Oðanþ2jþ4Þ.
Furthermore, we have written K̄n≥5 in terms of K3 and
K4, as opposed to K2 and K3 as in Ref. [63], by using the
recursion relation for Kn≥4 presented there. The infinite-
spin amplitude is trivially found by taking s → ∞ in
Eqs. (3) and (5).
Having suitably reshuffled the all-spin, opposite-helicity

Compton amplitude, we move now to evaluating theOðG2Þ
spinning-spinless amplitude to all orders in spin.
All-spin scattering.—The classically relevant part of the

one-loop 2 → 2 amplitude is encoded in the coefficients for
triangle topologies, specifically those with one massive and
two massless propagators in the loop [19,21,71]. We
construct these coefficients out of the Compton amplitude
[72] in Eq. (3) and the three-point amplitude describing a
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Kerr black hole [47–50,52,59] using generalized unitarity
[73–75] (see also Refs. [44,58,63] for an outline of this
method applied to the problem at hand). In Ref. [63] the
present authors used this method to evaluate the 2PM
amplitude for two spinning bodies to eighth order in spin,
and to all orders in spin for a spinless probe in a Kerr
background. Considering only one object to be spinning,
we present here the amplitude to all orders in spin for
arbitrary mass ratios.

The scattering amplitude for a spinning particle with
mass m1 and ring radius a1 and a spinless particle with
mass m2 has an even-in-spin and an odd-in-spin part:

M2PM ¼ 2G2π2m2
1m

2
2ffiffiffiffiffiffiffiffi

−q2
p ðMeven

2PM þ iωE1Modd
2PMÞ: ð10Þ

These different sectors are given by

Meven
2PM ¼m1

�
3ð5ω2 − 1ÞF 0 þ

1

4
ðω2 − 1ÞF 2Qþ 8ω4 − 8ω2 þ 1

ω2 − 1
F 1Q−

1

2
F 2V þ

X∞
k¼1

ð8ω4 − 8ω2 þ 1Þ
ðω2 − 1Þkþ1

ð−1Þk2Γ½k�
Γ½2k� F k−1Vk

�

−m2

�
−3ð5ω2 − 1Þ ffiffiffi

π
p

F−1=2 −
3

ffiffiffi
π

p
4

F 1=2Q−
1

ω2 − 1
F 1Qþ 15

ffiffiffi
π

p
4

F 1=2V

þ6
ffiffiffi
π

p X∞
k¼1

ω2k

ðω2 − 1Þkþ1

ð−1ÞkF k−1Vk

Γ½2kþ 1�Γ½5=2− k�
�
2F1

�
1

2
− k;−k;

5

2
− k;

1

ω2

�
−
�
kþ 3

2

�
2F1

�
3

2
− k;−k;

5

2
− k;

1

ω2

��

−
1

64
ð3Q2 þ 30QV þ 35V2Þ

X∞
k¼0

cð0Þk þ 1

16
ðQþ 7VÞðQþVÞ

X∞
k¼1

cð1Þk −
1

64
ðQþVÞ2

X∞
k¼2

cð2Þk

�
; ð11Þ

for even spin powers and

Modd
2PM ¼ −m1

�
4F 1 þ

X∞
k¼0

ð2ω2 − 1Þ
ðω2 − 1Þkþ1

ð−1Þk8Γ½kþ 1�
Γ½2kþ 1� F kVk

�

−m2

�
15

ffiffiffi
π

p
2

F 1=2 þ
X∞
k¼0

ω2k

ðω2 − 1Þkþ1

41−kF kVk

ð1Þkð2k − 1Þ

×

�
2F1

�
−
1

2
− k;−k;

3

2
− k;

1

ω2

�
−
�
kþ 5

2

�
2F1

�
1

2
− k;−k;

3

2
− k;

1

ω2

���
; ð12Þ

for odd spin powers. The transfer momentum is given by qμ.
We have defined ω≡ v1 · v2 , E1 ≡ ϵμναβv1μv2νqαa1β, Q≡
ðq · a1Þ2 − q2a21, and V ≡ q2ðv2 · a1Þ2. The 2PM amplitude
depends on Q through the hypergeometric function [76]

F j ≡ 1

Γ½jþ 1� 0F1

�
jþ 1;

Q
4

�
; ð13Þ

while the unfixed contact term coefficients enter in

cðiÞk ≡ 1

4k
ðQþ VÞk

�
2k

k − i

�X∞
j¼0

Δd2k;jQj; ð14Þ

Δd2k;j ≡ d2k;j þ
16ðk − jÞð2kþ 1Þ
ð2jþ 2kþ 4Þ! : ð15Þ

Finally, the notation ðjÞm indicates the Pochhammer symbol.
In Ref. [63] it was observed that the odd-in-spin parts of

the spinning-spinless 2PM amplitude were uniquely fixed

by imposing Eq. (1), up toOða7Þ. The results in this section
demonstrate that the unfixed contact-term coefficients in
Eq. (5) do not enter the odd-in-spin sector of the 2PM
amplitude for spinning-spinless scattering at any order in
spin. It is actually easy to understand why this happens.
Parity-even contributions to the 2PM amplitude with odd
powers of spin are reexpressible such that they contain
exactly one Levi-Civita symbol. However, the contact terms
depend on three four-vectors qμ3, q

μ
4, and aμ1, which, after

inserting the contact terms into the cut, become qμ, pμ
2, and

aμ1. There are thus only three vectors that can be contracted
into the Levi-Civita symbol, so any Levi-Civita symbol
coming from contact terms in Eq. (5) that has quenched
Lorentz indices vanishes when one of the particles is not
spinning.
Armed with this all-spin amplitude, we are in a position

to make some statements about the unfixed even-in-spin
coefficients in Eq. (5).
Contact terms and high-spin resummation.—Ultimately,

we would like to understand which set of contact terms in
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the Compton amplitude describes black hole physics.
Answering this question definitively requires performing a
matching computation to a quantity that unambiguously
describes black hole dynamics. In the absence of such an
object to which we can compare, we content ourselves with
identifying sets of contact terms that impart special qualities
to the 2PM amplitude. Equation (1) [equivalently the 2PM
analog of Eq. (2) [66] ] is one such special property, already
almost entirely eliminating contact-term freedoms. The
ultrarelativistic (ω → ∞) limit gives us another handle with
which we can uniquely fix the parameters appearing
in Eq. (11).
Expanded in powers of the spin, the full spinning-

spinless 2PM amplitude can be written as [77]

M2PM ¼ G2m2
1m

2
2

π2ffiffiffiffiffiffiffiffi
−q2

p

×
X∞
n¼0

Xn
k¼0

½Mð2nÞ
k þ iωE1M

ð2nþ1Þ
k �Qn−kVk; ð16Þ

where the MðiÞ
k are form factors in the Oðai1Þ spin sector

depending only on the masses and ω. We noted in Ref. [63]
that certain values of the remaining contact-term coeffi-
cients were suggested by the ultrarelativistic limit of the
2PM amplitude [78]. It was observed there that up toOða6Þ
it was possible to improve the ultrarelativistic limits—that
is, cause to scale with lower powers of ω as ω → ∞—of
some even-in-spin form factors by choosing certain values
for the remaining coefficients [79]. Inspecting Eq. (11) we
can see that this is always possible.
The contributions to Eq. (11) from the contact terms

always enter atOðω0Þ. As such, no values for the coefficients
in Eq. (5) can affect the ultrarelativistic scalings of the form
factors with k ¼ 0, 1; these scale as Oðω2Þ and Oðω0Þ,
respectively, for any values of the coefficients. However, in

the absence of the cðiÞk in the last line of Eq. (11), the form
factors with k ≥ 2 would scale as Oðω−2Þ when ω → ∞, a

behavior that is worsened toOðω0Þ by the cðiÞk . Requiring the
quickest possible decay of all even-in-spin form factors as
ω → ∞ is thus equivalent to setting

d2k;j ¼ −
16ðk − jÞð2kþ 1Þ
ð2jþ 2kþ 4Þ! ; ð17Þ

which imposes cðiÞk ¼ 0 [see Eq. (14)]. Equation (17) pro-
duces agreement betweenEq. (3) and the classical limit of the
opposite-helicity Compton amplitude of Ref. [59] up to
fourth order in spin; past this order, the latter possesses
unphysical poles.
Equations (1) and (17) jointly endow the all-spin 2PM

amplitude with a remarkably compact form. The former
condition allows for the spin dependence to be written only
in terms of Q, V, and E1, relegating spin effects to the
hyperplane orthogonal to qμ, up to subleading-in-ℏ effects.

Moreover, apart from theOðV0Þ portion of the even-in-spin
sector, the latter condition causes the resummation of all Q
dependence into hypergeometric functions.
Further still, at OðVkÞ for fixed k ≥ 2 (1) in the even

(odd)-in-spin sector, all Q dependence is encapsulated in
precisely one F j. This explains an observation made in
Ref. [63] in the odd-in-spin sector that certain form factors
at different spin orders are proportional to each other. It also
shows that this proportionality exists in the even-in-spin
sector as well, specifically for the form factors whose
ultrarelativistic behavior is improved by Eq. (17). The
constants of proportionality can be obtained by expanding
the amplitude in Q at a fixed order in V:

Mð2nþ1Þ
k ¼ 4k−nMð2kþ1Þ

k

ð1Þn−kðkþ 1Þn−k
; 1 ≤ k ≤ n; ð18aÞ

Mð2nÞ
k ¼ 4k−nMð2kÞ

k

ð1Þn−kðkÞn−k
; 2 ≤ k ≤ n: ð18bÞ

Because of the lower bounds on k, these proportionalities
can only be observed when spin orders higher than four are
considered. We correspondingly dub the resulting resum-
mation the “high-spin resummation.”
Fixing the coefficients in Eq. (5) in the odd-in-spin sector

requires consideration of Oða2nþ1
1 ai>0

2 Þ sectors of the 2PM
amplitude. The possibility of nonvanishing odd-in-spin
coefficients is itself interesting: it implies that certain
properties of the object described by those values can only
be probed at OðG2Þ in the classical limit by scattering with
another spinning body. Such a phenomenon is actually not
novel, as we observed in Ref. [63] that some coefficients
imposing Eq. (1) are left unfixed by the spinning-spinless
sector of the scattering. Similar behavior can also be seen in
the spinning tidal results of Ref. [45].
Aligned-angular-momentum eikonal phase.—The eiko-

nal phase allows for the relation of the amplitude to
observables such as the linear impulse, the spin kick,
and, when the motion is planar, the scattering angle
[44,57,67]. When one of the scattering objects is spinning,
the condition of planar motion is satisfied when the spin
vector is orthogonal to the plane formed by the impact
parameter b and the asymptotic center-of-mass three-
momentum p; that is, when the rotational and orbital
angular momenta are aligned. For brevity, we will present
the eikonal phase in this setup.
In terms of the amplitude, the eikonal phase at OðG2Þ is

χ ¼ 1

4m1m2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 1

p
Z

d2q
ð2πÞ2 e

ib·qM2PM: ð19Þ

For aligned-angular-momentum scattering, the amplitude
in Eq. (10) greatly simplifies because V ¼ 0. Further
imposing Eq. (17), the aligned-angular-momentum eikonal
phase is a sum of two terms:
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χaam ¼ −
G2πm1m2

4bxð1 − x2Þ3=2ðω2 − 1Þ
�

χevenaam

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x2Þðω2 − 1Þ

p þ ωχoddaam

�
; ð20Þ

where

χevenaam ¼ −2m1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
½x2ω2½x2ω2 þ 6ðω2 − 1Þ� þ ½1 − ð1 − x2Þ3=2�ðω2 − 1Þ2�

þm2x2½3ðω2 − 1Þð5ðx2 − 1Þω2 − 2x2 þ 1Þ − 2x2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
�; ð21Þ

χoddaam ¼ 8m1½ω2x2 þ ðω2 − 1Þð1 − ð1 − x2Þ3=2Þ� þ 3x2m2½2þ 5ðω2 − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
�: ð22Þ

We have defined x≡ a1=b. The unstylized a1 and b
represent the magnitudes of the spatial spin and impact-
parameter vectors, respectively. The sign on the eikonal
phase in the odd-in-spin sector depends on the direction of
the spin vector. The conversion from hypergeometric
functions in the amplitude to elementary functions in the
eikonal phase occurs by expanding the former inQ, Fourier
transforming each term in the series individually, then
resumming the result in impact-parameter space.
The spinless-probe limit of this eikonal phase agrees

with the first line of Eq. (11) in Ref. [80] for all non-
negative powers of the spin.
Summary.—Exploiting the cured opposite-helicity

Compton amplitude derived in Ref. [63], we have presented
in Eqs. (10), (11), and (12) the 2PM amplitude describing the
scattering of a spinning and a spinless body. By construction,
the amplitude exhibits Eq. (1)—a structure observed in Kerr
black hole scattering at low spin orders [44,51,53,55,58,81]
—to all spin orders. Our result includes the most general set
of contact terms that adheres to Eq. (1), and demonstrates
explicitly that these contact terms do not contribute at any
odd spin order in spinning-spinless scattering at 2PM.
Analyzing Eq. (11), we noticed that it is always possible

to improve the ultrarelativistic behavior of even-in-spin
form factors by selecting appropriate values for the coef-
ficients in Eq. (5). These values are given in Eq. (17).
Additionally, these values for the coefficients lead to a
compact resummation of nearly all Q dependence of the
amplitude into hypergeometric functions. At finite spin,
this resummation is signalled by the proportionality of form
factors at different spin orders—see Eq. (18).
Finally, we presented the eikonal phase for aligned-

angular-momentum scattering to all orders in spin and for a
general mass ratio. This quantity can be easily converted to
pertinent observables [44,57,67].
We have found a compact form for the OðG2S∞Þ

spinning-spinless amplitude by imposing only two con-
straints upon it. Despite the elegance of the result, its
relevance to Kerr black hole scattering remains to be
elucidated. The ubiquity of hypergeometric functions in
Eqs. (11) and (12) is intriguing; Ref. [82] connected the

hypergeometric functions solving the radial part of the
Teukolsky equation to a hidden conformal symmetry in
the near region of a Kerr black hole. Investigation of this
connection may provide hints as to the Compton or 2PM
amplitude that truly describes a Kerr black hole. Apart from
scrutinizing solutions to the Teukolsky equation (see also
Ref. [61]), classical self-force calculations with a spinning
test mass would be valuable to testing the assumptions we
have imposed on the amplitude.
The remaining coefficients in Eq. (5) that are not

determined by Eq. (17) require an analysis of the spin-
ning-spinning amplitude. We leave this for future Letter.
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