
ACTA

UNIVERSITATIS

UPSALIENSIS

UPPSALA

2009

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 600

Novice Programming Students'
Learning of Concepts and Practise

ANNA ECKERDAL

ISSN 1651-6214
ISBN 978-91-554-7406-5
urn:nbn:se:uu:diva-9551

����������	
 �����
��� ��
������

�������� �	 �� �������� �����
�� �
 �		� �����
�	����������
�
������� ������� ����� �� ��� �� !�"!# $	� ��� ��%��� 	$ �	��	� 	$
����	�	���& '�� �����
���	
 (��� �� �	
������ �
)
%����&

��������

)�������� *& ��� & +	���� ��	%�����
% ,����
��- .���
�
% 	$ /	
����� �
� ��������& *���

�����������
������
���& ������� �	
��
�
����
 ��

���
� 	� ������� ����
�����	�� ��	

��
 ������� 	� ���
��
 ��� �
���	�	�� ���& 0� ��&
������& 1,2+ 034 !4##�40���4#&

/	������ ��	%�����
% �� � �	�� ���� �
 �	������ ����
�� �������	
 ���� �
�	���� ��������� ��
(��� �� �	
������� ����
�
% %	���& '�� ���������� �
 ��	%�����
% �������	
 ���	��� �	(����
����
	���� �����
�� ���� %���� ��	����� �
 ����� ����
�
%& '���� ��	����� ����� �	 �	
�����
�� (��� �� �	 ��������&
'�� ����������� ����� �������� �����
��� �
 ���� ������ �	
�������� �	 ��� �	�� 	$

�
	(���%� 	
 �����
��- ����
�
% �� �
�����%���
% ��� ������	
���� ���(��
 �	
������� �
�
��������� ����
�
% �

	���� �����
� ����
�
% 	$ ��	%�����
%& �����	�� �������� �

��	%�����
% �������	
 ��� $	����� ������ 	
 �����
��- ��������� 	� �	
������� ����
�
%& '��
�����
� �������� �
������� �	(���� ���� �����
��- ��	����� (��� ����
�
% �	 ��	%��� ������
����
� 	
 � �	����� ������	
���� �
� ������ ����
��
�� ���(��
 ��� �(&
'�� �	�� ��%
�$���
� $�
��
% �� ���� ��������� �
 ����� 	$ ���������� �� ��$$���
� ������ 	$

��	$����
��� �
� 5������������ ��$$���
� �	
������� �
������
��
%�� ���� ����
��	
� 	$
�������	
 �
 �	��	
&
*
 �
�������� �	��� �� ��%%����� (���� ��� ����
��	
� 	$ �������	
 ������ �	�� �	 �	
�����

�
� ����������& '�� ���������	
� 	$ ��� �	��� ��� �������& 6��� ��� ����
��	
� 	$ �������	
 ��
��� ��
��� 	$ ����
�
% ���� ������� ���� (��
 �����
�� ������
 � ����
��	
 	$ �������	
� �������
�	
������� �
������
��
%� �
� ��� ���
�
% �������� �
 ������� ��������� ��
 �� ������
��&
*��������� �� (��� �� �	
����� ��
 ������ �	 �	�� ���
 	
� ����
��	
& *��������� �� � ��%���

����� 	$ ��	$����
��� �� (��� �� 5������������ ������ �
������
��
%� 	$ �	
������ ������ �	 �	��
����
��	
� 	$ �������	
&
/	
����� �������� ��� %���
 	
 �	(�������	
 ���	�� �
� ������
� 	$ �������	
 ��
 ��

������� �
 ������
% ��	%�����
%& '�� ������� ��
 �� ���� �� ������	�� �	 ���� �����
��
������
 ����
��	
� 	$ �������	
� �
� ���� $��������� ��������� �� (��� �� �	
������� ����
�
%&

�
��	���� /	������ ����
�� �������	
� �	������ ����
�� �������	
 ��������� 	�7���4	���
���
��	%�����
%�
	���� �����
��� ���
	��
	%������ �������	
 ���	��� ����
��	
� 	$ �������	
�
����
�
%� ��%��� �������	
� �	
������ ��������� 6��� 	$ '��
��
% �
� ��������
%

���� ��
����! �
����

�� 	� "��	�
���	� �
���	�	��! #	$ %%&! ������� ����
�����!
��'&()*(�������! ��
�
�

8 *

�)������� ���

1,,+ !�#!4��!�
1,2+ 034 !4##�40���4#
��
"
�
"��"��"����4 ##! 9����"::��
&��&��:���	���;��
<��
"
�
"��"��"����4 ##!=

To my children Per, Nils, and Olof

List of Papers

This thesis is based on the following papers, which are referred to in the text

by their Roman numerals.

I Eckerdal, A., Thuné, M. (2005) Novice Java Progammers’ Conceptions

of "Object" and "Class", and Variation Theory. SIGCSE Bulletin, 37(3),
pp.89–93

II Eckerdal, A., McCartney, R., Moström, J.E., Ratcliffe, M., Sanders, K.,

Zander, C. (2006) Putting Threshold Concepts into Context in Com-

puter Science Education. SIGCSE Bulletin, 38(3), pp. 103–107
III Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Ratcliff, M.,

Sanders, K., Zander, C. (2007) Threshold Concepts in Computer Sci-

ence: do they exist and are they useful? SIGCSE Bulletin, 39(1), pp.
504–508

IV Thuné, M., Eckerdal, A. (2009) Variation Theory Applied to Students’

Conceptions of Computer Programming. European Journal of Engi-
neering Education, Accepted for publication

V Eckerdal, A., Berglund, A. (2005) What does it take to learn ’program-

ming thinking’? In Proceedings of the 1st International Computing Ed-

ucation Research Workshop, pp. 135–143.

VI McCartney, R., Eckerdal, A., Moström, J. E., Sanders, K., Zander, C.

(2007) Successful students’ strategies for getting unstuck. SIGCSE Bul-
letin, 39(3) pp. 156–160.

VII Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Zander, C.

(2006) Categorizing Student Software Designs: Methods, results, and

implications. Computer Science Education, 16(3), pp. 197–209.
VIII Eckerdal, A., McCartney, R., Moström, J., Sanders, K., Thomas, L.,

Zander, C. (2007) From Limen to Lumen: Computing students in liminal

spaces. In Proceedings of the 3rd International Computing Education

Research Workshop, pp. 123–132,

IX Eckerdal, A. (2009) Ways of Thinking and Pratising in Introductory

Programming. Technical Report 2009-002, Department of Information

Technology, Uppsala University, Sweden.

Reprints were made with permission from the publishers.

Comments on my contributions

In this section I list my main contributions for the papers included in this

thesis.

I I planned and performed the data gathering and the writing, but in close

discussion with the second author. Both authors separately analysed the

data, and discussed the results until we came to an agreement.

II The six authors contributed equally to the background studies and writ-
ing of the paper.

III Data for this paper was gathered at three occasions. The first gathering
was performed by four of the seven authors, me included. The second
by two of the authors, not including me, and the last and most important
and time consuming data gathering was planned and performed by all
seven authors. The data analyses and writing were performed jointly by
the seven authors of the paper.

IV I planned and performed the data gathering, but in close discussion with

the first author. We analysed the data jointly. The first author outlined

and wrote the paper, in discussion with me.

V I planned and performed the data gathering and the analysis, suggested
the topic and wrote the paper, but in close discussion with the second
author.

VI Data for this study was gathered by six researchers, where I was one.
Five of the researchers, me included, performed the data analysis and
writing jointly. The idea for the research came from one of the other
authors.

VII Data for this paper was gathered by twentyone researchers. A subgroup
of four researchers, me included, together with an additional researcher
analysed a partial set of the data. The analysis and writing was jointly
performed by the five authors of the paper.

VIII Data for this study was gathered by six researchers, where I was one.

Five of these, plus a new member of the group are authors of the paper. I

was the initiator of the paper. I suggested the topic, the analysis method,

and outlined the structure of the paper. The data analysis the research

builds on and the writing was performed jointly by the authors.
IX I am the sole author of this paper.

Contents

1 Introduction . 11

1.1 Research questions . 12

1.2 Terminology used in the thesis . 13

1.3 Methodology . 15

1.3.1 The first investigation . 15

1.3.2 The second investigation . 16

1.3.3 The third investigation . 16

1.4 Overview of the thesis . 16

1.4.1 Student learning of concepts . 17

1.4.2 Student learning of practise . 17

1.4.3 The relationship between conceptual and practical learning 18

2 The research in context . 19

2.1 The Computer Science Education research field 19

2.2 The present research and the Computer Science Education re-
search field . 20

3 Research approaches . 27

3.1 Qualitative research . 27

3.2 Phenomenography . 28

3.3 Content analysis . 30

3.4 Trustworthiness in Qualitative Research 32

4 The present research . 35

4.1 Research approaches applied in the present research 35

4.1.1 Phenomenography and variation theory in the present re-

search . 35

4.1.2 Content analysis in the present research 36

4.2 Trustworthiness of the present research 37

4.2.1 Trustworthiness in the first investigation 37

4.2.2 Trustworthiness in the second investigation 38

4.2.3 Trustworthiness in the third investigation 39

5 Results . 41

5.1 Learning of concepts . 41

5.2 Learning of practise . 43

5.3 Ways of Thinking and Practising . 45

6 Discussion - from a teaching perspective . 49

6.1 Phenomenography in practise - an empirical example 49

6.1.1 The phenomenographic outcome space 50

6.1.2 Discernment and variation - identification of critical features 50

6.1.3 Dimensions of variation - open a space for learning 51

6.1.4 Implications for education - patterns of variation 52
6.1.5 The results related to previous research 55

6.2 Dimensions of variation and student learning of practise 57
7 Conclusions and future work . 61

Summary in Swedish . 65
Acknowledgements . 68

Bibliography . 69

1. Introduction

This thesis addresses the role of concepts and the role of practise in computer
programming students’ learning. Specifically, the relationship between prac-
tise and concepts in students’ learning process is investigated. The research is
empirically based on studies with students from several countries.
Computer science has conceptual1 as well as practical learning goals

(Roberts and Engel, 2001). Many computer programming students claim

that “learning through practise” is by far the best way to learn to program,

both regarding “learning to do practise” as regarding learning the concepts

(Eckerdal, 2006). This claim seems to be supported by many educators,

considering the huge amount of papers that have been published on how

to help students to “learn through” and “learn to do” practise (Valentine,

2004; Gross and Powers, 2005). Still, after decades of attempts to improve

the learning outcome (from an early reference from the childhood of

programming education in 19692 it is reported about a “high withdrawal

rate” from a course), mainly by focusing on the role of the practise, serious

learning problems seem to prevail (Eckerdal et al., 2006b; Fleury, 2000;

Fleury, 2001; Lister et al., 2004; McCracken et al., 2001; Robins et al., 2003).

In contrast to this focus on practise, research in higher education in general

has had a strong focus on students’ conceptual learning (Entwistle, 2003;

Entwistle, 2007; Molander, 1996; Molander et al., 2001; Posner et al., 1982).
The primary contribution of the present research lies in the investigation of

the relationship between students’ conceptual and practical learning, where

the focus of the latter is on “learning to do” practise. First the role of practise

and the role of concepts are investigated separately. It is shown that students

have great difficulties in learning both concepts and practise. The investiga-

tions further strongly indicate complex relationships and mutual dependen-

cies between practise and concepts in students’ learning process. The results

thus point to a need to further explore this relation. This has also previously

been pointed to in science and technology education research (Séré, 2002;

McCormick, 1997).

The thesis also contributes to the body of knowledge on learning in higher
education by presenting an analytical model of how the learning of concepts
and practise relate in novice programming students’ learning.

The present research builds on three empirical investigations. Data from the
investigations have been analysed from several different perspectives in order

1By conceptual learning goals I mean subject specific concepts students are supposed to learn,

see Section 1.2.
2Retrieved 080812 from http://portalparts.acm.org/880000/873609/fm/frontmatter.pdf

11

to provide insights into students’ learning of concepts as well as their learning

of the practise.
There are two objectives of this thesis. The first is to contribute to the body

of knowledge of the learning process in programming education. The second

is pragmatic: to give concrete advice to programming educators on how teach-

ing and learning can be improved.

1.1 Research questions
As a teacher in computer science my interest in students’ learning led me to re-
search on teaching and learning. A first investigation revealed novice students’
understanding of some central concepts. At the same time the data showed the
first traces of a complex relationship between practise and conceptual learn-
ing. One of the novice students in the study comments the course he or she
had just finished, a first programming course:

Yes, I think it has been difficult with concepts and stuff, as to understand how to

use different, how one should use different things in a program. And I actually

think that most of it has been difficult [...] But I still think the course, it’s

difficult for a novice to sort of get a grip of how to study when you implement

the programs and like that. (Eckerdal and Berglund, 2005, p. 138)

This student finds it difficult to learn the concepts, but what he or she em-
phasises is problems with “learning through practise”, the same practise that
is developed to help students learn the concepts. The novice students in this
study specifically stressed the importance of practise in learning the concepts.
But if “learning through practise” causes the largest problem, the students
will neither learn “to do the practise”, nor the concepts. Keeping in mind the
substantial efforts in the last decades to improve “learning through practise”
to facilitate novice students’ learning (Valentine, 2004; Gross and Powers,
2005), it becomes obvious that practise is not merely the unproblematic road
to conceptual learning.

The subsequently performed investigations established the important but
problematic role of practise in programming education and led to my overar-
ching research question:

• Which roles do practise and concepts play in programming students’ learn-
ing process?

This question is broad, and to investigate all aspects of it is beyond the

scope of a thesis. I have thus limited the question. To this end I have used

a conceptual framework, Ways of Thinking and Practising, WTP (Entwistle,

2003; McCune and Hounsell, 2005), to embrace both the practical and the

conceptual aspects of learning to program, and how these two are related.
The research questions highlighted in this thesis focuses on three themes

related to the WTP framework. The first theme concerns students conceptual

learning:

12

• How do novice programming students understand programming concepts?

• How do novice students understand what computer programming means,
and how do they understand what learning to program means?

• How can the results from a phenomenographic outcome space inform
teaching and thus improve learning in computer programming education?

The second theme concerns the role of practise in computer science educa-

tion:

• What strategies do computer science students use when they are stuck in

their learning?
• Can computer science students design software?

The third theme deals with how conceptual learning and practise are related

in the learning process:

• How do students experience the process of learning threshold concepts, the

so called liminal space (Meyer and Land, 2005) in computer science?
• How do practise and concepts relate in novice programming students’
learning?

The first theme is discussed in Paper I through Paper V, the second in Pa-
per VI and Paper VII, and the third theme is the topic of Paper VIII and Pa-
per IX. The papers are separately described in Section 1.4.

1.2 Terminology used in the thesis

The focus of the thesis is to discuss the role of concepts and the role of prac-
tise in programming students’ learning. My use of the word concept is broad.
I will discuss concept as “an abstract or generic idea generalized from partic-

ular instances”, and as “any idea of what a thing ought to be”3. Some of the

concepts discussed in the thesis are lexical, word-sized, for example “class”

and “object” while others are broader, for example “computer programming”.

Practise is a broad term. In Paper IX I distinguish between skills, activities
and exercises. Programming students are supposed to learn new practical skills
like reading, writing, and debugging code. Each skill is manifested in many
different activities that the students are supposed to learn, and these activities
demand different levels of proficiency to be properly performed. For example
the skill of reading code can, for a novice student, mean the recognition of key
words in a program, while at a higher level of proficiency reading code implies
being able to relate the code to a problem domain. Exercises on the other hand
are here discussed in terms of practises where students follow more or less
detailed instructions prepared by the teacher. Exercises are less discussed than
the other two, since they represent “learning through practise”, while the focus
of this thesis is on “learning to do the practise”.

Practise, in terms of exercises, is the main means to reach both concep-
tual and practical learning goals, for example reading, writing, and debugging

3Retrieved 090110 from Merriam-Webster Online Dictionary, http://www.merriam-

webster.com/dictionary/

13

code. Computer programming thus involves “learning through the practise” as

well as “learning to do the practise”.
The rest of this section explains some computer specific terms used in the

thesis. Other computing terms are defined when they are introduced in the

text.

Computer science is a discipline in higher education which involves meth-
ods and theories underlying computers and software systems. Software com-

prises the computer programs, associated documentation and configuration

data that is needed to make the programs work correctly. The purpose of pro-

ducing software systems is to make computers solve problems.

The software development process is traditionally divided into several
phases: problem analysis, software design, implementation and testing.
Computer programming, which is sometimes used synonymously with
implementation and sometimes in the broader sense as software development,
is a core area in computer science. When implementing, the programmer
writes code in a certain programming language, where code refers to
the instructions which tell the computer what to do. These instructions
follow rules from the particular programming language used. Syntax is the
description of the possible combinations of symbols and specific words that
are accepted in a programming language.
Software development involves use of certain software tools. For example,

in the implementation and testing phase specific text editors are used that are
developed to facilitate the implementation by, for example, recognising the
syntax of the language. The editor and the compiler are often integrated in a
development environment. The compiler is the software that translates (com-
piles) the code to a representation that is executable for a computer. When the
code is tested it is checked to determine if it meets the requirements given.
This involves debugging the code, which means finding and removing errors.

There exist several fundamentally different ways to tackle a problem for a
program developer. Consequently there are different programming paradigms
available. This thesis will discuss the object-oriented paradigm which is cur-
rently dominant in industry and university education. Examples of program-
ming languages within the object-oriented paradigm are Java and C++.
Meyer (1988) describes the thoughts behind the object oriented

paradigm:

A software system is a set of mechanisms for performing certain actions on

certain data. When laying out the architecture of a system, the software de-

signer is confronted with a fundamental choice: should the structure be based

on the actions or on the data? (Meyer, 1988, p. 41).

The latter choice is one of the main principles behind the object oriented
paradigm. Meyer has the following definition of object-oriented design:
“Object-oriented design is the method which leads to software architectures
based on the objects every system or subsystem manipulates (rather than
’the’ function it is meant to ensure).” (Meyer, 1988, p. 50).

14

The principal aim of software engineering is to produce programs with

high quality, which is to say programs that are correct, efficient, reusable,

extendible, easy to use, which are exactly the features that underpinned the

development of the object-oriented paradigm (Meyer, 1988).

1.3 Methodology

My interest in understanding the student learning process, which appeared so

difficult to penetrate, led me to investigate students’ learning of concepts and

practise, as presented in Section 1.1. The research aims to give a broad picture

of students’ learning experiences, emanating from the students’ perspectives.

Students experience learning as a whole, and in order to untangle the complex

experience, several studies were performed. In this section this is described as

three different investigations, although they together form the pool of empiri-

cal data that the research builds upon, and from which conclusions are drawn.
The data in the first investigation are interviews with novice programming

students. The second investigation involves several data collections, including

informal interviews and a questionnaire administrated to educators, and inter-

views with senior students. The third investigation includes a large set of data

from senior students’ doing a design task. In this way, data showing students’

understanding of concepts as well as the role of practise in programming edu-

cation were gathered.

1.3.1 The first investigation

The first investigation included in the present research is a study with 14

Swedish first year non-major computer science students. It is common at

Swedish universities that non-major computer science students in technical

and natural science education take at least one computing course where they

are given an introduction to programming. The students had just finished their

first programming course, using Java as the programming language. The aim

of the investigation was to get a rich description of the variation in the stu-

dents’ different experiences of some concepts in object-oriented program-

ming. The students were thus interviewed for example on their understanding

of the concepts object and class, and what it means to learn to program. The
answers to these questions were transcribed verbatim and translated to En-
glish where needed. The analysis was performed using a phenomenographic
research approach, see Section 3.
The research questions informed by this study are how novice students un-

derstand what programming is and what learning to program means, how they

understand central concepts in the object-oriented paradigm, and how the re-

sults from a phenomenographic outcome space can inform teaching. Further-

more data from the first investigation informed the question on how concep-

tual learning and practise relate in programming students’ learning process.

15

1.3.2 The second investigation

The second investigation was performed by a group of researchers from Swe-
den, the United Kingdom, and the United States. The work was motivated by
an interest in threshold concepts in computer science (Meyer and Land, 2005).
Two pre-studies were performed with educators at two international confer-
ences during the summer and fall of 2005. Educators were informally inter-
viewed, and some answered a questionnaire. The aim was to find threshold
concept candidates for further investigation. These two studies laid the foun-
dation for an interview study with students, aiming at identifying threshold
concepts from the students’ perspectives. A subsequent multinational study
with students from seven universities in the three countries was performed dur-
ing spring 2006. 16 graduating computer science students were interviewed.

The interviews have been analysed from three different perspectives and
inform the following research questions. The first analysis aimed at identify-
ing threshold concepts in the discipline. The second analysed the parts of the
interviews where the students discussed strategies for getting unstuck in their
studies. The last analysis took a theoretical standpoint, aiming at investigat-
ing what liminal space means and involves in computer science. The theory
of liminal space was used as a tool in the search for learning experiences
characteristic of computer programming. Furthermore data from the second
investigation informed the question on how conceptual learning and practise
relate in programming students’ learning process.

1.3.3 The third investigation

A multinational study was performed by 21 researchers at 21 institutions in
the United States, the United Kingdom, Sweden, and New Zealand. This study
involved 314 participants from three levels of education; students with low
competence, graduating seniors, and educators (Tenenberg et al., 2005). The
research presented in the present thesis was performed by a subgroup of the
original 21 researchers, plus one researcher not participating in the original
investigation. The data used for this research were software designs produced
by a subset of the participants, the 149 near-graduation seniors. The partici-
pants were asked to design a “Super alarm clock” according to a number of
criteria that were to be met. Beside these criteria, there was little guidance on
how to perform the task. The designs were made on paper.
This investigation informs the research question on graduating computer

science students’ ability to design.

1.4 Overview of the thesis

As explained above, the papers in the thesis are organized around three

themes. Concepts and practise are two inseparable and equally important

learning goals in programming education. The themes thus focus on student

16

learning of concepts, student learning of practise, and the relationship

between the two in students’ learning process.
The first theme on student learning of concepts is discussed in the first five

papers of the thesis.
The second theme, dealing with students’ learning practise, is illuminated

in Paper VI and Paper VII.
The last theme, how conceptual learning and learning practise are related in

students’ learning process is examined in Paper VIII and Paper IX.

1.4.1 Student learning of concepts

Student learning of concepts is researched at different levels of granularity.

The analysis from a bird’s eye view discusses students’ understanding of what

computer programming means, while the analysis at the next level aims at

identifying central, threshold concepts in computer programming. Finally, the

analysis that focuses primarily on details look at students’ understanding of a

few, possible threshold concepts. Below follows a description on the papers

that belong to this theme.
At the most coarse-grained level Paper IV, Variation Theory applied to Stu-

dents’ Conceptions of Computer Programming, investigates students’ under-
standing of the whole subject area, computer programming. This is followed
in Paper V, What does it take to learn ’programming thinking’?, by an in-
vestigation of the same students’ understanding of what learning computer
programming means.

At the next level of granularity, Paper II, Putting Threshold Concepts into
Context in Computer Science Education, identifies so called threshold con-

cepts in computer science. Further Paper III, Threshold Concepts in Computer
Science: Do they exist and are they useful?, investigates students’ learning of

such concepts.
Finally, at the most fine-grained level Paper I, Novice Java Programmers’

Conception of “Object” and “Class” and Variation Theory presents an in-

depth study of students’ understanding of a few central concepts, concepts

that are possible threshold concepts in object-oriented programming.

1.4.2 Student learning of practise

Learning computer programming concerns learning practical skills. In the

present thesis Paper VII, Categorizing Student Software Designs: Methods,
results, and implications, focuses on one specific skill, software design. De-
sign is, beside writing code, reading code, and debugging code, considered as
a core skill in programming education. The investigation on senior students’
ability to design software is an important contribution to the body of knowl-
edge of students’ skillfulness.
Our investigation, together with related projects (McCracken et al., 2001;

Whalley et al., 2006; Fitzgerald et al., 2008), all point to the conclusion that
students have great problems in learning the practise. The learning outcome

17

in programming education has been argued to be closely related to good pro-

gramming strategies (Robins et al., 2003; Davies, 1993). We have thus inves-

tigated such strategies in terms of what graduating students do when they are

stuck in their learning. This line of research is presented in Paper VI, Success-
ful students’ strategies for getting unstuck. Some of the strategies identified

and labeled in the paper have an abstract character, like “Be persistent/don’t

stop” or “See patterns”. Others have a more concrete, practical nature, for ex-

ample “Use a [software] tool”, “Write programs” or “Trace [code]”. Many

of the strategies found in the analysis are thus related to the practical aspect

of programming. In this way Paper VI emphasis the importance of students’

learning practise and broadens the research presented in Paper VII which fo-

cuses on one particular aspect of practise, students’ ability to design.

1.4.3 The relationship between conceptual and practical
learning

The last theme presented in the thesis focuses on the complex relationship be-
tween conceptual and practical learning. The theme is highlighted by results
from Paper INovice Java Programmers’ Conception of “Object” and “Class”
and Variation Theory, Paper IV Variation Theory applied to Students’ Con-
ceptions of Computer Programming, and Paper V What does it take to learn
’programming thinking’? with novice students, but is established and elab-

orated in Paper VIII From Limen to Lumen: Computing students in liminal
spaces, with senior students. The results of this analysis reveals a broad and
rich picture of the students’ learning experiences where the practise as well
as the concepts play important but problematic roles in the students’ learning
process.

In this way Paper VIII gives a background for the analysis presented in
Paper IX,Ways of Thinking and Practising in Introductory Programming. The
paper is the synthesis of my thesis work. Important results from the first two

investigations on conceptual and practical learning are discussed and further

developed. The focus, discussed and analysed in depth, is however on how

conceptual and practical learning relate in students’ learning process.

18

2. The research in context

2.1 The Computer Science Education research field

Computer science1 is a young discipline, only half a century old. As a dis-
cipline of its own, computer science education is even younger. Computer
science has developed with an “astonishing pace” which has had “a pro-
found effect on computer science education, affecting both content and ped-
agogy.” (Roberts and Engel, 2001, Chapter 2) The rapid change of the sub-
ject matter taught has inevitably affected also the computer science educa-
tion research discipline. The discipline has however encountered several prob-
lems. Berglund (2005) identifies some of them. First, the discipline is cross-
disciplinary. It encompasses computer science, but in addition a range of other
disciplines including pedagogy, psychology, learning technology, and more.
According to Berglund, the lowest common denominator in this diverse field
is “the aim to improve learning and teaching within computer science, and
thereby to contribute to computer science.” (Berglund, 2005, p. 23, italics in

original) This is in line with the aim of the present research.
Berglund further points to the problem of knowing “who is ‘in’ the com-

munity.” He writes, with reference to Clancy et al. (2001):

As many of the leading researchers within the field are better known for their

contribution to other sub-areas of computer science, it is also hard to determine

where the edges of the community are. (Berglund, 2005, p. 23)

Another problem recognized, relevant for the present thesis, is that there has

been, and still is a need of more qualitative research in computer science

education research (Berglund et al., 2006). Berglund et al. (2006, p. 25) claim

that “research into student learning is strengthened by increased awareness of

the role and relevance of qualitative research approaches in CER.”

A question that has been discussed in the CER community, and still is an issue,
is how to define research in computer science education. What distinguishes
research in teaching and learning from mere ideas of good teaching practise
based on personal teaching experiences? This is debated for example in Gold-
weber et al. (2004), where one of the authors writes: “CSEd research is new. It

1Computer science is commonly abbreviated CS. Accordingly, computer science education is

abbreviated CSEd or CSE, and computing education research CER.

19

co-exists in places with other sorts of publications (like SIGCSE) and where

it starts and stops, where its edges are, are not yet clear.”2

Fincher and Petre discuss how computer science education research has

emerged as an “identifiable area” (Fincher and Petre, 2004, p. 1) during the

past decades. The growth has come from different places like computer sci-

ence practitioner conferences, sub-specialist areas like psychology of pro-

gramming, and computer science research groups at different academic insti-

tutions. Another factor contributing to the shattered picture is the contributors,

who have diverse expert knowledge like education, psychology, and different

areas of computer science, and consequently have published in different re-

search fora. Fincher and Petre write about this sprawling research field: “De-

spite this growth–and because of it–we are struggling to find the shape and

culture of our literature.” (p. 2)
Fincher and Petre discuss the characteristics of the publications that can be

referred to as research: “they can be thought of as having two components: a

dimension of rationale, argumentation or ’theory’, and a dimension of empir-

ical evidence.” (p. 2)

The research presented in this thesis is well in line with the two criteria
discussed by Fincher and Petre. All the papers build on empirical data (ex-
cept Paper II, Putting Threshold Concepts into Context in Computer Science
Education, which is a literature review) and they all include arguments, or

theories, which the interpretations and inferences build on. Furthermore, all

papers are published in well established fora, where the papers have been

peer-reviewed by relevant specialists in computer science and/or education.

2.2 The present research and the Computer Science
Education research field

Students’ learning of computer science has been investigated from different

perspectives. This section will put the present research in a context of re-

search in computer science education, and specifically regarding research on

students’ learning computer programming which is a sub-field of the wider

computer science education research field.
Pears et al. (2007) report on a literature survey on teaching of introductory

programming. The following areas are investigated in the survey: Curricula,

Pedagogy, Language choice, and Tools for teaching.

Randolph (2007) presents, from a positivistic perspective rooted in psycho-
logical research, a major overview of articles in computer science education.
The author reviewed 352 computer science education articles published be-
tween 2000 and 2005. Randolph claims among other things that “several dif-

2SIGCSE mission statement, http://sigcse.org/about/, says: “The ACM Special Interest Group

on Computer Science Education provides a forum for educators to discuss issues related to

the development, implementation, and/or evaluation of computing programs, curricula, and

courses, as well as syllabi, laboratories, and other elements of teaching and pedagogy.”

20

ferences in research practises across the fields of computer science education,

educational technology, and education research proper were found.” (p. iv)

Randolph furthermore found that one third of the articles reviewed “did not

report research on human participants” and most of them “were program de-

scriptions” (p. 173).

An older survey is by Austing et al. (1977) who report on literature in com-
puter science education from the publication of the first ACMComputing Cur-
ricula 1968 (ACM Curriculum Committee on Computer Science, 1968), up to
1977, including for example survey reports, descriptions of programs, and de-
scriptions of courses and other material.

A psychological/educational perspective on learning is the focus of Robins
et al.’s review (2003) which compares “novice and expert programmers, pro-
gramming knowledge and strategies, program generation and comprehension,
and object-oriented versus procedural programming.” (p. 137) Robins et al.
specifically focus on “novice programming and topics relating to novice teach-
ing and learning.” (p. 137)
Simon (2007) summarises the range of different types of publications in

computer science education. He presents an overview of classification of

papers in the field that have been published in different fora. For example,

Pears et al. (2005) present a classification which, with reference to Fincher

and Petre (2004), suggests the following areas for computer science education

research: studies in teaching, learning, and assessment; institutions and
educational settings; problems and solutions; computing education research
as a discipline.

The focus of the present research is on learning, namely programming stu-

dents’ learning of concepts and practise. Computer programming is one of

the core areas in computer science education, which is established in the in-

fluential ACM/IEEE Computing Curricula 2001 (Roberts and Engel, 2001)3.
Even though computer programming is a young discipline in higher educa-
tion, students’ difficulties are widely reported in the literature (Ben-Ari, 1998;
Eckerdal and Thuné, 2005; Fleury, 1999; Fleury, 2000; Lister et al., 2004;
McCracken et al., 2001; Robins et al., 2003).

The present thesis work is put in a research context below in the follow-
ing way: first I present studies on students’ conceptual understanding, which
include questions on student understanding of single concepts as well as ques-
tions at a more coarse-grained level including student understanding of what
computer programming is. Studies on student learning of practise is discussed
from two perspectives. First, studies that investigate practise as a learning goal
in terms of programming skills are presented. Then, studies investigating prac-
tise as a means to reach learning goals, conceptual as well as practical, are
discussed. Because of the many published articles related to the psycholog-

3This curriculum is one in a series of curricula developed for computer science education, the

first dating back to 1968 (ACM Curriculum Committee on Computer Science, 1968).

21

ical/educational study of programming, I will finally briefly touch upon this

area of research, although it is not within the scope of the present thesis.

Student learning of concepts
As described in Section 1.4 the thesis presents research on student learning

of concepts at different levels of granularity. At the most coarse-grained level

are Paper IV, which discusses novice students’ understanding of computer

programming, and Paper V, which discusses the same students’ understanding

of what learning computer programming means.
Examples of research related to these questions are Booth (1992), who in

her influential thesis investigates what it means and what it takes to learn to

program, and Bruce et al. (2004) and Thuné and Eckerdal (2009), (Paper

IV), who follow this line of research, studying students’ understanding

of what programming means. Similar research is presented by Eckerdal

and Berglund (2005), (Paper V), and Stamouli and Huggard (2006) who

investigate students’ understanding of what learning to program means. The

studies show very similar findings. Students’ understandings vary from a

narrow language-syntax-centered understanding to more desirable broader

understandings including programming as problem solving, a skill that can

be used outside of computing education.

Many studies point to the necessity of a good understanding of the central
concepts within object-oriented programming. Ragonis and Ben-Ari (2005)
present a long-term study on high school students’ learning of concepts in
object-oriented programming including “class vs. object, instantiation and
constructors, simple vs. composed classes, and program flow. In total, 58 con-
ceptions and difficulties were identified.” (Ragonis and Ben-Ari, 2005, p. 203)
Fleury (2000) found that students constructed their own understanding of
concepts when they worked with programming assignments, and that those
constructions were not always complete and correct. In a multinational study
Sanders et al. (2008) investigated what novice object-oriented programming
students see as the most important concepts, and how they express the rela-
tionships among those concepts. Some results from the study are that “[u]nlike
earlier research, we found that our students generally connect classes with
both data and behavior” (p. 332), but “few students see modeling as one of
the most important OO concepts.” (p. 336) Another multinational study, pre-
sented by Sanders et al (2005), involved 20 researchers and 276 participants
from 20 different institutions. The study aimed to elicit novice object-oriented
programmers’ knowledge of programming concepts by using a “multiple,
participant-defined, single-criterion card sort”. The authors point to “the un-
expected result that there were few discernible systematic differences in the
population.” (p. 121)

Examples of studies on students’ conceptual understanding with a phe-
nomenographic approach are Berglund (2005) who investigated senior stu-
dents’ understanding of concepts within computer systems, Boustedt (2007)
who studied senior students’ understanding of some advanced object-oriented

22

concepts, and Eckerdal and Thuné (2005), (Paper I), who investigated novice

students’ understanding of central object-oriented concepts.
Holmboe (1999) emphasises that good understanding in programming re-

quires both practical skills and conceptual understanding, and a connection

between the two. This mirrors the three foci of the present thesis. The follow-

ing two sections will discuss the role of practise in computer science educa-

tion.

Learning programming skills
There exists a considerable body of research on the role of practise in com-

puter science education, both as means to reach the learning goals, and as a

goal in itself. The latter is discussed in this section, in terms of skills students

are supposed to learn.
A well known multinational study is McCracken et al. (2001) who investi-

gated novice students’ ability to write code. The authors concluded that many

students can not program after their first introductory programming course,

but lacked evidence for an explanation. Lister et al. (2004) continued the Mc-

Cracken study and found that students’ problems with programming “relate

more to the ability of students to read code than to write it.” (p. 139) This

line of research has been extended by Whalley et al. (2006), who also study

students’ ability to read code. The authors found that “[s]tudents who can-

not read a short piece of code and describe it in relational terms are not well

equipped intellectually to write code of their own.” (p. 251) In the same line

of research is Lopez et al. (2008) who investigated the relationship between

reading, tracing and writing code in novice students’ learning. The authors

found correlation between performance on “code tracing tasks” and “perfor-

mance on code writing tasks” and also between “performance on ’explain in

plain English’ tasks and code writing.” (p. 101)

Students’ ability to debug code is investigated in a multinational study by
Fitzgerald et al. (2008). The authors found that students that can debug are of-
ten good novice programmers, but the opposite does not always apply. On the
other hand, “once students find bugs, they can fix them.” (p. 93) Senior com-
puter science students’ ability to design software is investigated in a multina-
tional study by Eckerdal et al. (2006), (Paper VII). The authors found that that
only 9 % of the students produced partial or complete designs. We further-

more found that the number of academic courses taken by the students, the

time the students spend on the design task, and the number of programming

languages well known by the students were significantly correlated with the

result of the design task. In summary, all the studies point to students’ difficul-

ties in learning the practical skills. This applies to novices as well as to senior

students.

Practise as means for learning to program
Practise is often seen as an inevitable means to reach learning goals. Resources
that enhance practise for learning are frequently discussed topics in confer-
ence papers and journal articles. Such a resource which is expected to have

23

high impact on object-oriented educations is the Java Task Force that was ap-

pointed by the ACM Education Board in 20044. The mission was to develop
a s collection of pedagogical resources that would support the use of Java in
first-year computer science courses.
There is a strong focus on technology based learning support in the com-

puter science education literature. This is pointed to by Valentine (2004) who

did a meta-analysis on twenty years of proceedings from the largest confer-

ence in computer science education. The author categorized research papers

dealing with beginning programming courses. During 1994-2003, 42% of the

number of papers in the proceedings described software that was developed

by the author of the paper to enhance learning.
Technology supported resources developed to enhance learning to program

are discussed by Powers et al. (2006). According to the authors software re-

sources developed to help novices to learn to program can be divided into

several groups, for example Narrative tools, which “support programming to
tell a story” and Visual programming tools, which “support the construction
of programs through a drag-and drop interface”. An example of the former
is Alice (Powers et al., 2007) and an example of the latter is JPie (Goldman,
2004).

Ellis et al. (1998) report on technology supported resources for Problem
Based Learning. For example, the authors discuss resources to provide subject
guidance and information access, and resources to assist scaffolding. In the
former group reference material like CD-ROM and the web is mentioned.
How do we know that technology based learning resources lead to good

conceptual or practical learning? Gross and Powers (2005) performed an

extensive literature search for assessments of the educational impact of

novice programming environments. The authors relate their literature search

to novice programmers learning difficulties saying that teachers “have

developed a myriad of tools to help novices learn to program. Unfortunately,

too little is known about the educational impact of these environments.”
Pair programming has been greatly discussed in the computer science com-

munity during recent years. The fundamental thoughts behind pair program-

ming are described as “students sit side-by-side at one computer to complete

a task together, taking turns ’driving’ and ’navigating.’ ” (VanDeGrift, 2004).

Studies on the learning outcome of pair programming, and how pairs best are

selected have been performed. Examples of this are VanDeGrift (2004) and

Katira (2004).
Extreme programming (XP) has been discussed and used in industry, and

to some extent in higher education. In XP planning, analyzing, and designing

is done a little at a time, throughout software development. The XP practises

also include other factors like pair programming and programmers’ collective

ownership of the code in the system (Beck and Andres, 2004).

4The reports from the Java Task Force with associated material are available from

http://jtf.acm.org/index.html Retrieved November 18, 2008.

24

Other aspects of the practise discussed in the literature are the role of

projects and programming assignments, and the roles of the programming

language and programming environment. The former are discussed for

example by Daly (2004) and Newman (2003). The latter are discussed

in for example Kölling (1999a) and Kölling (1999b) where the author

discusses where different programming languages and different programming

environments are suitable.

Psychological/educational study of programming
As a contrast to my own research I will mention two large research areas in

computer science education: research on students’ misconceptions, and re-

search comparing novices and experts behaviour. These research areas are

close to the present research, but not the exact focus.
Robins et al. (2003) discuss “literature relating to the psychologi-

cal/educational study of programming.” The authors discuss “general trends”,

for example regarding comparison of novice and expert programmers.

Examples from this line of research are Gugerty and Olson (1986) who

compare expert and novice debuggers, Kahney (1983) who investigate

novices’ and experts’ understanding of recursive procedures, Zou and

Godfrey (2008) who investigate differences between newcomers’ and

experts’ interaction with software development tools, and Winslow (1996)

who, based on an overview of psychological research in programming

pedagogy, claim that it takes 10 years of experience to turn a novice

programmer into an expert.

Students’ misconceptions are frequently reported in studies on students
learning to program. I will mention a few. Ragonis and Ben-Ari (2005)
present a large study with high school students learning to program. The
article includes detailed lists of difficulties and misconceptions related to
several concepts in object-oriented programming. Holland, Griffiths and
Woodman (1997) claim that misconceptions of basic object concepts “can
be hard to shift later. Such misconceptions can act as barriers through which
later all teaching on the subject may be inadvertently filtered and distorted.”
Sanders and Thomas (2007) describe a close examination of student
programs from an introductory programming course, in which they found
evidence of misconceptions. Among other things they found difficulties in
distinguishing between classes and objects, and in modelling.
Other programming paradigms are also discussed in this context. Spohrer

and Soloway (1986) studied novice Pascal students and investigated “whether
or not most novice programming bugs arise because students have miscon-
ceptions about the semantics of particular language constructs.” (p. 183) The
authors found that for most of the bugs investigated that was not the case. Bay-
man and Mayer (1983) report on a study on beginning BASIC programmers
misconceptions of statements they had learned, and Fung et al. (1990) report
on “novices’ misconceptions about the interpreter in Prolog” (p. 311).

25

3. Research approaches

My research interest is in programming students’ learning, and specifically in
the students’ own experiences of their learning. I first investigated students’
experiences of some programming concepts, and how they went about learn-
ing the concepts. Aiming at describing this from the students’ perspective the
first two investigations mainly used interviews with students. Interviews with
educators and a brief survey were initially used in the second investigation,
but the results from initial analyses pointed to qualitative, student centered re-
search methods, and consequently interviews with students were performed.
From the initial research questions, the data and the analyses led to new

research questions concerning the role of practise in programming students’

learning, but still related to how the students experience their learning.
The research questions presented in Section 1.1 suggest a predominantly

qualitative research approach since the focus is on how-questions, see Section

3.1 below. Quantitative methods have been used to a minor extent, and only

as a complement to a primary, qualitative approach.
In the present section I will briefly introduce the reader to qualitative re-

search in general, and in particular to phenomenography and variation theory.

Parts of the content analysis tradition will be discussed, namely qualitative

content analysis, which has been applied in the present research. In addition,

trustworthiness in qualitative research is introduced, and discussed in relation

to the present work.

3.1 Qualitative research
Qualitative research is spread widely and cross cuts many disciplines, using
a variety of methods and approaches. Denzin and Lincoln (2005) discuss the
development of qualitative research. Considering its complex development,
qualitative research is difficult to define. The authors still offer an “initial,
generic definition” (p. 3):

qualitative research involves an interpretive naturalistic approach to the world.

This means that qualitative researchers study things in their natural settings,

attempting to make sense of, or interpret, phenomena in terms of the meanings

people bring to them. (Denzin and Lincoln, 2005, p. 3)1

1In the following text I will refer to this definition when I discuss the naturalistic paradigm.

27

According to Denzin and Lincoln (1994) qualitative researchers “seek an-

swers to questions that stress how social experience is created and given mean-

ing” in contrast to quantitative studies which “emphasize the measurement

and analysis of causal relationships between variables, not processes.” (Den-

zin and Lincoln, 1994, p. 4) Qualitative studies often focus onWhy? andHow?
questions, less on How much? which is common in quantitative studies. The
aim of qualitative research is rather to give “thick descriptions” of phenom-
ena than to measure variables. To “make sense of” and look for “the meaning
people bring” to phenomena are watchwords.
Examples of data collection methods used in qualitative research are par-

ticipant observation and video recordings, but as Denzin and Lincoln (2005)

write: “No specific method or practise can be privileged over any other.” (p. 7).

Empirical materials used involve for example interviews, artifacts, and histor-

ical texts “that describe routine and problematic moments and meanings in

individuals’ lives.” (Denzin and Lincoln, 2005, p. 3-4)
The research questions (see Section 1.1) require analysis methods that can

elicit the meaning embedded in the material. Content analysis is such a method
that has been used on interviews and written artifacts to elicit meaning by
categorisation. Phenomenography, here applied in the analyses of interviews,
is another approach, used in educational research to understand differences
in learning outcome by eliciting qualitatively different ways in which people
experience phenomena.

3.2 Phenomenography

Phenomenography is a qualitative research approach, intended for
educational research. Phenomenography was first developed in the 70’s
in Gothenburg, Sweden by a group of researchers. Ference Marton, Lars
Owe Dahlgren, Lennart Svensson and Roger Säljö performed a study on
students reading a text aiming at understanding the differences in students’
understandings. They found clear qualitative variation in what the students
understood, as well as how they went about studying the text. These findings

have been used as a point of departure for research on learning in various

subject areas in higher education, and have led to insights, such as the

distinction between deep and surface approach to learning (Marton et al.,

1984). From this empirical basis the phenomenographic research approach

emerged, which focuses on describing and understanding the variation in

how people experience phenomena in the world2 Phenomena are described
by Marton and Booth (1997) as the units that exceed a situation, bind it
together with other situations and give it a meaning.
Marton and Booth (1997) write about variation in peoples’ capabilities for

experiencing the world:

2In the following text I will use understanding as interchangeable with experience since the

present research discusses students’ understandings of phenomena.

28

These capabilities can, as a rule, be hierarchically ordered. Some capabilities

can, from a point of view adopted in each case, be seen as more advanced, more

complex, or more powerful than other capabilities. Differences between them

are educationally critical differences, and changes between them we consider

to be the most important kind of learning. (Marton and Booth, 1997, p. 111)

The object of interest in a phenomenographic study is thus how a certain phe-
nomenon is experienced by a certain group of people, and the variation in

the way the phenomenon is experienced (Marton and Booth, 1997, p. 110). It

focuses on the students’ perspectives and understandings, not on misconcep-

tions. It does not take the researcher’s perspective as the point of departure, but

endeavours to adopt the student’s perspective on learning. Marton and Svens-

son (1979) claim that in this perspective, the world as the student experiences

it, becomes visible. The experience is a relation between the student and his

or her world, it is not two independent descriptions, one of the student and one

of the world. “[W]e have one description which is of a relational character.”

(Marton and Svensson, 1979, p. 472)

In phenomenographic studies, data are often gathered in the form of inter-
views where people are encouraged to describe their different experiences, or
understandings of some phenomenon. The interviews are transcribed verba-
tim and the data, as text, are analysed. The analysis aims at identifying dif-
ferent understandings of the phenomenon discussed. The understandings are
found when the data are read and reread and patterns of distinctly different
understandings are looked for. Individual, decontextulised quotes illustrating
certain understandings are compared with each other, grouped and regrouped,
and eventually different categories of understanding emerge which form an
outcome space. The quotes are also read and reread in their own context to
make subtle distinctions to the researcher’s understanding of the data. The re-
searcher formulates the essence of the understandings found with his or her
own words in the categories of description. In this iterative analysis, by again
and again going back to the data, the categories of description finally emerge.

A fundamental assumption in phenomenography is that there exist only a
limited number of qualitatively different ways in which a certain phenomenon
can be understood. The categories in the outcome space show a “hierarchical
structure of increasing complexity, inclusivity, or specificity” (Marton and
Booth, 1997, p. 126). The categories describe the qualitatively different ways
of experiencing the phenomenon that the researcher has identified in the
data. Different categories reflect different combinations of features of the
phenomenon which are present in the focal awareness at a particular point in
time (Marton and Booth, 1997, p. 126). Marton, Runesson and Tsui (2004,
p. 22) describe critical features: “the features that must be discerned in order
to constitute the meaning aimed for.”

The phenomenographic analysis is done at a collective level, not aiming at
putting individuals in certain categories. An individual can hold several of the
understandings expressed in the categories of description, but mapping be-
tween individuals and categories is not the aim of the analysis. It is unlikely

29

that the collected data can reveal all the different ways in which each individ-

ual student understands the concepts of interest. However, when statements

from different students are brought together, that collective “pool of mean-

ing” reveals a rich variety in understandings. When quotes are taken out of

their contexts and compared to each other, the individuals are put in the back-

ground, and the collective understandings of the group are in the foreground.
Learning is understood as developing richer ways to see a phenomenon, as

represented in the more advanced categories of the phenomenographic out-

come space. Variation theory, which originates from phenomenography, em-

phasises variation and discernment as key words in this process. A necessary

but not sufficient condition for discerning a specific feature of a phenomenon

is that the student gets the opportunity to experience variation in a dimension
corresponding to that feature. In Paper IV we explain dimension of variation,
or for short dimension, in the following way:

For example, if ’size’ and ’colour’ are the features of a phenomenon ’picture

component’, then there is a ’size’ dimension and a ’colour’ dimension of the

corresponding feature space. A particular instance of ’picture component’ can

be represented by its values in those dimensions, i.e., by its particular size and

colour.

Each feature of the phenomenon studied that appears in an outcome space
corresponds in this way to a dimension. Marton, Runesson and Tsui (2004,
p. 21) discuss the need to create a space, which means “opening up a dimen-
sion of variation (as compared to the taken-for-granted nature of the absence
of variation).” The authors describe such a space:

A space of learning comprises any number of dimensions of variation and

denotes the aspects of a situation, or the phenomena embedded in that situation,

that can be discerned due to the variation present in the situation. [...] [The

space] delimits what can be possible learned (in sense of discerning) in that

particular situation. (Marton et al., 2004, p. 21) (Italics in original)

3.3 Content analysis

Content analysis is described by Mostyn (1985) as “a very ordinary, everyday
activity we all engage in [...] when we draw conclusions from unstructured
communications” (p. 115) Content analysis originally dealt with quantitative
analysis of data (what-, where-, and how many- questions) but has developed
to include qualitative analysis (why-questions).
Qualitative content analysis as a research method deals with analysing arti-

facts, often texts, with focus on the content and meaning embedded in the text.
The goal of qualitative content analysis is to understand the meaning of un-
structured communication, and through a process of condensing raw data into
categories come to a better understanding of the phenomenon studied. This

30

process involves inferences and interpretations that require knowledge of the
context and subject studied. Hsieh and Shannon (2005) define qualitative con-
tent analysis in the following way:

a research method for the subjective interpretation of the content of text data

through the systematic classification process of coding and identifying themes

or patterns (Hsieh and Shannon, 2005, p. 1278)

Mostyn describes qualitative content analysis as “the ’diagnostic tool’ of qual-
itative researchers” (p. 117). As such, content analysis is used in a variety
of research methods including discourse analysis, ethnographic research, and
computer text analysis (Krippendorff, 2004, p. 19).
The object of interest in qualitative content analysis is often a text, for ex-

ample transcribed interviews, but data can equally come from observing be-
havior, artifacts, etc. (Mostyn, 1985, p. 124). To gain insights into the meaning
embedded in the data, the analysis requires interpretation that goes beyond in-
ference. Mostyn writes:

we become concerned with content as a reflection of deeper phenomena. Words

are treated as symbols and the data has attributes of its own; we are analyzing

both manifest and latent data. (p. 116)

Graneheim and Lundman (2004) describe manifest as “what the text says [...]
the visible, obvious components”, while latent data is described as “what the
text talks about [...] an interpretation of the underlying aspects of the text”.
(p. 106)
The researcher scrutinizes the data, looking for regularities “in terms of sin-

gle words, themes, or concepts.” (Mostyn, 1985, p. 118) This in-depth analysis

leads to identification of categories, which is the heart of content analysis.
Mayring (2000) describes content analysis as “a bundle of techniques for

systematic text analysis”. He specifically describes two approaches that offer
procedures for data analysis. The first is inductive category development. It is
described as a “reductive” process:

the material is worked through and categories are tentative and step by step de-

duced. Within a feedback loop those categories are revised, eventually reduced

to main categories [...]

In this way, data can be categorised with an explorative approach. The cate-
gories are developed as the researcher delves deeper into the data and lets the
data speak. The categories developed during the process guide the researcher
in his or her interpretations and inferences in the analysis.

The second approach is deductive category application. Mayring writes:
“Deductive category application works with prior formulated, theoretical de-
rived aspects of analysis, bringing them in connection with the text.”

Meaning embedded in the data is, with this approach, unveiled when parts
of the data are fitted into pre-existing categories or theories, and the result

31

subsequently is interpreted. The researcher uses his or her knowledge of the

data in terms of the participants and context of the data gathering in the process

of interpretations and inferences.

3.4 Trustworthiness in Qualitative Research

Evaluation of research and its trustworthiness depends on the research

paradigm used. This is due to the fact that different research paradigms have

different knowledge claims. Lincoln and Guba (1985) write that “criteria

for what counts as significant knowledge vary from paradigm to paradigm.”

(Lincoln and Guba, 1985, p. 301)
Lincoln and Guba contrast criteria related to what they call the

conventional paradigm, where most research in the area of computer science
belongs, with criteria appropriate for the naturalistic paradigm, where the
present, qualitative research belongs. The trustworthiness criteria of the
conventional paradigm are often discussed in terms of “internal validity”,
“external validity”, “reliability”, and “objectivity”. Internal validity “refers to
the extent to which the findings accurately describe reality” (Hoepfl, 1997,
p. 58), and external validity “refers to the ability to generalize findings across
different settings.” (Hoepfl, 1997, p. 59). Hoepfl writes with reference to Kirk
and Miller (1986, p. 41-42), that three different types of reliability have been
identified in conventional research:

1) the degree to which a measurement, given repeatedly, remains the same; 2)

the stability of a measurement over time; and 3) the similarity of measurements

within a given time period (Hoepfl, 1997, p. 59–60)

Lincoln and Guba write that the usual criterion for objectivity is “intersub-
jective agreement; if multiple observers can agree on a phenomenon their
collective judgment can be said to be objective.” (Lincoln and Guba, 1985,
p. 292) Another approach to establish objectivity is “through methodology; to
use methods that by their character render the study beyond contamination by
human foibles.” (p. 292–293)

The comparable criteria in the naturalistic paradigm are “credibility”,
“transferability”, “dependability”, and “confirmability” (Lincoln and Guba,
1985, p. 300).

There have been several phases in the development of qualitative research,
and the discussions in the literature on how to certify trustworthiness have
consequently developed over the years.
In the present discussion on evaluation of qualitative research I will use

the trustworthiness criteria suggested by Lincoln and Guba (1985). There are

other approaches suggested to ensure trustworthiness in qualitative research,

for example applying ideas from the conventional paradigm criteria. A recent

example of a discussion on trustworthiness as an alternative construct to va-

lidity, reliability, and generalisability in phenomenographic research is Collier

et al. (2008).

32

In the following I will discuss each of the four criteria; credibility, trans-

ferability, dependability, and confirmability as they, according to Lincoln and

Guba, can be used to evaluate trustworthiness of research within the natural-

istic paradigm.
The first criterion, credibility, deals with carrying out an inquiry in a way

that enhances the chances for the findings to be found credible or believable.

This can involve credibility from the participants’ perspective. Credibility has

less to do with the size of the sample than the quality of the data, the anal-

ysis and the written report. Lincoln and Guba suggest techniques to address

credibility. Examples of these techniques are prolonged engagement, persis-

tent observations, peer debriefing and triangulation, where the latter can refer

to triangulation of data, methods, multiple analysts, and theory.
The second criterion, transferability, refers to the degree to which the re-

sults of the research can be transferred to other settings, contexts, or popula-
tions. Lincoln and Guba discuss transferability in terms of where “the burden
of the proof lies” (Lincoln and Guba, 1985, p. 298). Instead of making gener-
alizations, the researcher should provide what Lincoln and Guba call a “thick”
description of the research. This description can include description of prepa-
ration of the study and the underlying research questions and assumptions,
data gathering including choice of data collection methods and participants,
quotations from interviews, analysis methods and decisions taken during the
process of analysis, and the inferences the researcher has come to, and more.
The thick description is presented to the reader so that he or she can determine
whether the findings are applicable to his or her situation. The investigator
does not know the context of the receiver. Only the receiver of the research
knows and can judge the transferability of the research. Lincoln and Guba
write:

The best advice to give to anyone seeking to make a transfer is to accumulate

empirical evidence about contextual similarity; the responsibility of the origi-

nal investigator ends in providing sufficient descriptive data to make such simi-

larity judgments possible. (Lincoln and Guba, 1985, p. 298) (Italics in original)

The authors emphasise that the researcher should provide “the thick descrip-
tion necessary to enable someone interested in making a transfer to reach a
conclusion about whether transfer can be contemplated as a possibility.” (Lin-
coln and Guba, 1985, p. 316)

The third criterion discussed is dependability, which is the naturalistic cor-
respondence to reliability. Dependability emphasises that the researcher needs
to account for the changing context in which the research occurs. Lincoln and
Guba write: “The naturalist sees reliability as part of a larger set of factors that
are associated with observed changes.” Aiming to demonstrate dependability
“the naturalist seeks means for taking into account both factors of instabil-
ity and factors of phenomenal or design induced change.” (p. 299) Lincoln

and Guba write that it is argued that if credibility is fulfilled, dependability is

also fulfilled: “Since there can be no validity without reliability (and thus no

credibility without dependability), a demonstration of the former is sufficient

33

to establish the latter.” (p. 317) Techniques related to credibility thus ensures

that dependability is fulfilled.
The fourth criterion is confirmability, which corresponds to objectivity in

the conventional paradigm. To what degree can the results of the research be
confirmed or corroborated by others? Lincoln and Guba write that there are
three different perspectives on objectivity (p. 299). The perspective that is of-
ten preferred by naturalists is “Objectivity exists when an appropriate method-
ology is employed that maintains an adequate distance between observer and
observed.” (p. 300) The authors conclude that this definition

removes the emphasis from the investigator (it is no longer his or her objectiv-

ity that is at stake) and places it where, as it seems to the naturalist, it ought

more logically to be: on the data themselves. [...] Are they or are they not con-
firmable? (p. 300) (Italics in original)

Techniques to ensure confirmability suggested by Lincoln and Guba are for

example triangulation and the keeping of a reflexive journal. (p. 319)

34

4. The present research

This section discusses how the research approaches presented in Section 3.2
and Section 3.3 are applied in the present thesis. Subsequently the section
discusses how trustworthiness, as discussed in Section 3.4, has been ensured
in the different investigations involved in the thesis.

4.1 Research approaches applied in the present
research

The thesis has three themes as is discussed in Section 1.1. The first theme, stu-
dent learning of concepts, is analysed by means of deductive content analysis
(Paper III), by means of phenomenography (Paper I, Paper IV, and Paper V),
and by means of variation theory (Paper I and Paper IV). Paper II is mainly
a literature review of work related to “threshold concept” (Meyer and Land,
2005) and will not be discussed below.
The second theme, student learning of practise, is analysed by means of

inductive content analysis (Paper VI and Paper VII).
The third theme, the relationship between students’ conceptual and practi-

cal learning, is analysed by means of deductive content analysis (Paper VIII),

and by means of phenomenography and variation theory (Paper IX).

4.1.1 Phenomenography and variation theory in the present
research

Paper I includes a traditional phenomenographic analysis of novice students’
understanding of two central concepts in object-oriented programming, object
and class. The analysis is described, and quotes from the students illustrate
the different understandings identified. Two sets of categories of description
are presented, and features of the different understandings are identified. The
paper further includes a discussion of how variation theory can be applied to
the phenomenographic results, and implications for teaching are inferred from
the latter discussion.
Paper IV includes a traditional phenomenographic analysis of students’ un-

derstanding of the phenomenon “programming” including quotes that illus-

trates the different categories of description. The paper further shows how the

phenomenographic results can be used to design learning activities that sup-

port students’ learning, by use of variation theory and patterns of variation. To

this end we introduce the theory of phenomenography and variation theory,

35

and give a thorough review of the steps taken to identify the dimensions of

variation that are related to the phenomenographic outcome space discussed.

Finally we suggest appropriate patterns of variation that can be used to help

students discern some of the identified dimensions of variation, and how these

patterns can be applied in teaching novice programming.

Paper V includes a traditional phenomenographic analysis of students’ un-
derstanding of the phenomenon “learning to program” with a description of
the analysis performed and with quotes from the students to illustrate the cat-
egories of description identified in the analysis. We relate the results from the
analysis to the “process-object duality” theory from mathematics education.
We show that the phenomenographic analysis reveals problems students expe-
rience in learning object-oriented programming, not indicated in the “process-
object duality” theory.
Paper IX builds mostly on the results presented in Paper I, Paper IV, Pa-

per V, and Paper VIII. Paper IX uses phenomenography and variation theory

to build an analytical model of students’ learning of practise and concepts.

Dimensions of variation are in the center of the discussion, tying together stu-

dents’ conceptual and practical learning. The conceptual understandings used

to illuminate the analysis are novice students’ different understandings of the

concepts object and class and related dimensions of variation, as presented in

Paper I. The practise is analysed by identifying common novice programming

activities at different level of proficiency. Subsequently it is argued that these

activities also are related to the same dimensions of variation. In this way prac-

tise, expressed as activities at different level of proficiency, and qualitatively

different conceptual understandings are related through dimensions of varia-

tion, and a model of the complex learning process of novice programming is

developed.

4.1.2 Content analysis in the present research

Paper III is based on deductive content analysis of semi-structured interviews

with students from the second investigation who discuss important and diffi-

cult concepts they have met during their education. The interview questions

were constructed to capture Meyer and Land’s definition of threshold con-

cepts (Meyer and Land, 2005). For each concept discussed by the students we

analysed whether the criteria that characterize threshold concepts were met.

In this way we identified two threshold concepts in computer science, pointers

and object-oriented programming.

In Paper VI inductive content analysis is used on parts of the interviews
discussed above. The goal with the research was to identify strategies that
students use successfully in their computing studies, and to categorize the
strategies in ways that made them useful for future students and educators
(Paper VI, p. 156). Some interview questions concerned what the students did
when they were stuck in their learning process. We aimed at identifying all
strategies to get unstuck mentioned by the students. In an iterative process
we grouped the strategies in categories. We first created many small cate-

36

gories where only a few strategies that appeared more or less the same were

grouped together. The smaller categories were subsequently grouped together

into broader, more abstract categories that covered large numbers of related

strategies. The categories, the many small as well as the broader and more

abstract, are presented in the paper.

Deductive content analysis is used in paper VIII on the interview data from
the second investigation. Meyer and Land (2005) use the metaphor the limi-
nal space to capture important features of students’ experiences of being in
the midst of learning threshold concepts (Meyer and Land, 2005). We anal-
ysed the parts of the interviews where students discussed their learning of the
threshold concepts identified in Paper III. The analysis aimed at investigating
the liminal space criteria, as discussed by Meyer and Land, and discussing
how these criteria appear in computer science students’ learning process.
In Paper VII, inductive content analysis was used to categorise artifacts

produced by senior students. The research examined how students’ software

designs can be compared, and in addition investigated senior students’ ability

to design. The students were asked to design a software system. The designs,

made on papers, were the artifacts analysed by the research group. Starting

with a sample of 20 of the total 149 designs, we made an initial categorisa-

tion of the designs, based on their semantics and guided by our experiences as

computer scientists, researchers, and teachers. We subsequently categorised

the remaining designs, each researcher categorising 70 designs. Agreement

was reached in close discussions within the research group. The identified

categories were subsequently discussed in relation to academic and demo-

graphic background data gathered from the participants, which supported the

interpretation of the results of the categorisation. In this part of the analysis

we used quantitative methods for parts of the interpretation of the categories

and inferences drawn.

4.2 Trustworthiness of the present research

In this section I will discuss how trustworthiness, as presented in Section 3.4,

have been ensured in the present thesis. The three investigations will be dis-

cussed separately. For each of the three criteria suggested by Lincoln and

Guba (1985), credibility, transferability, and confirmability, I will discuss how

I have used techniques to ensure trustworthiness in the investigations. Since

the dependability criterion is fulfilled with the credibility criterion, depend-

ability will not be discussed (Lincoln and Guba, 1985, p 317). The techniques

I discuss relate to the techniques suggested by Lincoln and Guba, but with

minor modifications in my applications of them.

4.2.1 Trustworthiness in the first investigation

Data in the first investigation were collected from a series of interviews with

14 first year students who had just finished their first programming course.

37

The interviews aimed to elicit students’ different understandings of some cen-

tral concept. Research approaches used on the data are phenomenography in

Paper I, Paper IV, Paper V, and Paper IX, and variation theory in Paper I, Pa-

per IV and Paper IX. Below I describe how I have established trustworthiness

in the phenomenographic analyses which includes variation theory, by fulfill-

ing the three criteria.
Data collection and the analysis of the data from the first investigation was

done in close discussion with a colleague. Both of us have long experience of

teaching programming, and can thus be said to have prolonged engagement in

the field. The phenomenographic analysis was partly performed by me, and

later scrutinised by my colleague, and partly done by both of us separately,

and then joined in discussions where we came to agreement on the results.

The analyses have further been discussed in seminars with researchers in the

CER field, and conference and journal papers have been peer reviewed. Peer

debriefing has thus been used and the credibility criterion ensured.
The second criterion, transferability, has been ensured in the presentations

through a thick description in the following ways. Great effort was made to
ensure that the group of students investigated, the choice of participants for the
interviews, the course they studied, the questions asked, the research approach
taken, and the analyses performed were described in as much detail as possible
considering page limitations and other practical limitations. In this way a thick
description was provided for the reader.
Keeping of a reflexive journal is one technique suggested by Lincoln and

Guba to ensure the confirmability criterion (p. 319). In the first investigation
reflexivity, as discussed by Finlay (2002), has been used to some extent to
ensure confirmability. The researcher always influences both collection and
interpretation of data. Reflexivity means explicitly, with self-awareness,
analysing one’s own role in the research process (Finlay, 2002). Finlay
writes: “Reflexive analysis in research encompasses continual evaluation
of subjective responses, intersubjective dynamics, and the research process
itself.” (p. 532) This has been carried out in close dialog with my co-authors,
by presenting the research at conferences, and specifically in educational
situations where people from outside the phenomenographic community have
been introduced to this research approach partly through my own research.
This has encouraged me to analyse my own role in the research process. In
this way the third criterion, confirmability, has been ensured.

4.2.2 Trustworthiness in the second investigation

The second investigation was multinational. This implies that the pool of data
is possibly richer than if the data came from one institution only. The back-
ground of the participants is more diverse, and the education differs between
countries and institutions. To ensure stringent interview conditions so that the
data can be treated as one pool of information, certain steps were taken con-
cerning choice of participants, and preparation of the interviews. To ensure
that the participants were at comparable level in their educations, and stud-

38

ied at similar study programs, the issues of the background of participants

and their study programs were thoroughly discussed within the group of re-

searchers. To ensure trustworthiness in the performance of the study, the in-

terview questions were worked out in close discussion among the researchers.

One of the researchers subsequently performed a pilot interview with the rest

of the researchers present, listening, but not interfering. The pilot interview

was followed by a discussion among the researchers to resolve possible ques-

tions. The pilot interview was not added to the pool of information used in the

subsequent analyses. The purpose of the pilot interview was solely to ensure

trustworthiness in the performance of the study.

Research approaches used on the data are deductive content analysis in Pa-
per III and Paper VIII, and inductive content analysis in Paper VI. Below I
describe how my use of content analysis ensured trustworthiness in ways that
fulfill the criteria discussed.

All researchers involved in the second investigation have long experience
of teaching computer science. In addition, the work has been triangulated con-
cerning data gathering methods in the following way: we have performed in-
formal interviews with educators, an instructor survey, interviews with stu-
dents, and a literature survey. Prolonged engagement in the field and trian-
gulation ensures the fulfillment of the first criterion, credibility. Triangulation
furthermore ensures the third criterion, confirmability.

In our reports we provided thick descriptions of interviewees, interview
and survey questions, excerpts from the data, and how the analyses were per-
formed. This ensures transferability.

4.2.3 Trustworthiness in the third investigation

The third investigation was performed by a group of 21 researchers from four
countries. The investigation was led and designed by three of the researchers.
Data was gathered by all researchers. A multinational study implies rich data
in the sense described above. To ensure stringent interview conditions so that
the data can be treated as one pool of information, certain steps were taken
concerning choice of participants, and preparation of the “design brief”, that
is the task given to the participants which describe the problem and provide
instructions (see Paper VII, p. 198). All researchers were given the same, de-
tailed information on what was regarded as appropriate level of education of
expected participants. The performance of the study was described in detail,
and before the study was performed all researchers tried the “design brief”
themselves, followed by a discussion among the researchers. In this way the
researchers were given an opportunity to discover ambiguities in the setup of
the study, and resolve differing understandings among themselves. The “de-
sign brief” was thereafter reviewed by the leaders of the investigation in line
with the responses from the researchers before given to the participants.
The research approach used in Paper VII is deductive content analysis,

which, as described below, has been used in a way that ensures trustworthi-
ness.

39

As in the second investigation, prolonged engagement in the field is fulfilled

since all researchers involved in the data gathering as well as those involved

in the analysis of the data have long experience of teaching computer science.

The subset of data used in Paper VII, designs from senior students, is trian-

gulated consider that the participants came from 21 institutions in four coun-

tries. In this way the first criterion, credibility, as well as the third criterion,

confirmability, have been fulfilled.

The report of the research provides the reader with a thick description which
ensures transferability. The study is clearly described, the “design brief” given
to the students is included in the paper, and the paper gives a rich description
of the categorization procedure performed.

40

5. Results

This section presents results from the nine papers included in the thesis, or-
ganised around its three themes. The first theme, student learning of concepts,
form a major part of the thesis. There is a large body of previous research

on the second theme, students learning of practise, and the present research
on this theme thus focuses on one specific skill, software design, which is
less well researched than other central skills like reading and writing code.
In the third theme, the relationship between conceptual and practical learn-
ing, I synthesise the results from the first two themes using the conceptual
framework Ways of Thinking and Practising.

Results concerning possible implications for teaching are brought together
in Section 6.

5.1 Learning of concepts

The first theme deals with problems concerning student learning of concepts.
In particular three specific aspects of student learning of concepts are re-
searched, reflecting the research questions in Section 1.1.
The first research question presented in Section 1.1 concerns novice stu-

dents’ understanding of programming concepts. The phenomenographic anal-

ysis presented in Paper I shows that the novice students’ understanding of

the concepts object and class vary from a narrow textual representation of the

concepts, to a broader understanding of the concepts including the active be-

haviour of the objects when the program is executed, to the most desirable

understanding that includes the two previous, but also the modeling aspects

of the concepts. Very few students seem to have reached this understanding

although it is fundamental in object-oriented programming. In particular our

results show that:

• There are particular ways to understand the concepts object and class that are

critical for students to discern. Few students seem to have reached the full under-

standing of the concepts described in the phenomenographic outcome spaces. The

results from Paper I can be used by educators in the way that they can accentu-

ate the identified features of the concepts in their teaching, and thus facilitate for

students’ learning and further studies.

The investigation presented in Paper I of students’ understandings of the con-
cepts object and class is in line with results presented in Paper II and Pa-
per III, where conceptual learning is discussed at a higher level of granularity.
While the first paper focuses on two specific concepts in the object-oriented

41

paradigm, namely object and class, Paper II and Paper III aim at discussing

and identifying important concepts, so called “threshold concepts” (Meyer

and Land, 2005) in computer science in general. Threshold concepts are de-

scribed by Meyer and Land as a subset of core concepts in a discipline that

might be used to organize and focus education.

Paper II discusses threshold concepts in relation to a number of other com-
puter science education research areas. Paper II specifically discusses how the
idea of threshold concepts relates to, and differs from, constructivism, men-
tal models, student misconceptions, breadth-first approaches to introductory
computer science, and fundamental ideas. We found support in the literature
for the conclusion that abstraction and object-orientation fulfill the criteria of
being threshold concepts.

Paper III continues the discussion started in Paper II. The paper presents an
empirical investigation that aimed at identifying possible threshold concepts
in computer science. We found empirical evidence of two threshold concepts:
object-oriented programming, which was suggested from the literature survey
in Paper II, and pointers.

We have not yet pinpointed which aspect(s) of object-oriented program-
ming is(are) threshold concept(s). Object and class, which are the concepts
investigated in Paper I, seem however to be reasonable candidates to study
since they are not only central, but often introduced early in programming
education. In particular our results show that:

• There exist threshold concepts in computer programming. The identification of

such concepts gives valuable information for educators. Object and class, which

are threshold concepts candidates, can act as nodes around which introductory

programming education can be organised.

Paper IV and Paper V investigate student understanding of what programming

and what learning to program means. This is the second research question.
The action dimension described in the outcome spaces in Paper I reappear in

the outcome space in Paper IV. There seems to be similarities between how the

phenomena “object” and “class” are understood relative to the phenomenon

“computer programming”. Or to phrase it with the variation theory terminol-

ogy: there are dimensions in the programming learning space that seem to

be common to several phenomena. If a specific feature of one phenomenon

is discerned, for example a feature related to the action dimension, this can

facilitate for the learning of other phenomena which are related to the same

dimension. This is further developed in Paper IX, where variation theory is

used to research students’ learning process.

Another interesting connection between Paper I, Paper IV, and Paper V is
the similarities in their respective outcome spaces. The understandings de-
scribed go from a narrow, programs-as-text and programming-as-coding foci,
to broader understandings that include the reality outside the computer and
the course. The importance of students reaching the more advanced ways of
understanding these phenomena are pointed to for example in Computing Cur-
ricula 2001 Section 7.2 (Roberts and Engel, 2001).

42

Students’ understandings of the subject studied, here computer program-

ming (Paper IV), and their understanding of what it means to learn that subject
(Paper V), have been shown to be important for how students approach their
studies, and thus have impact on the learning outcome (Booth, 1992, p. 261–
262). Paper IV consequently discusses how variation theory, and specifically
the patterns of variation discussed by Marton and Tsui (2004), can be applied
to a phenomenographic outcome space. The discussion gives examples on
how a phenomenographic analysis can be applied in teaching to help students
advance their understanding of what computer programming means, which is
the third research question.

In particular our results show that:

• There is a wide variety in students’ understanding of what programming and learn-

ing to program means. Related work has emphasised the importance of students

coming to a good understanding of what programming, and learning to program

means. The phenomenographic outcome spaces and variation theory can be used

by educators to facilitate for students’ learning of these matters.

Paper V points to similarities with Hazzan’s (2003) work on the process-object
duality learning theory. Paper V however also points to differences in terms of
problems novice students encounter, which are not observed in the process-
object duality theory. The practise, discussed as processes by Hazzan, might
be the major obstacle for some programming students in their learning. If the
practise is experienced as too difficult to master, it can not serve as the a means
for students to reach the learning goals. In this way results from Paper V point
to the next theme of the thesis, students’ learning of the practise.

5.2 Learning of practise

The second theme concerns the role of practise in computer science educa-
tion. Practise is important for students’ learning to program, both as a means
to reach the learning goals, and as a learning goal in itself. Paper VI focuses
on the former aspect in terms of students’ learning strategies, which is the first
research question in the second theme of the thesis, see Section 1.1. Paper VII
discusses the latter aspect of practise, namely one specific learning goal, soft-
ware design. This reflects the second research question in the second theme
of the thesis. Software design is one of several important skills programming
students are supposed to learn, as discussed in Paper IX.

Students’ approaches to their learning have shown to be important for the
learning outcome (Marton et al., 1984). According to for example Trigwell et
al. (1994), approaches to learning can be discussed in terms of intention and
strategy, where intention is what the student attempts to do, while strategy
is what the student does to fulfill the intention. Paper VI identifies students’
learning strategies. We discuss strategies in terms of what the students said
they did when they were stuck in their learning.

The list of identified strategies is long, altogether 35 strategies. We grouped
the strategies into four super-categories. The super-categories found are In-

43

puts/interactions where the students talk about getting help from elsewhere,

Concrete/do stuff which is in line with what I call learning through practising,

Abstract/understand stuff which captures when the students discuss “learning

and getting unstuck at a higher level” (p. 158), as opposed to the former cate-

gory, and the last category, “Use the Force”, which involves strategies where

students use “their willpower or character” (p. 158).
Programming strategies have been claimed to be important parts of pro-

gramming skills (Davies, 1993). Robins et al. (2003) found in their literature

review that lack of programming strategies caused problems for novice stu-

dents. Our analysis is focused on learning strategies. Davies’ and Robins et

al.’s discussions are still relevant for our research since the strategies discussed

in our study often concerns problems with programming concepts.

Although all students in the study but one described that they sometimes
were stuck in their learning, they all had several strategies for getting unstuck,
and the strategies were surprisingly diverse.
In particular our results from the research on practise as a means to reach

learning goals, show that:

• It is important that students learn a variety of strategies for mastering the prob-

lems they meet in their learning. We specifically noticed the “importance of social

interaction, and the active responsibility taken by the students”. (Paper VI, p. 160)

Paper VII discusses one particular programming practise, software design.

The focus of the paper is the problem of assessing designs: how can students’

software designs be analysed and compared? The focus of the investigation

and the data collection, and my focus in this theme, is however on how stu-

dents learn to design. This is also present in the paper, but given as a back-

ground for the discussion on how to analyse rich artifacts like written and

drawn designs.
The paper shows how the technique of semantic categorization can be used

to organize such rich artifacts. 149 designs produced by near-graduating stu-

dents were categorized into six groups of similar designs, depending on their

semantics, and “ordered relative to the degree to which the stated requirements

were met” (p. 199).

The overall question of the study was: Can students near graduation de-
sign software systems? Only 9% of the designs were assessed as reasonable
designs. They fell into the two highest categories, labeled Partial design and
Complete, of which only 2% were Complete. 29% of the designs fell into the
category First step and showed some progress toward a design. The remaining
62% had no or very little information added beyond the specification given.
We saw a significant increase in number of syntactic features in the higher

categories compared to the lower. Also the length of the designs increased in

the higher categories, except for the highest, which slightly decreased, and the

more advanced designs more often than the others included “an overview, de-

tails on part responsibilities, and communication between the parts” (p. 199).

Other observations of interest are that there was a positive correlation between

number of computer science courses taken and the category of the design: the

more courses taken the higher category; academic performance measured by

44

grades on computer science courses seemed though to have little or no rela-

tionship to the design produced.
We found that semantic categorization is possible, but time-consuming and

some designs required extensive discussions between the researchers to be

categorized.

In particular our results from the research on practise as a learning goal
show that:

• Computer science students near graduation have great difficulties in mastering de-

sign tasks, even though design is one of the core skills the students are supposed

to learn during their education.

The present research points to the problematic role of practise in programming

students’ learning. Practise is not merely the means to reach the conceptual

learning goals. The role of practise in the learning process needs to be further

researched.

5.3 Ways of Thinking and Practising

The research presented in Paper VIII, From Limen to Lumen: Computing stu-
dents in liminal spaces, investigates the learning process related to threshold
concepts in computer science, which is the first research question in the third
theme in the thesis. Paper III identifies two such concepts, pointers and object-
oriented programming. In Paper VIII we take the analyses from Paper III one
step further. We use the theory of liminal space as it is discussed by Meyer
and Land (2005). The liminal space is described as “the transitional period
between beginning to learn a concept and fully mastering it” (Paper VIII,
p. 124). We applied the theory to our data as a framework to highlight cer-
tain features of the learning experience which, looking at the data as a whole,
are difficult to discern. We looked for the standard features of the liminal space
as described by Meyer and Land, but in addition we found some that may be
specific to computer science. The result of the analysis reveals a broad and
rich picture of the students’ learning experiences.

The picture thus unfolded shows a transformative process which often takes
long time, involves strong emotions and elements of mimicry, and contains
specific parts, or sorts of understandings, which can become stuck places for
students. The parts identified include an abstract, or theoretical, understand-
ing of the concept; a concrete understanding – the ability to implement the
concept (without necessarily having the abstract understanding); the ability
to go back and forth between the abstract and the concrete understandings;
an understanding of the rationale for learning and using the concept; and an
understanding of how to apply the concept to new problems. Students need
to attain all these understandings. This can explain why they obviously get
stuck at different places, and “why the path through this space is not a sim-
ple linear progression.” (p. 130) Students rather seem to “need to go back and
forth between the theoretical and the practical” (p. 130), and different students
take different “routes” depending on individual stuck places. We further point

45

to a result characteristic for computer science: “we commonly observed the

particular partial understanding of not being able to translate from an abstract

understanding to concrete implementation or design” (p. 130)

Beside this we discuss students’ expressions of how, and if, they know that
they know a concept. The students express the experience of mastering a con-
cepts sometimes as emotional, sometimes as being able to visualize their un-
derstanding, and sometimes as being able to master the handicraft of program-
ming. We further found evidence in the data that there were students who said
they knew a concept that they apparently did not fully know, and students who
doubted their own knowledge even though it seemed as if they knew.

The learning is experienced as a complex whole by the students, and thus
difficult to fully discern. We found that the liminal space, as an analytic tool,
provided a way to theoretically separate several important features of the pro-
cess, and thus untangle some of the complexity of the learning.

In particular our results give empirical evidence that:

• The practise as well as the concepts are problematic for the students to learn. Both

are important in the learning process and can become stuck places for the students.

If the students face a problem with one of them, it is expected to have negative

influence on the other.

In this way Paper VIII gives an empirical background for the analysis pre-
sented in Paper IX.

Paper IX, Ways of Thinking and Practising in Introductory Programming,
is the synthesis of my thesis work. The paper builds on results from the first
and the second investigations. Students’ conceptual and practical learning are
investigated, specifically how practise and concepts relate in student learning,
which is the second research question in the third theme of the thesis. I argue
from the empirical data that concepts and practise are equally important parts
of the learning goals, and equally difficult for students to learn. Furthermore,
there is a mutual dependency and complex relationship between the two. This
discussion points to the need to research this relation. In particular:

• The research identifies dimensions of variation related to qualitatively different

conceptual understandings. The research further identifies dimensions of variation

related to practise in terms of programming activities at different levels of profi-

ciency.

• Based on results from the analyses of the data and elements from phenomenogra-

phy and variation theory, an analytical model is proposed. The model shows that

activities as well as conceptual understandings relate to dimensions of variation.

Previous research has discussed dimensions of variation related to concepts

as well as to practise (Marton and Tsui, 2004; Fazey and Marton, 2002). The

present research takes this one step further. In particular:

• The most significant finding is that practise, in terms of programming activities,

and conceptual understandings have dimensions of variation in common. This was
possible to show since the research proposes a way to identify dimensions of vari-

ation related to practises.

46

• The dimensions of variation are thus like interfaces between conceptual under-

standings and activities. If a dimension of variation is discerned, this can open a

possibility for students to discern concepts and to learn activities in new ways.

This finding can to some extent explain the complex learning of computer pro-
gramming, where some students seem to first learn the concepts and then the
practise, while other students seem to learn in the opposite order. The model
can further to some extent explain why programming activities not always fa-
cilitate for students’ learning. If the activity is at a level of proficiency that
presupposes dimensions of variation not yet discerned by the student, the stu-
dent might have problems to learn through the activity. This can be phrased
using terminology from variation theory: if the patterns of variation involved
in the learning situation are too complex, students might not discern the di-
mensions of variation involved in the situation.
The result shows that the dimensions of variation can relate to several con-

cepts and activities. This carries implications for learning, in particular:

• If, for example, one way to understand a concept is discerned through a dimension

of variation, this learning experience can facilitate for discernment of other related

ways to understand concepts, and for the learning of related activities.

The results also indicate that activities as well as concepts can be related to

more than one dimension of variation. It is fundamental in variation theory

that concepts can relate to more than one dimension of variation (Marton and

Tsui, 2004). The result that activities can relate to more than one dimension

of variation indicates in particular that:

• Higher level of practical proficiency relate to more dimensions of variation in a

similar way as more advanced ways to understanding concepts relate to more di-

mensions of variation.

47

6. Discussion - from a teaching
perspective

As educators we know that many students, specially the novices, have great
difficulty learning to program. This section will discuss how results from anal-
yses inspired by phenomenography and variation theory can be implemented
in programming teaching to facilitate for students’ learning.

I will first discuss and develop the phenomenographic analysis presented in
Paper I, see Section 6.1. This discussion is inspired by the research presented
in Paper IV. In Section 6.2 I further discuss implications for teaching ema-
nating from the analysis on how students’ conceptual and practical learning
relate, which is presented in Paper IX.

6.1 Phenomenography in practise - an empirical
example

To exemplify how a phenomenographic outcome space can be used by educa-

tors, I will show an outcome space of novice students’ understandings of the

concepts object and class, and discuss a process that starts with a phenomeno-

graphic outcome space, identifies critical features of the phenomena (in this

example two object-oriented concepts), discusses corresponding dimensions

of variation, and arrives at implications for teaching in terms of concrete ad-

vice for educators. For a comprehensive description of the data and the analy-

sis that gave the outcome space, see Paper I and Eckerdal (2006).

The results presented in Paper I indicate that many students have a problem
fully grasping the investigated concepts object and class. The phenomeno-
graphic outcome spaces give however valuable information to educators on
the different ways in which our students can understand these concepts. In ad-
dition the outcome spaces provide information necessary for retrieving what
is educationally critical for a good understanding of the concepts. Education-
ally critical means that there are certain ways to understand a concept that are
critical in the sense that if the student has not discerned these ways of seeing
the concept, something important is missing, something that might be critical
for the students future studies, or critical for the development of the student’s
capabilities in the subject studied, here computer programming. Educationally
critical features of a concept can be identified by use of other techniques, see
for example Runesson (2006), but in the present thesis phenomenography has
been used.

49

6.1.1 The phenomenographic outcome space

The concepts object and class are closely related, and can hardly be under-
stood without each other. When describing the different understandings found
in the data, it is not surprising to find similar patterns for the understandings
of the two concepts. The initial two outcome spaces presented in Paper I have
thus been collapsed in one outcome space in Table 6.1 below.

Class is understood as an entity of the program, contributing to the struc-
ture of the code and describing the object, where the object is understood
as a piece of program text.

As above, and in addition class is understood as a description of properties
and behaviour of objects, where object is understood as something that is
active during execution of the program.

As above, and in addition class is understood as a description of properties
and behaviour of objects, where object is understood as a model of some
real world phenomenon.

Table 6.1: Summary of categories describing the different ways to understand the
concepts object and class found in a group of novice students. The latter categories
include the understandings in the former.

The analysis indicated inclusive categories, as expressed in Table 6.1. This
means that an understanding expressed in one of the latter categories includes
the understandings expressed in the former, and thus expresses a richer un-
derstanding of the concepts. It is hardly possible to understand that an object
is a model of something in reality without understanding that this implies a
description of its properties and behaviors, expressed in the code.
What can we as educators do to facilitate for the students to develop their

conceptual understanding? The following three sections, inspired by the re-

search presented in Paper IV, discuss how the empirical results presented in

Table 6.1 can be further analysed and give implications for teaching.

6.1.2 Discernment and variation - identification of critical
features

As discussed in Section 3.2, different categories in an outcome space rep-

resent combinations of features of the phenomenon, which are present in the

focal awareness at a particular point in time (Marton and Booth, 1997, p. 126).

50

Learning is understood as developing richer ways to see the phenomenon, as

represented in the more advanced categories of the phenomenographic out-

come space. A necessary, but not always sufficient condition for discerning

a specific feature of a phenomenon, is that the student gets the opportunity

to experience variation in a dimension corresponding to that feature. (Marton

et al., 2004, p. 31).
The first category in Table 6.1 reflects the students’ understanding of classes

as entities of the program, contributing to the structure of the code, and objects

as a piece of program text. The focus of this understanding of a class is the ap-

pearance of the structure of the program text. The focus of the understanding

of objects, is on the program text. The feature, critical in this category is thus

the textual representation of the concepts.

In the second category, in addition to the above understanding, classes are
understood as descriptions of properties and behaviour of objects, where ob-
jects are understood as something active in the program. The focus in this
category is on what happens during execution of the program, in particular on
the objects created and how they contribute to different events at run-time1.

The objects are the active parts of the program, accomplishing the task given.

The new feature added to this category is the active behavior when the pro-

gram is executed.
The last category includes, in addition to what is described above, that

classes are understood as descriptions of properties and behaviour of objects,

where objects are understood as models of some real world phenomenon. The

focus is still on the class’ description of the active objects, but now with an

emphasis on the reality aspect of the class description. The new feature ex-

pressed in this category is the modeling aspects of the concepts.

The students’ foci, and consequently the critical features of the concepts,
are hence identified. Variation in a dimension corresponding to a feature is, as
discussed above, a prerequisite for learning to take place. Having expressed
the identified critical features of the concepts, as captured by the categories
of description in Table 6.1, it is now possible to discuss what dimensions of
variation correspond to each feature.

6.1.3 Dimensions of variation - open a space for learning

When there is a variation in a dimension that corresponds to a critical feature,
this opens a possibility for students to discern the feature and thus learn the
concept in a new way. In the first category in Table 6.1 the critical feature is
the textual representation of the concepts. To be able to discern this feature,
students need to discern that in different programs objects and classes appear
in different ways. In that sense, the textual representation of programs consti-
tutes a relevant dimension related to this feature. Different, specific program

1For readers not familiar with programming: “run-time” means the period of time when a pro-

gram is running.

51

texts constitute values along this dimension and if students discern such vari-

ation, it opens the possibility of understanding object and class in this way.
The new feature expressed in the second category that the students need

to discern is the active behavior of the program during execution. Different

actions resulting from different program executions constitute values in the

corresponding dimension of variation.
In the last category in Table 6.1, the new feature added is the modeling

aspect of the concepts. In this case, different real-life phenomena modeled as

classes and corresponding objects, constitute values along this dimension.
The line of reasoning above is summarized in Table 6.2. It includes the stu-

dents’ different understanding of the concepts object and class, as expressed

in Table 6.1, see the left column in Table 6.2. The right column includes the

corresponding dimensions of variation.

Students’ understandings of the

concepts object and class

Corresponding dimensions of vari-

ation

Class is understood as an entity

of the program, contributing to the

structure of the code and describing

the object.

The textual representation of the

concepts.

As above, and in addition, class

is understood as a description of

properties and behaviour of ob-

jects, where object is understood as

something that is active in the pro-

gram.

As above, and in addition, the ac-

tion of the program.

As above, and in addition, class

is understood as a description of

properties and behaviour of the ob-

ject, where object is understood as

a model of some real world phe-

nomenon.

As above, and in addition, the mod-

eling aspects of the concepts.

Table 6.2: Categories describing the different understandings of the concepts object
and class, and the corresponding dimensions of variation related to the critical fea-
tures of the identified understandings.

6.1.4 Implications for education - patterns of variation

Table 6.2 carries implications for teaching. Teaching is here defined in a wide

sense, not restricted to lecturing, but may include for example programming

assignments given to students, software tools introduced to students, lectures,

Internet and fellow students, anything the students meet and choose to use in

their learning. The whole organisation of the learning environment is in this

sense teaching.

52

The educator can create learning conditions that enable students to discern

new features of the concepts. In this context it means creating possibilities

for experiencing variation in dimensions related to features. We know from

the analysis of our data that any variation is not sufficient. By varying some
things and keeping others invariant, we can create the conditions necessary
for learning. As educators we know this can be done in several different ways,
and yet it is a difficult task.
The claim that not any variation is sufficient for creating good learning con-

ditions is important in computer programming and counter-intuitive to howwe
often teach. For example Kölling and Rosenberg (2001) write that novice stu-
dents should read code, not only simple code but large programs including
many classes which can help them understand what object-oriented program-
ming is. The downside of this approach is that large programs often mean that
a number of different features of several concepts are present and vary simul-
taneously. The present research, together with a number of classroom studies
reported by Marton and Tsui (2004), indicate that if students are not intro-
duced to the critical features in adequate ways, they may not discern these
features, and simultaneous variation of several features may not always pro-
vide good learning conditions. This is evident in the following quotes from
one of the students in the first investigation, when he or she discusses the con-
trast between learning mathematics and learning computer programming:

Here [in the programming course] you feel as if you only learn a lot of exam-

ples. You know, we’ve gotten so many examples of everything, in some way it

feels as if you don’t understand the base from the beginning

All the examples have obviously not helped the student sufficiently since he

or she says about the programming course:

I think it has been difficult with concepts and stuff, as to understand how to

use different, how one should use different things in a program. And I actually

think that most of it has been difficult

Marton et al. (2004, p. 16–17) discuss so called patterns of variation which
are identified from empirical studies. The patterns are ways of systematically
combining variation and invariance in the teaching. Four different patterns are
identified that can be used by educators as a toolbox. The patterns are contrast,
generalization, separation, and fusion respectively. In short the patterns means

(quoting Paper IV):

contrast to contrast a phenomenon P to other related phenomena, to make it possi-

ble to discern P as a phenomenon distinct from other phenomena.

generalization to exhibit varying specific appearances of P, in order to open the

possibility to discern the general meaning of P.

separation there is variation in precisely one dimension, to create the possibility to

discern that particular dimension, keeping the other dimensions invariant.

53

fusion to exhibit variation in several dimensions simultaneously, to open the possi-

bility to discern the relations between these dimensions.

Patterns of variation: some examples
The content of Table 6.2 can be implemented in the teaching and learning

environment by use of patterns of variation in a number of ways. There is

great freedom and possibility to adapt the results to the need and desire of

each educator, study group and learning resources. The following paragraphs

discuss possible ways to achieve this, by showing a few examples.
For the first category, the students need to become aware that different pro-

grams represent classes and objects differently, at a textual level. This cor-

responds to the second part of the first category. In the first part of the first

category, the focus is on the structure of the program text. There are several

aspects of a program structure. A single class has a structure in terms of its

attributes and methods. Students also encounter problems including several

classes where each class is an entity of the program. Both these aspects of

the structure of the code need to be exposed in teaching. A way to achieve

this is to use the generalization pattern, in a variety of simple UML class di-
agrams2 (Rumbaugh et al., 1999). By exhibiting various specific appearances

of classes, the general meaning of class and object as text can be discerned.

To transfer the structure from the diagram to the code where the methods are

separated from the attributes is possible even if there is only one single class

and will show varying textual examples. This is often the case in the exam-

ples considered in the beginning of a programming course. The feature that

the class is a help when structuring the program is made even more apparent

when more than one class is used to solve a problem. Each class is represented

in a UML diagram and forms its own entity of the program.
For the second category, the new feature focuses on actions during program

execution. Different actions of the program taking place when the program

is executed make a dimension of variation related to this feature. I will first

discuss the separation pattern. The general idea of this pattern is that there is
variation in precisely one dimension, so there is a possibility for the student to
discern that particular dimension. This seems to be an appropriate pattern for
our purpose. It is however difficult to achieve variation in one dimension only
since a change in action requires a change in the program text. In Paper IV we
suggest the notion of pseudo separation. In this context this means that the tex-
tual differences between two programs is kept small, but still causes a change
in action when the program is executed. This will give the student the possibil-
ity of discerning the action dimension separately. Pseudo separation is a form
of fusion pattern since in fact there is a variation in both the action dimension
and the textual dimension, even though the latter is not prominent. When the
student has discerned the action dimension, the proper fusion pattern can be
used to show the relation between the program’s textual representation and its
actions. An example of a resource that can be used for the latter example is

2UML (Unified Modeling Language) is a visual language. It is a standard for modeling, devel-

oping and documenting object-oriented computer systems.

54

BlueJ (Barnes and Kölling, 2003), where a debugger can be used to execute

the program in steps so the variation of the code and variation in values of

variables can be observed simultaneously during program execution.

For the last category in Table 6.2 the feature added focuses on objects and
classes as models of the real world. To help students discern the dimension re-
lated to the modeling feature, the generalization pattern can be used. Modeling
appears in many areas in the students’ lives. Road signs model real world phe-
nomenon like road bumps and let us avoid long, written instructions. Mathe-
matical symbols model complex relations like sums and integrals and simplify
the treatment of computations. Modeling in computer programming helps us
to treat complex real-world problems. Once the student has discerned the mod-
eling dimension, the fusion pattern, where variations in several dimensions are

exhibited simultaneously, can be used to help the student discern the relation-

ship between the modeling dimension and the action and textual dimensions.

Results from the first investigation point to the importance of letting students

follow the whole process of a programming task, including the analysis of a

problem in real life, and not only focus on implementing code. This can be

implemented in teaching by using an assignment where several classes are

needed. The first part of the assignment would be to do an object oriented

analysis of a real world problem, deciding which classes are needed, which

methods each class should include, and which information the classes need

to exchange. If the students are in their first programming course, they may

in a next step need help to modify their models to find suitable classes with

attributes and methods before starting to code. After implementing and testing

the code, the students are supposed to discuss in groups their different solu-

tions, and how their final solutions differ from their first analysis. This might

help the students to discern the real world feature of objects and classes, and

also to discern the relationship between the real world problem, the model in

terms of class diagrams, and the implementation of the problem as code.
For further examples on how results from phenomenographic analyses can

be implemented in teaching, I refer to Paper IV where a phenomenographic
analysis of novice students’ understanding of what computer programming
means is described. Critical features and corresponding dimensions of vari-
ation are identified, followed by a discussion on how patterns of variation
can be used to open a space of learning for the students. In Paper V on the
other hand, we present a phenomenographic analysis of novice students’ un-
derstanding of what it means to learn computer programming. It has shown to
be important for students to have a good understanding of what learning the
subject means. The outcome space presented in Paper V can be used by edu-
cators in similar ways as the present discussion to facilitate for novice students
to get a good foundation for their learning.

6.1.5 The results related to previous research

My results can shed new light upon and give explanation to other research and
discussions in the field.

55

For example, Computing Curricula 2001 Section 7.2 (Roberts and Engel,
2001) writes:

Introductory programming courses often oversimplify the programming pro-

cess to make it accessible to beginning students, giving too little weight to

design, analysis, and testing relative to the conceptually simpler process of

coding. Thus, the superficial impression students take from their mastery of

programming skills masks fundamental shortcomings that will limit their abil-

ity to adapt to different kinds of problem-solving contexts in the future.

This is in line with the discussion above on the need for students to follow a
whole programming task, including the analysis to find suitable objects in a
real world problem, to get a good understanding of object-oriented program-
ming. Using terminology from variation theory, if the focus of introductory
programming is on coding only, the textual dimension of variation is high-
lighted at the expense of the action and modeling dimensions.

As a second example I will discuss some misconceptions pointed to in the
literature (Holland et al., 1997), namely an overemphasizing of the object’s
data feature at the expense of the behavioural feature and the “object as a kind
of variable” misconception. The latter may occur if the examples students first
come across have only one instance variable. Students with previous experi-
ence of procedural programming may develop the misconception that objects
are in some sense mere wrappers for variables.

Both misconceptions point to the importance of understanding the concepts
as they are described in the second categories in Table 6.2. The second cat-
egory emphasizes that classes describe the behaviour of objects. The second
category also explains classes as a description of properties of objects, and
most real-world objects have more than one property.

Holland et. al give some advice on how to help students avoid these mis-
conceptions. To increase the chances of avoiding the “object as a kind of
variable” misconception the authors suggest that all the classes showed as
an introduction should have more than one instance variable and that these
variables should be of different type. Another way to avoid over-emphasising
the object’s data feature, suggested by the authors, is using introductory object
examples where the response to a message is substantially altered depending
on the state of the object. Holland et al.’s suggestions are in line with variation
theory and the discussion in Section 6.1.4. Using variation theory terminol-
ogy, examples with at least two instance variables of different types is us-
ing the generalization pattern, and examples where the response to a message
substantially alters depending on the object is using the (pseudo) separation
pattern as discussed above.
A third example, also mentioned by Holland et al. and Sanders and Thomas

(2007), is the common problem among novice programmers of understand-

ing the difference between class and object. This might become a problem if

several examples are presented in which only a single instance of each class

is used. Holland et al. suggest that it would help to avoid this misconception

56

if several instances of each class are always presented. As explained in Sec-

tion 6.1.2, the textual representation of programs constitutes a dimension of

variation. This implies variation in the sense of presenting more than one in-

stance of the class in the code, as recommended by Holland et al., which is

according to the first category in Table 6.2.

In the light of the present study, the recommendations from Holland et al.
are explained by and theoretically rooted in variation theory. Variation theory
and patterns of variation are thus scientifically based and empirically tested
tools to be used by educators to develop their teaching.
As a fourth example, Holmboe (1999) performed a study where students

who had just finished an introductory course on object-oriented programming,

senior students, and educators, were asked to describe in their own words

what object-oriented programming is. He made a qualitative analysis of the

answers, and concludes that some types of knowledge are more suitable as

a basis for further knowledge construction than others. He writes about the

understanding that includes the world outside the computer itself: “A person

with holistic knowledge relates the implementation and design of a computer

program to the real world being simulated.” Holmboe emphasizes the impor-

tance that “[...] more students will experience the connection between reality,

model and implemented program, and thus reach holistic knowledge of object-

orientation sooner in their learning process.” The third category in Table 6.2

captures an understanding of classes and objects that includes the world out-

side the computer itself, the modeling of real-world phenomena, and Sec-

tion 6.1.4 discusses how educators can facilitate for students to discern this

understanding by use of patterns of variation.
One challenge for educators of object-oriented programming, is to construct

an educational environment which facilitates for students to reach a rich un-

derstanding of the concepts object and class. To this end it is important to

know the different ways in which students (as opposed to experts) typically

experience these concepts. My phenomenographic study has given such in-

sight. Next the educator needs to identify critical features and related dimen-

sions of variation of the concepts the students need to discern in order to reach

a rich understanding. Here, variation theory can be used, as demonstrated in

the previous discussion. Finally, the patterns of variation are like a tool box

for educators to open up dimensions of variation and thus give students op-

portunities to come to richer understandings of the concepts.

6.2 Dimensions of variation and student learning of
practise

Paper VIII discusses students’ learning of threshold concepts. The paper

points to the important but problematic role of practise in programming

students’ learning, and how concepts and practise interact in the learning

process.

57

Paper IX develops this line of research further. The paper gives examples of

typical novice student programming activities related to the skills of reading,

writing, and debugging code, see Table 6.3.

Read code: to discern main parts of short programs; to read code and recognize

key words; to read code and understand what will happen when the instructions

are executed; to read and relate code to the application and the problem domain.

Write code: to use an editor to emphasise the structured of a program by means

of indents, empty lines etc.; to write common programming building blocks in a

syntactically correct way; to design a short algorithm; to express a short algorithm

in pseudo code; to implement pseudo code in a programming language; to design a

solution to a whole problem and transfer the design to pseudo code, using common

programming building blocks; to implement the solution to a problem according

to basic software quality requirements.

Test and debug code: to use a compiler to find and correct minor syntax errors;

to use the computer to execute code to verify expected output; to use a compiler to

get executable code; to read and understand simple syntax errors, such as missing

semicolon; to correct simple syntax errors, for example missing semicolon; to

hand execute a program on paper before coding; to diagnose semantic errors in

the code; to test code in relation to the problem domain and usability.

Table 6.3: Common novice programming skills with associated activities.

The paper discusses how the activities correspond to different levels
of proficiency, and furthermore, how the activities relate to previously
identified dimensions of variation. These dimensions were identified from
the phenomenographic outcome space on novice students’ understandings
of the concepts object and class as discussed in Section 6.1.3. The
identified dimensions of variation are thus related to different conceptual
understandings as well as to activities at different levels of proficiency. In
this way, the dimensions of variation act as interfaces between qualitatively
different conceptual understandings and activities at different levels of
proficiency.
There are implications for teaching following from these results. First,

novices are often expected to perform many of the activities mentioned

in Table 6.3 at an early stage of their education. Some of them are

however related to dimensions of variation corresponding to a high level

of proficiency. These dimensions are at the same time related to advanced

ways of understanding concepts that we know very few of the students have

discerned yet. This means, using variation theory terminology, that the

students have not yet discerned the dimensions of variation related to the

58

activities, and we still expect them to manage them. This can to some extent

explain why novice students have such big problems learning, and why the

activities in the lab do not always lead to the expected learning outcome.

Another result from Paper IX is that to be able to discern a certain feature of
a concept, or to make an activity meaningful, certain dimensions of variation

in the learning space need to be open for the student. Or, to phrase the same

thing differently: the learning of concepts and activities presupposes that re-

lated dimensions of variation are discerned. At the same time, the richer ways

to see the concepts, and the activities at the higher level of proficiency, relate

to more dimensions of variation and require thus that more dimensions and
their relations be discerned.
Educators can use the results from Paper IX together with patterns of vari-

ation to facilitate students’ learning, the conceptual as well as the practical.

When dimensions of variation are identified, appropriate patterns of variation

can be introduced to the students to facilitate the learning of corresponding

concepts and practises.

59

7. Conclusions and future work

Computer programming is a core area in computer science education that in-
volves practical and well as conceptual learning goals. It is however widely
reported in the computer science education research literature that novice stu-
dents have great problems in learning to program. The problems reported ap-
ply to both concepts and practise.

The research presented in this thesis contributes to the body of knowledge
on students’ learning by investigating the relationship between conceptual
and practical learning in novice students’ learning to program. Previous re-
search in computer science education has focused either on students’ learning
practise or on concepts. The present research however indicates that students’
problems with learning to program partly depend on a complex relationship
and mutual dependence between the two.

The most common way to reach practical as well as conceptual learning
goals in programming education is to “learn through practising”. Students are
expected to “learn to do the practise” as well as to learn the concepts through
practising. If the students do not master the practise this might hinder further
learning, conceptual as well as practical. The present research indicates that
the students find practise at least as difficult to learn as concepts. The practise
in not merely the unproblematic means of reaching the learning goals.

The research builds on three empirical investigations. The data from the
investigations have been analysed from several perspectives. Students’ con-
ceptual and practical learning are first investigated separately by means of
content analysis, and phenomenography and variation theory.

The analyses of student learning of concepts show that many students have
problems to learn central concepts. The analyses show however how phe-
nomenographic results can be used to facilitate for students’ learning by use
of variation theory. The analysis of students’ ability to master the practise
shows that students hold a great variety of strategies that they can use when
they are stuck in their learning. On the other hand senior computer science
students perform poorly when asked to perform a design tasks. Design is a
core skill in computer science education. There are obviously problems in
students’ achievements of the practical learning goal.

In a subsequent analysis inspired by phenomenography and variation theory
I show that practise, in terms of programming activities at different levels
of proficiency, as well as conceptual understandings at qualitatively different
levels, are related to dimensions of variation.
Previous phenomenographic research points to how critical features of con-

cepts are related to dimensions of variation. Previous research also suggests

61

that practise can be related to dimensions of variation. The most significant

finding in the present thesis is that I have demonstrated that practise, in terms

of activities at different level of proficiency, and qualitatively different concep-

tual understandings, have dimensions of variation in common. This has been
possible since I propose a way to identify dimensions of variation related to
practises.
An analytical model is suggested where the dimensions of variation are like

interfaces, relating concepts and activities. The implications of the model are

several. If the dimensions of variation are at the center of the learning process

this implies that when students discern a dimension of variation, related con-

ceptual understandings and the meaning embedded in related practises can be
discerned.

The model further suggests that activities as well as concepts can relate
to more than one dimension. This implies that activities at a higher level
of proficiency, as well as qualitatively richer understandings of concepts,
relate to more dimensions of variation. The analysis on novice students’
conceptual understandings points to dimensions of variation that many of
the novice students not seem to have discerned. The analysis of students’
activities shows that some of the activities students’ often are expected to do
and learn early in their education, relate to these dimensions of variation
that the former study showed were problematic to discern. This can to some
extent explain why the exercises in the computer lab do not always lead to
improved learning. The results can furthermore be used by educators to help
students’ discern dimensions of variation and thus facilitate for the learning,
practical as well as conceptual. A concrete example is given on how varia-
tion theory and patterns of variation can be applied in programming education.

The results need further investigations. Phenomenography and variation the-

ory (Marton and Booth, 1997; Marton and Tsui, 2004) traditionally discuss

ways to identify critical features of phenomena like concepts, and ways to

open a space of learning for students by means of patterns of variation in the

teaching. The present work contributes to the body of knowledge of the stu-

dent learning by proposing a way to identify dimensions of variation related

to practise. Furthermore, the research proposes a model which demonstrates

how dimensions of variation are like interfaces between concepts and prac-

tise, and between several concepts and several practises. There is a need of

further empirical studies on how practise relates to dimensions of variation,

and on the relationship between conceptual and practical learning. The an-

alytical model can thus be used. This line of research might be possible by

performing Learning Studies (Lo et al., 2004) which focus on educationally

critical features of concepts and related practises.

62

Summary in Swedish

Nybörjarstudenters lärande av begrepp och praktik i
programmering

Programmering är ett kärnämne inom datavetenskapliga utbildningar på uni-
versitetsnivå. Undervisning i programmering har lärandemål som gäller prak-
tik lika väl som begrepp. Forskning i datavetenskapens didaktik visar emeller-
tid att nybörjarstudenter har stora svårigheter att lära sig programmering. De
rapporterade svårigheterna gäller såväl praktik som begreppsförståelse.

Forskningen i den här avhandlingen bidrar till befintlig forskning genom
att undersöka relationen mellan begreppsligt och praktiskt lärande med fokus
på nybörjarstudenters lärande av objekt-orienterad programmering. Tidigare
forskning inom datavetenskapens didaktik har antingen fokuserat på studen-
ters lärande av praktik, eller på lärandet av begrepp. Trots många försök att
utveckla undervisningen kvarstår problemen med nybörjarstudenters lärande.
Avhandlingen visar emellertid att studenters problem att lära sig programme-
ring delvis beror på ett komplext samspel mellan och ett ömsesidigt beroende
av praktik och begrepp i lärandeprocessen.

Det vanligaste sättet att nå de praktiska såväl som de begreppsliga läran-
demålen i programmeringsutbildningar är att “lära genom att göra praktik”,
det vill säga genom att skriva datorprogram. Studenternas lärande av de prak-
tiska såväl som de begreppsliga lärandemålen beror till stor del på om de
klarar av att “göra praktik”. Avhandlingen pekar på att studenterna erfar prak-
tiken åtminstone lika svår att lära som koncepten. Praktiken är inte bara ett
oproblematiskt medel att nå de konceptuella lärandemålen.

Forskningen bygger på tre empiriska studier. Den första studien under-
sökte nybörjarstudenters förståelse av några centrala begrepp inom objekt-
orienterad programmering. 14 civilingenjörsstudenter inom området miljö-
och vattenteknik intervjuades. Data från den första studien har främst anal-
yserats med en fenomenografisk och variationsteoretisk forskningsansats.

Den andra studien fokuserade på att identifiera centrala och för studenterna
problematiska begrepp, så kallade tröskelbegrepp. 16 sistaårsstudenter med
datavetenskaplig inriktning intervjuades. Data från den andra studien har anal-
yserats med en innehållsanalytisk forskningsansats.

Syftet med den tredje studien var att undersöka om studenter i slutet av
sin datavetenskapliga utbildning kan designa datorprogram. Data från under-
sökningarna, designer gjorda av studenterna under kontrollerade former, ana-
lyserades med en innehållsanalytisk forskningsansats.

63

Studenternas lärande av begrepp och praktik analyserades först var för sig.

Därefter undersöktes relationen mellan begreppsligt och praktiskt lärande.
Den fenomenografiska analysen av nybörjarstudenternas begrepps-

förståelse visar kvalitativt skilda sätt på vilka studenterna förstår, eller

uppfattar, några centrala begrepp i objekt-orienterad programmering.

Resultatet tyder på att många studenter har problem att lära sig de mer

avancerade sätten att förstå begreppen, som också är de önskvärda från ett

utbildningsperspektiv. Den variationsteoretiska analysen visar emellertid att

variationsmönster (eng. patterns of variation) kan användas av lärare på
resultat från den fenomenografiska analysen för att stödja studenter i deras
lärande.
Analysen av hur studenter klarar de praktiska lärandemålen visar att

studenterna besitter en stor variation av strategier som de kan använda

när de får problem i sina studier. Studien visar också att studenter i slutet

av sin datavetenskapliga utbildning presterade sämre än förväntat på

designuppgiften. Design är ett kärnområde i datavetenskaplig utbildning som

studenterna förväntas lära sig. Resultaten av analysen tyder på att det finns

problem med studenters förvärvande av de praktiska lärandemålen.
Analysen av relationen mellan begreppsligt och praktiskt lärande är inspi-

rerad av fenomenografi och variationsteori. Den visar att såväl praktiken, i

termer av programmeringsaktiviteter på olika färdighetsnivåer, som kvalita-

tivt skilda förståelser av begrepp, är relaterade till variationsdimensioner (eng.

dimensions of variation).
Tidigare fenomenografisk forskning pekar på hur kritiska aspekter

av begrepp är relaterade till variationsdimensioner. Tidigare forskning

föreslår också att praktik kan relateras till variationsdimensioner. Det mest

signifikanta resultatet i avhandlingen är att det visas att praktiken, i termer

av programmeringsaktiviteter på olika färdighetsnivåer, och kvalitativt

skilda begreppsliga förståelser, har gemensamma variationsdimensioner.
Avhandlingen beskriver ett sätt att relatera variationsdimensioner till
programmeringsaktiviteter, vilket har gjort det möjligt att komma
fram till resultatet att begrepp och aktiviteter kan ha gemensamma
variationsdimensioner.

En analytisk modell föreslås där variationsdimensioner fungerar som
gränssnitt mellan begrepp och aktiviteter. Modellen har flera implikationer.
Om variationsdimensioner är i centrum av lärandeprocessen, innebär det att
när studenter urskiljer en variationsdimension, kan relaterade begreppsliga
förståelser och meningen i relaterade aktiviteter urskiljas.

Modellen visar dessutom att såväl aktiviteter som begrepp kan relatera
till mer än en variationsdimension. En tolkning av det resultatet är att
aktiviteter på en högre färdighetsnivå, likaväl som kvalitativt rikare
begreppsliga förståelser, relaterar till fler variationsdimensioner. Analysen av
studenternas begreppsliga förståelser pekar på att många inte har uppfattat
alla variationsdimensioner. Analysen visar ytterligare att vissa aktiviteter som
studenterna förväntas kunna på ett tidigt stadium av sin utbildning, relaterar
till just de variationsdimensioner som den tidigare nämnda studien pekar

64

på som svåra att uppfatta. Det nämnda resultatet kan till viss utsträckning

förklara varför de praktiska övningarna i programmeringsundervisningen inte

alltid leder till ökat lärande, varken av begrepp eller praktik.

Det är viktigt för läraren att kunna identifiera variationsdimensioner så
att dessa kan lyftas fram i undervisningen. Avhandlingen ger konkreta
exempel på hur variationsteori och variationsmönster kan användas i
programmeringsundervisning. Utgående från ett fenomenografiskt utfallsrum
visas hur kritiska aspekter av de olika förståelserna beskrivna i utfallsrummet
kan identifieras. Varje kritisk aspekt relaterar till en variationsdimension.
Därefter diskuteras hur olika variationsmönster kan användas för att lyfta
fram variationsdimensioner i undervisningen, vilket kan hjälpa studenter att
urskilja de identifierade variationsdimensionerna. Läraren kan på så sätt ge
möjlighet till studenterna att lära sig relaterade begrepp och praktik på nya
sätt.

65

Acknowledgments

At the end of my PhD studies I look back on a joyful but also demanding

journey. Many people have helped and encouraged me during the journey.

There are friends and relatives, colleagues and students, who have been

supporters and contributed to the thesis, and I would like to thank them all. I

will mention some of them below.

First of all I would like to thank Michael Thuné who has been my super-
visor during the whole thesis work, and Anders Berglund who has been my
supervisor after my licentiate thesis, for your great support during the process
of creating this thesis. Your knowledge in the two areas my research spans,
your advice, patience, and encouragement to me to try my own ideas, and our
exciting discussions and collaboration on papers have been invaluable in my
thesis work. I would also like to thank Shirley Booth who introduced me to
the phenomenographic research approach during my licentiate work.
I would also like to thank my co-authors of papers in the thesis, the Sweden

Group, for the enjoyable and rewarding research we have performed together

(in alphabetic order): Jonas Boustedt, Robert McCartney, Jan Erik Moström,

Mark Ratcliffe, Kate Sanders, Lynda Thomas, and Carol Zander. I would es-

pecially like to thank Robert McCartney and Kate Sanders for their English

proof reading the thesis, and Jonas Boustedt and Carol Zander for enjoyable

travel to conferences and research meetings, and for long and rewarding dis-

cussions.

I also want to thank my research group at the Department of Information
Technology at Uppsala University for valuable seminars with discussions,
feedback, and encouragement, and all colleagues at the Department of
Scientific Computing for a warm and stimulating work environment.
Specifically I want to thank Liselott Dominicus for being a friend and
traveling companion on the journey to the PhD.

Finally I would like to thank my family, Per, Nils, and Olof, who have made
everything worthwhile. In this I also include my mother Anne-Mari Sundin
who has encouraged me to start by saying:

Bättre lyss till den sträng som brast än aldrig spänna sin båge.

and has continued to support my work throughout.

67

My thesis work has been financed by The Swedish Research Council, and

Faculty of Educational Sciences, Uppsala University.

68

Bibliography

ACM Curriculum Committee on Computer Science (1968). Curriculum ’68: Rec-

ommendations for the undergraduate program in computer science. Communications
of the ACM, 11(3):151–197.

Austing, R. H., Barnes, B. H., and Engel, G. L. (1977). A survey of the literature

in computer science education since curriculum ’68. Communications of the ACM,

20(1):13–21.

Barnes, D. and Kölling, M. (2003). Objects First with Java - A Practical Introduction
using BlueJ. Prentice Hall/Pearson Education.

Bayman, P. and Mayer, R. E. (1983). A diagnosis of beginning programmers’

misconceptions of basic programming statements. Communications of the ACM,

26(9):677–679.

Beck, K. and Andres, C. (2004). Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional.

Ben-Ari, M. (1998). Constructivism in computer science education. In SIGCSE ’98:
Proceedings of the twenty-ninth SIGCSE technical symposium on Computer science
education, pages 257–261, New York, NY, USA. ACM.

Berglund, A. (2005). Learning computer systems in a distributed project course. The
what, why, how and where. Number 62 in Uppsala Dissertations from the Faculty of

Science and Technology. Acta Universitatis Upsaliensis,

Uppsala, Sweden.

Berglund, A., Daniels, M., and Pears, A. (2006). Qualitative research projects in

computing education research: an overview. In ACE ’06: Proceedings of the 8th
Austalian conference on Computing education, pages 25–33. Australian Computer

Society.

Booth, S. A. (1992). Learning to Program. A phenomenographic perspective. Num-

ber 89 in Göteborg Studies in Educational Science. Acta Universitatis Gothoburgen-

sis, Göteborg, Sweden.

Boustedt, J. (2007). Students Working with a Large Software System: Experiences
and Understandings. Licentiate thesis, Uppsala University, Uppsala, Sweden.

Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Sanders,

K., and Zander, C. (2007). Threshold concepts in computer science: do they exist

and are they useful? SIGCSE Bulletin, 39(1):504–508.

69

Bruce, C., McMahon, C., Buckingham, L., Hynd, J., Roggenkamp, M., and Stoodly,

I. (2004). Ways of experiencing the act of learning to program: A phenomenographic

study of introductory programming students at university. Journal of Information
Technology Education, 3:143–160.

Clancy, M., Stasko, J., Guzdial, M., Fincher, S., and Dale, N. (2001). Models and

Areas for CS Education Research. Computer Science Education, 11(4):323–341.

Collier Reed, B., Ingerman, Å., and Berglund, A. (2008). Reflections on trustwor-

thiness in phenomenographic research:ărecognising purpose, context and change in

the process of research. Education as Change, (in press).

Daly, C. and Waldron, J. (2004). Assessing the assessment of programming abil-

ity. In Proceedings of the 35th SIGCSE technical symposium on Computer science
education, pages 210–213.

Davies, S. P. (1993). Models and theories of programming strategy. International
journal of Man-Machine Studies, 39(2):237–267.

Denzin, N. K. and Lincoln, Y. S. (1994). Introduction. Entering the Field of Qualita-

tive Research. In Denzin, N. K. and Lincoln, Y. S., editors, Handbook of Qualitative
Research, pages 1–17. SAGE Publications.

Denzin, N. K. and Lincoln, Y. S. (2005). Introduction: The discipline and practice

of qualitative research. In Denzin, N. K. and Lincoln, Y. S., editors, The SAGE
Handbook of Qualitative Research third edition, pages 1–32. SAGE Publications.

Eckerdal, A. (2006). Novice Students’ Learning of Object-Orientd Programming.
Licentiate thesis, Uppsala University, Uppsala, Sweden.

Eckerdal, A. (2009). Ways of Thinking and Practising in Introductory Program-

ming. Technical Report 2009-002, Department of Information Technology, Uppsala

University, Sweden.

Eckerdal, A. and Berglund, A. (2005). What Does It Take to Learn ’Programming

Thinking’? In Proceedings of the 1st International Computing Education Research
Workshop, ICER, pages 135–143, Seattle, Washington, USA.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Sanders, K., and Zander,

C. (2006a). Putting threshold concepts into context in computer science education.

SIGCSE Bulletin, 38(3):103–107.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., and Zander, C. (2006b).

Can graduating students design software systems? In SIGCSE ’06: Proceedings of
the 37th SIGCSE technical symposium on Computer science education, pages 403–
407.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliff, M., and Zander, C. (2006c).

Categorizing student software designs: Methods, results, and implications. Com-
puter Science Education, 16(3).

70

Eckerdal, A., McCartney, R., Moström, J. E., Sanders, K., Thomas, L., and Zan-

der, C. (2007). From Limen to Lumen: Computing students in liminal spaces. In

Proceedings of the 3rd International Workshop on Computing Education Research,
pages 123–132. ACM.

Eckerdal, A. and Thuné, M. (2005). Novice java programmers’ conceptions of "ob-

ject" and "class", and variation theory. SIGCSE Bulletin, 37(3):89–93.

Ellis, A., Carswell, L., A., B., Deveaux, D., Frison, P., Meisalo, V., Meyer, J., Nulden,

U., Rugelj, J., and Tarhio, J. (1998). Resources, tools, and techniques for prob-

lem based learning in computing. In ITiCSE-WGR ’98: Working Group reports of
the 3rd annual SIGCSE/SIGCUE ITiCSE conference on Integrating technology into
computer science education, pages 41–56.

Entwistle, N. (2003). Concepts and conceptual frameworks underpinning the ETL

project. Occasional Report 3 of the Enhancing Teaching-Learning Environments

in Undergraduate Courses Project, School of Education, University of Edinburgh,

March 2003.

Entwistle, N. (2007). Conceptions of learning and the experience of understanding:

Thresholds, contextual influences, and knowledge objects. In Vosniadou, S., Baltas,

A., and Vamvakoussi, X., editors, Re-framing the Conceptual Change Approach in
Learning and Instruction, pages 123–143. ELSEVIER.

Fazey, J. and Marton, F. (2002). Understanding the space of experiential variation.

Active Learning in Higher Education, 3(3):234–250.

Fincher, S. and Petre, M. (2004). Mapping the territory. In Fincher, S. and Petre,

M., editors, Computer Science Education Research, pages 1–8. Routledge.

Finlay, L. (2002). ”Outing” the Researcher: The Provenance, Process, and Practice

of Reflexivity. Qualitative Health Research, 12(4):531–545.

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L.,

and Zander, C. (2008). Debugging: finding, fixing and flailing, a multi-institutional

study of novice debuggers. Computer Science Education, 18(2):93–116.

Fleury, A. E. (1999). Student conceptions of object-oriented programming in Java.

The Journal of Computing in Small Colleges, 15(1):69–78.

Fleury, A. E. (2000). Programming in Java: Student-Constructed Rules. In Proceed-
ings of the 31st SIGCSE technical symposium on Computer science education, pages
197–201, Austin, Texas, United States.

Fleury, A. E. (2001). Encapsulation and Reuse as Viewed by Java Students. ACM
SIGCSE Bulletin, 33(1):189–193.

Fung, P., Brayshaw, M., and du Boulay, B. (1990). Towards a taxonomy of novices’

misconceptions about the prolog interpreter. Instructional Science, 19(4-5):311–
336.

Goldman, K. J. (2004). A concepts-first introduction to computer science. In Pro-
ceedings of the 35th SIGCSE technical symposium on Computer science education,
pages 432–436. ACM.

71

Goldweber, M., Clark, M., and Fincher, S. (2004). The relationship between CS

education research and the SIGCSE community. In Proceedings of the 35th SIGCSE
technical symposium on Computer science education, pages 147–148. ACM.

Graneheim, U. and Lundman, B. (2004). Qualitative content analysis in nursing

research: concepts, procedures and measures to achieve trustworthiness. Nurse Ed-
ucation Today, 24(2):105–112.

Gross, P. and Powers, K. (2005). Evaluating assessments of novice programming en-

vironments. In Proceedings of the 1st International Computing Education Research
Workshop, ICER, Seattle, Washington, USA, pages 99–110.

Gugerty, L. and Olson, G. (1986). Debugging by skilled and novice programmers.

In CHI ’86: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 171–174, New York, NY, USA. ACM.

Hazzan, O. (2003). How students attempt to reduce abstraction in the learning of

computer science. Computer Science Education, 13(2):95–122.

Hoepfl, M. C. (1997). Choosing Qualitative Research: A Primer for Technology

Education Researchers. Journal of Technology Education, 9(1):47–63.

Holland, S., Griffiths, R., and Woodman, M. (1997). Avoiding object misconcep-

tions. In SIGCSE ’97: Proceedings of the twenty-eighth SIGCSE technical sympo-
sium on Computer science education, pages 131–134.

Holmboe, C. A. (1999). A cognitive framework for knowledge in informatics:

The case of object-orientation. In Proceedings of the 4th annual SIGCSE/SIGCUE
ITiCSE conference on Innovation and technology in computer science education,
pages 17–20.

Hsieh, H.-F. and Shannon, S. E. (2005). Three approaches to qualitative content

analysis. Qualitative Health Research, 15(9):1277–1288.

Kahney, H. (1983). What do novice programmers know about recursion. In CHI ’83:
Proceedings of the SIGCHI conference on Human Factors in Computing Systems,
pages 235–239, New York, NY, USA. ACM.

Katira, N., Williams, L., Wiebe, E., Miller, C., Balik, S., and Gehringer, E. (2004).

On understanding compatibility of student pair programmers. In Proceedings of the
thirty-second SIGCSE technical symposium on Computer Science Education, pages
7–11.

Kirk, J. and Miller, M. L. (1986). Reliability and validity in qualitative research.
Sage Publications.

Kölling, M. (1999a). The problem of teaching object-oriented programming, part 1:

Languages. JOURNAL OF OBJECT-ORIENTED PROGRAMMING, 11(8):8–15.

Kölling, M. (1999b). The problem of teaching object-oriented programming, part 2:

Environmentss. JOURNAL OF OBJECT-ORIENTED PROGRAMMING, 11(9):6–
12.

72

Kölling, M. and Rosenberg, J. (2001). Guidelines for teaching object orientation

with java. In ITiCSE ’01: Proceedings of the 6th annual conference on Innovation
and technology in computer science education, pages 33–36, New York, NY, USA.

ACM.

Krippendorff, K. (2004). Content Analysis: An Introduction to Its Methodology.
Thousand Oaks, Calif.: Sage.

Lincoln, Y. S. and Guba, E. G. (1985). Naturalistic Inquiry. SAGE Publications.

Lister, R., Adams, E., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney,

R., Moström, J., Sanders, K., Seppälä, O., Simon, B., and Thomas, L. (2004). A

multi-national study of reading and tracing skills in novice programmers. ACM
SIGCSE Bulletin, 36(4):119–150.

Lo, M. L., Marton, F., Pang, M. F., and Pong, W. Y. (2004). Toward a pedagogy of

learning. In Marton, F. and Tsui, A., editors, Classroom Discourse and the Space of
Learning, pages 189–225. Lawrence Erlbaum Associates, Mahwah, NJ.

Lopez, M., Whalley, J., and Lister, R. (2008). Relationships between reading, trac-

ing and writing skills in introductory programming. In Proceedings of the forth
International Computing Education Research Workshop, pages 101–111.

Marton, F. and Booth, S. (1997). Learning and Awareness. Lawrence Erlbaum Ass.,

Mahwah, NJ.

Marton, F., Hounsell, D., and Entwistle, N. (1984). The Experience of Learning.
Scottish Academic Press.

Marton, F., Runesson, U., and Tsui, A. (2004). The space of learning. In Marton, F.

and Tsui, A., editors, Classroom Discourse and the Space of Learning, pages 3–40.
Lawrence Erlbaum Ass., Mahwah, NJ.

Marton, F. and Svensson, L. (1979). Conceptions of research in student learning.

Higher Education, pages 471–486.

Marton, F. and Tsui, A. (2004). Classroom Discourse and the Space of Learning.
Lawrence Erlbaum Ass., Mahwah, NJ.

Mayring, P. (2000). Qualitative content analysis. Forum: Qualitative Social Research

[On-line Journal], 2000, 1(2) Available at: http://www.qualitative-research.net/fqs-

texte/2-00/2-00mayring-e.htm.

McCartney, R., Eckerdal, A., Mostrom, J. E., Sanders, K., and Zander, C. (2007).

Successful students’ strategies for getting unstuck. SIGCSE Bulletin, 39(3):156–
160.

McCormick, R. (1997). Conceptual and procedural knowledge. International Jour-
nal of Technology and Design Education, 7(1–2):141–159.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.-D.,

Laxer, C., Thomas, L., Utting, I., and Wilusz, T. (2001). A multi-national, multi-

institutional study of assessment of programming skills of first-year cs students.

SIGCSE Bulletin, 33(4):125–180.

73

McCune, V. and Hounsell, D. (2005). The development of students’ ways of thinking

and practising in three final-year biology courses. Higher Education, 49:255–289.

Meyer, B. (1988). Object-oriented Software Construction. International series in

Computer Science. Prentice Hall.

Meyer, J. H. and Land, R. (2005). Threshold concepts and troublesome knowledge

(2): Epistemological considerations and a conceptual framework for teaching and

learning. Higher Education, 49(3):373–388.

Molander, B. (1996). Kunskap i handling. DAIDALOS.

Molander, B., Halldén, O., and Pedersen, S. (2001). Understanding a Phenomenon

in Two Domains as a Result of Contextualization. Scandinavian Journal of Educa-
tional Research, 45(2):115–123.

Mostyn, B. (1985). The Content Analysis of Qualitative Research Data: A Dynamic

Approach. In Brenner, M., Brown, J., and Canter, D., editors, THE RESEARCH IN-
TERVIEW Uses and Approaches, pages 115–145. ACADEMIC PRESS INC. (LON-

DON) LTD.

Newman, I., Daniels, M., and Faulkner, X. (2003). Open ended group projects, a

’tool’ for more effective teaching. In Proceedings of the fifth Australasian conference
on Computing education, pages 95–103.

Pears, A., Seidman, S., Eney, C., Kinnunen, P., and Malmi, L. (2005). Constructing a

core literature for computing education research. ACM SIGCSE Bulletin, 37(4):152–
161.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin,

M., and Paterson, J. (2007). A survey of literature on the teaching of introductory

programming. In ITiCSE-WGR ’07: Working group reports on ITiCSE on Innova-
tion and technology in computer science education, pages 204–223, New York, NY,

USA. ACM.

Posner, G., Strike, K., Hewson, P., and Gertzog, W. (1982). Accommodation of a

scientific conception: toward a theory of conceptual change. Science Education,
66(2):211–227.

Powers, K., Cooper, S., Goldman, K., Carlisle, M., McNally, M., and Proulx, V.

(2006). Tools for teaching introductory programming: What works? In Proceedings
of the 37th SIGCSE technical symposium on Computer science education, pages
560–561.

Powers, K., Ecott, S., and Hirshfield, L. M. (2007). Through the looking glass:

teaching CS0 with Alice. In SIGCSE ’07: Proceedings of the 38th SIGCSE technical
symposium on Computer science education, pages 213–217, New York, NY, USA.

ACM.

Ragonis, N. and Ben-Ari, M. (2005). A long-term investigation of the comprehen-

sion of OOP concepts. Computer Science Education, 15(3):203–221.

74

Randolph, J. (2007). Computer science education research at the
crossroads: A methodological review of the computer science educa-
tion research: 2000-2005. PhD dissertation: Utah State University

http://www.archive.org/details/randolph_dissertation Retrieved November 19,

2008.

Roberts, E. and Engel, G. (2001). Computing Curricula 2001: Final Report of the

Joint ACM/IEEE-CS Task Force on Computer Science Education. IEEE Computer

Society Press, December 2001, http://www.acm.org/sigcse/cc2001/.

Robins, A., Rountree, J., and Rountree, N. (2003). Learning and teaching program-

ming: A review and discussion. Computer Science Education, 13(2):137–172.

Rumbaugh, J., Jacobson, I., and Booch, G. (1999). The Unified Modeling Language
Reference Manual. Addison Wesley Longman, Reading, Massachusetts.

Runesson, U. (2006). What is it Possible to Learn? On Variation as a Necessary

Condition for Learning. Scandinavian Journal of Educational Research, 50(4):397–
410.

Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., , Thomas,

L., and Zander, C. (2008). Student understanding of object-oriented programming

as expressed in concept maps. In SIGCSE ’08: Proceedings of the 39th SIGCSE
technical symposium on Computer science education, pages 332–336.

Sanders, K., Fincher, S., Bouvier, D., Lewandowski, G., Morrison, B., Murphy, L.,

Petre, M., Richards, B., Tenenberg, J., Thomas, L., Anderson, R., Anderson, R.,

Fitzgerald, S., Gutschow, A., Haller, S., Lister, R., McCauley, R., McTaggart, J.,

Prasad, C., and Scott, T. (2005). A multi-institutional, multinational study of pro-

gramming concepts using card sort data. Expert Systems, 22(3):121–128.

Sanders, K. and Thomas, L. (2007). Checklists for grading object-oriented cs1 pro-

grams: concepts and misconceptions. In ITiCSE ’07: Proceedings of the 12th annual
SIGCSE conference on Innovation and technology in computer science education,
pages 166–170, New York, NY, USA. ACM.

Simon (2007). A Classification of Recent Australasian Computing Edcuation Pub-

lications. Computer Science Education, 17(3):155–169.

Spohrer, J. C. and Soloway, E. (1986). Alternatives to construct-based programming

misconceptions. SIGCHI Bulletin, 17(4):183–191.

Stamouli, I. and Huggard, M. (2006). Object Oriented Programming and Program

Correctness: The Students’ Perspective. In ICER ’06: Proceedings of the second
International Workshop on Computing Education Research, pages 109–118, Can-
terbury, United Kingdom.

Séré, M. (2002). Towards renewed research questions from the outcomes of the

european project Labwork in Science Education. Science Education, 86(5):624–
644.

75

Tenenberg, J., Fincher, S., Blaha, K., Bouvier, D., Chen, T., Chinn, D., Cooper, S.,

Eckerdal, A., Johnson, H., McCartney, R., Monge, A., Moström, J., Petre, M., Pow-

ers, K., Ratcliffe, M., Robins, A., Sanders, D., Shwartzman, L., Simon, B., Stoker,

C., Tew, A., and VanDeGrift, T. (2005). Students designing software: a multi-

national, multi-institutional study. Informatics in Education, 4(1):143–162.

Thuné, M. and Eckerdal, A. (2009). Variation Theory Applied to Students’ Con-

ceptions of Computer Programming. European Journal of Engineering Education,
Accepted for publication.

Trigwell, K., Prosser, M., and Taylor, P. (1994). Qualitative differences in ap-

proaches to teaching first year university science. Higher Education, 27(1):75–84.

Valentine, D. (2004). CS educational research: a meta-analysis of SIGCSE technical

symposium proceedings. SIGCSE Bulletin, 36(1):255–259.

VanDeGrift, T. (2004). Coupling pair programming and writing: Learning about

students’ perceptions and processes. In Proceedings of the 35th SIGCSE technical
symposium on Computer science education, pages 2–6.

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Ajith Kumar, P. K.,

and Prasad, C. (2006). An austalasian study of reading and comprehension skills in

novice programmers, using the bloom and solo taxonomies. In ACE ’06: PProceed-
ings of the 8th Australian conference on Computing education, pages 243–252.

Winslow, L. E. (1996). Programming pedagogy—a psychological overview.

SIGCSE Bulletin, 28(3):17–22.

Zou, L. and Godfrey, M. W. (2008). Understanding interaction differences between

newcomer and expert programmers. In RSSE ’08: Proceedings of the 2008 interna-
tional workshop on Recommendation systems for software engineering, pages 26–
29, New York, NY, USA. ACM.

76

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 600

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through the
series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-9551

ACTA

UNIVERSITATIS

UPSALIENSIS

UPPSALA

2009

	Abstract
	List of Papers
	Comments on my contributions

	1. Introduction
	1.1 Research questions
	1.2 Terminology used in the thesis
	1.3 Methodology
	1.3.1 The first investigation
	1.3.2 The second investigation
	1.3.3 The third investigation

	1.4 Overview of the thesis
	1.4.1 Student learning of concepts
	1.4.2 Student learning of practise
	1.4.3 The relationship between conceptual and practical learning

	2. The research in context
	2.1 The Computer Science Education research field
	2.2 The present research and the Computer Science Education research field

	3. Research approaches
	3.1 Qualitative research
	3.2 Phenomenography
	3.3 Content analysis
	3.4 Trustworthiness in Qualitative Research

	4. The present research
	4.1 Research approaches applied in the present research
	4.1.1 Phenomenography and variation theory in the present research
	4.1.2 Content analysis in the present research

	4.2 Trustworthiness of the present research
	4.2.1 Trustworthiness in the first investigation
	4.2.2 Trustworthiness in the second investigation
	4.2.3 Trustworthiness in the third investigation

	5. Results
	5.1 Learning of concepts
	5.2 Learning of practise
	5.3 Ways of Thinking and Practising

	6. Discussion - from a teaching perspective
	6.1 Phenomenography in practise - an empirical example
	6.1.1 The phenomenographic outcome space
	6.1.2 Discernment and variation - identification of critical features
	6.1.3 Dimensions of variation - open a space for learning
	6.1.4 Implications for education - patterns of variation
	6.1.5 The results related to previous research

	6.2 Dimensions of variation and student learning of practise

	7. Conclusions and future work
	Summary in Swedish: Nybörjarstudenters lärande av begrepp och praktik i programmering
	Acknowledgments
	Bibliography

