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This paper concerns almost minimizers of the functional

𝐽 (𝑣,𝛺) =
ˆ
𝛺

(

|𝐷𝑣+|𝑝 + |𝐷𝑣−|𝑞
)

𝑑𝑥,

where 1 < 𝑝 ≠ 𝑞 < ∞ and 𝛺 is a bounded domain of R𝑛, 𝑛 ≥ 1. We prove the universal Hölder
regularity of local (1 + 𝜀)-minimizers, when 𝜀 is universally small. Moreover, we prove almost
Lipschitz regularity of the local (1 + 𝜀)-minimizers, when |𝑝 − 𝑞| ≪ 1 and 𝜀 ≪ 1.

. Introduction

In this paper, we study regularity properties of almost minimizers to the functional

𝐽 (𝑢,𝛺) ≡ 𝐽𝑝,𝑞(𝑢,𝛺) ∶=
ˆ
𝛺
(|𝐷𝑢+|𝑝 + |𝐷𝑢−|𝑞) 𝑑𝑥, (1.1)

here 𝛺 ⊂ R𝑛 is a bounded domain and 1 < 𝑝, 𝑞 < ∞. Our primary goal is to prove a universal Hölder estimate for the almost
inimizers. We shall also study various scenarios, on the relation between 𝑝 and 𝑞, to see if the regularity can be improved. In
articular, we aim at proving almost Lipschitz regularity provided that 𝑝 and 𝑞 are close to each other.

The notion of local 𝐾-minimizers is given as follows.

efinition 1.1 (Local 𝐾-Minimizers). Let 𝐾 ≥ 1 be a constant. We shall call 𝑢 ∈ 𝑊 1,𝑝∧𝑞
𝑙𝑜𝑐 (𝛺) a local 𝐾-minimizer of the functional 𝐽 ,

f for any cube 𝑄 ⊂ 𝛺, 𝐽 (𝑢,𝑄) < ∞, and

𝐽 (𝑢,𝑄) ≤ 𝐾𝐽 (𝑣,𝑄), (1.2)

or any 𝑣 ∈ 𝑢 +𝑊 1,𝑝∧𝑞
0 (𝑄) such that 𝐽 (𝑣,𝑄) < ∞.

In the course of this paper, we shall be interested in the case 𝐾 = 1 + 𝜀, for some small 𝜀 > 0. We remark that our analysis does
ot change, as one replaces cubes with balls in the above definition. However, it is worth mentioning that the notion with cubes
s in general not equivalent to that with balls, unless 𝐾 = 1, and local 𝐾-minimizers with cubes are known to be less restrictive;
ee [1, Example 6.5].

In the framework of standard functionals (i.e., those without break across some level set), the universal Hölder regularity is
stablished for quasi-minimizers (those with 𝐾 > 1 any, and 𝑄 in (1.2) replaced with spt(𝑢 − 𝑣)), as the essential arguments for
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the proof of the Hölder regularity for exact minimizers remain unchanged upon the extension; see [1]. In contrast, thanks to the
particular break across the zero-level set in 𝐽𝑝,𝑞 , many important steps in the proof of [2, Theorem 1.2] for the Hölder regularity of
exact minimizers to our functional 𝐽𝑝,𝑞 are destroyed when applied to quasi-minimizers. Still, we were able to extend the argument
to (1 + 𝜀)-minimizers, when 𝜀 is universally small.

Theorem 1.2. There are constants 𝜀 > 0 and 𝜎 ∈ (0, 1), depending only on 𝑛, 𝑝+, and 𝑝−, such that if 𝑢 ∈ 𝑊 1,𝑝+∧𝑝− (𝑄2) is a local
(1 + 𝜀)-minimizer of 𝐽𝑝+ ,𝑝− , then 𝑢± ∈ 𝐶0,𝜎±

𝑙𝑜𝑐 (𝑄1) with 𝜎+ = 𝜎, 𝜎− = 1 − (1 − 𝜎) 𝑝−𝑝+
, and

[𝑢±]𝐶0,𝜎± (𝑄1)
≤ 𝑐

[ˆ
𝑄2

((𝑢+)𝑝+ + (𝑢−)𝑝− ) 𝑑𝑥
]

1
𝑝±

,

where 𝑐 depends only on 𝑛, 𝑝+, and 𝑝−.

We remark that the above theorem also shows the exact relation between the Hölder exponents for each phase; this was not
contained in the authors earlier collaboration [2, Theorem 1.2] with M. Colombo. Our proof involves a careful extension of the
main ingredients for [2, Theorem 1.2] to local (1 + 𝜀)-minimizers, and a compactness argument.

A key feature of local (1 + 𝜀)-minimizers, 𝜀 ≥ 0, for the functional 𝐽𝑝,𝑞 is that the positive and negative phase scales differently
from each other. Namely if 𝑢 is a local (1 + 𝜀)-minimizer in 𝑄2, then one needs ‖𝑢+‖𝑋 comparable with ‖𝑢−‖𝑞∕𝑝𝑋 , with 𝑋 = 𝐿𝑝(𝑄1)
or 𝐿∞(𝑄1). As for the case of the local minimizers, i.e., 𝜀 = 0, the comparability was proved by a Harnack inequality argument [2,
Lemma 3.8, Corollary 3.9], which played an essential role in the proof of their universal Hölder regularity [2, Theorem 1.2].

The main difference, which also amounts to the challenges here, for the case of local (1+𝜀)-minimizers, 𝜀 > 0, is the lack of such
a Harnack inequality argument. More fundamentally, local (1 + 𝜀)-minimizers do not possess the subsolution properties as opposed
o local minimizers (see [2, Lemma 3.4]). One of the consequences is that the basic estimates for one phase, such as the Cacciopoli
nequality (Lemma 2.2) and the comparison lemma (Lemma 3.1) for local (1 + 𝜀)-minimizers, involve an additional 𝜀-factor of the
ther phase. Hence, our main task here is to effectively control the additional 𝜀-term, which amounts to some technical difficulties.
t is worthwhile to mention that the absence of the Harnack inequality argument is overcome by a careful compactness argument,
y which both phases, although scaled differently, survive at the limit. The latter part is new, to the best of the authors’ knowledge,
nd can be applied to a wider range of problems.

Our second result is about the almost Lipschitz regularity for local (1 + 𝜀)-minimizers for the functional 𝐽𝑝,𝑞 , when |𝑝 − 𝑞| ≪ 1
and 𝜀 ≪ 1.

Theorem 1.3. Let 1 < 𝑝+ < ∞ and 𝜎 ∈ (0, 1) be given. Then there exist 𝜀, 𝛿 > 0, depending only on 𝑛, 𝑝+ and 𝜎, such that for any
𝑝− ∈ (𝑝+ − 𝛿, 𝑝+ + 𝛿) and any local (1+ 𝜀)-minimizer 𝑢 ∈ 𝑊 1,𝑝+∧𝑝− (𝑄2) of 𝐽𝑝+ ,𝑝− , one has 𝑢

± ∈ 𝐶0,𝜎± (𝑄1), with 𝜎+ = 𝜎, 𝜎− = 1− (1−𝜎) 𝑝−𝑝+
,

and

[𝑢]𝐶0,𝜎± (𝑄1)
≤ 𝑐

[ˆ
𝑄2

((𝑢+)𝑝± + (𝑢−)𝑝− ) 𝑑𝑥
]

1
𝑝±

,

where 𝑐 depends only on 𝑛, 𝑝+ and 𝜎.

A similar statement is proved in [3] for uniformly elliptic functionals when governing conductivity matrices are close with each
ther; [3] however considers local minimizers (i.e., 𝜀 = 0) only. Our problem is philosophically the same, as the limit case is clean,

thus possess better regularity. On the technical level, our argument needs slightly more care than that of [3, Theorem 7.1], as the
proof for the growth of the functional 𝐽𝑝,𝑞 changes as (𝑝, 𝑞) varies. Moreover, one needs to make sure that the argument works well
regardless of the relation between 𝑝 (or 𝑞) and the dimension 𝑛. These are all rigorously treated in Section 4.

Recently, free boundaries for almost minimizers are investigated in various settings, see e.g., [4,5], and [6] to mention a few.
There is a possibility of extending the approach with viscosity solutions employed in [5], but it is beyond the scope of this paper.
It would be already interesting to extend the result for the clean case, 𝑝 = 𝑞.

In [2], the authors analyze the free boundary of local minimizers for 𝐽𝑝,𝑞 , using the measure 𝛥𝑝𝑢+, which is nonnegative and
upported on the free boundary, 𝜕{𝑢 > 0}(= 𝜕{𝑢 < 0}). This is mainly due to the subsolution property of 𝑢+, which is no longer valid
or almost minimizers. The same issue appears in the case of the two-phase Alt-Caffarelli functional (see [4, Section 4]), which is
esolved by the NTA property of the free boundary and a clever use of barriers. The NTA property was obtained there by the use of
he ACF monotonicity formula, which is absent in our regime. The construction of the barriers and the comparison with the almost
inimizers require some regularity of the free boundary, which in the case of [4] was the NTA property. However, in our problem,
one of these seems to be analogously carried out. For this reason, we leave out the analysis of the free boundary for our almost
inimizers to the interested reader.

The paper is organized as follows. In Section 2, we collect some technical tools to prepare the proof of Theorem 1.2. In Section 3,
e prove Theorem 1.2. In Section 4, we prove Theorem 1.3.

We follow the standard notation and terminology. In particular, 𝑛 denotes the dimension of the underlying space, and there is
o restriction other than 𝑛 ≥ 1. By 𝑄𝑟(𝑥0), we denote the cube centered at 𝑥0 with side-length 𝑟, i.e., 𝑄𝑟(𝑥0) ∶= {𝑥 ∈ R𝑛 ∶ |𝑥𝑖 − 𝑥0𝑖| <
, 1 ≤ 𝑖 ≤ 𝑛}. For simplicity, we set 𝑄𝑟 ∶= 𝑄𝑟(0). Given a set 𝐴 ⊂ R𝑛, by |𝐴| we denote the Lebesgue measure of 𝐴. The function

0,𝜎 1,𝑝 0,𝜎 1,𝑝
2

paces 𝐶 and 𝑊 are standard Hölder and Sobolev spaces, and 𝐶𝑙𝑜𝑐 , 𝑊𝑙𝑜𝑐 are their local versions.
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2. Technical tools

In this section, we shall present and verify some technical tools, most of which generalize those appeared in [2, Sect. 3–4].
he main goal of this section is to prove the following proposition, which roughly tells us that negative values cannot penetrate
he interior if a local (1 + 𝜀)-minimizer attains large positive values in most of the domain. Let us remark that this proposition
orresponds to [2, Proposition 4.2] for the case of minimizers. The main difference here is that (1 + 𝜀)-minimizers do not possess in
eneral the subsolution properties. Here we exploit the techniques to circumvent this issue. Unless stated otherwise, the constant 𝑐
hroughout this section is a positive constant that may differ at each occurrence, and will depend at most on 𝑛, 𝑝, and 𝑞. Moreover,
he parameter 𝜀 will be a small constant, whose smallness is determined solely by 𝑛, 𝑝, and 𝑞.

roposition 2.1. There exist 𝜀 > 0 and 𝜇 > 0, depending only on 𝑛, 𝑝, and 𝑞, such that if 𝑢 ∈ 𝑊 1,𝑝∧𝑞(𝑄1) is a local (1 + 𝜀)-minimizer of
he functional 𝐽 , satisfyingˆ

𝑄1

((𝑢+)𝑝 + (𝑢−)𝑞) 𝑑𝑥 ≤ 1, |{𝑢 ≤ 1∕2} ∩𝑄1| ≤ 𝜀,

hen 𝑢 > 0 a.e. in 𝑄𝜇 .

The proof for this proposition will be postponed to the end of this section. Let us begin with the Cacciopoli-type inequality.

emma 2.2. Let 𝑢 ∈ 𝑊 1,𝑝∧𝑞(𝑄2) be a local (1 + 𝜀)-minimizer of the functional 𝐽 . There exists 𝜀̄ ∈ (0, 1), depending only on 𝑛, 𝑝, and 𝑞,
such that if 𝜀 ≤ 𝜀̄, thenˆ

𝑄1

|𝐷𝑢+|𝑝 𝑑𝑥 ≤ 𝑐
ˆ
𝑄2

((𝑢+)𝑝 + 𝜀(𝑢−)𝑞) 𝑑𝑥, (2.1)

where 𝑐 depends only on 𝑛, 𝑝, and 𝑞.

Proof. Fix 𝑟, 𝑅 with 1 < 𝑟 < 𝑅 < 2, and choose any 𝑠, 𝑡 with 𝑟 < 𝑠 < 𝑡 < 𝑅. Let 𝜂 ∈ 𝐶1
𝑐 (𝑄𝑡) be a cutoff function such that

𝜂 ≡ 1 in 𝑄𝑠, |𝐷𝜂| ≤ 2𝑐
𝑡−𝑠 in 𝑄𝑡, and spt(𝜂) ⊂ 𝑄(𝑡+𝑠)∕2. Set 𝑤 ∶= (1 − 𝜂)𝑢+ − 𝑢− ∈ 𝑊 1,𝑝∧𝑞(𝑄𝑡). Since 𝑤+ = (1 − 𝜂)𝑢+, 𝑤− = 𝑢−, and

pt(𝑢 −𝑤) ⊂ spt(𝜂) ⊂ 𝑄(𝑡+𝑠)∕2, we derive from the (1 + 𝜀)-minimizerslity of 𝑢 for 𝐽𝑝,𝑞 in 𝑄𝑡 that
ˆ
𝑄𝑟

|𝐷𝑢+|𝑝 𝑑𝑥 ≤ (1 + 𝜀)
ˆ
𝑄𝑡

|𝐷((1 − 𝜂)𝑢+)|𝑝 𝑑𝑥 + 𝜀
ˆ
𝑄𝑡

|𝐷𝑢−|𝑞 𝑑𝑥.

pplying Hölder’s inequality and Young’s inequality, and then using spt(𝜂) ⊂ 𝑄(𝑡+𝑠)∕2 and |𝐷𝜂| ≤ 𝑐∕(𝑡 − 𝑠), we deduce that
ˆ
𝑄𝑠

|𝐷𝑢+|𝑝 𝑑𝑥 ≤ 𝑐
ˆ
𝑄𝑡

(

(𝑢+)𝑝

(𝑡 − 𝑠)𝑝
+ 𝜀|𝐷𝑢−|𝑞

)

𝑑𝑥 + 𝑐𝜀
ˆ
𝑄𝑡

|𝐷𝑢+|𝑝 𝑑𝑥.

Since this part is by now standard, we omit the details. Note that the last display holds for all 𝑠, 𝑡, 𝑟 < 𝑠 < 𝑡 < 𝑅. Hence, choosing 𝜀
mall enough such that 𝑐𝜀 < 1

2 , we can employ the standard iteration lemma [1, Lemma 6.1] to derive that
ˆ
𝑄𝑟

|𝐷𝑢+|𝑝 𝑑𝑥 ≤ 𝑐
ˆ
𝑄𝑅

(

(𝑢+)𝑝

(𝑅 − 𝑟)𝑝
+ 𝜀|𝐷𝑢−|𝑞

)

𝑑𝑥. (2.2)

Now replace 𝑄𝑅 in the right-hand side with 𝑄(𝑅+𝑟)∕2, and then apply the same argument above to (−𝑢) with 𝑄𝑟 replaced with
𝑄(𝑅+𝑟)∕2; note that (−𝑢) is a local (1 + 𝜀)-minimizer of 𝐽𝑞,𝑝 in place of 𝐽𝑝,𝑞 . Then we may proceed as follows,

ˆ
𝑄𝑟

|𝐷𝑢+|𝑝 𝑑𝑥 ≤ 𝑐
ˆ
𝑄(𝑅+𝑟)∕2

(

(𝑢+)𝑝

(𝑅 − 𝑟)𝑝
+ 𝜀|𝐷𝑢−|𝑞

)

𝑑𝑥

≤ 𝑐
ˆ
𝑄𝑅

(

(𝑢+)𝑝

(𝑅 − 𝑟)𝑝
+ 𝑐𝜀

(𝑢−)𝑞

(𝑅 − 𝑟)𝑞

)

𝑑𝑥 + 𝑐2𝜀2
ˆ
𝑄𝑅

|𝐷𝑢+|𝑝 𝑑𝑥.

Recall that 𝑟, 𝑅 were any numbers between 1 and 2. Hence, taking 𝜀 smaller if necessary such that 𝑐2𝜀2 < 1
2 , we can make use of

he iteration lemma once again to arrive at (2.1). □

emark 2.3. In what follows, we shall always assume that 𝜀 < 𝜀̄, with 𝜀̄ as in Lemma 2.2.

Let us remark that the above Cacciopoli inequality is too weak to bring forth a local 𝐿∞-estimate. Besides, local quasi-minimizers
re not necessarily bounded, even for functionals under standard growth condition (of course, only if 𝑝 ≤ 𝑛). Nevertheless, with the
id of the Cacciopoli inequality above, we shall observe that the blowup rate of local (1 + 𝜀)-minimizers can be made arbitrarily
mall, for small 𝜀, in case 𝑝 ≤ 𝑛.

emma 2.4. Let 𝑢 ∈ 𝑊 1,𝑝∧𝑞(𝑄1) be a local (1 + 𝜀)-minimizer of the functional 𝐽 . Suppose that

‖𝑢+‖𝐿𝑝(𝑄1) ≤ 1, sup
𝑟∈(0,1)

‖𝑢−‖𝐿𝑞 (𝑄𝑟)

1− 𝑝
𝑞 +

𝑝
𝑞

≤ 𝜅, (2.3)
3

𝑟 ‖𝑢 ‖𝐿𝑝(𝑄𝑟)
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for some constant 𝜅 > 0. Then for any 𝛿 > 0, there exists a positive constant 𝜀𝜅,𝛿 , depending only on 𝑛, 𝑝, 𝑞, 𝜅 and 𝛿, such that if 𝜀 ≤ 𝜀𝜅,𝛿 ,
then

sup
𝑟∈(0,1)

1
𝑟𝑛−𝛿𝑝

ˆ
𝑄𝑟

(𝑢+)𝑝 𝑑𝑥 ≤ 𝑐𝜅,𝛿 ,

where 𝑐𝜅,𝛿 depends only on 𝑛, 𝑝, 𝑞, 𝛬, 𝛿 and 𝜅.

Proof. We remark that the conclusion is trivial for 𝑝 > 𝑛, due to the Sobolev embedding theorem. Henceforth, we shall assume that
1 < 𝑝 ≤ 𝑛.

Let 𝜅 and 𝛿 be arbitrary positive constants, and suppose the conclusion of the lemma is false. Then for each 𝑗 = 1, 2,…, one can
find some positive constant 𝜀𝑗 ↘ 0, and a local (1 + 𝜀𝑗 )-minimizer 𝑢𝑗 ∈ 𝑊 1,𝑝∧𝑞(𝑄1) of the functional 𝐽 , such that

‖𝑢+𝑗 ‖𝐿𝑝(𝑄1) ≤ 1, sup
𝑟∈(0,1)

‖𝑢−𝑗 ‖𝐿𝑞 (𝑄𝑟)

𝑟1−
𝑝
𝑞
‖𝑢+𝑗 ‖

𝑝
𝑞
𝐿𝑝(𝑄𝑟)

≤ 𝜅,

but

𝑆𝑗 = sup
𝑟𝑗≤𝑟≤1

1
𝑟𝑛−𝛿𝑝

ˆ
𝑄𝑟

(𝑢+𝑗 )
𝑝 𝑑𝑥 → ∞,

for some constant 𝑟𝑗 ∈ (0, 1). In order to have 𝑆𝑗 → ∞ to be compatible with ‖𝑢+𝑗 ‖𝐿𝑝(𝑄1) = 1, we must have 𝑟𝑗 → 0.
Consider an auxiliary function 𝑣𝑗 ∶ 𝑄𝑟−1𝑗

→ R, defined by

𝑣𝑗 (𝑦) =
𝑢+𝑗 (𝑟𝑗𝑦)

𝑟
− 𝑛

𝑝
𝑗 ‖𝑢+𝑗 ‖𝐿𝑝(𝑄𝑟𝑗 )

−
𝑢−𝑗 (𝑟𝑗𝑦)

𝑟
1− 𝑝

𝑞 −
𝑛
𝑞

𝑗 ‖𝑢+𝑗 ‖
𝑝
𝑞
𝐿𝑝(𝑄𝑟𝑗 )

.

One easily verifies that 𝑣𝑗 ∈ 𝑊 1,𝑝∧𝑞(𝑄𝑟−1𝑗
) is a local (1 + 𝜀𝑗 )-minimizer of the functional 𝐽 , and

sup
1≤𝑅≤𝑟−1𝑗

1
𝑅𝑛−𝛿𝑝

ˆ
𝑄𝑅

(𝑣+𝑗 )
𝑝 𝑑𝑦 = 1, (2.4)

where the supremum is in particular attained at 𝑅 = 1. Furthermore, from the assumption between the growth of (𝑢−𝑗 )
𝑞 and (𝑢+𝑗 )

𝑝

(with the correct scaling shown in the statement above), we obtain from (2.3) and (2.4) thatˆ
𝑄𝑅

(𝑣−𝑗 )
𝑞 𝑑𝑦 = 1

𝑟𝑛+𝑞−𝑝−𝑛𝑗 ‖𝑢+𝑗 ‖
𝑝
𝐿𝑝(𝑄𝑟𝑗 )

ˆ
𝑄𝑅𝑟𝑗

(𝑢−𝑗 )
𝑞 𝑑𝑥

≤
𝜅𝑞(𝑅𝑟𝑗 )𝑞−𝑝‖𝑢+𝑗 ‖

𝑝
𝐿𝑝(𝑄𝑅𝑟𝑗 )

𝑟𝑞−𝑝𝑗 ‖𝑢+𝑗 ‖
𝑝
𝐿𝑝(𝑄𝑟𝑗 )

= 𝜅𝑞𝑅𝑞−𝑝
ˆ
𝑄𝑅

(𝑣+𝑗 )
𝑝 𝑑𝑦

≤ 𝜅𝑞𝑅𝑛+𝑞−(1+𝛿)𝑝,

which holds for all 𝑅 ≥ 1. Therefore, we have

sup
1≤𝑅≤𝑟−1𝑗

1
𝑅𝑛+𝑞−(1+𝛿)𝑝

ˆ
𝑄𝑅

(𝑣−𝑗 )
𝑞 𝑑𝑦 ≤ 𝜅𝑞 . (2.5)

Due to Lemma 2.2, along with (2.4) and (2.5),ˆ
𝑄𝑅

(|𝐷𝑣+𝑗 |
𝑝 + |𝐷𝑣−𝑗 |

𝑞) 𝑑𝑥 ≤ 𝑐𝑅𝑛−(1+𝛿)𝑝, (2.6)

where 𝑐 depends only on 𝑛, 𝑝 and 𝑞, whenever 2𝑅𝑟𝑗 ≤ 1. By the Sobolev embedding theory, there exists a function 𝑣 ∈ 𝑊 1,𝑝∧𝑞
𝑙𝑜𝑐 (R𝑛)

with 𝑣+ ∈ 𝑊 1,𝑝
𝑙𝑜𝑐 (R

𝑛) and 𝑣− ∈ 𝑊 1,𝑞
𝑙𝑜𝑐 (R

𝑛) such that 𝑣+𝑗 → 𝑣+ and 𝑣−𝑗 → 𝑣−𝑗 weakly in 𝑊 1,𝑝
𝑙𝑜𝑐 (R

𝑛) and respectively 𝑊 1,𝑞
𝑙𝑜𝑐 (R

𝑛), after extracting
a subsequence if necessary; we shall denote this subsequence by 𝑣𝑗 , for brevity. The lower semicontinuity of the functional (see [2,
Proposition 2.2]) along with the weak convergence implies that 𝑣 ∈ 𝑊 1,𝑝∧𝑞(𝐵𝑅) is a minimizer of the functional 𝐽 . Since 𝑣+𝑗 → 𝑣+
trongly in 𝐿𝑝(𝐵𝑅) and 𝑣−𝑗 → 𝑣− strongly in 𝐿𝑞(𝐵𝑅), letting 𝑗 → ∞ in (2.4) yields that

sup
𝑅≥1

1
𝑅𝑛−𝛿𝑝

ˆ
𝑄𝑅

(𝑣+)𝑝 𝑑𝑦 = 1. (2.7)

However, since 𝑣 is a minimizer of the functional 𝐽 , by [2, Lemma 3.4], 𝑣+ is a weak 𝑝-subsolution. As a result, the local
𝐿∞-estimates [1, Theorem 7.3] applies to 𝑣+, which along with (2.7) yields

‖𝑣+‖𝐿∞(𝑄𝑅) ≤
𝑐
𝑅𝛿 .

Hence, letting 𝑅 → ∞ yields that 𝑣+ = 0 a.e. in R𝑛. This yields a contradiction against (2.7). □
4
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We also have a growth estimate for the 𝑝th Dirichlet energy of the positive phase. The idea is the same as in [2, Lemma 3.6],
hich is based on some approximation by positive 𝑝-harmonic functions of the positive phase of local quasi-minimizers, in terms
f the size of the negative phase.

emma 2.5. Let 𝑢 ∈ 𝑊 1,𝑝∧𝑞
𝑙𝑜𝑐 (𝑄2) be a local (1 + 𝜀)-minimizer of the functional 𝐽 , and 𝑣 ∈ 𝑢+ + 𝑊 1,𝑝

0 (𝑄1) be the 𝑝-harmonic function.
hen

0 ≤
ˆ
𝑄1

(|𝐷𝑢+|𝑝 − |𝐷𝑣|𝑝) 𝑑𝑥 ≤ 𝑐
ˆ
𝑄2

((𝑢−)𝑞 + 𝜀|𝐷𝑢+|𝑝) 𝑑𝑥,

nd ˆ
𝑄𝑟

|𝐷𝑢+|𝑝 𝑑𝑥 ≤ 𝑐
ˆ
𝑄1

((𝑟𝑛 + 𝜀)|𝐷𝑢+|𝑝 + (𝑢−)𝑞) 𝑑𝑥, ∀𝑟 ∈ (0, 1),

here 𝑐 depends only on 𝑛, 𝑝 and 𝑞.

roof. The proof is essentially the same as that of [2, Lemma 3.6]. The additional term 𝜀
´
𝑄2

|𝐷𝑢+|𝑝 𝑑𝑥 appears due to the different
acciopoli inequality; more exactly, we use (2.2) with 𝑢 replaced with −𝑢. We shall not repeat this argument here. □

The following lemma corresponds to [2, Lemma 3.7]. The key ingredient of the proof there is the Poincaré inequality, and
emma 2.5, which corresponds to [2, Lemma 3.6]. As noted above, Lemma 2.5 differs from [2, Lemma 3.6] by the additional term,´
𝑄2

|𝐷𝑢+|𝑝 𝑑𝑥. However, this does not make any difference in the proof of the lemma below. Thus, we shall skip the proof.

emma 2.6 (Essentially Due to [2, Lemma 3.7]). Let 𝑢 ∈ 𝑊 1,𝑝∧𝑞(𝑄4) be a local 2-minimizer for the functional 𝐽 , satisfying 
𝑄4(𝑢+)𝑝 𝑑𝑥 = 1,

 
𝑄4((𝑢−)𝑞 + |𝐷𝑢+|𝑝) 𝑑𝑥 ≤ 𝜀,

or some 𝜀 > 0. Then

|{𝑢 ≤ 1∕2} ∩𝑄1| ≤ 𝑐𝜀,

here 𝑐 depends only on 𝑛, 𝑝 and 𝑞.

Let us prove Proposition 2.1 with additional assumptions that ‖𝑢−‖𝐿𝑞 (𝑄1) and ‖𝐷𝑢+‖𝐿𝑝(𝑄!) are sufficiently small. The proof follows
he idea of that of [2, Lemma 4.3], with some modifications addressing the lack of subsolution properties of each phase.

emma 2.7. There exists 𝜀 > 0, depending only on 𝑛, 𝑝 and 𝑞, such that if 𝑢 ∈ 𝑊 1,𝑝∧𝑞(𝑄4) is a local (1 + 𝜀)-minimizer of the functional
, satisfying 

𝑄4(𝑢+)𝑝 𝑑𝑥 = 1,
 

𝑄4((𝑢−)𝑞 + |𝐷𝑢+|𝑝) 𝑑𝑥 ≤ 𝜀,

hen 𝑢 > 0 a.e. in 𝑄1.

roof. Let us consider the case 𝑞 < 𝑛 first. Following the proof of [2, Lemma 4.3], we obtain that for 𝜎 ∈ (0, 1), 
𝑄𝑟

(

(𝑢−)𝑞

𝑟𝑞
+ |𝐷𝑢+|𝑝

)

𝑑𝑥 ≤ 𝑐𝜀𝑟−(1−𝜎)𝑝
 

𝑄𝑟(𝑢+)𝑝 𝑑𝑥, ∀𝑟 ∈ (0, 1), (2.8)

where 𝑐 depends only on 𝑛, 𝑝, 𝑞 and 𝜎. The proof is essentially the same, as Lemmas 2.5 and 2.6 replace [2, Lemma 3.5–3.7], which
are the key ingredients of the proof there; moreover Lemma 2.2 replaces the usual Cacciopoli inequality for weak 𝑞-subsolutions.
These lemmas have additional 𝜀-term, which arise from the (1 + 𝜀)-local minimizerslity of 𝑢, but this does not contribute any major
difference from the proof for [2, Lemma 4.3]. Hence, we shall omit the details.

We observe that due to (2.8) (as well as the assumption
ffl
𝑄4(𝑢+)𝑝 𝑑𝑥 = 1), the hypothesis of Lemma 2.4 is satisfied (with

𝜅 = 1 > 𝜀𝑟𝜎𝑝). Thus, choosing 𝜀 ≤ 𝜀𝛿 with 𝜀𝛿 as in Lemma 2.4 with 𝛿 < 𝜎, we deduce 
𝑄𝑟(𝑢+)𝑝 𝑑𝑥 ≤ 𝑐𝑟−𝛿𝑝, ∀𝑟 ∈ (0, 1). (2.9)

nserting (2.9) into (2.8) yields that 
𝑄𝑟|𝐷𝑢+|𝑝 𝑑𝑥 ≤ 𝑐𝜀𝑟−(1−(𝜎−𝛿))𝑝, ∀𝑟 ∈ (0, 1); (2.10)

ow 𝑐 depends only on 𝑛, 𝑝, 𝑞, 𝜎 and 𝛿. Let us remark that this step does not appear for the case of minimizers [2, Lemma 4.3]
ecause for the latter case we can use the subsolution property [2, Lemma 3.4] for 𝑢+ to obtain its local boundedness.

The growth estimate in (2.10) is obtained by choosing 𝜀 sufficiently small. Taking 𝜀 even smaller if necessary, we may repeat
he above argument around any point 𝑧 ∈ 𝑄1, and obtain 

𝑄 (𝑧)|𝐷𝑢+|𝑝 𝑑𝑥 ≤ 𝑐𝜀𝑟−(1−(𝜎−𝛿))𝑝, ∀𝑟 ∈ (0, 1), ∀𝑧 ∈ 𝑄 ,
5
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possibly with a larger constant 𝑐. Therefore, by Morrey’s lemma, we deduce that 𝑢+ ∈ 𝐶0,𝜎−𝛿(𝑄1) and

[𝑢+]𝐶0,𝜎−𝛿 (𝑄1) ≤ 𝑐𝜀
1
𝑝 . (2.11)

Finally, by Lemma 2.6, |{𝑢 ≤ 1
2 } ∩𝑄1| ≤ 𝑐𝜀. Hence, with 𝑐𝜀 ≤ 2−2𝑛−1, we have |{𝑢 > 1

2 } ∩𝑄1| > 0, which now implies via (2.11) that

inf
𝑄1

𝑢+ ≥ 1
2
− 𝑐𝜀

1
𝑝 > 0,

rovided that we choose 𝜀 even smaller. Note that the smallness condition for 𝜀 at this stage can be determined solely by 𝑛, 𝑝 and
𝑞, by for instance selecting 𝜎 = 1

2 and 𝛿 = 1
4 . This finishes the proof for the case 𝑞 < 𝑛.

The case for 𝑞 ≥ 𝑛 can be treated similarly, following the proof of [2, Lemma 4.3]; we omit the details. □

We are ready to prove Proposition 2.1.

roof of Proposition 2.1. Let 𝜀̄ be as in Lemma 2.7, and suppose that 𝑐𝜀 ≤ 𝜀̄. Using |{𝑢 ≤ 1
2 } ∩𝑄1| ≤ 𝜀, we may follow the proof

f [2, Proposition 4.2] to find a constant 𝜌, depending only on 𝑛, 𝑝 and 𝑞, such that
 

𝑄4𝜌

(

(𝑢−)𝑞

𝜌𝑞
+ |𝐷𝑢+|𝑝

)

𝑑𝑥 ≤ 𝑐𝜀𝜌𝑞−𝑝
 

𝑄4𝜌(𝑢+)𝑝 𝑑𝑥. (2.12)

Therefore, defining 𝑢𝜌 ∶ 𝑄4 → R by

𝑢𝜌(𝑥) =
𝑢+(𝜌𝑥)

(4𝜌)−
𝑛
𝑝
‖𝑢+‖𝐿𝑝(𝑄4𝜌)

−
𝑢−(𝜌𝑥)

4−
𝑛
𝑞 𝜌1−

𝑝
𝑞 −

𝑛
𝑞
‖𝑢+‖

𝑝
𝑞
𝐿𝑝(𝑄4𝜌)

,

e see that 𝑢𝜌 ∈ 𝑊 1,𝑝∧𝑞(𝑄4) is a local (1 + 𝜀)-minimizer of the functional 𝐽 , such that
 

𝑄4(𝑢+𝜌 )
𝑝 𝑑𝑥 = 1,

 
𝑄4((𝑢−𝜌 )

𝑞 + |𝐷𝑢+𝜌 |
𝑝) 𝑑𝑥 ≤ 𝑐𝜀.

ince 𝑐𝜀 ≤ 𝜀̄, with 𝜀̄ as in Lemma 2.6, we obtain

𝑢𝜌 > 0 a.e. in 𝑄1.

escaling back, we obtain that 𝑢 > 0 a.e. in 𝑄4𝜌 as desired. □

. Hölder regularity

In this section, we study the universal Hölder regularity of local (1 + 𝜀)-minimizers for the functional 𝐽𝑝,𝑞 , and prove our first
ain result, Theorem 1.2. Let us begin with a lemma that tells us how each phase of local minimizers for the functional 𝐽𝑝,𝑞 should

cale relatively to one another.

emma 3.1. Let 𝑢 ∈ 𝑊 1,𝑝∧𝑞(𝑄1) be a local minimizer of the functional 𝐽 , such that ‖𝑢+‖𝐿𝑝(𝑄1) = 1 and 𝑢(0) = 0. If ‖𝑢+‖𝐿𝑝(𝑄1∕2) ≥ 𝛽 for
ome 𝛽 > 0, then ‖𝑢−‖𝐿𝑞 (𝑄1) ≥ 𝑐𝛽 , for some positive constant 𝑐𝛽 depending only on 𝑛, 𝑝, 𝑞 and 𝛽.

roof. Let 𝛽 be any constant, with 0 < 𝛽 < 1. Assume by way of contradiction that there exists a minimizer 𝑢𝑗 ∈ 𝑊 1,𝑝∧𝑞(𝑄1) of
he functional 𝐽 , such that ‖𝑢+𝑗 ‖𝐿𝑝(𝑄1) = 1, ‖𝑢+𝑗 ‖𝐿𝑝(𝑄1∕2) ≥ 𝛽, 𝑢𝑗 (0) = 0 but ‖𝑢−𝑗 ‖𝐿𝑞 (𝑄1) ≤

1
𝑗 . By [2, Theorem 1.2], 𝑢𝑗 ∈ 𝐶0,𝜎 (𝑄1∕2) and

‖𝑢+𝑗 ‖𝐶0,𝜎 (𝑄1∕2) ≤ 𝑐‖𝑢+𝑗 ‖𝐿𝑝(𝑄1) ≤ 𝑐, and similarly, ‖𝑢−𝑗 ‖𝐶0,𝜎 (𝑄1∕2) ≤
𝑐
𝑗 , where both 𝑐 and 𝜎 depend only on 𝑛, 𝑝 and 𝑞. This together with

the Cacciopoli inequality ( Lemma 2.2 with 𝜀 = 0) implies that 𝑢+𝑗 → 𝑢0 weakly in 𝑊 1,𝑝(𝑄1∕2) and uniformly in 𝑄1∕2, while 𝑢−𝑗 → 0
weakly in 𝑊 1,𝑞(𝑄1∕2) and uniformly in 𝑄1∕2, for some nonnegative function 𝑢0 ∈ 𝑊 1,𝑝(𝑄1∕2). The uniform convergence along with
𝑢𝑗 (0) = 0 implies that 𝑢0(0) = 0. In addition, passing to the limit in ‖𝑢+𝑗 ‖𝐿𝑝(𝑄1∕2) ≥ 𝛽 ensures that ‖𝑢0‖𝐿𝑝(𝑄1∕2) ≥ 𝛽. However, the
weak convergence of the gradient of 𝑢𝑗 implies that 𝑢0 is also a minimizer of the functional 𝐽 . As 𝑢0 ≥ 0 in 𝑄1∕2, 𝑢0 is a 𝑝-harmonic
function, but then it violates the minimizer principle, as ‖𝑢0‖𝐿𝑝(𝑄1∕2) ≥ 𝛽 > 0. □

Lemma 3.2. Let 𝑢 ∈ 𝑊 1,𝑝∧𝑞(𝑄1) be a local minimizer of the functional 𝐽 , such that

‖𝑢+‖𝐿𝑝(𝑄1) ≤ 1, 𝑢(0) = 0, sup
0<𝑟<1

1
𝑟𝑛+𝜎−𝑞

ˆ
𝑄𝑟

(𝑢−)𝑞 𝑑𝑥 ≤ 𝑐−,

for some constants 𝑐− > 0 and 𝜎− ∈ (0, 1]. Then with 𝜎+ = 1 − (1 − 𝜎−)
𝑞
𝑝 ,

sup
0<𝑟<1

1
𝑟𝑛+𝜎+𝑝

ˆ
𝑄𝑟

(𝑢+)𝑝 𝑑𝑥 ≤ 𝑐+,
6

here 𝑐+ depends only on 𝑛, 𝑝, 𝑞, 𝜎− and 𝑐−.
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Proof. Let 𝑐−, 𝜎− be given, and set 𝜎+ as in the statement. Suppose that the conclusion of this lemma is false. Then for each 𝑗 ∈ N,
one can find a minimizer 𝑢𝑗 ∈ 𝑊 1,𝑝∧𝑞(𝑄1) for the functional 𝐽 , such that

ˆ
𝑄1

(𝑢+𝑗 )
𝑝 𝑑𝑥 ≤ 1, 𝑢𝑗 (0) = 0, sup

0<𝑟<1

1
𝑟𝑛+𝜎−𝑞

ˆ
𝑄𝑟

(𝑢−𝑗 )
𝑞 𝑑𝑥 ≤ 𝑐−, (3.1)

ut

𝑆𝑗 ∶= sup
𝑟𝑗
2 ≤𝑟≤1

1
𝑟𝑛+𝜎+𝑝

ˆ
𝑄𝑟

(𝑢+𝑗 )
𝑝 𝑑𝑥 → ∞ (3.2)

where the supremum is achieved at 𝑟 = 1
2 𝑟𝑗 ; since ‖𝑢+𝑗 ‖𝐿𝑝(𝑄1) ≤ 1, we must have 𝑟𝑗 → 0. Define

𝑣𝑗 (𝑦) ∶=
𝑢+𝑗 (𝑟𝑗𝑦)

𝑟
− 𝑛

𝑝
𝑗 ‖𝑢+𝑗 ‖𝐿𝑝(𝑄𝑟𝑗 )

−
𝑢−𝑗 (𝑟𝑗𝑦)

𝑟
1− 𝑝

𝑞 −
𝑛
𝑞

𝑗 ‖𝑢+𝑗 ‖
𝑝
𝑞
𝐿𝑝(𝑄𝑟𝑗 )

.

Then 𝑣𝑗 is a local minimizer of the functional 𝐽 , such that by (3.1) and (3.2), ‖𝑣+𝑗 ‖𝐿𝑝(𝑄1) = 1, ‖𝑣+𝑗 ‖𝐿𝑝(𝑄1∕2) ≥ 2−𝜎+ and 𝑣𝑗 (0) = 0.
Therefore, Lemma 3.1 yields that ‖𝑣−𝑗 ‖𝐿𝑞 (𝑄1) ≥ 𝑐𝜎+ . This implies that

1
𝑟𝑛𝑗

ˆ
𝑄𝑟𝑗

(𝑢−𝑗 )
𝑞 𝑑𝑥 ≥ 𝑐𝑞𝜎+ 𝑟

𝑞−𝑝
𝑗

ˆ
𝑄𝑟𝑗

(𝑢+𝑗 )
𝑝 𝑑𝑥 ≥

𝑆
𝑞
𝑝
𝑗 𝑐𝑞𝜎+
2𝜎+𝑞

𝑟𝑞−𝑝+𝜎+𝑝𝑗 . (3.3)

Putting (3.1) and (3.3) together, and recalling that 𝜎+ = 1 − (1 − 𝜎−)
𝑞
𝑝 ,

𝑐𝑞𝜎− ≥
𝑆

𝑞
𝑝
𝑗 𝑐𝑞𝜎+
2𝜎+𝑞

,

a contradiction to the assumption that 𝑆𝑗 → ∞. □

Thanks to the above lemma, we can prove Theorem 1.2 for minimizers of the functional 𝐽 .

Proof of Theorem 1.2 for minimizers. It suffices to consider the case 𝑝 > 𝑞, andˆ
𝑄1

((𝑢+)𝑝 + (𝑢+)𝑞) 𝑑𝑥 = 1.

By [2, Theorem 1.1], we already know that 𝑢 ∈ 𝐶0,𝜎 (𝑄1) and that [𝑢]𝐶0,𝜎 (𝑄1) ≤ 𝑐, where both 𝑐 > 0 and 𝜎 ∈ (0, 1) depend only on 𝑛,
𝑝 and 𝑞. Hence, if 𝑢(𝑧) = 0 at some 𝑧 ∈ 𝑄1∕2, then

sup
0<𝑟< 1

2

1
𝑟𝑛+𝜎𝑞

ˆ
𝑄𝑟(𝑧)

(𝑢−)𝑞 𝑑𝑥 ≤ 𝑐,

which along with Lemma 3.2 implies that

sup
0<𝑟< 1

2

1
𝑟𝑛+𝑝−𝑞+𝜎𝑞

ˆ
𝑄𝑟(𝑧)

(𝑢+)𝑝 𝑑𝑥 ≤ 𝑐,

where the constant 𝑐 in both displays depends only on 𝑛, 𝑝 and 𝑞. Since 𝑝 > 𝑞, 1 − (1 − 𝜎) 𝑞𝑝 > 𝜎 > 0. Now setting 𝜎− = 𝜎 and
+ = 1− (1−𝜎) 𝑞𝑝 , we immediately verify the relation required between 𝜎+ and 𝜎−. Since the above growth estimates hold uniformly
round all 𝑧 ∈ {𝑢 = 0} ∩ 𝑄1, and since 𝛥𝑝𝑢 = 0 in {𝑢 > 0} ∩ 𝑄1 and 𝛥𝑞𝑢 = 0 in {𝑢 < 0} ∩ 𝑄1, one may arrive at the conclusion via
ome standard manipulation. We skip the detail. □

Given a measurable function 𝑢 ∶ 𝛺 → R, define 𝐷+(𝑢), 𝐷−(𝑢) and 𝛤 (𝑢) by the subset of 𝛺 as follows:

𝐷+(𝑢) = {𝑧 ∈ 𝛺 ∶ 𝑢 > 0 a.e. in some 𝑄𝑟(𝑧) ⊂ 𝛺}, 𝐷−(𝑢) = 𝐷+(−𝑢),

nd

𝛤 (𝑢) = 𝛺 ⧵ (𝐷+(𝑢) ∪𝐷−(𝑢)).

y definition, both 𝐷+(𝑢) and 𝐷−(𝑢) are open and hence 𝛤 (𝑢) is closed (relative to the topology of 𝛺). Moreover, 𝑧 ∈ 𝛤 (𝑢) if and
only if |{𝑢 ≥ 0} ∩𝑄𝑟(𝑧)||{𝑢 ≤ 0} ∩𝑄𝑟(𝑧)| > 0 for any cube 𝑄𝑟(𝑧) ⊂ 𝛺.

With Proposition 2.1 at hand, we shall obtain, as a contraposition along with Lemma 3.4 below, that if a local (1 + 𝜀)-minimizer
vanishes (in an appropriate Lebesgue sense) at certain point in the interior, then each phase exhibits certain universal Hölder growth.
More exactly, we assert the following.

Proposition 3.3. There exists a constant 𝜎̄ ∈ (0, 1), depending only on 𝑛, 𝑝, and 𝑞, for which the following holds: for each 𝜎 ∈ (0, 𝜎̄), one
an find a constant 𝜀 ∈ (0, 1), depending only on 𝑛, 𝑝, 𝑞, and 𝜎, such that if 𝑢 ∈ 𝑊 1,𝑝∧𝑞(𝑄 ) is a local (1 + 𝜀 )-minimizer of the functional
7

𝜎 1 𝜎
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𝐽 satisfyingˆ
𝑄1

((𝑢+)𝑝 + (𝑢−)𝑞) 𝑑𝑥 ≤ 1, 0 ∈ 𝛤 (𝑢),

then with 𝜎+ = 𝜎 and 𝜎− = 1 − (1 − 𝜎) 𝑝𝑞 , one has

sup
0<𝑟<1

[

1
𝑟𝜎+𝑝

 
𝑄𝑟(𝑢+)𝑝 𝑑𝑥 + 1

𝑟𝜎−𝑞

 
𝑄𝑟(𝑢−)𝑞 𝑑𝑥

]

≤ 𝑐𝜎 ,

where 𝑐𝜎 depends only on 𝑛, 𝑝, 𝑞, and 𝜎.

The following lemma will play a key role (together with Proposition 2.1).

Lemma 3.4. There exists a constant 𝜎̄ ∈ (0, 1), depending only on 𝑛, 𝑝, and 𝑞, for which the following holds: for each 𝜎 ∈ (0, 𝜎̄) and each
𝜏 ∈ (0, 12 ], one can find 𝜀𝜎,𝜏 ∈ (0, 1), depending only on 𝑛, 𝑝, 𝑞, 𝜎, and 𝜏, such that if 𝑢 ∈ 𝑊 1,𝑝∧𝑞(𝑄1) is a local (1 + 𝜀𝜎+ ,𝜏 )-minimizer of the
functional 𝐽 satisfying,ˆ

𝑄1

((𝑢+)𝑝 + (𝑢−)𝑞) 𝑑𝑥 = 1,
|𝐸+(𝑢,𝑄𝑟)|

|𝑄𝑟|
∧
|𝐸−(𝑢,𝑄𝑟)|

|𝑄𝑟|
≥ 𝜏, (3.4)

for some 𝑟 ∈ (0, 1), where

𝐸+(𝑢,𝑄𝑟) =
{

𝑢 ≤ 1
2
𝑟𝛬(𝑢,𝑄𝑟)

1
𝑝

}

,

𝐸−(𝑢,𝑄𝑟) =
{

𝑢 ≥ −1
2
𝑟𝛬(𝑢,𝑄𝑟)

1
𝑞

}

,

𝛬(𝑢,𝑄𝑟) =
 

𝑄𝑟

(

(𝑢+)𝑝

𝑟𝑝
+

(𝑢−)𝑞

𝑟𝑞

)

𝑑𝑥,

hen with 𝜎+ = 𝜎 and 𝜎− = 1 − (1 − 𝜎) 𝑝𝑞 , one has

sup
𝑟≤𝜌≤1

[

1
𝜌𝜎+𝑝

 
𝑄𝜌(𝑢+)𝑝 𝑑𝑥 + 1

𝜌𝜎−𝑞

 
𝑄𝜌(𝑢−)𝑞 𝑑𝑥

]

≤ 𝑐𝜎,𝜏 ,

where 𝑐𝜎,𝜏 depends on the same parameters that determine 𝜀𝜎,𝜏 .

Proof. Let 𝜎̄ be determined later, and fix 𝜏 ∈ (0, 12 ], 𝜎 ∈ (0, 𝜎̄), and set 𝜎± as in the statement. Suppose by way of contradiction that
for each 𝑗 ∈ N, we can find some positive constant 𝜀𝑗 → 0, some local (1 + 𝜀𝑗 )-minimizer 𝑢𝑗 ∈ 𝑊 1,𝑝∧𝑞(𝑄1) of the functional 𝐽 , and a
radius 𝑟𝑗 ∈ (0, 1) such that

ˆ
𝑄1

((𝑢+𝑗 )
𝑝 + (𝑢−𝑗 )

𝑞) 𝑑𝑥 ≤ 1,
|𝐸+(𝑢𝑗 , 𝑄𝑟𝑗 )|

|𝑄𝑟𝑗 |
∧
|𝐸−(𝑢𝑗 , 𝑄𝑟𝑗 )|

|𝑄𝑟𝑗 |
≥ 𝜏, (3.5)

ut

𝑆𝑗 = sup
𝑟𝑗≤𝑟≤1

(

1
𝑟𝜎+𝑝

 
𝑄𝑟(𝑢+𝑗 )

𝑝 𝑑𝑥 + 1
𝑟𝜎−𝑞

 
𝑄𝑟(𝑢−𝑗 )

𝑞 𝑑𝑥
)

→ ∞, (3.6)

with the supremum achieved at level 𝑟 = 𝑟𝑗 . In order for (3.6) to be compatible with the first equality in (3.5), we must have 𝑟𝑗 → 0.
Define 𝑣𝑗 ∶ 𝑄𝑟−1𝑗

→ R by

𝑣𝑗 (𝑦) =
𝑢+𝑗 (𝑟𝑗𝑦)

𝑆
1
𝑝
𝑗 𝑟𝜎+𝑗

−
𝑢−𝑗 (𝑟𝑗𝑦)

𝑆
1
𝑞
𝑗 𝑟𝜎−𝑗

.

By the way that it is rescaled, 𝑣𝑗 is a local (1+𝜀𝑗 )-minimizer of the functional 𝐽 in 𝑄1∕𝑟𝑗 . Moreover, by (3.5) along with the relation
𝑆𝑗𝑟

𝜎+𝑝
𝑗 = 𝛬𝑗𝑟

𝑝
𝑗 and 𝑆𝑗𝑟

𝜎−𝑞
𝑗 = 𝛬𝑗𝑟

𝑞
𝑗 , where 𝛬𝑗 = 𝛬(𝑢𝑗 , 𝑄𝑟𝑗 ),

|

|

|

|

{

|𝑣𝑗 | ≤
1
2

}

∩𝑄1
|

|

|

|

≥ 𝜏, (3.7)

nd by (3.6),

sup
1≤𝑅≤𝑟−1𝑗

[

1
𝑅𝜎+𝑝

 
𝑄𝑅(𝑣+𝑗 )

𝑝 𝑑𝑦 + 1
𝑅𝜎−𝑞

 
𝑄𝑅(𝑣−𝑗 )

𝑞 𝑑𝑦
]

= 1, (3.8)

here the supremum is achieved at 𝑅 = 1.
Thanks to (3.7) and (3.8), one can argue analogously in the proof of Lemma 2.4 to obtain a minimizer 𝑣 ∈ 𝑊 1,𝑝∧𝑞

𝑙𝑜𝑐 (R𝑛) of the
unctional 𝐽 , with 𝑣+ ∈ 𝑊 1,𝑝

𝑙𝑜𝑐 (R
𝑛) and 𝑣− ∈ 𝑊 1,𝑞

𝑙𝑜𝑐 (R
𝑛) such that

|

|

{

|𝑣| ≤ 1} ∩𝑄
|

| ≥ 𝜏, (3.9)
8
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sup
𝑅≥1

[

1
𝑅𝜎+𝑝

 
𝑄𝑅(𝑣+)𝑝 𝑑𝑦 +

1
𝑅𝜎−𝑞

 
𝑄𝑅(𝑣−)𝑞 𝑑𝑦

]

= 1, (3.10)

where the supremum is achieved at 𝑅 = 1. In particular, the latter observation indicates that 𝑣 is nontrivial.
At this point, we choose 𝜎̄ as the positive exponent for Theorem 1.2 for minimizers; let us remind the readers that the statement

for minimizers is proved right after the proof of Lemma 3.2. Set 𝜎̄+ ∶= 𝜎̄ and 𝜎̄− ∶= 1 − (1 − 𝜎̄) 𝑞𝑝 . As 𝑣 is a local minimizer of the
functional 𝐽 in 𝑄2𝑅, 𝑣+ ∈ 𝐶0,𝜎̄+ (𝑄𝑅), 𝑣− ∈ 𝐶0,𝜎̄− (𝑄𝑅) and then by (3.10), we derive that

[𝑣+]𝑝
𝐶0,𝜎̄+ (𝑄𝑅)

+ [𝑣−]𝑞
𝐶0,𝜎̄− (𝑄𝑅)

≤ 𝑐
𝑅(𝜎̄+−𝜎+)𝑝

+ 𝑐
𝑅(𝜎̄−−𝜎−)𝑞

,

for any 𝑅 > 1. As 𝜎+ = 𝜎 < 𝜎̄+ and 𝜎− = 1 − (1 − 𝜎) 𝑞𝑝 < 𝜎̄−, sending 𝑅 → ∞ implies that both 𝑣+ and 𝑣− must be constant. Then by
3.9), |𝑣| ≤ 1

2 everywhere in 𝑄1, whence
´
𝑄1

((𝑣+)𝑝 + (𝑣+)𝑞) 𝑑𝑥 ≤ 2−𝑝 +2−𝑞 < 1, a contradiction to the observation that the supremum
n (3.10) is attained at 𝑅 = 1. □

We are ready to prove Proposition 3.3

roof of Proposition 3.3. As 0 ∈ 𝛤 (𝑢), there are three cases to consider: (i) |{𝑢 > 0} ∩𝑄𝜌||{𝑢 < 0} ∩𝑄𝜌| > 0 for all 𝜌 ∈ (0, 1), (ii)
𝑢 ≥ 0 a.e. in 𝑄𝜌 for some small 𝜌 > 0, and (iii) 𝑢 ≤ 0 a.e. in 𝑄𝜌 for some small 𝜌 > 0. The last two cases are symmetric, and in those
ases 𝑢 becomes a local (1 + 𝜀)-minimizer for the functional 𝐽𝑝,𝑝, or 𝐽𝑞,𝑞 depending on its sign. Thus, the growth estimate follows

easily, once we establish the estimate for the first case. We leave out this part as an exercise for the reader.
Henceforth, let us assume that the first case holds. Let (𝜀, 𝜏, 𝜇) be the triple of constants from Proposition 2.1 that are determined

solely by 𝑛, 𝑝 and 𝑞. Fix any 𝑟 ∈ (0, 1). Since |{𝑢 > 0} ∩𝑄𝜇𝑟| ⋅ |{𝑢 < 0} ∩𝑄𝜇𝑟| > 0, as a contraposition (applied to both 𝑢 and −𝑢, after
suitable rescaling), we obtain that

|𝐸+(𝑢,𝑄𝑟)|
|𝑄𝑟|

∧
|𝐸−(𝑢,𝑄𝑟)|

|𝑄𝑟|
≥ 𝜏, (3.11)

ith 𝐸+(𝑢,𝑄𝑟) and 𝐸−(𝑢,𝑄𝑟) defined as in Lemma 3.4. As 𝜏 being a constant depending only on 𝑛, 𝑝 and 𝑞, the conclusion of this
roposition follows immediately from Lemma 3.4; this final step introduces another condition on the size of 𝜀, which through the
ependence of 𝜏 would be determined again solely by 𝑛, 𝑝, 𝑞, and 𝜎. □

. Almost Lipschitz regularity

Here we prove almost Lipschitz regularity of almost minimizers to 𝐽 = 𝐽𝑝,𝑞 , when 𝑝 and 𝑞 are close. Our proof is based on the
ompactness argument. The basic ingredient is the universal Hölder estimate for local minimizers of the functional 𝐽𝑝,𝑞 , see [2,
heorem 1.2]. Although it is not specified in the statement, one can observe from the higher integrability of each phase that the
ölder regularity is uniform when 𝑝 (or 𝑞) is close to 𝑛. We record this fact as a lemma below, as the proof of [2, Theorem 1.2]
akes use of the local boundedness and the Harnack inequality for weak 𝑝-harmonic functions, and the constants involved in the

atter assertions may vary as 𝑝 → 𝑛.

emma 4.1. Let 𝑢 ∈ 𝑊 1,𝑝+∧𝑝− (𝑄2) be a local minimizer of 𝐽𝑝+ ,𝑝− . There exist 𝜎̄ ∈ (0, 1), 𝑐 > 1 and 𝛿 > 0, all depending only on 𝑛, such
hat if |𝑛 − 𝑝±| ≤ 𝛿, then

[𝑢±]𝐶0,𝜎̄ (𝑄1) ≤ 𝑐‖𝑢±‖𝐿𝑝± (𝑄2).

Proof. Since 𝑢 is a local minimizer (instead of (1+𝜀)-minimizer) of 𝐽𝑝+ ,𝑝− , 𝑢± is a weak 𝑝±-subsolution in 𝑄2, according to [2, Lemma
3.4]. Hence, by [7, Corollary 4.2], there exist constants 𝛿 > 0 and 𝛾̄ ∈ (0, 1), both depending only on 𝑛, such that if |𝑝± − 𝑛| < 𝛿,
then 𝑢± ∈ 𝑊 1,𝑝±+𝛿(𝑄1) ⊂ 𝑊 1,𝑛+𝛾̄𝛿(𝑄1). Now setting 𝜎̄ ∶= 1 − 𝑛

𝑛+𝛾̄𝛿 , it follows from the Sobolev embedding, the higher integrability
and the Cacciopoli inequality for weak 𝑝±-subsolutions that

𝐶0,𝜎̄ (𝑄1) ≤ 𝑐1(𝑛)
[ˆ

𝑄1

|𝐷𝑢±|𝑛+𝛾̄𝛿 𝑑𝑥
]

1
𝑛+𝛾̄𝛿

≤ 𝑐1(𝑛)𝑐2(𝑛, 𝑝±)

[ˆ
𝑄3∕2

|𝐷𝑢±|𝑝± 𝑑𝑥

]
1
𝑝±

≤ 𝑐1(𝑛)𝑐2(𝑛, 𝑝±)𝑐3(𝑛, 𝑝±)
[ˆ

𝑄2

(𝑢±)𝑝± 𝑑𝑥
]

1
𝑝±

.

Note that 𝑐2(𝑛, 𝑝±), and 𝑐3(𝑛, 𝑝±) are constants from the higher integrability and respectively the Cacciopoli inequality, and these are
all uniformly bounded by a constant 𝑐(𝑛), as 𝑝 → 𝑝±. Hence, our proof is finished. □
9

Let us first verify the uniform growth of order 𝜎 at free boundary points for minimizers. We prove it by compactness.
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Lemma 4.2. Let 𝑢 ∈ 𝑊 1,𝑝∧𝑞(𝑄1) be a local minimizer of 𝐽𝑝,𝑞 such thatˆ
𝑄1

((𝑢+)𝑝 + (𝑢−)𝑞) 𝑑𝑥 ≤ 1, 𝑢(0) = 0. (4.1)

hen for any 𝜎 ∈ (0, 1), there exists 𝛿 > 0, depending only on 𝑛, 𝑝, and 𝜎, such that if |𝑝 − 𝑞| < 𝛿, then with 𝜎+ = 𝜎 and 𝜎− = 1− (1 − 𝜎) 𝑝𝑞 ,

1
𝑟𝑛+𝜎+𝑝

ˆ
𝑄𝑟

(𝑢+)𝑝 𝑑𝑥 + 1
𝑟𝑛+𝜎−𝑞

ˆ
𝑄𝑟

(𝑢−)𝑞 𝑑𝑥 ≤ 𝑐, ∀𝑟 ∈ (0, 1),

here 𝑐 > 1 depends only on 𝑛, 𝑝, and 𝜎.

roof. Let 𝜎 > 0 and 𝑝 ∈ (1,∞) be given. Suppose that the conclusion of this lemma does not hold. Then for each 𝑗 = 1, 2,…, there
ust exist an exponent 𝑞𝑗 > 1 with |𝑞𝑗 − 𝑝| ↘ 0, a local minimizer 𝑢𝑗 ∈ 𝑊 1,𝑝∧𝑞𝑗 (𝑄1) of the functional 𝐽𝑝,𝑞𝑗 , and a scale 𝑟𝑗 ∈ (0, 1),

such thatˆ
𝑄1

((𝑢+𝑗 )
𝑝 + (𝑢−𝑗 )

𝑞𝑗 ) 𝑑𝑥 ≤ 1, 𝑢𝑗 (0) = 0, (4.2)

but with 𝜎+ = 𝜎 and 𝜎𝑗,− = 1 − (1 − 𝜎) 𝑝
𝑞𝑗

→ 𝜎,

𝑆𝑗 ∶= sup
𝑟𝑗≤𝑟≤1

[

1
𝑟𝜎+𝑝

 
𝑄𝑟 𝑑𝑥 + 1

𝑟𝜎𝑗,−𝑞𝑗

 
𝑄𝑟(𝑢−𝑗 )

𝑞𝑗
]

𝑑𝑥 ↗ ∞. (4.3)

To have the first inequality in (4.2) and (4.3) to be compatible, we must have 𝑟𝑗 ↘ 0 up to a subsequence. As in the proof of
Lemma 3.4, we consider the rescaling

𝑣𝑗 (𝑦) ∶=
𝑢+𝑗 (𝑟𝑗𝑦)

𝑆
1
𝑝
𝑗 𝑟𝜎+𝑗

−
𝑢−𝑗 (𝑟𝑗𝑦)

𝑆
1
𝑞𝑗
𝑗 𝑟

𝜎𝑗,−
𝑗

.

hen 𝑣𝑗 is a minimizer of 𝐽𝑝,𝑞𝑗 in 𝑄1∕𝑟𝑗 and that

sup
1≤𝑅≤ 1

𝑟𝑗

[

1
𝑅𝜎+𝑝

 
𝑄𝑅(𝑣+𝑗 )

𝑝 𝑑𝑥 + 1
𝑅𝜎𝑗,−𝑞𝑗

 
𝑄𝑅(𝑣−𝑗 )

𝑞𝑗 𝑑𝑥
]

= 1. (4.4)

Then by [2, Theorem 1.2], we have

sup
𝑗

‖𝑣𝑗‖𝐶0,𝜎̄ (𝑄𝑅) < ∞, (4.5)

where both 𝑐 > 1 and 𝜎̄ ∈ (0, 1) depend only on 𝑛 and 𝑝; see Lemma 4.1 for the stability of 𝜎̄ and 𝑐 for the case 𝑝 = 𝑛. Moreover,
by [2, Lemma 3.4], 𝑣+𝑗 and 𝑣−𝑗 are respectively, weak 𝑝- and 𝑞𝑗 -subsolution, so the higher integrability [7, Theorem 4.1] applies.
Utilizing |𝑞𝑗 − 𝑝| ↘ 0, there exists 𝜂 > 0, depending only on 𝑛 and 𝑝, such that

sup
𝑗

 
𝑄𝑅|𝐷𝑣𝑗 |

𝑝+𝜂 𝑑𝑥 < ∞. (4.6)

Also observe from (4.2) that

𝑣𝑗 (0) = 0. (4.7)

By (4.5) and (4.6), we can extract a subsequence of {𝑣𝑗}∞𝑗=1 along which 𝑣𝑗 → 𝑣 weakly in 𝑊 1,𝑝+𝜂
𝑙𝑜𝑐 (R𝑛) and locally uniformly in

R𝑛, for some 𝑣 ∈ 𝑊 1,𝑝+𝜂
𝑙𝑜𝑐 ∩ 𝐶0,𝜎

𝑙𝑜𝑐 (R
𝑛). Let us continue to denote this subsequence by {𝑣𝑗}∞𝑗=1. The uniform convergence along with

(4.7) implies that

𝑣(0) = 0. (4.8)

We claim that 𝑣 is a (weak) 𝑝-harmonic function in R𝑛.
For any large 𝑗, we have 𝑞𝑗 ∈ (𝑝 − 𝜂, 𝑝 + 𝜂). By (4.6), there exists a function 𝑣 ∈ 𝑊 1,𝑝+𝜂

𝑙𝑜𝑐 (R𝑛) such that 𝐷𝑣𝑗 → 𝐷𝑣 weakly in
𝐿𝑝+𝜂
𝑙𝑜𝑐 (R𝑛;R𝑛) and 𝑣𝑗 → 𝑣 strongly in 𝐿𝑝+𝜂

𝑙𝑜𝑐 (R𝑛). Now let 𝑅 > 0 be given and 𝑤 ∈ 𝑊 1,𝑝+𝜂
𝑙𝑜𝑐 (R𝑛) be given such spt(𝑣 −𝑤) ⊂ 𝐵𝑅. Then by

he Fubini theorem, we can find 𝛿𝑗 → 0 and 𝜅 ∈ (1, 2) such that
ˆ
𝜕𝐵𝜅𝑅

(

|𝐷𝑣𝑗 |
𝑝+𝜂 + |𝐷𝑤|

𝑝+𝜂 +
|𝑣𝑗 −𝑤|

𝑝+𝜂

𝛿𝑝+𝜂𝑗

)

𝑑𝜎 ≤ 𝑐.

herefore, we can find an auxiliary function 𝜑𝑗 ∈ 𝑊 1,𝑝+𝜂
𝑙𝑜𝑐 (R𝑛) (c.f. [8, Lemma 1], which actually covers vectorial maps and yields

stronger estimate than what we use here) with a small exponent 𝛼 ∈ (0, 1), such that

𝜑𝑗 (𝑥) =

{

𝑣𝑗 (𝑥) if |𝑥| ≥ 𝜅𝑅
𝛼 −1 𝛼
10

𝑤((1 − 𝛿𝑗 ) 𝑥) if |𝑥| ≤ (1 − 𝛿𝑗 )𝜅𝑅,
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and 𝜑𝑗 is defined in the ring 𝐵𝜅𝑅 ⧵ 𝐵(1−𝛿𝛼𝑗 )𝜅𝑅
in a way that

ˆ
𝐵𝜅𝑅⧵𝐵(1−𝛿𝛼𝑗 )𝜅𝑅

|𝐷𝜑𝑗 |
𝑝+𝜂 𝑑𝑥 ≤ 𝑐𝛿𝛼𝑗 → 0;

ere 𝑐 in the last displayed formula may depend on 𝜅 and 𝑅 but not on 𝑗. Then since |𝑝 − 𝑞𝑗 | <
1
2 𝜂 for all large 𝑗, denoting 𝑝+𝑗 = 𝑝

nd 𝑝−𝑗 = 𝑞𝑗 , it follows from the last displayed formula and the Hölder inequality that
ˆ
𝐵𝜅𝑅⧵𝐵(1−𝛿𝛼𝑗 )𝜅𝑅

|𝐷𝜑±
𝑗 |

𝑝±𝑗 𝑑𝑥 ≤ 𝑐𝛿
𝛼

𝑝+𝜂 𝑝
±
𝑗

𝑗 → 0.

Therefore, we obtain

𝐽𝑝,𝑞𝑗 (𝜑𝑗 , 𝐵𝜅𝑅) = (1 − 𝛿𝛼𝑗 )
𝑛𝐽𝑝,𝑞𝑗 (𝑤,𝐵𝜅𝑅) + 𝑜(1) ≤

ˆ
𝐵𝜅𝑅

|𝐷𝑤|

𝑝 𝑑𝑥 + 𝑜(1).

This, combined with the minimality of 𝑣𝑗 and the lower semicontinuity of the functional (noting that since 𝐽𝑝,𝑞𝑗 (𝜙) ≤ lim inf𝑘→∞ 𝐽𝑝,𝑞𝑗
(𝜙𝑘), for each 𝑗 fixed, whenever 𝜙𝑘 → 𝜙 weakly in 𝑊 1,𝑝+𝜂 , and 𝐽𝑝,𝑞𝑗 (𝜙) → 𝐽𝑝,𝑝(𝜙), we have 𝐽𝑝,𝑝(𝜙) ≤ lim inf 𝑗→∞ 𝐽𝑝,𝑞𝑗 (𝜙𝑗 ) as 𝑗 → ∞ by
he diagonal argument, whenever 𝜙𝑗 → 𝜙 weakly in 𝑊 1,𝑝+𝜂) we haveˆ

𝐵𝜅𝑅

|𝐷𝑣|𝑝 𝑑𝑥 ≤ lim inf
𝑗→∞

𝐽𝑝,𝑞𝑗 (𝑣𝑗 , 𝐵𝜅𝑅)

≤ lim inf
𝑗→∞

𝐽𝑝,𝑞𝑗 (𝜑𝑗 , 𝐵𝜅𝑅) ≤
ˆ
𝐵𝜅𝑅

|𝐷𝑤|

𝑝 𝑑𝑥.

specially, as spt(𝑣 −𝑤) ⋐ 𝐵𝑅 and 𝜅 > 1, we have 𝑣 = 𝑤 in 𝐵𝜅𝑅 ⧵ 𝐵𝑅, soˆ
𝐵𝑅

|𝐷𝑣|𝑝 𝑑𝑥 ≤
ˆ
𝐵𝑅

|𝐷𝑤|

𝑝 𝑑𝑥.

ince 𝑅 > 0 was arbitrary, and also the competitor 𝑤 ∈ 𝑊 1,𝑝
𝑙𝑜𝑐 (R

𝑛), we conclude that 𝑣 is a local minimizer of the 𝑝-Dirichlet energy
n R𝑛, i.e., 𝑣 is a weak 𝑝-harmonic function in R𝑛. This verifies our claim.

Now letting 𝑘 → ∞ in (4.4) and using 𝑞𝑗 → 𝑝, we obtain

sup
𝑅≥1

1
𝑅𝜎𝑝

 
𝑄𝑅|𝑣|

𝑝 𝑑𝑥 = 1. (4.9)

By the interior Lipschitz estimate for 𝑝-harmonic functions,

[𝑣]𝐶0,1(𝑄𝑅) ≤
𝑐

𝑅1−𝜎
, (4.10)

or some 𝑐 independent of 𝑅. Taking 𝑅 → ∞ in (4.10), we derive that 𝑣 is constant in R𝑛, which together with (4.8) implies 𝑣 ≡ 0.
his is yields a contradiction against (4.9), and the proof is finished. □

Next we extend the above lemma to local (1 + 𝜀)-minimizers.

emma 4.3. For any 𝜎 ∈ (0, 1), there exists 𝜀, 𝛿 > 0, depending only on 𝑛, 𝑝, and 𝜎, such that for any 𝑞 ∈ (1,∞) with |𝑝 − 𝑞| < 𝛿, and
ny local (1 + 𝜀)-minimizer 𝑢 ∈ 𝑊 1,𝑝∧𝑞(𝑄1) satisfying (4.1), one has, with 𝜎+ = 𝜎 and 𝜎− = 1 − (1 − 𝜎) 𝑝𝑞 , that

1
𝑟𝑛+𝜎+𝑝

ˆ
𝑄𝑟

(𝑢+)𝑝 𝑑𝑥 + 1
𝑟𝑛+𝜎−𝑞

ˆ
𝑄𝑟

(𝑢−)𝑞 𝑑𝑥 ≤ 𝑐, ∀𝑟 ∈ (0, 1),

here 𝑐 > 1 depends only on 𝑛, 𝑝, and 𝜎.

roof. As already observed in the proof of Proposition 3.3, the assumption 𝑢(0) = 0 implies (3.11) for every 𝑟 ∈ (0, 1). Hence, the
assumption (4.1) implies (3.4). The rest of the proof is the same with that of Lemma 3.4. More exactly, given 𝜎 ∈ (0, 1) and 𝑝 > 1,
we first choose 𝛿 > 0 sufficiently small such that Lemma 4.2 holds with 1+𝜎

2 in place of 𝜎, for all local minimizers for functional 𝐽𝑝,𝑞
for any 𝑞 ∈ (1,∞) with |𝑝 − 𝑞| < 𝛿. Then we can take 𝜀 > 0 small enough such that Lemma 3.4 holds with 𝜏 as in (3.11), 𝜎+ = 𝜎 and
𝜎− = 1 − (1 − 𝜎) 𝑝𝑞 , 𝜎̄+ = 1+𝜎

2 > 𝜎 = 𝜎−, and 𝜎̄− = 1 − ( 1−𝜎2 ) 𝑝𝑞 > 1 − (1 − 𝜎) 𝑝𝑞 = 𝜎−. We skip the details. □

We are ready to prove the almost Lipschitz regularity for almost minimizers, when |𝑝 − 𝑞| ≪ 1.

roof of Theorem 1.3. With the same (and simpler) compactness argument, we can also prove that local (1 + 𝜀)-minimizers for
𝑝,𝑝(𝑤) ≡

´
|𝐷𝑤|

𝑝 𝑑𝑥 is of class 𝐶0,𝜎 , for any 𝜎 ∈ (0, 1) and every 𝜀 ∈ (0, 𝜀𝜎 ), since 𝑝-harmonic functions are of class 𝐶1,𝛼 ⊂ 𝐶0,1.
oreover, we can obtain a uniform 𝐶0,𝜎 -estimates, with this compactness argument, and the smallness constant 𝜀𝜎 depends only on

, 𝑝, and 𝜎. Thus, the passage from Lemma 4.3 to Theorem 1.3 is standard. We shall not present the obvious details here. □
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