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A way to create well-functioning computer systems is to automate error detection in the
systems. Automated techniques for finding errors, such as testing and formal verification,
requires a model of the system. The technique for constructing deterministic finite automata
(DFA) models, without access to the source code, is called regular inference. The technique
provides sequences of input, so called membership queries, to a system, observes the
responses, and infers a model from the input and responses.

This thesis presents work to adapt regular inference to a certain kind of systems:
communication protocol entities. Such entities interact by sending and receiving messages
consisting of a message type and a number of parameters, each of which potentially can take
on a large number of values. This may cause a model of a communication protocol entity
inferred by regular inference, to be very large and take a long time to infer. Since regular
inference creates a model from the observed behavior of a communication protocol entity, the
model may be very different from a designer's model of the system's source code.

This thesis presents adaptations of regular inference to infer more compact models and use
less membership queries. The first contribution is a survey over three algorithms for regular
inference. We present their similarities and their differences in terms of the required number
of membership queries. The second contribution is an investigation on how many membership
queries a common regular inference algorithm, the L* algorithm by Angluin, requires for
randomly generated DFAs and randomly generated DFAs with a structure common for
communication protocol entities. In comparison, the DFAs with a structure common for
communication protocol entities require more membership queries. The third contribution is
an adaptation of regular inference to communication protocol entities which behavior
foremost are affected by the message types. The adapted algorithm avoids asking membership
queries containing messages with parameter values that results in already observed responses.
The fourth contribution is an approach for regular inference of communication protocol
entities which communicate with messages containing parameter values from very large
ranges. The approach infers compact models, and uses parameter values taken from a small
portion of their ranges in membership queries. The fifth contribution is an approach to infer
compact models of communication protocol entities which have a similar partitioning of an
entity's behavior into control states as in a designer's model of the protocol.
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Summary in Swedish

Reguljdr inferens av kommunikationsprotokollenheter

I var vardag hinder det ofta att vi stdter pa program som vi maste kunna
hantera. Du anvinder ett program nir du t.ex. ringer pd din mobiltelefon,
bokar en flygbiljett genom ett bokningssystem, eller slar pa din minirdknare.
Program dr till for att underldtta var vardag. Tyvérr hdnder det att de slutar
fungera eller inte fungerar som de ar tdnkta att gora. Orsaken till detta &r ofta
att programmeraren av systemet har skrivit ett felaktigt program. Ett fel kan
t.ex. uppsta nir du lyckas boka den sista lediga flygbiljetten pa ett flyg via ett
bokningssystem, men vid samma tidpunkt lyckas en annan person boka exakt
samma biljett; bokningssystemet har ddrmed inte hanterat tva bokningar ko-
rrekt. Naturligtvis ligger det bade i ditt och programmerarens intresse att fel
som dessa uppticks och rittas till innan systemet sétts i bruk. Den hér avhan-
dlingen syftar till att underlétta arbetet med att hitta fel i program, genom att
automatisera en del av arbetet.

Det finns olika tillvigagangssitt for att hitta fel 1 system. Ett enkelt sétt dr
att en programmerare soker igenom programkoden. Detta kan vara ett effektivt
sétt om det dr en liten méngd programkod. Dessvirre dr det svart att anvinda
samma tillvigagéngssitt ndr programmet dr storre. Testning dr en alternativ
metod. I alla tekniker som &r designade for att hitta fel i system, maste det
atminstone finnas ndgon idé om vad som ér ett korrekt beteende hos ett system.
Testning maste ha tillgang till en modell av hur systemet ska fungera, med
andra ord en beskrivning av vad som &r ett korrekt beteende hos systemet.
Metoden jamfor modellen med hur systemet verkligen fungerar genom att
skapa en stor mingd sa kallade testfall: input till systemet och hur systemet
forvéintas svara. Om det svarar som forvéntat, sa dr vi ndjda, annars har vi
hittat ett fel i systemet som maste atgérdas.

Att automatisera testningen av ett system innebér att vi méste automatiskt
kunna generera en modell och testfall. Det finns tekniker for att gora testing
automatiserad givet en modell. Tyvérr kan det ofta vara fallet att det inte finns
en tillrackligt noggrann modell, eller nagon modell 6verhuvudtaget. I dessa
situationer kan en teknik kallad reguljér inferens anviandas for att automatiskt
skapa modeller av system. Reguljar inferens skapar modeller utifran sekvenser
av input till system och observationer av hur de svarar. Storleken pa modellen
och den tid det tar att skapa den véxer desto storre system och fler input sys-
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temet kan ta emot. Detta beror pa att tekniken maste observera fler sekvenser
av input och svar hos systemet for att kunna skapa en korrekt modell.

Vi har anpassat tekniken reguljir inferens till att skapa modeller av kom-
munikationsprotokoll. Ett kommunikationsprotokoll bestar av regler for for-
matet och sdndningen av data. Enheter som anvénder sig av kommunikation-
sprotokollet interagerar med varandra genom att skicka och ta emot medde-
landen som innehaller data. Meddelanden skickas mellan enheterna via en
gemensam kommunikationskanal. Ett exempel pd kommunikationsprotokoll
ar Transmission Control Protocol (TCP) (6versatt till svenska: protokoll for
Overforingskontroll) som anvinds for att skicka data mellan datorer. For vissa
typer av protokoll, som till exempel TCP, kan vi tolka ett meddelande som
att bestd av en meddelandetyp och ett antal parameterar. Till exempel, med-
delandetypen ACK hos ett meddelande skickat ifrdn enhet A till enhet B in-
dikerar en bekréftelse pa att A mottagit ett meddelande ifran B. Andra de-
lar i meddelandet kan vi tolka som parametrar, till exempel destinations-port
och sekvensnummer. En modell av en kommunikationsprotokollenhet kan pa
grund av det stora antalet virden parametrar kan anta bli vildigt stor och
diarmed ta lang tid att skapa. Eftersom reguljir inferens inte utgar ifran kom-
munikationsprotokollets programkod, utan istillet ifran dess beteende, s& kan
den skapade modellen bli vildigt olik programkoden.

I den hédr avhandlingen presenterar vi anpassningar av tekniken reguljér in-
ferens som syftar till att
e skapa mer kompakta modeller av kommunikationsprotokollenheter som

liknar programkodens struktur, och
e kriver att firre sekvenser av input och svar observeras.

Vi har undersokt och presenterat resultat kring en optimiering for kom-
munikationsprotokoll och likande system som syftar till att reducera antalet
sekvenser av input och svar som maste observeras for att reguljar inferens ska
kunna bygga modeller. Vara resultat visar att anvindandet av optimeringen
pa exempel av sma kommunikationsprotokoll reducerar antalet observerade
sekvenser av input och svar med kring 60%.

Vidare har vi anpassat reguljir inferens till kommunikationsprotokoll vars
beteende till storsta del beror pa meddelandetypen i meddelanden. Med denna
anpassning kravs det firre observerade sekvenser av input och svar for att
tekniken ska kunna bygga en modell.

Vissa parametrar dr av typen identifierare, till exempel en adress till en
resurs, och kan dirfor anta vildigt manga olika vdrden. Vi har gjort anpass-
ningar av reguljér inferens s att den kraver firre antal virden p& denna typ
av parametrar anvinds i input. Trots det konstrueras fullstindiga modeller,
det vill sdga alla viarden for parametrarna finns i modellerna. De konstruerade
modellerna &r ocksé kompakta.

Ofta dr programkoden for kommunikationsprotokoll uppdelad i kontrolltill-
stand, det vill sdga programkod som har funktionalitet som programmeraren
av programkoden tycker dr konceptuellt lika. Vi har gjort en anpassning av
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reguljdr inferens sa att tekniken bygger modeller som har sitt beteende uppde-
lat i en struktur vilket liknar kontrolltillstinden hos programkoden som utgor
kommunikationsprotokollet.
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1. Introduction

1.1  Errors in Programs

In our daily lives we encounter programs which we are forced to handle. You
use a program when you use your mobile telephone to make a call, book a
flight ticket in a booking system, or use a pocket calculator. Programs facil-
itate our daily life. Unfortunately, it may happen that a program crashes or
makes mistakes. The cause of this is often that the programmer of the system
has written an incorrect program. An error can for instance occur when you
succeed to book the last available flight ticket via a booking system, but at the
same time someone else succeed to book the exact same ticket; the booking
system has not handled two concurrent bookings correctly. Of course, both
you and the programmer of the booking system want to discover these errors
and correct them before the system is deployed. This thesis aims to facilitate
the work of finding errors in programs, by automating some part of the work.

The type of systems that are considered in this thesis are so called reactive
systems, systems that are usually intended to continuously receive input. Ex-
amples of such systems are web servers, communication protocols, operating
systems, and controllers in embedded systems.

There are different means with which we can find errors in reactive systems.
To manually inspect the program code of the system in order to find errors can
be an efficient method in the cases the program is small. It is more difficult
and takes more time to find errors when a program is extensive. Testing and
formal verification are two alternative methods for finding errors. Both meth-
ods assume access to a so called specification of the system, i.e., a description
of the correct behavior of the system. The methods compare the specification
to the actual behavior of the system.

In testing, a so called test case is created, which consist of input to the
system and the expected response (or output) from the system, according to
the specification. The system is fed with the input in the test case; the response
of the system is observed and then compared to the expected response. If the
system and the test case have the same response, we say that the system has
passed the test case, otherwise it has failed.

The method of formal verification often requires access to a formal model,
which describes the behavior of the system. The model describes the system
on a more abstract level, removing non-relevant details of the system. The
model is used to verify that the system conforms with the specification. There
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are two well-established techniques for formal verification: model checking
and theorem proving.

There is an important difference between formal verification and testing. In
formal verification we can with certainty establish that that the formal model
of the system conforms to the behavior that is described in the formal speci-
fication. In testing we can only execute a finite number of test cases, thus we
can not completely exclude the possibility that there is an error in the system.

1.2 Specifications and Models of Systems

In all techniques designed to find errors in systems, there must be some idea
of what a correct behavior of the system is. This applies to both testing and
formal verification; they require access to a description of the intended behav-
ior of the system, i.e., a specification. The specification can be formulated in a
variety of formats. It can be an expert that decides whether or not the system
has a correct behavior, a text document that describes a correct behavior of
the system, a number of test cases, or a formal specification. A specification
expresses how the system should work, and a model describes how the system
actually works. The specification and the model can be expressed in the same
form.

There are different types of formal specifications of reactive systems.
Each type is an attempt to capture the characteristics of the system to test, or
formally verify. Two common types of formal specifications are mathematical
logic and state machines. Mathematical logic can be used to express models
by means of inference from rules, e.g. modal logic and first-order logic. Other
well-established techniques for formal specifications are the Specification
and Description Language (SDL), a standardized language for specification
and description of systems, specially with telecommunication systems in
mind [BHS91], Estelle [ISO89a], an ISO standard similar to SDL, and
LOTOS [BB89, ISO89b], an ISO standard for specifications of distributed
systems based on the Calculus of Communicating Systems first presented by
Milner [Mil80] in 1980. Other formal specification techniques for distributed
systems are Communicating Sequential Processes (CSP) introduced by
Hoare [Hoa78] in 1978, and Petri Nets, first introduced by Petri in the
1960s [Pet62]. A decade after CSP was introduced, Harel introduced
statecharts which enables construction of specifications in hierarchical
diagrams [Har87].

In this thesis we use several types of state machines for formal specifica-
tions and models of systems. A state machine contains states and transitions.
It can be viewed as a graph in which there are nodes representing states, and
labelled directed edges representing transitions. The state machine is at any
time in a state, and can make a transition to a next state, via an outgoing edge
labelled with a symbol. An initial state is indicated by an arrow with no origin
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pointing to the state, and represents where a computation of the state machine
may start.

The simplest state machine model used in this thesis is called determinis-
tic finite automaton (DFA). It just accepts or rejects sequences of symbols.
Symbols can for example represent input and output of a system. A state in
the DFA is either accepting or rejecting. If a sequence of symbols leads to
an accepting state, the sequence is said to be accepted by the DFA, other-
wise rejected. A DFA induce a so called regular language, which is the set
of sequences of symbols that the DFA accepts. Figure 1.1 shows an exam-
ple of a DFA with only accepting states, and where “Timer=Pp” is the initial
state. It illustrates a simple model of a new communication protocol for the
Korean railway signaling system [LJL"07]. In state “idle” on input “oper-
ate_polling_timer” the DFA makes a transition to state “Timer=Pp”.

ack await

control msg ack

sync_mc_timer train_observation
Timer=Pc trainmovement
operate_mc_timer transmit_train_no

update_msg(ack) operate_polling_timer

transmit_train_no

Figure 1.1: A Deterministic Finite Automaton model of a communication protocol.

A state machine model called Mealy machine suits systems which respond
with output. It differs from the DFA model in that its transitions are labelled
with both an input symbol and the corresponding output symbol produced
by the system, instead of just a single symbol. E.g., a Mealy machine,
shown in Figure 1.2, will in state gy on input “InitPollingReceived” output
“ErrorCheck”, and put itself in state q;.

A so called Extended Finite State Machine (EFSM) may have extensions
to its states and transitions. Its states may for instance be extended with
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InitPollingReceived / ErrorCheck

ErrorDetected / NAK

Figure 1.2: An example of a Mealy machine.

variables local to a state, in which values may be stored. Its transitions
may for instance be labelled with assignments to variables, and guards
consisting of boolean expressions which determine whether a transition can
be made or not. The symbols in an EFSM may consist of several parts, for
instance a parameterized symbol may consist of an action type together
with a number of parameters, each of which can assume many values. A
parameter can be symbolic, meaning that it represents several values. An
example of an EFSM with two states g, and g1, is shown in Figure 1.3. It
has a location variable “PhoneNr” in state ¢;. Its transitions are labelled with
expressions consisting of parameterized input, guard, assignment to location
variables, and parameterized output. The parameters are symbolic. The
transition from state ¢ to state ¢; is labelled with the parameterized input
“PhoneCall(phone_number, message)®, the guard “true”, the assignment of
location variable ‘“PhoneNr” to “phone number”, and the parameterized
output “ReceivedMessage(message)“. In state ¢; on parameterized input
“PhoneCall(phone_number, message)“, a guard allows the transition back to
state ¢; to be made if the value in “phone number” is equal to the stored
value in state variable “PhoneNr”. Otherwise the transition to state gy is
enabled.

PhoneCall(phone number, message);
true /

PhoneNr := phone number;
ReceivedMessage(message)

PhoneCall(phone number, message);

@ @‘ phone_number = PhoneNr /

SameCaller(message)

PhoneCall(phone number, message);
phone number # PhoneNr /
NewCaller(message)

Figure 1.3: Example of an extended finite state machine.
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1.3  Automated Error Detection

This section describes how theorem proving, model checking, and testing
works in an automated fashion.

To begin with we need specifications and models in formats that can easily
be made understandable to computers. Test cases and formal specifications
belong to these types.

Theorem proving requires that both the model and the specification are ex-
pressed as formulas in some mathematical logic. The logic is given by a formal
system, which defines a set of axioms and inference rules. Theorem proving
is the process of inferring a proof of a property from the axioms of the system
by applying the inference rules. There are interactive theorem provers that,
assisted by a proficient human, prove that a model satisfies a specification.
However, since they require human interaction they are slow.

Model checking typically assumes that the system is modelled by a state
machine with propositions associated with each state. A proposition for a state
represents an invariant that is valid when residing in that state. Model check-
ing also requires access to a specification of the system, usually expressed
in temporal logic. Temporal logic is a modal logic which is used to express
formulas of propositions and time. The technique can automatically calculate
a decision whether the model violates any property in the specification. An
advantage with this technique, is that if a property does not hold a so called
counterexample, a sequence of inputs to the state machine that makes it vio-
late the property, is returned. The counterexample can be utilized by a user to
discover errors in the model. A well-known problem with model checking is
that the technique is computationally expensive, making it not applicable to
large systems.

Completely automated testing involves automating the generation of a spec-
ification, test cases, and execution of test cases. Since automating test case
execution is a system specific matter, let us focus on the more general aspects
of test automation. Assuming we have a specification, testing can be made au-
tomated with a technique called model-based testing. From the specification a
set of test cases, called fest suite, can be generated.

Even though theorem proving, model checking, and testing may be fully
automatic, often the task of constructing a specification and a model is manual.
Since our goal is to automate error detection as much as possible, we opt for
automatically constructing them.

There are different approaches for automatically creating specifications or
models. In this thesis we focus on the construction of a model. By apply-
ing techniques like static analysis of a system’s source code, a model can be
created. Bandera [CDH'00] is an example of an approach which combines
different techniques of static analysis to automatically create a state machine
model, and C2BP [BMMRO1] is a tool to automatically create a mathemati-
cal model for C programs. But there are situations where there is no access
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to source code, e.g., third-party modules or libraries. However, so called ma-
chine learning techniques can be used to infer models by observing running
systems.

1.4 Machine Learning

Machine learning is a group of algorithmic techniques that automatically con-
structs and refines models. The techniques are provided with a large set of
data from which they construct models that classifies the data correctly and
predict classifications of non-disclosed data. Particularly interesting for us are
techniques to construct DFAs from sets of strings which are classified as ac-
cepted or rejected. Other examples of techniques are decision-tree induction
and artificial neural networks. Decision-tree induction has successfully been
used to predict pellet quality, and to determine whether to grant applications
of credit cards or not [LS95]. Artificial Neural Networks is used for pattern
recognition in a medical application to help cytotechnologists spot cancerous
cells, for financial analysis in financial forecasting, and in control systems to
detect spillage of molten steel before it occurs [WRL94].

Machine learning algorithms which infer models that accept regular lan-
guages are called regular inference. There are a number of algorithms which
construct DFAs from samples of input sequences and the corresponding re-
sponses of the system [Ang87, BDG97, Dup96, Gol67, KV94, RS93, TB73].
They all infer a smallest DFA in the number of states in line with a philos-
ophy called Occam’s razor, which states that the smallest model that fits the
collected samples is to prefer.

The regular inference technique can be used to construct DFA models of
systems under test (SUT), by viewing sequences of input to the system as
strings. Strings that cause the SUT to crash are interpreted as strings that
should not be in the language accepted by a DFA model of the SUT. The
regular inference algorithms infer a DFA from the answers to a finite set of
membership queries, each of which asks whether a certain sequence of sym-
bols is in the language accepted by the SUT or not. The algorithms use es-
sentially the same basic principles. Given “enough” membership queries, the
constructed automaton will be a correct model of the SUT. Angluin [Ang87]
and others introduce equivalence queries which check whether the regular in-
ference procedure is completed; if not, they are answered by a counterexample
on which the current hypothesis and the SUT disagree.

In the 1960s Gold showed that it is possible to infer the regular language
of a SUT with a finite number of wrong conjectures under certain circum-
stances [Gol67]. Since then several algorithms have been presented based
on this result. Researcher have found vast application areas in which regu-
lar inference is useful. Alur et al. [AEY03] use regular inference to support
designers of concurrent systems when constructing specifications in terms
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of Message Sequence Charts. Other application areas are to infer specifica-
tions [ABLO2], infer assumptions on an environment of a component so that
a certain property holds [CGPO03], and to enable model-checking without a
model of the SUT [GPY02]. We have focused our work on utilizing regu-
lar inference to automatically infer state machine models of communication
protocol entities.

1.5 Communication Protocols

A communication protocol defines rules for the format and transmission of
data. Entities of communication protocols interact by sending and receiving
messages containing data. The messages are passed between entities over
some common communication channel. Examples of communication pro-
tocols are the Internet Protocol (IP) and the Transmission Control Protocol
(TCP). Typically, messages used by protocols in telecommunication applica-
tions consist of a Protocol Data Unit (PDU) type and a number of parameters.
For example the TCP segment in an IP packet consist of 11 fields in the header,
of which eight are flags, aka control bits, e.g., SYN, RST, and FIN. The control
bits can be interpreted as PDU types which steer the control flow of a TCP en-
tity. The other fields in the TCP header are for instance source port, sequence
number, and acknowledgement number. Even though the control bits steer the
control flow, parameters, such as acknowledgement numbers, also influence
the control flow.

It is common that designers of communication protocols partition the func-
tionality of a protocol into control states with state variables. In the state vari-
ables, values of messages parameters can be stored to be used to influence the
behavior of the protocol, or used as parameter values in output messages.

The functionality in a communication protocol entity is often modelled
by an EFSM. The EFSM shown in Figure 1.3 models the functionality of a
communication protocol entity receiving phone calls. In the example an input
symbol consists of the PDU type “PhoneCall”, and values of the parameters
“phone_number” and “message”. The parameters are symbolic, which means
that they may model several values. The EFSM also has a state variable called
“PhoneNr” in state ¢;. It is set on the transition from state ¢ to state ¢;, and
used in the guards labelling the looping transition in state ¢; and the transition
from state ¢; to state gg. All input symbols for which the value of the input
parameter “phone number” is the same as the number stored in the state vari-
able “PhoneNr” will loop in state ¢; and produce an output symbol with PDU
type “SameCaller”, and all other input symbols will make a transition to state
qo and output a symbol with PDU type “NewCaller”.
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1.6 Research Problems Addressed in This Thesis

In this section we present the research problems addressed in this thesis.

The focus of this thesis is on using regular inference techniques to infer state
machine models of communication protocol entities.

Communication protocols can be modelled with different types of state ma-
chines as described in Section 1.2; simple state machine models are DFAs and
Mealy machines, and more advanced are EFSMs.

We intend to use regular inference to infer models of communication proto-
col entities. However, applying regular inference to communication protocols
induce a number of problems. The number of symbols in state machine mod-
els of communication protocol entities are typically very large, since input
messages contain parameters that range over possibly very large domains. The
number of message sequences that have to be input to a communication proto-
col entity, i.e., membership queries, by a regular inference algorithm in order
to infer a model, is therefore very large and takes a lot of time. A second issue
is that the large number of input messages also may cause the simple state
machine models of communication protocol entities to be very large.

The two problems we address in this thesis are that

- regular inference techniques require a large amount of membership queries
when inferring models of communication protocol entities, and

- the inferred (simple) models of communication protocol entities are large.

The large quantity of membership queries required by Angluin’s L* algo-
rithm, was pointed out in the 1980s by Rivest and Schapire, as a property
of L* that needs to be addressed to make the technique practical for larger
systems [RS89]. They imagine to use their algorithm in a real robot on a mis-
sion to learn its environment. They report that an experiment on a system
with 400 states and 8 symbols required 130.000 membership and equivalence
queries all together. Hungar et al. also report that the number of membership
queries is a bottle-neck for L*; a single membership query took them about 1.5
minutes when inferring a call center system, because of time-outs in the sys-
tem [HNSO03]. The largest system they inferred required about 132.000 mem-
bership queries, which they report would take them 4.5 months to execute.
Therefore, they have suggested different types of domain-specific optimiza-
tions for L* to reduce the number of membership queries required to infer
a model [HNSO03]. A particularly interesting domain-specific optimization is
the one for DFA models that accept so called prefix-closed languages, which
can be used to model reactive systems in general. A prefix-closed language
contains all prefixes of a string in the language. There is an upper and lower
bound on the number of membership queries required by L*. It is of interest
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to find out where in span between the boundaries we can expect the L* ap-
plied to a SUT. In the worst case the L* algorithm requires |%|mn? number
of membership queries, where |X| is the number of symbols, m is the longest
counter-example received in reply to an equivalence query, and n is the num-
ber of states in the model. In the best case L* requires |X|mn log n number of
membership queries. We have investigated if the average amount of member-
ship queries required by L* on DFAs accepting prefix-closed languages and
general DFAs, is closer to the theoretical worst-case or best case of L*. We
have also investigated how much less membership queries L* requires with
the optimization for DFAs accepting prefix-closed languages.

As mentioned in Section 1.5, a basic property of communication protocols
is that each of their input and output messages consists of a PDU type to-
gether with a number of parameters. In contrast, common regular inference
algorithms have a rigid view of the input and output messages, viewing each
message as a single unit: a symbol. The number of membership queries asked
by these algorithms grows linearly in the number of input symbols, and for
communication protocol entities the number of input symbols is exponential
in the number of parameters in input messages. This makes the required num-
ber of membership queries grow exponentially in the number of parameters as
well, and asking a large amount of membership queries takes time. Moreover,
viewing input messages as single symbols also makes it difficult to interpret
existing correlations between parameters and behaviors in the model. We have
adapted the L* algorithm to ask fewer membership queries whenever few pa-
rameters in input messages affect the behavior of the SUT.

Other difficulties, in inference of communication protocol entities, are in-
duced by occurrences of parameters in input which take on values from very
large domains. These type of parameters are for instance identity numbers,
counters, and time stamps. However, the behavior of a communication proto-
col entity may not depend on the values of these type of parameters. A com-
munication protocol is often data-independent in the sense that the parameters
may only affect the entity’s behavior depending on whether pairs of parame-
ters have the same value. E.g., a communication protocol entity may behave
differently, depending on whether a source address provided as a parameter
in an input message is the same as the source address received in a preced-
ing message. A simple state machine model of this type of communication
protocol entity may be very large if the domain of at least one parameter in in-
put is very large. We have constructed an approach to infer compact symbolic
models of these type of data-independent communication protocol entities.

A second common property of a communication protocol, is that the proto-
col designer structures the model of the protocol into control states containing
state variables in which input parameter values can be stored. It is appropri-
ate to model this structure in an EFSM, since it is easy to incorporate control
states and state variables in an EFSM. However, this structure of the proto-
col model is not taken into consideration by the common regular inference
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techniques. They infer flat simple state machine models with states that have
the control state and the values of the state variables encoded in them. This
makes the flat models not practical since they are large, and hard to correlate
to the actual structure of the protocol model. Traditional methods do not in-
fer EFSM models with control states and state variables, since these are not
externally observable. If we would, in spite of this difficulty, infer an EFSM
model in a naive way with state variables and control states, they may be very
different from those of the protocol model. Assuming a model of a commu-
nication protocol entity is intended to be used to generate test suites based on
some coverage criteria of the model, or be refined by a human in regression
testing [HHNS02], a model with very different control states than those of the
protocol model, is insufficient. We have constructed an approach for inferring
EFSM models of communication protocol entities, such that the models are
similar to the designer models of the entities.

1.7 Thesis Organization

The thesis is organized as follows. Chapter 2 gives a presentation of regu-
lar inference and work closely related to regular inference. Chapter 3 gives a
summary of each paper included in this thesis together with a small discus-
sion. Chapter 4 surveys related work. The last chapter, Chapter 5, presents
the conclusions made in this thesis and points out interesting topics for future
work. Thereafter follow reprints of the Papers I-V.
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2. Regular Inference

In regular inference, we assume that we do not have access to the source code
of the system we wish to model. In order to investigate the functionality of
the system we observe the responses of the system to selected sequences of
inputs. In this chapter we describe the regular inference technique. Let us
first describe the established L* regular inference algorithm for DFA by Dana
Angluin [Ang87]. In Section 2.2 we present an adaption of the algorithm to
inference of Mealy machines.

2.1 Regular Inference for DFA

In the setting of inferring DFA we assume that the response of the system is
either that it executes on input or fails in some obvious way, for instance by
crashing. We also assume the system to have a reset, which puts the system
into its initial state. !

We assume a finite alphabet 3. of symbols. A language is a subset of >*,
the set of finite sequences of symbols, also called strings. A deterministic finite
automaton (DFA) M over ¥ is a tuple (@, 6, qo, F'), where @ is a non-empty
finite set of states, § : @ x X — @ is the tramsition function, qo € Q) is the
initial state, and F' C () is the set of accepting states. The transition function
is extended from input symbols to strings of input symbols in the standard
way, by defining 6(q,¢) = ¢, and §(q, ua) = 6(6(q, u), a).

A string u is accepted iff 6(qo,u) € F. The language accepted by M,
denoted by L£L(M), is the set of accepted strings. A subset £ C X* is said to
be regular if L is accepted by some DFA. A language L is prefix-closed if for
every w in L, all prefixes of w are in £. We say that a DFA is prefix-closed
if its language is prefix-closed. A minimal prefix-closed DFA has exactly one
non-accepting state.

We here give a succinct description of the main ideas behind regular infer-
ence. We assume that a system in which we are interested can be modeled by
a DFA M. The problem can now be looked upon as identifying the regular
language which is accepted by M, denoted by L£L(M).

! Assuming that the system is strongly connected, that is, there is a directed path between every
pair of states in the system, a model can be generated without the need of reset [RS93].
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In a learning algorithm a so called Learner, who initially knows nothing
about M, is trying to learn £(M) by asking queries to a Teacher and an
Oracle. There are two kinds of queries.

e A membership query consists in asking the Teacher whether a string w €
Y*isin L(M).

e An equivalence query consists in asking the Oracle whether a hypothesized
DFA A is correct, i.e., whether £L(A) = L£(M). The Oracle will answer
yes if A is correct, or else supply a counterexample u, either in £(M) \
L(A)orin L(A)\ L(M).

The typical behavior of a Learner is to start by asking a sequence of member-

ship queries, and gradually build a hypothesized DFA A using the obtained

answers. When the Learner feels that she has built a stable hypothesis A,

she makes an equivalence query to find out whether A is correct. If the re-

sult is successful, the Learner has succeeded, otherwise she uses the returned
counterexample to revise A and perform subsequent membership queries un-
til arriving at a new hypothesized DFA, etc. We discuss the realization of the

Oracle in Section 2.6.

2.1.1 The L* Algorithm

The information accumulated by the L* algorithm is a finite collection of ob-

servations, which is organized into an observation table. An Observation Table

over a given alphabet ¥ is a tuple O7 = (S, E, T'), where

e S C ¥* is a nonempty finite prefix-closed set,

e F C ¥*is anonempty finite suffix-closed set, and

o T:((SUS-X)xE) — {+,—} is a(finite) function satisfying the property
that se = s’¢/ implies T'(s,e) = T'(s,€') for s,s' € SU S - ¥ and for all

e, el € E.

The strings in S U S - X are called row labels and the strings in E are called
column labels. Each entry consists of a sign + or —, representing whether a
string is accepted or not.

The observation table is divided into an upper part indexed by S, and a
lower part indexed by all strings of the form sa, where s € S and a € X,
that do not already appear in the upper part. Moreover the table is indexed
column-wise by a suffix-closed set E of strings. The function 7" maps a row
label s and a column label e, i.e. T'(s, e), to the set {+, —}, the algorithm will
ensure that it is + if se € £(M) and — otherwise.

For every s € (S U S - X), a function row(s) denotes the finite function
from E to {+, —}, defined by row(s)(e) = T'(s, €). In other words, row(s) is
the row of entries in the observation table for row label s.

A distinct row of entries row(s), where s € S, characterizes a state in
the DFA, which can be constructed from O7 . The rows of entries labeled by
elements of S - X are used to create the transition function for the DFA.
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To construct a DFA from the observation table it must fulfill two criteria. It
has to be closed and consistent. An observation table O7 is closed if for each
s € S -3 there exists an s € S such that row(s) = row(s’). An observation
table is said to be consistent if whenever row(s) = row(s’) for s, s’ € S then
row(sa) = row(s'a) forall a € X.

When the observation table O7 is closed and consistent it is possible to
construct the corresponding DFA A = (3, Q. J, qo, F) as follows:

e ) ={row(s) | s € S}, note: the set of distinct rows,

* qo = row(e),

o F'={row(s)|se SandT(s,e) =+},

e i(row(s),a) = row(sa).

The corresponding DFA constructed in this manner from table O7 is denoted
A(OT).

The L* algorithm maintains the observation table O7 . The sets .S and F are
both initialized to {}. Next the the algorithm performs membership queries
for € and for each @ € %, the result is a sign for each queried string. The
observation table O7 is initialized to (S, E, T).

Next the algorithm makes sure that O7 is closed and consistent. If O7
is not consistent, one inconsistency is resolved through finding two strings
s,s € S,a € ¥ and e € F such that row(s) = row(s’) but T'(sa,e) #
T(s'a,e), and adding the new suffix ae to E. The algorithm fills the missing
entries in the new column by asking membership queries.

If OT is not closed the algorithm finds s € S and @ € X such that
row(sa) # row(s') for all s € S, and adds sa to S. The missing entries
in OT are inserted through membership queries.

When OT is closed and consistent the hypothesis A = A(S, E,T) can
be formed and its correctness checked through an equivalence query to the
Oracle. The Oracle can either reply with a counterexample ¢, such that ¢ €
L(M) <=t & L(A), or yes’. If the answer is "yes’ the algorithm halts and
outputs the correct conjecture 4. Otherwise ¢ is a counterexample. Angluin’s
algorithm adds ¢ and all its prefixes to S. Then it asks membership queries for
the missing entries.

2.2 Regular Inference for Mealy Machines

Niese has presented an adaptation of Angluin’s L* algorithm for inference of
Mealy machines [Nie03]. In general the setting for the adapted algorithm is
assumed to be the same as for L*. The algorithm has access to a member-
ship and equivalence oracle, and collects the response from the SUT in an
observation table. The algorithm also asks membership queries in the same
manner as L* does, and constructs conjectures whenever it can construct a
stable model. The difference to the setting for L* is that instead of observing
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whether the SUT accepts or rejects input, the adapted algorithm observes the
output symbols the SUT produces in response to input.

A Mealy machine is a tuple M = (I, 0, Q, qo, 6, \) where I is a nonempty
set of input symbols, O is a finite nonempty set of output symbols, Q) is a
nonempty set of states, qo € @ is the initial state, 6 : Q x I — (@ is the
transition function, and \ : Q X I — O is the output function. Elements of
I'* and O* are (input and output, respectively) strings.

Now let us describe how Angluin’s L* algorithm is adapted by Niese to
inference of Mealy machines. We assume that the SUT can be described by the
unknown Mealy machine My = (I, Oy, Qu, g, 6, A\v). In the description
of the inference algorithm for Mealy machines, we exchange all occurrences
of the alphabet of symbols X to the alphabet of input symbols /. The set
of suffixes F' in the observation table is in this setting initialized to /. The
response from the SUT is now sequences of output symbols from Oy;. This is
reflected in the entries of the observation table, which will contain strings of
output symbols from Of; instead of {+, —}. We modify the function 7" so that
T:((SUS-X)x E)— O} maps from row and column labels to strings
of output symbols Oj;, and define T'(s, ea) to be o if Ay (du (¢, se),a) = o,
where s € S, ea € E,a € I, and o € Op;. We also modify the function
row(s), so that for each s € (S U S - I) it denotes the finite function row(s) :
E — Oy, defined by row(s)(e) = T'(s, e).

Once the observation table O7 is closed and consistent it is possible to
construct a hypothesis H = (1,0, Q, qo, 0, A) as follows:

e O={T(s,a)|seS,acl},
e Q= {row(s)|seS},

e qo = row(e),

e /(row(s),a) = row(sa), and
e \row(s),a) =T(s,a).

The hypothesis H is provided in an equivalence query. The Oracle re-
sponds, as in the L* algorithm, with a “yes” or a counterexample. However, a
counterexample is this setting an input sequence w € I*, for which the SUT
My and the hypothesis H produce different output A\ (¢, w) # A(qo, w).

2.3 Other Regular Inference Algorithms for DFA

There exist a handful of regular inference algorithms. There are other algo-
rithms that are rather similar to Angluin’s L* algorithm. One is an algorithm
by Rivest and Schapire [RS93] that uses a reduced observation table. Com-
pared to the observation table this reduced version stores a smaller portion of
queries and answers. The requirement on the row indices is relaxed so that the
set is not required to be prefix-closed. A third alternative by Kearns and Vazi-
rani [KV94] uses a completely different data structure to store information,
a binary discrimination tree. The nodes of the tree contains suffixes which
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are used as before to distinguishing prefixes that lead to different states from
another. Balcazar et al. has presented a unifying concept from which these
algorithms, including L*, can be viewed [BDG97]. In essence, the algorithms
differ in how many membership queries are required before a model is con-
structed. Among these three, the L* algorithm generally performs the largest
number of membership queries before a model is created. But because L*
collects more information before generating a model, it is also more likely to
produce fewer false hypotheses and thus fewer equivalence queries. The upper
bound on the number of equivalence queries is however the same for all three
algorithms.

2.4  Complexity

The complexity of the algorithms is most often measured in the number of
required membership and equivalence queries. The reason for this is that ex-
ecuting a membership query involves interaction with the system, and this
is likely to require some time. The observation table, or other data-structure
for queries and answers, also needs to be stored; for that we need to allocate
memory resources. In the following, let n be the number of states in of the
minimal DFA or Mealy machine model of the SUT, let m be the length of the
longest counterexample returned in an equivalence query, let |X| be the size
of the alphabet of symbols 3, and let || be the size of the alphabet of input
symbols .

Let us first start with the number of equivalence queries. In L*, Niese’s
adaptation of L* to Mealy machines, and the algorithms using a reduced ob-
servation table or discrimination tree, the upper bound on the number of equiv-
alence queries is n.

The upper bounds on the number of membership queries (O(Memb.Q.)) are
more diverse for these algorithms, they are shown in Table 2.1. The bounds
for membership queries depend on whether answers to queries are saved, and
how many membership queries are asked before creating a conjecture. Among
the presented algorithms only the discrimination tree algorithm does not save
the answers.

In practice the three inference algorithms would all perform poorly when
applied to large systems according to upper bounds. We illustrate this with an
example. In our earlier work [BJLS05] the model of an ATM protocol, shipped
with the Edinburgh Concurrency Workbench [MS], used for experiments has
1715 states and 27 symbols. Assuming that the longest counter-example is
1715 symbols long, the effort of applying Angluin’s algorithm to this particu-
lar example is asking 27 x 17152 x 1715 = 1.4 x 10! membership queries
in the worst case. Thus, optimizations are necessary for the regular inference
to work well in practice.
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Algorithm O(Memb.Q.)
Angluin’s L* X |n%m

Mealy Machine max (n, |I|)|I|nm
Reduced Observation Table  |X|n? 4+ nlogm

Discrimination Tree Table  |%[n? + nm

Table 2.1: The upper bound on the number of membership queries for the regular
inference algorithms, where n is the number of states in a minimal model of the SUT,
m is the length of the longest counterexample, |3| is the size of the alphabet 3., and
|I| is the size of the input alphabet I.

2.5 Optimizations

A suggestion for optimizations by Hungar et al. [HNSO03] is based on the
idea that knowledge about the domain of the system can be used to reduce the
number of membership queries required by a regular inference algorithm. One
optimization exploits that instances of communicating processes may behave
in the same way and therefore can be interchanged. E.g., two telephones be-
have in the same way, therefore it is enough to investigate the behavior of one
of them. A second employs knowledge about reactive systems, modeled as
finite state machines with prefix-closed languages. They have evaluated their
suggestions for optimizations on 7 examples. With these examples they have
accomplished a total reduction in membership queries varying between 87%
to 99.8% using all three optimizations. Applying only the optimizations for
prefix-closed systems, they saved on average approximately 74% membership
queries.

2.6 Equivalence Oracle

In the regular inference setting we require an equivalence oracle. The ora-
cle’s job is to either confirm that the suggested conjecture is correct or pro-
vide a counter-example. There is however no magical oracle that will provide
this information for free. The oracle is a theoretical construction to make an
idealization of a potentially hard problem, in order to provide a clean setup
in regular inference. In practice, ways to provide counter-examples are for
instance by monitoring the system and collecting a counter-example when-
ever the model and system disagrees, by letting a system expert evaluate the
model, or by testing the system with randomly generated tests, or tests from
a so called conformance test suite (see Section 2.7 for details regarding con-
formance testing). But all of these mimicked oracles have their disadvantages;
monitoring may produce a very long counter-example which affects the com-
plexity of the regular inference algorithm negatively, involving a system ex-
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pert makes the regular inference technique only semi-automated and therefore
less attractive, and finding a counter-example by executing randomly gener-
ated tests or tests from a conformance test suite is like executing membership
queries. The advantage of conformance testing is that it provides a systematic
way of achieving an answer to an equivalence query. Let k£ be the number of
states in the DFA hypothesis of the system, and assume that we have an upper
bound, /, on the number of states of a minimal DFA that models the system.
Then if | > k, by applying the tests in a conformance test suite by Vasilevski
and Chow [Cho78, Vas73] (VC) to the system we will find at least one test that
the system does not pass. This test constitutes a counter-example as answer of
an equivalence query. According to Vasilevski [Vas73], an upper bound for
the total length of such a test sequences suite is O(k2I|S['=F+1), i.e., it is ex-
ponential in the difference between the number of states of the system and the
hypothesis.

2.7 Regular Inference in Relation to Conformance
Testing

In all model-based techniques, there is the problem of how to check that the
model is an accurate description of the system. In the black box setting, a way
to check that the model is equivalent to the system is by a technique called con-
formance testing. A conformance testing technique generates a set of tests, 7',
a so called test suite. A test, t € T, consists of a string and the expected output
of the system in response to the string. The system is said to pass a test if the
actual output is the same as the expected output. We can confirm that a model
is correct with respect to the system if the system passes all tests in a con-
formance test suite, and the system and model satisfies required hypotheses.
Examples of required hypotheses are that the model is minimized, the system
does not change during testing, the transition function for the model is total,
and there is a known upper bound on the number of states in the system. If the
system fails to pass a test ¢, then ¢ is a counter-example to the conjecture that
the model and system are equivalent.

A usual hypothesis is that the number of states of the system is exactly as
many as the number of states of the model. Conformance test techniques that
can be used in this setting are the W [Cho78, Vas73], Wp [FvBK91], and
Z [LY96] techniques. The main difference between them is that the Wp and
Z techniques generate a smaller test suite compared to the W technique. Test
suites generated by these techniques are similar to the set of strings asked
for in membership queries by regular inference algorithms. In our earlier
work [BGJT05] we have performed a closer investigation of the relationship
between conformance testing and regular inference. Assume that the model A
has k states, and the system M has [ states. We show in [BGJT05] that the
set of strings in an observation table, UV, by which the L* algorithm gener-
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ates the DFA A is also a conformance test suite for A, generated by the W
technique. Consequently, under the assumption that & = [, there is actually
no need for an equivalence test since we then know that we have a correct
model; this also follows from [Ang87]. Assume that M has more states than
A, i.e. | > k, then using a conformance test suite as an equivalence oracle in
a regular inference setting, we see the possibility to generate a conformance
test suite based on the strings in UV. A conformance test suite based on the
W technique is for M the set U(s UX U X2 U ... U X=F)V [Cho78]. If A
and M disagree, at least one counter-example will be found among the set of
tests U(s UX U X2 U. ..U XV with the exception of UV, so there is no
need to test these again.

2.8 Regular Inference together with Model Checking

The Model checking [BJKT04, Hol97] technique automatically checks that
models of systems have a given property. A technique to model check a black
box is presented by Peled et al. [PVY99] by combining regular inference and
model checking. The idea of combining the two techniques is further elabo-
rated to a method called adaptive model checking [GPY02].

In the setting for adaptive model checking we have access to the system,
but seen as a black box, and a property we want to check on the system. The
basic idea in adaptive model checking is to apply a regular inference algorithm
to create a model of the system and then apply a model checking algorithm
to check whether the model satisfies the property. An overview of how the
algorithms are combined is shown in Figure 2.1. If the property holds, the
regular inference algorithm makes an equivalence query with the conjecture.
If the oracle replies with a counter-example, it is inserted into the regular
inference algorithm and the model is revised.

In the case the property does not hold for the model, the model checker pro-
vides a counterexample, a string that when the model traverses it, the model
violates the property. The adaptive model checking algorithm inputs the coun-
terexample in the system and observes whether it can be executed by the sys-
tem or not. If it can be, the algorithm concludes that the system does not satisfy
the property, otherwise the counterexample is fed back to the regular inference
algorithm as a counterexample to refine the model.

When the property holds and the oracle confirms that the model is correct,
the adaptive model checking algorithm terminates and concludes that the sys-
tem satisfies the property.

36



Regular
Inference

ounterexample
(Angluin’s L*)

VC-counterexamp

Model

Model Checking
wrt. current model

No counterexample
Cownterexample

Compare
counterexample
with system

Check equivalence
(VC test suite)

Conformance establishedl lCounterexample confirmed
Report Report
no error found counterexample

Figure 2.1: Overview of the Adaptive Model Checking Algorithm.






3. Summary of Papers

This chapter contains summaries of, and retrospective discussions about the
work in the papers included in the thesis.

Paper I: Learning Finite State Machines

Paper 1 is included in a book on model-based testing of reactive
systems [BRO4]. The paper contains a survey of well-known techniques
for regular inference. It is intended as a tutorial on the subject of
regular inference. The survey contains presentations of Angluin’s L*
algorithm [Ang87], the algorithm using a reduced observation table by
Rivest and Schapire [RS93], and the algorithm using a discrimination tree by
Kearns and Vazirani [KV94]. In the paper, these algorithms are presented
using the unifying concept of observation packs, presented by Balcazar
et al. [BDG97]. The presentation of the algorithms contains a theoretical
background, their complexity, the algorithms presented in pseudo code, and
illustrating examples. The survey also suggests two different ways to realize
equivalence queries.

Furthermore, the paper contains an introduction to domain-specific opti-
mizations in regular inference by Hungar, Niese, and Steffen [HNS03]. These
optimizations are based on the idea that knowing certain properties of the sys-
tem to be inferred, can be used to reduce the number of membership queries
required by a regular inference algorithm. The adaptive model checking tech-
nique to combine regular inference and model checking, described in Sec-
tion 2.8, is also presented in this paper.

Practical results collected from papers on applying Angluin’s L* algorithm
on adaptive model-checking and domain-specific optimizations to examples
[GPYO02, HNSO03, BJLSO05] are presented in short.

Discussion

The main goal in this paper is to introduce the reader to common regular infer-
ence algorithms for inferring models of reactive systems. In order to also point
out the large similarities between the algorithms we used the unifying concept
of observation packs, presented by Balcazar et al. [BDG97]. We also describe
the application of the algorithms to an example and put the algorithms into
pseudo code.
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In the paper upper bounds on the number of membership and equivalence
queries for the algorithms are given, however results from experiments are not
presented for all algorithms. We think experimental results from applying the
algorithms to the same set of examples would have improved the presenta-
tion of the approaches. The reader would then have been able to compare the
approaches to one another in terms of membership and equivalence queries,
and space and time consumption. This would however required access to im-
plementations that do not exist, and would require the time and effort of a
separate paper.

Paper II: Insights to Angluin’s Learning

We have implemented the L* algorithm for regular inference proposed by
Dana Angluin. The implementation is created in a straight-forward manner
in Java and uses the library AMoRE [MMP™95] for manipulating DFA. It is
used to analyze the performance of the L* algorithm on randomly generated
examples, and a handful of protocols supplied with the Edinburgh Concur-
rency Workbench (CWB) [MS]. The focus of our analysis is foremost on the
number of membership queries required by the algorithm on different types of
examples. We measure complexity in terms of membership queries, since they
are likely to be the most time-consuming activity when using regular inference
in practice.

We have experimented with two types of randomly generated examples.
The DFA in the first set of examples are randomly generated with respect to
transitions and the percentage of accepting states. Let n, ||, and m be as de-
scribed in Section 2.4, and let |§| = n|X| be the number of transitions. In our
experiments we assume that equivalence queries always return a shortest pos-
sible counter-example, hence the length m of the longest counter-example is
at most n. On our examples the number of membership queries grows approx-
imately linearly with the number of transitions, |4|. This result is in contrast
to the upper bound of the algorithm in this setting, which is n?|d|, i.e. cubic in
the number of states.

The second type of randomly generated examples is constructed in a way
to imitate examples of reactive systems. All examples are prefix-closed DFAs.
The number of membership queries for these type of examples grows approx-
imately quadratically in the number of transitions, |5|?. This is closer to the
upper bound of the algorithm in comparison to the first type of examples.

We hoped to improve this result with the aid of a domain-specific opti-
mization for prefix-closed systems. The optimization makes use of knowl-
edge about prefix-closed languages: extensions of not accepted strings are not
accepted. This resulted in an approximately 20% reduction of membership
queries on randomly generated examples. Applying one of the two optimiza-
tions for prefix-closed systems, presented by Hungar et al. [HNS03], to the
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protocols provided in CWB, we attained a 59% reduction of the required num-
ber of membership queries. Hungar et al. [HNS03] present approximately the
same level of reduction, 74%, of the number of membership queries using the
two optimizations for prefix-closed systems.

We also compared Angluin’s algorithm applied to a small set of examples
supplied by CWB to the algorithm applied to a set of randomly generated
prefix-closed DFA. We found that on average the CWB examples required 7%
fewer membership queries without and 35% with the optimization, in compar-
ison to the randomly generated prefix-closed DFA with the same number of
states and symbols. We think the reason for this is that the CWB examples
has relatively few transitions leading to accepting states, compared to the ran-
domly generated examples.

Discussion

We are particularly interested to know how the L* algorithm performs on sys-
tems in general, and particularly on reactive systems. Therefore we investigate
how the L* algorithm scales with size of systems; in particular, how it per-
forms on prefix-closed DFAs, since prefix-closed DFAs can be used to model
reactive systems. Our results for prefix-closed DFAs show that these generally
require more membership queries than general DFAs with the same number of
states and symbols. We believe that the cause for this difference in the number
of required membership queries is that it is harder to distinguish states from
each other in prefix-closed DFAs.

Our implementation is coded in Java and no particular effort was spent
to optimize the data structures. Hence we see room for optimizations in the
time and memory consumption. Optimizing the implementation would have
allowed us to experiment with larger models than we did. On the other hand,
the trend for the different categories of examples were clear and conclusions
regarding the growth of membership queries could be drawn from the results.

Paper III: Regular Inference for State Machines with
Parameters

In Paper II we experienced that models of reactive systems required a larger
amount of membership queries compared to randomly generated examples
with the same number of states and symbols. From this point on, our work
shifted towards domain-specific optimizations. We have developed a domain-
specific optimization intended to work more efficiently on a particular class
of systems of interest, entities of communication protocols.

The technique of regular inference can be used to construct models of com-
munication protocol entities. Typically in such protocols symbols consists of
a PDU type together with a number of parameters, each of which can assume
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several values. Hence, the alphabet of such an entity is exponential in the num-
ber of parameters. The large alphabet makes the regular inference technique
unattractive since it negatively affects the required amount of membership
queries. If only a few of the parameters determine the behavior of the system
in a given state, it is desirable to avoid asking membership queries for the pa-
rameter settings that have no affect. Therefore we have developed a regular
inference algorithm that specializes in handling these cases [BJR06]. We have
implemented this algorithm in the framework of LearnLib [RSB05], a library
for automata and regular inference.

Our algorithm infers EFSM models. The states in the EFSM model are ei-
ther accepting or rejecting, and each transition in the model is labelled with a
PDU type together with a number of symbolic parameters, and a conjunction
over negated and not negated symbolic parameters. The conjunction repre-
sents a guard for when the transition is enabled.

The idea behind our specialized algorithm is to infer, for each state and each
PDU type, a partitioning of input symbols into equivalence classes, under the
hypothesis that all input symbols in an equivalence class have the same af-
fect on the state machine. Initially all input symbols of a PDU type are put in
one equivalence class. Whenever such a hypothesis is disproved, equivalence
classes are refined. In the EFSM that is inferred by our algorithm, the transi-
tions are labelled with such equivalence classes. The number of membership
queries the algorithm require is bounded by O(nkm), where n is the number
of states in the EFSM, k is the number of transitions of our EFSM, and m
is the longest counter-example received in response to an equivalence query.
The result of applying the algorithm to a large set of randomly generated ex-
amples shows that the algorithm requires less membership queries compared
to L* when the number of transitions in the EFSM is relatively small.

We also formed a second idea to further optimize Angluin’s regular in-
ference algorithm. The idea is to reduce the number of membership queries
required to construct a model. We realize this by relaxing the requirement that
every entry in the observation table must be filled, we present weaker restric-
tions, which preserve important properties of L*.

The two optimizations form our regular inference algorithm for state ma-
chines with parameters. We implemented our algorithm in LearnLib [RSBO05],
in order to make a comparison between our and Angluin’s L* algorithm.

We focused on generating and running synthesized examples that varied
the number of equivalence classes of input symbols. The result from exercis-
ing our algorithm on the examples, illustrates how the number of membership
queries grows in proportion to the number of parameters affecting the state
machine. This is the result we had hoped for; when there is a low proportion
of input symbols affecting the system, we can reduce a large amount of mem-
bership queries by applying our algorithm. However, the negative result is that
the required number of equivalence queries is larger with our algorithm. This
can be explained by the fact that with our algorithm, models can be gener-
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ated based on fewer membership queries, i.e., less information; hence a larger
number of incorrect models may be created.

Discussion

The result presented in this paper is the outcome of the two optimizations
combined into a new algorithm. The optimizations can theoretically be applied
separately but they are not so in this investigation. It may be of interest to insert
this separation of the optimizations into the implementation in order to see the
contribution of each optimization.

We believe that the large number of equivalence queries required by our
algorithm contributes to the growth of membership queries. The reason is that
Angluin’s algorithm requires that all prefixes of counter-examples must be
queried for and also all one symbol extensions of the prefixes.

Paper 1V: Regular Inference for State Machines using
Domains with Equality Tests

In Paper IV we continue our work to optimize regular inference techniques
for entities of communication protocols. As in Paper III we assume that such
entities typically communicate by messages that consist of a PDU type with
a number of parameters, each of which ranges over a sometimes large do-
main. In order to fully support the generation of models with data parameters,
we have in Paper IV, worked out a general theory for inference of infinite-
state state machines with input and output symbols from potentially infinite
domains.

We present (to our knowledge) the first extension of regular inference to
infinite-state state machines. In this work we consider Mealy machines where
input and output symbols are constructed from a finite number of PDU types
together with parameters from potentially infinite domains. We consider the
type of systems where the only allowed operation on parameter values is a test
for equality. The motivation is to handle parameters that, e.g., are identifiers of
connections, objects, etc. The inferred model is an EFSM. The EFSM model
has states called control locations, which may contain location variables. Each
transition in the EFSM is labelled with four parts. Two parts consist each
of a PDU type together with a number of symbolic parameters, representing
input and output. The third part is a number of tests for equality between
parameter values, representing a guard for when the transition is enabled. The
last part is an assignment of parameter values from input to location variables.
Parameters are stored in location variables of the EFSM for later use.

In standard regular inference states and transitions are inferred, and coun-
terexamples to a hypothesized DFA are only used to add more states to the
DFA. In Paper IV, we also infer control locations, location variables and op-
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erations on them, and counterexamples to a hypothesized EFSM model are
used to extend the model with either more control locations or more location
variables.

In our approach, we first observe the behavior of the protocol entity when
the parameters of input messages are from a small domain. We enforce a re-
striction on the minimal size of the domain, so that all occurring test for equal-
ity between the parameters can be calculated from the observations. Using the
regular inference algorithm by Niese [Nie03] (which adapts Angluin’s L* al-
gorithm to Mealy machines), we generate a finite-state Mealy machine, which
describes the behavior of the component on this small domain. We thereafter
fold this finite-state Mealy machine into a smaller EFSM model.

Folding the Mealy machine into an EFSM model is performed in four steps.
In the first step the algorithm calculates for each state which data values must
be remembered by a corresponding EFSM model in order to produce its fu-
ture behavior. These data values are the basis for constructing the location
variables required in the corresponding control location of the EFSM model.
In the second step, we use the data values inferred in the first step to trans-
form transitions in the Mealy machine into a so called symbolic normal form,
which is designed to capture exactly the equalities and inequalities between
symbolic parameters and location variables. In the third step, we merge states
of the Mealy machine into locations in the EFSM, if the symbolic forms of
their future behavior are the same, using an adaptation of a standard partition-
refinement algorithm. In the fourth and final step, we transform transitions
from symbolic normal form to the standard form in the EFSMs, and merge
transitions when possible.

Discussion

In our strive to model entities of communication protocols we continue the
work in the area of domain-specific optimization for regular inference. The
approach presented in this paper makes use of knowledge about what tests
occur for a type of parameters. It also takes one step closer to modeling natural
models of communication protocols, introducing state variables in the model.

The number of membership queries required to be asked by the algorithm
is exponentially bounded by the number of state variables and the number of
parameters of the input PDU types. However, we think that an addition of a
symmetry filter, which would filter out membership queries which have the
same differences and equalities between parameter values would make the
approach more applicable in practice.

Both the approach presented in Paper III and this paper use the idea that
counterexamples guide the approach to which parameter values are necessary
to take into account in the model inference. By utilizing this idea, we make it
possible to construct models requiring fewer membership queries.
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Paper V: Regular Inference for Communication Protocol
Entities

In Paper V [BJ0OS] we continue our work to use regular inference to generate
models of communication protocol entities. As in Paper IV, we assume that
communication protocol entities communicate via messages consisting of a
PDU type and a number of parameters, and that parameters from input can be
stored in state variables of communication protocols for later use. In this work
we concentrate on parameters that have finite domains. A communication pro-
tocol may be designed such that its behavior is structured into control states.
Our primary goal is to infer a model such that its control locations are similar
to the control states of a natural model of the communication protocol. How-
ever, this is not easy since control states are not externally observable, and
there are many ways in which to structure the behavior of a communication
protocol entity into control locations.

Our motivation is to infer a model of an executable specification of the
Advanced Mobile Location Center (A-MLC) protocol developed by Mobile
Arts. The protocol is a product that allows Mobile Network Operators to pro-
vide presence information from the GSM/UMTS network. A-MLC is com-
mercially available and has been deployed at several telecom operators within
Europe. The protocol is implemented in Erlang, a programming language de-
veloped by the telecom company Ericsson. The originators of the A-MLC
protocol have written a functional specification of the protocol [BJ03], from
which an executable specification can be generated. We were allowed access
to an executable specification, and performed experiments with it. We based
our evaluation of our approach on the results from the experiments.

Our approach infers EFSM models. Each transition in the EFSM model is
labelled with three parts. The first part consist of a PDU type and a number
of symbolic parameters, representing input. The second part is an assignment
of symbolic parameters to location variables. The third part consist of a PDU
type and a number of concrete parameter values, representing output. The
EFSM model has location variables, in which input parameter values can be
stored for later use. Our approach intends to infer control locations that are
similar to the control states of the executable specification. It does so, based
on an observation in the executable specification that, whenever executing in
a control state on an input message with a certain PDU type and outputting
a message with a certain PDU type, then the next control state is usually the
same. Thus, a sequence of input and output PDU type pairs, uniquely de-
termines a control state in the executable specification. As in Paper IV, the
approach has two phases; we first use an existing regular inference technique
to infer a finite state Mealy machine, and thereafter fold it into an EFSM.

We have used LearnLib to infer a Mealy machine model of the executable
specification of the A-MLC protocol. The result is a Mealy machine with 43
states and 1560 input symbols. Since the Mealy machine is so small we were
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able to estimate a set of twelve control locations for the EFSM. The executable
specification contains thirteen control states. Out of in total twelve estimated
control locations we were able to match nine control locations to each a single
control state, two pairs of control locations to each one control state, and one
control location to two different control states in the executable specification.

Discussion

In this paper we have continued the work started in Paper IV, inferring models
with location variables taking input messages with parameter values that may
be stored in location variables, and used in guards to decide future behavior or
be used in output messages. However, a difference is that in this work we as-
sume that parameter values are from finite, small domains. We have “shrunk”
originally large domains by choosing a small amount of representative values
from the original domains.

We think it would be interesting to add more data values to the domains of
the input parameters and rerun LearnLib on the executable specification with
the new input alphabet. This would most likely result in a Mealy machine that
includes more behavior of the executable specification. Hopefully an EFSM
model of this Mealy machine would be more similar to the executable speci-
fication and contain more transitions.
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4. Related Work

In this chapter we review work on regular inference to infer models or spec-
ifications of systems, and work done to optimize the technique. We structure
the chapter according to the intended application.

Regular Inference in Model Checking

Several researchers have combined regular inference and model checking to
be able to model check SUTs for which no model exists a priori, and for
which no source code is available, so called black boxes. A model of the
SUT can then be constructed using regular inference. Peled, Vardi, and Yan-
nakakis [PVY99] present approaches that model check a system given a spec-
ification but without an existing model of the system. One of their approaches
uses regular inference to construct a model, to which model checking is ap-
plied. An overview of this approach is presented in Section 2.8. They combine
regular inference and model checking algorithms so that spurious counterex-
amples, i.e., counterexamples generated by the model checking algorithm
which do not correspond to possible executions of the SUT, are fed back to
the regular inference algorithm and used to refine the model. They have also
presented an extension to their approach, called Adaptive Model Checking,
which makes use of an existing incorrect (but not irrelevant) model of the
SUT [GPYO02]. In this approach they extract from the existing model two sets
of strings, with which they initialize the set of prefixes S and suffixes E, in the
observation table O7, which the L* algorithm maintains. The L* algorithm
is presented in detail in Section 2.1.

Assume we want to do model checking on a system for which we are sup-
plied with a set of initial states, and a transition function by which we can
compute the set of states reachable in one step from any given set of states.
To perform model checking we iterate the function to find a fixpoint where
we have calculated all reachable states. A problem is that, in general, such
a fixpoint may not be computable in a finite number of iterations. Therefore
various so-called widening or acceleration techniques have been developed,
by which the fix point is guessed from information of a small number of its
approximations. If the state is a string over a finite alphabet this guessing can
be performed using regular inference. One context in which this has been tried
is regular model checking. Regular model checking is a method for verifying
systems consisting of an arbitrary number of homogeneous finite-state pro-
cesses connected in a ring topology [BJNTO00]. The systems have their config-
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urations coded as strings over a finite alphabet, sets of configurations as finite
automata, and transitions as finite transducers.

Habermehl and Vojnar [HV04] have presented an approach to perform
model checking on such a system, using the regular inference algorithm by
Trakhtenbrot and Barzdin [TB73] to infer all reachable configurations in
the system. The Trakhtenbrot and Barzdin algorithm requires answers to
membership queries for all strings up to some certain length k. The approach
by Habermehl and Vojnar uses the transition function of the system to
compute answers to membership queries. The answer is + for all strings
of length k that leads to a configuration of the system, all others of length
k are answered —. There are no equivalence queries in the sense used by
Angluin’s L* algorithm. Instead the approach checks if the transition function
has reached a fixpoint; if not, it does membership queries for all strings of
one size longer than queried for before, and continues the inference. The
approach focuses on model checking whether or not a set of configurations
conform with the specification. This is computed by checking whether or not
the intersection between the set of configurations not conforming with the
specification, and the set of reachable configurations is empty.

Vardhan and Viswanathan and others [VSVA04, VV06] present a similar
approach, which uses either the regular inference algorithm by Kearns and
Vazirani [KV94] or the RPNI algorithm [OG92, Dup96] to infer a regular
set of reachable configurations. This approach also calculates membership
queries from the transition function, and does not use equivalence queries.
The answer to a membership query is + for strings that lead to configurations
of the system, and — for strings for which the transition function is not defined.
Once the approach has inferred a DFA model it performs model checking on
it. Counterexamples returned from the model checking procedure is run in
the system to find out if they are real counterexamples or spurious. Spurious
counterexamples are feed back as negative counterexamples to the inference
algorithm. If no counterexample is returned from the model checking proce-
dure the approach checks that the transition relation has reached a fixpoint.
The approach reports that the system conforms with the specification if a fix-
point has been reached, otherwise the inference of reachable configurations
must continue.

Regular Inference in Compositional Verification

Regular inference and model checking have also been combined to verify sys-
tems that can be partitioned into several components. Compositional verifica-
tion can be used to verify concurrent components in a system that cannot be
handled as a large single system within the time or space limits of existing
verification techniques. The simplest idea of compositional verification, e.g.,
in the case of two components, is to regard each component as the environ-
ment of the other. The first step is to construct a model of the environment of
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one component, which includes the other component, such that the component
acts without violating the specification of the system. The second step is then
to check that the other component has no other behavior than specified in the
model of the environment.

Cobleigh, Giannakopoulou, and Pasareanu present the first approach that
uses regular inference to infer a model of a component’s environment, which
then is used in compositional verification [CGP03]. They assume that a system
consists of two components. | Components synchronize on symbols common
to their alphabets and interleave the remaining actions. The approach has ac-
cess to models of the components and the specification of the system. In a
first step, Angluin’s L* algorithm infers an environment model of one of the
components under which it conforms with the specification. The environment
model is inferred by letting the answer on a membership query for a string be
+, if the string is accepted by the system consisting of the component and the
specification of the system. An equivalence query is answered yes if model
checking concludes that the environment does not accept other strings than
the other component does.

Chaki and Strichman have extended this work to an approach that aims to
reduce the number of required membership queries used by the regular in-
ference algorithm to infer a model of the environment [CS07, CS08]. The
idea is to use a small alphabet in order to ask few membership queries. Their
approach starts with the empty alphabet, and extends it whenever a counterex-
ample indicates that it is necessary. This means that they infer a model of as
small part of the interface as possible. However, finding a minimal alphabet is
difficult so their practical approach is to formulate their search into a constraint
problem to be solved. The approach of refining the alphabet is also presented
by Pasareanu et al. [PGB108], and they present several heuristics for how to
extend the alphabet. Sinha and Clarke present an approach [SC07], in which
the two components communicate via shared memory, i.e., they share a set
of variables. Hence, the alphabet is exponential in the number of shared vari-
ables. They avoid the problem of using a large alphabet in regular inference,
by clustering symbols of the alphabet in each state of the model. A symbolic
model checker answers both membership and equivalence queries. They par-
tition a cluster of symbols whenever a counterexample indicates that is re-
quired. They have also extended their approach [CCSS08] to using predicate
abstraction [CU98, GS97] on the variables. Nam, Madhusudan, and Alur also
present an approach for compositional verification of memory sharing com-
ponents [NMAOS], which communicate via shared boolean variables. They
repartition the system into a set of components in a way so that the num-
ber of shared variables are small. They use a BDD-based implementation of
L* [AMNOS, NAO6].

!"They also explain how their approach can be extended to systems consisting of a finite number
of components.
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Optimizations for Reactive Systems and Systems with Certain
Alphabet Properties

Hungar, Niese, and Steffen have presented domain-specific optimizations in
regular inference, which aims at reducing the number of membership queries
required to infer a model of the SUT [HNS03]. They present among others
separate optimizations for systems with prefix-closed languages, and systems
with languages that have independent and symmetric symbols. The latter op-
timization requires that an expert specifies independence relations over sym-
bols. The two optimization for prefix-closed systems on a small set of exam-
ples gave an average reduction of membership queries of 74%. In Paper II
we applied one of two optimizations for prefix-closed systems to protocols
shipped with the Edinburgh Concurrency Workbench [MS], and attained al-
most the same level of reduction: on average 59%.

Parameterized Systems

Regular inference is being used to generate models of communication pro-
tocol entities. These type of systems communicate via messages consisting
of a PDU type and a number of parameters, which typically involves a large
amount of symbols in the input alphabet used by the inference algorithm.

Hagerer, Hungar, Niese, and Steffen have presented an approach that
uses regular inference to construct finite automata with symbolic alphabets
of SUTs [HHNSO02]. Their idea is to first generate strings observed in the
SUT, then manually remove parameters or symbols that the user thinks
are uninteresting, e.g., time stamps. After that, exchange the remaining
parameters to symbolic values according to a predefined specification. Next,
make an automaton accepting exactly the symbolic strings, and finally merge
states that are seemingly equivalent. The automaton model is then validated
against expert-provided properties which should hold for the system. They
have used their approach to infer a model of a part of a telephone switch, and
used their model to monitor the switch to report when errors occur. They
have also used their approach for test-suite enhancement [HHM™02].

Li, Groz, and Shahbaz uses regular inference to infer partial models of com-
mercial of the shelf (COTS) components, which they use in their integration
testing procedure [LGS06]. They generate tests from the models of the com-
ponents. These tests may reveal unknown input action types which are output
from one component and input to another. They focus on a type of model
which takes parameter values into account, since an output from one compo-
nent input to another component may disclose an incompatibility, which was
not discovered when testing the components in isolation. Their approach in-
fers finite state machine models with input and output symbols, each of which
consists of an input (or output) action type together with a sequence of pa-
rameter values. The model does not have any state variables. Furthermore,
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they assume that output action type depends only on input action type and not
on the parameters. Later, they present an approach inferring a variant of the
model, which allows the parameter values in input to affect the output type be-
havior [SLGO07]. Both approaches are based on the regular inference algorithm
for Mealy machines presented in Section 2.2. The prefixes in the observation
table are strings of input action types and parameter values, and the suffixes
are strings of output action types. In the first approach, each entry in the ob-
servation table contains pairs of input and output parameter value sequences.
In the second approach, each entry contains pairs of input parameter value se-
quence and sequences of output action type and output parameter values. The
approaches use a subset of the complete input alphabet in the regular inference
algorithm. The parameter values are selected from tests or chosen randomly.
The observation tables must fulfill extra criteria due to the parameter values,
which give rise to more membership queries.

Grinchtein, Jonsson, and others, have extend the regular inference tech-
nique to timed systems [GJL05, GJL04, GJP06]. They present an approach
that infers a model called event-recording automata, in which each symbol
consists of an action type and a clock valuation, i.e., a parameter that speci-
fies what time the action type occurred. They infer a symbolic model which
has guards on transitions consisting of conjuncts of clock constraints, where
a clock constraint is a comparison of type <, <, >, or >, between an event-
recording clock and a natural number. Huselius presents a methodology for
constructing models of instrumented real-time systems by analysis of execu-
tion traces [Hus07].

Specification Mining

Specification mining is a machine learning approach to discovering formal
specifications. A model of a well-functioning system captures properties of
the system, which can be considered as a specification of the system. In this
setting it is commonly assumed that interactions with the SUT are only mon-
itored, i.e., membership queries can not be asked, and therefore only correct
behavior of the SUT is observed. Correct behavior of the SUT correspond to
accepted strings in the regular inference algorithm. An inference technique
that can be used for this situation is the k-tails algorithm by Biermann and
Feldman [BF72]. The algorithm first constructs an automaton accepting ex-
actly the strings that have been collected in the monitoring phase. Next, it
merges states that accept the same set of strings up to some length %, and this
repeats until no more merges are possible.

Ammons, Bodik, and Larus present an approach that infers application pro-
gram interface (API), or abstract data-type (ADT) specifications of existing
programs that are working almost correctly [ABL02]. Their approach infers
nondeterministic finite automata models with edges labelled by interactions
in an abstract form, from sequences of interactions with API/ADT interfaces.
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Before applying the inference algorithm several steps are taken to transform
the strings of interactions to an abstract form. They replace parameter values
with symbolic names in the strings, and then apply the inference algorithm
to the resulting strings. Their approach uses an existing inference algorithm
by Raman and Patrick [RP97], based on the Biermann and Feldman algo-
rithm [BF72], which constructs probabilistic finite state automata (PFSA) with
edges, each labelled with a symbol and a weight representing the frequency
of that edge. The inference algorithm by Raman and Patrick merges states
that accept the same set of k-length strings with weights higher than some
certain threshold. The approach considers infrequent behavior as “uninterest-
ing”. Therefore edges that are not likely to be traversed while generating a
string from the PFSA are removed. In the final step, the weights on the transi-
tions are removed, and the result is a non-deterministic finite automaton.

Lorenzoli, Mariani, and Pezz¢ have presented an approach to infer models
of method invocation call sequences of components [LMP06]. The inferred
model is an extended finite state automaton, in which the alphabet is the fi-
nite set of methods that can be invoked. They collect traces by observing the
system under execution. Their approach first merges traces which have the
same sequences of method invocations. Next they generate invariants for each
method invocation in the sequence over the parameters for the method in-
vocation with the tool Daikon, which dynamically discover invariants over
variables [ECGNO1]. The approach then applies the Biermann and Feldman
algorithm [BF72] to the collected traces. They present different senses of state
equivalence relations, which are used in the merging process of the Bier-
mann and Feldman algorithm. Finally they transform the automaton into their
model. In later work [LMPOS] they extend their approach to allow variables
associated to methods, for instance state variables in the SUT. This approach
infers models in a similar way to previous work, from sequences of tuples,
each tuple consisting of a method invocation, a domain for an input parame-
ter, and a value for a variable associated to a method. In other work by Mar-
iani, and Pezze [MPOS5, MPO07], they infer a finite state automata model for
sequences of method invocations, and an invariant over the parameter values
used in the method invocations, produced by Daikon.

Alur et al. [AvMNO5] present an approach to infer interface specifications
for Java classes. Given a set of unsafe, i.c., undesirable evaluations of class
variables for a class interface, the approach checks if the specification can
reach a state in which the class variables have unsafe evaluations. They first
apply the predicate abstraction technique [CU98, GS97] to the specification,
then they use regular inference to infer an environment for the abstract spec-
ification, which does not put the abstract specification in a state in which the
class variables have unsafe evaluations. Their approach uses answers from a
model checker, applied to the inferred model and the unsafe variable evalua-
tions, to compute membership and equivalence queries. To conclude that the
answer to an equivalence query is yes, they use approximate and heuristics.
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Besides state machines, Message Sequence Charts (MSCs) [IT99]
have been used to specify communication protocols. Alur, Etessami, and
Yannakakis [AEYO03] have presented an approach in which the designers of
protocols specify parts of the protocol in MSCs, and then regular inference
is used to discover which other parts of the protocol needs to be specified in
order to conclude that the specification is deadlock-free.

Tools

Raffelt and Steffen provide a tool for regular inference called Learn-
Lib [RSBO05, RS06]. The tool can infer DFAs and Mealy machines, and
provides optimizations for inference of DFAs to reduce the number of
required membership queries. There are optimizations which make use of
system-expert specified independencies and symmetries between symbols,
and optimizations for prefix-closed SUTs. The tool also provide means
to perform equivalence queries by implementing conformance tests: the
W- [Cho78], and Wp-Method [FVBK™91], or sets of randomly generated
tests.
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5. Conclusions and Future Work

5.1 Conclusions

In this thesis we have presented work that investigate and adapt regular infer-
ence techniques for communication protocol entities. This thesis focuses on
two problems: regular inference techniques requires a large amount of mem-
bership queries when inferring models of communication protocol entities,
and the inferred models of communication protocol entities are large.

We have in Paper I surveyed three algorithms for regular inference, pre-
sented their similarities and their difference in terms of upper bounds on the
required number of membership queries. For one of the surveyed algorithms,
we have in Paper Il compared how it performs on different types of DFAs and
related it to the theoretical upper bound on the number of required member-
ship queries.

In Paper II we present the result of investigating how many membership
queries the well-established regular inference L* algorithm by Angluin re-
quires for different type of DFAs. The algorithm has been investigated on
randomly generated examples and prefix-closed DFAs, which can be used to
model reactive systems. Our results show that, inferring a prefix-closed DFA
model requires in general more membership queries than are required for ran-
domly generated DFA models. This is a negative result for our attempt to
infer models of communication protocol entities. However, with an optimiza-
tion for prefix-closed DFAs we were able to reduce the required number of
membership queries with about 20%.

The number of input messages to a communication protocol entity is ex-
ponential in the number of parameters and this negatively affects the required
amount of membership queries. We have have presented two approaches that
aim at reducing the required number of membership queries, and infer sym-
bolic EFSM models. The approaches have different assumptions on the do-
main of the parameters. The approach in Paper III infers symbolic EFSM
models without location variables assuming that parameter values are boolean,
and the approach in Paper IV infers symbolic EFSM models with location
variables assuming parameter values are from a very large or infinite domain.
The approach in Paper III avoids asking membership queries for a PDU type
and parameter settings that do not affect the behavior in a state. The approach
in Paper IV use a small subset of the very large domain for parameters in
membership queries.
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In Paper V we have presented an approach that infers symbolic EFSM
models with control locations which are similar to the control states of nat-
ural models of communication protocol entities. In the construction of the
approach in Paper V we were guided by an executable specification of the
Advanced Mobile Location Center protocol provided by Mobile Arts [BJ03].
The approach in Paper V exploit a common property of the control states in
the executable specification to construct a symbolic EFSM model. In this ap-
proach we assume that parameters take on values from small finite domains.
In contrast to the approach presented in Paper IV, the location variables in this
approach are not inferred, instead there is a location variable for each input
parameter. Our experimental results show that the approach can successfully
exploit the property of the control states to construct similar control locations
in a symbolic EFSM model.

Common regular inference techniques infer large DFA or Mealy machine
models of communication protocol entities. We have handled this problem by
inferring compact symbolic EFSM models. In the approach in Paper 11l we
simultaneously infer the symbolic transitions and construct the observation
table. In the approaches in Paper IV and Paper V we first infer a Mealy ma-
chine model and then fold it into a symbolic model. In compact and natural
models it is easier to discover existing correlations between parameters and
the behavior of the model.

5.2 Future Work

In this section we discuss what further work can be done in order to improve
the presented regular inference approaches. We also discuss general ideas on
how to enable regular inference of communication protocol entities.

We believe that a similar optimization to the prefix-closure optimization
for DFAs investigated in Paper II, can be used in regular inference of Mealy
machines. The optimization would be applicable to communication protocol
entities which have an error state and remains in that state, i.e., a sink. The
optimization would reply “error” to membership queries for extensions of a
string that has already been answered “error”. It would be interesting to in-
vestigate how much less membership queries the use of this optimization for
Mealy machines with sinks would require.

The approach presented in Paper V infers symbolic Mealy machines with
input symbols containing symbolic parameters, and output symbols contain-
ing concrete parameter values. Because of the concrete output parameter val-
ues the approach in Paper V may infer unnecessarily large result expressions
on transitions. One way to handle this is to extend this approach so that the
parameters in output symbols are symbolic as well. An idea is to first calculate
which output parameter values are parameter values from input, and which are
constants, i.e., not parameters from input. Next, we could use ideas from the
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approach in Paper IV to calculate which parameter values from input need to
be stored in states for later use in output and in guards on transitions. There-
after we could perform a transformation to symbolic transitions based on the
calculated values to be stored.

We also have a different suggestion on how to handle the large result ex-
pressions on transitions. The approach in Paper V can be improved by using
heuristics to construct compact result expression, i.e., to use less formal pa-
rameters and location variables in result expressions. We think it is possible
to use the same heuristics as used in Binary Decision Diagram packages. By
trying out different orders on the location variables and formal parameters a
local minimum on the required number of variables and parameters can be
discovered. This would imply that we can remove location variables or formal
parameters that are not needed in result expressions.

Furthermore, we would like to alter the approach so that it instead of switch
statements in result expressions we input operators from users, and use the
operators to construct more compact result expressions. Examples are binary
operators such as #, <, and other operators commonly used in communica-
tion protocol entities, e.g., a check whether a parameter is defined. Using the
appropriate operator for a parameter in the model would make the labels on
transitions more compact.

In the approaches presented in Paper IV and Paper V, we infer Mealy ma-
chines which we fold into compact symbolic models. We think it would save
computation time and space if the approaches would not create the larger inter-
mediate model. Instead we would like them to be more similar to the approach
in Paper III, in which we directly calculate the guards that will label the tran-
sitions in the corresponding symbolic model. Inferring equivalence classes of
parameters, based on some operator on the parameter values, may save mem-
bership queries, since membership queries essentially need to be asked for one
representative of each equivalence class. However, the result in Paper I1I most
likely also apply to this setting: the number of membership queries are only
reduced for entities in which a small part of the parameters affect the behavior
of the entity.

In the future it is interesting to further investigate how well the approach
presented in Paper V applies to other communication protocols than the pro-
tocol we used in our experiments. This would probably give us new insights
to how to refine our approach. For instance, we may get insights to better or
alternative ways of partitioning the states in the Mealy machine into control
locations. This may lead to new approaches for constructing control locations.

In order to facilitate the use of regular inference applied to communication
protocol entities, it is desirable to construct a tool which combines the ap-
proaches we have presented for different types of parameters. A user should
be able to specify the domains of the input parameters and appropriate opera-
tions on them in the tool, information which the tool uses to select the appro-
priate approach to apply to each parameter. We also think that approaches to
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automatically calculate or estimate parameter operations must in the long run
be developed, in order for such a tool to be fully automatic. Giving the user
the ability to indicate which parameters that are likely to be used in guards on
transitions or in output, could be a way of speeding up the inference. This in-
formation would guide the inference algorithm towards which parameter val-
ues may need to be stored in state variables, and towards a more user friendly
model.
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