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Defects in quantum field theories appear in many different contexts and are of great physical
interest. Among other things, defects are used to describe the Kondō effect in condensed matter,
confinement in quantum chromodynamics, Rényi entropy in quantum information and cosmic
strings in string theory. This thesis is a study on the theoretical framework of defects in quantum
field theories, and new analytical methods are developed.

We study renormalization in the prescence of a defect, and how the conformal symmetry at
the fixed points of the corresponding renormalization group flow can be used to bootstrap the
bulk two-point correlator. We also study the Coleman-Weinberg mechanism, which allows us
to flow along the renormalization group to a first-ordered phase transition.

Included in this thesis are several new results. We explain how two-point correlators of
mixed bulk-local operators near a boundary can be analytically bootstrapped by exploiting
the analytical structure of the conformal blocks. This yields the operator product expansion
coefficients in either bootstrap channel. We also consider a sextic bulk-interaction and quartic
boundary-interaction near three dimensions, and find the bulk two-point correlator upto two-
loops by solving the equation of motion. We then apply the Coleman-Weinberg mechanism to
this theory, leading to a spontaneous symmetry breaking of the original O(N)-symmetry. By
studying the monodromy of a replica twist defect we learn how a global O(N)-symmetry is
broken. We find the anomalous dimensions of the defect-local fields by applying the equation
of motion to the bulk-defect operator product expansion. Lastly we study fusion of two scalar
Wilson defects. We propose that fusion holds at a quantum level by showing that bare one-point
functions stay invariant.

Keywords: defects, boundaries, replica twist defect, conformal field theory, quantum field
theory, Coleman-Weinberg mechanism, renormalization group flows

Alexander Söderberg Rousu, Department of Physics and Astronomy, Theoretical Physics, Box
516, Uppsala University, SE-751 20 Uppsala, Sweden.

© Alexander Söderberg Rousu 2023

ISSN 1651-6214
ISBN 978-91-513-1705-2
URN urn:nbn:se:uu:diva-495642 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-495642)



Dedicated to my beloved wife and son





List of papers

This thesis is based on the following papers, which are referred to in the text

by their Roman numerals.

I A. Söderberg, Anomalous Dimensions in the WF O(N) Model with a
Monodromy Line Defect, JHEP03(2018)058, arXiv:1706.02414

[hep-th].

II A.Bissi, T.Hansen and A. Söderberg, Analytic Bootstrap for Boundary
CFT, JHEP01(2019)010, arXiv:1808.08155 [hep-th].

III V. Procházka and A. Söderberg, Composite operators near the
boundary, JHEP03(2020)114, arXiv:1912.07505 [hep-th].

IV V. Procházka and A. Söderberg, Spontaneous symmetry breaking in
free theories with boundary potentials, SciPostPhys.11.2.035,

arXiv:2012.00701 [hep-th].

V P. Dey and A. Söderberg, On analytic bootstrap for interface and
boundary CFT, JHEP07(2021)013, arXiv:2012.11344 [hep-th].

VI A. Söderberg, Fusion of conformal defects in four dimensions,

JHEP04(2021)087, arXiv:2102.00718 [hep-th].

VII A.Bissi, P. Dey, J. Sisti and A. Söderberg, Interacting conformal scalar
in a wedge, JHEP10(2022)060, arXiv:2206.06326 [hep-th].

Reprints were made with permission from the publishers.





Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Part I: Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1 Homogeneous quantum field theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1 Symmetries of a quantum field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Conformal field theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Coleman-Weinberg mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 A single defect in a quantum field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Renormalization in the defect-limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Conformal bootstrap near a defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Coleman-Weinberg mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.7 Monodromy twist defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.8 Replica twist defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Multiple defects in a quantum field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1 Symmetries and OPE’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Correlation functions between defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Parallel and intersecting boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Part II: Defects, conformal symmetry and fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 The discontinuity method in a BCFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Discontinuities of the conformal blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 OPE coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Correlators from the equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Renormalization group flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 The correlator upto O(
√

ε) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 The correlator at O(ε) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Conformal block decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 CFT data upto O(ε) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Coleman-Weinberg Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



6 The O(N)-flavoured replica twist defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Monodromy of replica twist defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Anomalous dimensions from the equation of motion . . . . . . . . . . . . . . . . 100

7 Fusion of two defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Free theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Interacting theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.5 Line defects near four dimensios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Svensk Sammanfattning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



Introduction

Quantum field theories (QFT’s) combine field theory, special relativity and

quantum mechanics to give us a theoretical framework of particle physics. In

particular, the QFT that describes the interactions of quarks: quantum chro-
modynamics (QCD), yields impressive results of very high accuracy at particle

accelerators such as CERN. QFT methods are also used in statistical physics

to describe properties of different materials in condensed matter. The Ising

model on a lattice is one such example, wherein its continuum limit can be

described by a QFT to tell us about e.g. its phase transitions (p.t.’s).

Particles in QFT’s are the energy states of the fields. These fields are local

operators acting on points in spacetime (zero-dimensional). However, QFT’s

can in general also admit extended objects which covers an entire submanifold

Σp ⊂M d (parametrized by the coordinates x‖) of the theory (with p ≥ 1). We

call such p-dimensional operator a defect. From a technical point of view,

defects make sense when added to the path integral as an exponential

Dp = exp

(
i
∫

Σp
dpx‖Ldef

)
, (1)

for some Lagrangian density, Ldef, describing fields and interactions exclu-

sive to the defect.1 Physically, interactions on the defect describe boundary
conditions (b.c.’s) on the defect.

Defects will not satisfy the same symmetries as local operators. In addition

to this, properties (like scaling dimensions) of local operators change if they

are localized to the defect. This naturally gives rise to an effective theory for

adsorption where particles are glued onto a submanifold, see [1] and refer-

ences therein. We thus have to differ between the space outside of the defect,

called the bulk (or the ambient space), and the space along the defect itself

xμ = xa
‖ ⊕ xi

⊥ , (2)

where μ ∈ {0, ...,d −1}, a ∈ {0, ..., p−1} and i ∈ {1, ...,d − p} (if the time-

axis is parallel to the defect).

It is physically important to study defects for various reasons. In condensed

matter they give rise to new critical phenomena near the defects. In particular,

they can be used to describe impurities in materials (where the underlying mi-

croscopic structure of the material may differ). This makes defects important

1Just like in a QFT without a defect, the theory on the defect might not have a Lagrangian

description (even when the theory without a defect has one).
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when studying the Kondō effect (scatterings of electrons in metals due to an

impurity) [2, 3].

In string theory we can treat branes as defects,2 which give rise to b.c.’s

for open strings with endpoints on the branes (see [4] and references therein).

Moreover, if we consider a QFT in anti-de Sitter (AdS) spacetime (negative

cosmological constant) with a conformal field theory (CFT) dual, then a

(p+1)-brane in the AdS might intersect the conformal boundary. This inter-

section then yields a p-dimensional defect in the CFT [5, 6].

Let us mention a couple of specific examples of defects of physical interest:

Wilson loops

Perhaps the most studied defect in the literature is the Wilson loop in a gauge

theory. If this defect spans the curve γ , then it is defined as [7, 8]

W [γ] = tr

[
P exp

(
i
∮

γ
Aμdxμ

)]
, (3)

where P is the path ordering operator and Aμ is the gauge field. Among other

things, Wilson loops are used to study confinement in QCD (the phenomena

that quarks cannot be isolated from each other).

They are also of great importance in topological quantum field theories
(TQFT’s). These are QFT’s invariant under topological deformations of space-

time [9, 10, 11, 12]. TQFT’s are used in condensed matter to describe the

fractional quantum Hall effect in two dimensions

G =
e2ν
h

, ν ∈Q . (4)

Here G is the conductance (resistance inversed), e is the charge of the electron

and h is Planck’s constant. The values of ν describes the quantum steps of G,

which are fractional in the case above.

In this thesis we take a closer look at scalar Wilson lines/surfaces (or pin-

ning defects) in condensed matter systems. These defects are given by

D = exp

(
i
∫
Rp

dpx‖hφ φ
)

, (5)

where hφ describes a localized magnetic field along the defect [13].3 From a

technical point of view, hφ can be treated as a coupling constant of finite size

localized on the defect. The dimension of the defect is p = 1 if

d = 4− ε , and p = 2 if d = 6− ε . Both of these two models have their O(N)-
symmetry explicitly broken by the scalar Wilson defect.

2In string theory we define defects as operators of dimension p≥ 2 since the fundamental strings

are already one-dimensional.
3See [14] for a similar defect in a fermionic QFT.
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Boundaries

Another kind of defects that are of physical interest are boundaries in QFT’s

(see [15] and references therein). These are codimension one defects, where

there is a physical region on only one side of it. Experimental setups in con-

densed matter will have boundaries, making our understanding of them cru-

cial. Moreover, they are important for understanding p.t.’s of materials, which

is related to the b.c. on the boundary. E.g. the ordinary p.t., where the scalar

satisfy Dirichlet b.c.’s
φ |x⊥=0 = 0 , (6)

or the special p.t. with Neumann b.c.’s

∂⊥φ |x⊥=0 = 0 . (7)

A physical example of a boundary quantum field theory (BQFT) is graphene.

This material consists of a one-atom thick layer of carbon, and thus spans three

spacetime dimensions. There is a simple conceptual way of understanding

how this material can be described by a BQFT: imagine electrons living on the

graphene, affected by photons hitting the material. The electrons are fermions

on a three-dimensional surface, while the photons are gauge fields living in a

four-dimensional bulk [16]

S =−
∫
Rd

ddx
(Fμν)

2

4
+
∫
Rd−1

dd−1x‖ψ̄a
α(i��∇

αβ +mδ αβ )ψa
β . (8)

This is in fact a more general version of graphene, where we consider d space-

time dimensions, allow the gauge fields to be non-Abelian and the fermions to

enjoy a SU(N)-flavour symmetry: a ∈ {1, ...,N}. ��∇αβ is the covariant deriva-

tive times the γ-matrices for the fermionic spin structure

��∇αβ = ∇μγαβ
μ . (9)

The range of the spinor indices vary w.r.t. d, e.g. in four dimensions

α , β ∈ {1, ...,4}.

Systems with two boundaries are also of physical interest. E.g. two parallel

boundaries (or a pair of slabs) can be used describe the Casimir effect between

two conducting plates [17, 18]. This effect describes an interacting force, or

an energy emission/absorption, between the two plates.

Intersecting boundaries (or a wedge) also have physical applications. These

appear in experimental condensed matter setups. Moreover, if the intersec-

tion angle approaches 2π we make contact with conical singularities [19, 20].

These appear e.g. in string theory when studying cosmic strings (line defor-

mations of the spacetime) [21, 22, 23], and in quantum information regarding

black hole entropies [24, 25].
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Interfaces

There is another kind of codimension one defects, namely interfaces. Such

systems are referred to as interface quantum field theories (IQFT’s). The dif-

ference between an interface and a boundary is that in an IQFT there is a bulk

theory defined on each side of the defect. The two bulk theories may differ

from each other. This means that technically there are three QFT’s in play:

one on each side of the interface, in addition to a lower-dimensional one on

the interface. Interfaces can appear in physical systems in various ways, as

explained in e.g. the Introduction of paper V.

A particularly interesting class of interfaces are those with a free bulk theory

on one side, and an interacting one on the other side. The interface will then

couple these two theories to each other, and it is conjectured that it might

tell us something about the renormalization group (RG) flow between the two

bulk theories. Hence such interface is called a Renormalization group domain
wall. These kinds of defects were first studied in [26] for two dimensions, and

in [27] for higher dimensional spacetime (d > 2).

Replica twist defects

Codimension two defects are special in the sense that they can carry a mon-

odromy action for the fields [28, 29], which means that a bulk field transforms

under the global symmetry group as we transport it around the defect. This

leads to a symmetry breaking of the global symmetry in the bulk. This was

studied in paper I for an O(N)-model, where the monodromy action is

φ i(x‖,r,θ +2π) = gi jφ j(x‖,r,θ) , gi j ∈ O(N) . (10)

Here we use polar coordinates for the normal directions: r > 0, θ ∈ [0,2π).
Due to this constraint, we refer to these defects as (O(N)-flavoured) mon-
odromy twist defects (or symmetry defects). The choice of the group element

gi j is referred to as the twist and characterizes the defect. In fact, above mon-

odromy relation describes a branch cut in the plane of the normal coordinates.

We can choose to treat the monodromy defect as a defect of codimension one

which spans a half-plane along this branch cut [28].

Monodromy defects can be generalized by modifying the monodromy con-

straint to branch cuts with n sheets. Let us consider the special case when the

QFT’s on each sheet are all the same

φ i
a(x‖,r,θ +2π) = gi jφ j

a+1(x‖,r,θ) . (11)

We then say that we have n replicas, φ i
a with a ∈ {1, ...,n}, of the original

theory. These defects are called replica twist defects, and they enter in QFT’s

when applying the replica trick used to find the Rényi entropy [30, 31]

Sn =
logZ(n)−n logZ(1)

1−n
n→1−→ SEE , (12)

12



where Z(n) is the partition function for the theory with n replicas. In the n → 1

limit we find the entanglement entropy, SEE , in a QFT, which loosely speaking

is a measure on how much information of the total system is preserved on a

subregion of the full space of the theory [30, 31].

Thesis outline

This thesis consists of two Parts, wherein the first Part we give an excessive

introduction to the subject of defects in QFT’s and cover the relevant back-

ground topics for the papers included in this thesis. Firstly in Ch. 1 we discuss

a homogeneous QFT (without a defect), from which we will make analogies

and comparisons with when a defect is added to the theory in Ch. 2. Further-

more we will briefly discuss QFT’s with several defects in Ch. 3.

In the next Part we explain the technical methods developed in the attached

papers of this thesis. While doing this we generalize all of these methods or

apply them to new theories. This will not only illustrate the methods, but also

provide us with new results not found prior to this thesis.

In Ch. 4 we explain the analytical bootstrap method for bulk two-point

functions in a boundary conformal field theory (BCFT) developed in paper

II and further extended upon in paper V to hold in an interface conformal
field theory (ICFT). This method extracts the bulk operator product expansion
(OPE) coefficients from the bootstrap equation for bulk two-point correlators

by exploiting the analytical structure of the conformal blocks. We generalize

this method to work for mixed correlators where the two external scalars does

not need to be identical. We also show how the boundary operator product
expansion (BOE) coefficients from the bootstrap equation can be extracted in

a similar way.

In Ch. 5 we illustrate the methods used in paper IV and VII, and find the

bulk two-point function upto two-loops using the equations of motion (e.o.m.)

In paper VII this was done for a wedge, but here we apply it to a BCFT in

d = 3 − ε with both a bulk- and a boundary-interaction. Lastly we apply

the Coleman-Weinberg (CW) mechanism to find an effective description for

a first-ordered p.t. In paper IV, this was done for a theory with only boundary-

interactions, but here we consider in addition a bulk-interaction. This leads

to a non-trivial boundary vacuum expectation value (v.e.v.), which due to the

BOE also extends into the bulk. It leads to a spontaneous symmetry breaking
(SSB) of the global O(N)-symmetry (both in the bulk and on the boundary).

In Ch. 6 we consider a replica twist defect, which is a generalization of the

monodromy twist defect considered in paper I. We apply the techniques from

paper I to the replica twist defect, and study how its monodromy action (11)

breaks the global O(N)-symmetry in the bulk. This breaking will occur in the

same way as in paper I, and the difference lies in the spin of the defect-local

fields. Furthermore, we show how the anomalous dimension of the defect-

13



local fields can be extracted using the e.o.m. and the defect operator product
expansion (DOE). This gives us a new result which reduces down to that in

paper I when we only consider one replica.

Lastly in Ch. 7 we improve the method from paper VI, which concerns

fusion of scalar Wilson defects (5) in d = 4. In the free theory we generalize

this result to hold in d = 6. We suggest that the fusion holds at a quantum level

(which is what we expect since the path integral stays invariant under fusion)

by showing that the bare one-point function in the presence of the two defects

is the same as that near the fused defect. The difference lies in renormalization,

where the bare coupling constant on the fused defect also takes into account

divergences which appear in the fusion-limit of the two Wilson defects (when

the two defects approach each other). This means that renormalized quantities,

such as correlators and β -functions, are allowed to differ.
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Part I:
Background





1. Homogeneous quantum field theories

In this Chapter we will briefly discuss a homogeneous QFT without a defect

in higher dimensional spacetime (d > 2). In the next Chapter we will add a

defect to the QFT and compare with this Chapter.

We start with the Poincaré group that follows from frame invariance and

special relativity. We then proceed to study global symmetries and their re-

spective conserved currents. Next we study the free propagators found from

the e.o.m., which are the building blocks of Feynman diagrams. Moving on

to the interacting theory we briefly review how a QFT is renormalized, and

how this gives rise to the RG. At f.p.’s of this semigroup (a group without an

identity element) the Poincaré symmetry is enhanced to the conformal group.

Due to conformal symmetry we can find the powerful and non-perturbative

bootstrap equation for four-point functions. Lastly, we discuss how the CW

mechanism allows us to flow along the RG away from a conformal second-

order p.t. to a non-conformal first-ordered one.

1.1 Symmetries of a quantum field theory

1.1.1 The Poincaré group and the Poincaré algebra

In a d-dimensional QFT we are free to choose a frame (coordinate system).

This leads to a symmetry under rotations, boosts and translations. We will

consider a relativistic theory with Lorentz boosts.1 In special relativity we

consider invariance under rotations and boosts, which form the Lorentz group,

SO(d −1,1). It is given by

SO(d −1,1) = {Λμν ∈ R(d−1,1)×(d−1,1) | ΛμνΛνρ = δ μ
ρ , detΛμν = 1} ,

which is graded due to the imaginary time-coordinate, and δ μ
ρ is the Kro-

necker δ -function (an identity matrix). Here, and throughout the rest of this

thesis, we have used Einstein summation to suppress summation over repeat-

ing indices. In this case μ,ν ∈ {0, ...,d − 1} with μ = 0 being the time-

coordinate. Indices are raised and lowered using the Minkowksi metric

(ημν) = diag(−1,1, ...,1) . (1.1)

Adding to the Lorentz group translations yields the Poincaré group

ISO(d −1,1) = Rd �SO(d −1,1) . (1.2)

1In a non-relativistic theory, we consider Galilean boosts.
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Lorentzian quantum field theory Classical statistical physics

Action: S Hamiltonian: H
Generating functional: Partition function:

Z =
∫

Dφe
i
�

S[φ ] , �=
h

2π
Z = ∑

states

e−βH , β ≡ 1

kBT
Fundamental fields, e.g. φ Order parameters

Scaling dimensions: Δ Critical exponents

Vacuum expectation value: 〈0|O|0〉 Ensemble average: 〈O〉
Amplitude: 〈T [O1...On]〉 Correlation function: 〈O1...On〉
Masses: M Correlation lengths: ξ = 1

m ∝ |T −Tc|−ν

Momentum cutoff: Λ 
 1 Lattice spacing: a � 1

Table 1.1. A table with some of the connections between Lorentzian QFT’s and clas-
sical statistical physics. This is far from a complete list, and we will not explain the
correspondence between the quantities in detail.

Here I denotes inhomogeneous and means that an element cannot be written

as a matrix, e.g. a space-time vector transforms under the Poincaré group as

xμ → Λμνxν +aμ , (1.3)

where aμ ∈ Rd−1,1 is a constant vector (giving us a translation), and

Λμν ∈ SO(d −1,1) is a Lorentz transformation.

Performing a Wick rotation t → iτ yields Euclidean signature: ημν → δ μν ,

where the Poincaré group is ISO(d). Euclidean signature is used in condensed

matter, while Lorentzian signature is more applicable to particle physics. In

Tab. 1.1 we list some of the connections between these two research fields.

The Poincaré group is a Lie group, and just like any other Lie group it can be

treated as a manifold. Its tangent at identity describes a Lie algebra, where the

exponential map is a map from the Lie algebra to the Lie group. This creates a

Lie group - Lie algebra correspondence (see [32] and references therein) which

is of great importance for physicists when it comes to classifying operators in

QFT’s (as we will see later on in this thesis).

The Lie algebra consists of several commutation relations for the corre-

sponding Lie group’s generators. In physics, eigenvalues of these generators

are interesting as they correspond to physical data. E.g. the eigenvalues for the

generators of the Lorentz transformations and the translations of the Poincaré

group are the full angular momentum (including the quantum spin), Mμν , and

the momenta, Pμ , respectively

Mμν = i(xμ∂ν − xν∂μ) , Pμ = i∂μ . (1.4)

Their corresponding eigenvalues are used to classify the spectrum of the QFT,

i.e. its operators. The non-trivial commutation relations in the Poincaré alge-
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bra are given by

[Mμν ,Pρ ] =−i
(
ημνPρ −ημρPν

)
,

[Mμν ,Mρσ ] =−i
(
ημρMνσ −ημσ Mνρ −ηνρMμσ +ηνσ Mμρ

)
.

(1.5)

1.1.2 Global symmetries and Noether’s theorem

In addition to the Poincaré group, a QFT may enjoy global symmetries. The

corresponding symmetry operations transform the fields (rather than the space-

time). Common examples of global symmetries are O(N) for scalars or SU(N)
for fermions, where U stands for unitary (meaning that its inverse is the same

as its transpose of its complex conjugate).

For each continuous symmetry, there exists a corresponding conserved cur-

rent. According to Noether’s theorem they are found in the following way

[33]: assume an infinitesimal transformation in the spacetime coordinates (e.g.

Poincaré symmetry) and fields (e.g. O(N)-symmetry of scalars) which leaves

the Lagrangian invariant

O → O +δO , xμ → xμ +δxμ . (1.6)

Then there exist a spin one Noether current, Jμ , (for each global symme-

try) and a symmetric, spin two stress-energy (SE) tensor, T μν = T νμ , (or the

energy-momentum tensor) on the form

Jμ =
∂L

∂ (∂μO)
δO −T μνδxν , T μν =

∂L

∂ (∂μO)
∂ νO −gμνL . (1.7)

Here L is the Lagrangian density and gμν is the spacetime metric. The time-

time component, T 00, of the SE tensor is the energy density of the theory, and

its time-space components, T i0, describe the momentum density. The rest of

the terms describe how the energy and the momentum densities are fluctuating

in space.

Both of these currents are conserved

∂μJμ = 0 , ∂μT μν = 0 . (1.8)

This means that their respective scaling dimensions (or mass dimensions) are

protected, i.e. they will not receive any quantum corrections. These can be

found from dimensional analysis and are exactly given by

ΔJ = d −1 , ΔT = d . (1.9)
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1.2 Renormalization

1.2.1 Free propagators

In this Section we will study a free theory without interactions. More ex-

plicitly we will consider a massive scalar, φ i with i ∈ {1, ...,N}, satisfying

O(N)-symmetry and find the two-point function. This propagator is the build-

ing block for the Feynman diagrams, which we traditionally compute in the

interacting theory.

The action is given by

S =

∫
Rd

ddx
(
(∂μφ i)2

2
+

m2

2
(φ i)2

)
. (1.10)

Its e.o.m. is described by the Klein-Gordon (KG) equation

δ S
δ φ i = 0 ⇒ (−∂ 2

μ +m2)φ i = 0 , (1.11)

which is found by varying the action (1.10) w.r.t. φ . The operator ∂ 2
μ is the

d’Alembert operator: the Laplacian in Minkowski spacetime. Operator equa-

tions only make sense mathematically when acting on propagators, e.g. the

two-point function, Di j(s), at separate points s ≡ x − y. This yields to the

Dyson-Schwinger (DS) equation for a scalar [34, 35]

(−∂ 2
μ +m2)Di j(s) = δ (d)(s) ,

Di j(s) = 〈T [φ i(x)φ j(x)]〉 .
(1.12)

In technical terms, Di j(s) is a Green’s function. T is the time-ordering operator

and δ (d)(s) is the d-dimensional Dirac δ -function

δ (d)(s) =
∫
Rd

ddk
(2π)d e−i k s =

{
∞ , if x = y,
0 , else.

(1.13)

If we express Di j(s) in terms of its Fourier transform

Di j(s) =
∫
Rd

ddk
(2π)d e−i k sGi j(k) , (1.14)

we find the momentum propagator from (1.12)

Gi j(k) =
δ i j

k2 +m2
. (1.15)

The Fourier transform variable, kμ , describes the momentum of a particle trav-

elling from point x to y
(
if Re(x0)< Re(y0)

)
in the spacetime, with its energy

in the zeroeth component. We can proceed to integrate over the momenta in
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(1.14) to find the spacetime propagator. In order to avoid poles in denominator

one has to deform it a bit with a regulator ε � 1.

In Euclidean signature the integration is easier to deal with. Firstly, since

there is no time coordinate we do not have to deal with time ordered products.

Moreover, the integral (1.14) can be solved using a Schwinger parametrization

1

An =
∫ ∞

0
du

un−1

Γn
e−uA , (1.16)

with Γn ≡ Γ(n) being the Gamma function, and the Gausian integral in Rn

∫
Rn

dnxe−ax2+bx =
(π

a

) n
2

exp

(
b2

4a

)
. (1.17)

The integral (1.14) we are trying to compute is a special case of the more

general integral2

In
Δ(k,w,z

2) =
∫
Rn

dnx
eik x

[(x−w)2 + z2]Δ

=
π

n
2

2Δ− n
2−1ΓΔ

eik w
( |k|
|z|
)Δ− n

2

KΔ− n
2
(|k|z)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π
n
2 Γ n

2−Δ

22Δ−nΓΔ

eik w

|k|2Δ−n , if z = 0 ,

π
n
2 ΓΔ− n

2

ΓΔ

1

|z|2Δ−n , if k = 0 .

(1.18)

Here k, w ∈Rn and z2, n ∈R. Km(y) is the Bessel function of the second kind.

It yields

Di j(s) =
δ i j

(2π)d Id
1 (−s,0,m2) = δ i j mΔφ KΔφ (m |s|)

(2π)d−2|s|Δφ
, (1.19)

where Δφ is the scaling dimension of the free scalar

Δφ =
d −2

2
. (1.20)

The free propagators, be it in momentum space (1.15) or Minkowski spacetime

(1.19), are used as building blocks in Feynman diagrams, where they make up

an integrand that is either integrated over exchanged loop momenta or points

of vertices in spacetime [36]. E.g. consider an interaction term on the form

2The limit k → 0 must be taken before the integration.

21



λ
[
(φ i)2

]n ∈ L in the Lagrangian, L , for some integer n ∈ Z≥1. Then the

two-point function at order λ m is given by the following Feynman diagram3

〈T [φ i(x)φ j(x)]〉= (iλ )m
m

∏
i=1

∫
Rd

ddzi〈T
[

φ i(x)φ j(y)
m

∏
j=1

[
(φ i)2

]n
(z j)

]
〉 .

Here, and in the rest of this thesis, we are using units s.t. �, c = 1. The

propagator in the integrand can be split into products of two-point functions

(1.19) using Wick’s theorem.

1.2.2 Renormalization group

Consider now a field theory with interactions. We will compactly write its

action on the form

S =
∫
Rd−1,1

ddx
[
L0

({O0
i ,m

0
i }
)
+Lint

({O0
i },{g0

a}
)]

, (1.21)

where L0 is the Lagrangian density in the free theory containing the set of bare

fundamental fields, O0
i , and their respective bare masses, m0

i . Lint is the inter-

action Lagrangian density, which contains the terms with interactions, one for

each bare coupling constant, g0
a. We will assume that g0

a has mass-dimension

dim(g0
a) (which can be found from dimensional analysis). We wish to study

how this general action runs under the RG flow. The choice of regulator will

not be important for this discussion, but we will illustrate it for the deviation

from the spacetime dimension ε .4

Normally we find the RG flow of a theory by calculating Feynman dia-

grams for the interactions we consider. We expect the Feynman diagrams to

be divergent, containing both infrared (IR) and ultraviolet (UV) divergences.

IR divergences arise from scales of the theory (long distances or low energy

in momentum space), while UV divergences arise from coincident-limits of

fields (short-distance and high energy).

In this thesis we are interested in how to take care of the UV divergences,

and will thus assume that no IR divergences are present. To renormalize the

theory we assume that the bare quantities (O0
i , m0

i and g0
a) are all divergent

in such a way that times the UV-divergent Feynman diagrams we get a finite

expression through a cancellation of the ε-poles.

The bare fields and masses can be found from their respective two-point

function, 〈T [O0
i (x)O

0
i (y)]〉. At first order in the coupling constants, assume

3Most commonly we calculate Feynman diagrams in momentum space, where loop momenta

is integrated rather than vertex points. We use this notation since we find it more useful when

we add defects to the theory. The factors of i come from the eiS-factor in the path integrand. In

Euclidean signature, this is exchanged to factors of −1.
4One might as well choose a momentum cutoff Λ, in which case poles in ε are exchanged with

logarithmic divergences in Λ: ε−1 → logΛ.
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〈T [O0
i (x)O

0
i (y)]〉 to have poles in ε . We then write the bare field and mass as

O0
i = ∑

j
ZO0

i O jO j , ZO0
i O j = δO0

i O j +
(ζ O0

i O j)
aga

ε
+O(g2) ,

m0
i = Zmimi , Zmi = 1+

(ζmi)
aga

ε
+O(g2) .

(1.22)

Here Oi and mi are the renormalized fields and masses respectively, where we

allowed the bare fields to mix with renormalized ones. Summation over the

index a is implicit. The constants (ζ Oi
O j)

a and (ζmi)
a are tuned s.t. the poles

in the renormalized propagators, 〈T [Oi(x)Oi(y)]〉, cancel. 〈T [Oi(x)Oi(y)]〉 is

given by

〈T [Oi(x)Oi(y)]〉= (ZOi
O j)

−1(ZOi
Ok)

−1〈T [O0
j (x)O

0
k (y)]〉 . (1.23)

The bare coupling constants are found from their respective diagrams. E.g. if

we have an interaction on the form g0
a(φ 0)n, then the corresponding bare cou-

pling constant is found from the following propagator of renormalized fields

〈T [φ(x1)...φ(xn)]〉= (ZO0
i1 φ )

−1...(ZO0
in φ )

−1〈T [O0
i1(x1)...O

0
in(xn)]〉 ,

where summation over the repeating indices are implicit. This propagator

will in general contain poles in ε . Assume that the following g0
a cancel these

divergences (together with the bare fields and masses at (1.22))

g0
a = μdim(g0

a)Zgaga = μdim(g0
a)

(
ga +

(ζga)
bcgbgc

ε
+O(g3)

)
, (1.24)

for some constants (ζga)
bc (and where we do not sum over a). We introduced

a renormalization scale, μ , s.t. the renormalized coupling constants, ga, are

dimensionless. We assumed both multiplicative (corresponding to the terms

proportional to ga) and additive renormalization (not proportional to ga). The

renormalized coupling constants and masses can potentially be measured in

a lab in particle physics, e.g. in quantum electrodynamics the renormalized

coupling constant is the electronic charge.

The renormalization group consists of the transformations (1.22, 1.24) for

the bare quantities. Strictly speaking it is a semigroup, and it measures the

renormalization group flow. It tells us how the physics change w.r.t. the energy

scale μ .
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1.2.3 β -functions

Let us now make sense of this RG flow. We will do this by studying how

the renormalized coupling constants, ga, change w.r.t. the RG scale, μ . Per

definition, bare couplings do not depend on μ while renormalized do

∂g0
a

∂ μ
= 0 , βa = μ

∂ga

∂ μ
=

∂ga

∂ log μ
. (1.25)

The latter derivative is the definition of the (dimensionless) β -function, which

measures the RG flow. We wish to find the β -functions given the bare cou-

plings (1.24). To do this we will in addition to the above derivatives also use

∂ logga

∂ log μ
=

βa

ga
, (no summation over a). (1.26)

Let us assume the couplings are small, allowing for a perturbative expansion

around them. Then if we take the logarithm of (1.24) and expand in the cou-

pling constants we find

logg0
a = dim(g0

a) log μ + logga +
(ζga)

bc

ε
gbgc

ga
+O(g2) . (1.27)

Now consider the derivative w.r.t. log μ and use the derivatives at (1.25, 1.26)

0 = dim(g0
a)+

βa

ga
+

(ζga)
bc

ε

(
βbgc

ga
+

gbβc

ga
− gbgcβa

ga

)
+O(g3) .

From this system of equations we can find all of the βa’s. The RG flow goes

from maxima of the β -functions, towards their minima (i.e. the RG flow goes

in the opposite direction of the β -functions). We will see specific examples of

RG flows later in.

Let us turn our attention back to the SE tensor from Sec. 1.1.2. The trace

of this operator is proportional to the β -functions of the theory [37]

T μ
μ = βaOa . (1.28)

Here Oa is the composite operator of its corresponding interaction. This re-

lation will be important at fixed points of the RG flow, when all of the β -

functions are zero.

1.2.4 Callan-Symanzik equation

In Sec. 1.2.3 we studied how the renormalized coupling constants change w.r.t.

the RG scale, μ . Similarly we can study how a propagator, DOi , including a

renormalized field, Oi(x), change w.r.t. μ

DOi = 〈Oi(x1)...〉 . (1.29)

24



Here the dots represent an arbitrary product of operators. Let us consider a

shift in the RG scale
μ → μ +δ μ . (1.30)

This will in turn also shift the renormalized coupling constants, the masses

and the fields
mi → mi +δmi ,

ga → ga +δga ,

Oi → Oi +δZOi
O jO j .

(1.31)

The renormalized propagator (1.29) is then shifted as

DOi →
(

δOi
O j +δZOi

O j

)
DO j . (1.32)

Now if we think of DOi as a function of μ , ga and mi we find

δDOi =
∂DOi

∂ μ
δ μ +

∂DOi

∂ga
δga +

∂DOi

∂m j
δm j = δZOi

O j DO j . (1.33)

Define the β -function, the mass anomalous dimensions and the anomalous
dimension matrix in the following way5

βa ≡ μ
∂ga

∂ μ
, γmi ≡ μ

∂mi

∂ μ
, γ i j

O ≡−μ
∂ZOi O j

∂ μ
. (1.34)

Then from (1.33) we find the Callan-Symanzik (CS) equation [38, 39](
δ i jμ

∂
∂ μ

+δ i jβa
∂

∂ga
+δ i jγmk

∂
∂mk

+ γ i j
O

)
DO j = 0 . (1.35)

This is a partial differential equation for the propagators which describe how

they change w.r.t. the renormalization scale.

1.2.5 Operator product expansion

Remember that UV divergence arise from the coincident-limit between fields?

This means that if we would use the distance s ≡ x− y between two operators

as an infinitesimal cutoff, then we can see from the operator product expan-
sion (OPE) [40, 41] how fields mixes in the renormalization procedure in the

corresponding coincident-limit

O1(x)O2(0) = ∑
OΔ,l

C̃Δ,l(μ,x)OΔ,l(x) ,

C̃Δ,l(μ,x) =
λO1O2

OΔ,l

|x|Δ+
12−Δ+l

CΔ,l(μ,x) ,

OΔ,l(x) = xμ1 ...xμl Oμ1...μl
Δ (x) .

(1.36)

5Sometimes the mass anomalous dimension is defined with an extra (mi)
−1, and the anomalous

dimension matrix γ i j
O is defined with an extra (ZOI OJ )

−1 multiplied from the left.
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Here Δ+
i j ≡ Δi +Δ j, and the sum runs over exchanged operators, OΔ,l , with

scaling dimension Δ and spin l (full angular momentum). The OPE has di-

vergent terms when the scaling dimensions of the operators satisfy Δ < Δ+
12.

λO1O2
OΔ,l is called the operator product expansion coefficients, and CΔ,l(μ,x)

is a differential operator found from the CS eq. (1.35)(
δ i jμ

∂
∂ μ

+δ i jβa
∂

∂ga
+δ i jγmk

∂
∂mk

+ γ i j
O

)
C̃Δ,l(μ,x) = 0 . (1.37)

The OPE is very useful when we wish to find propagators involving composite

operators. For example, say we want to find 〈T [φ(x1)φ(x2)φ 2(x3)]〉 knowing

〈T [φ(x1)φ(x2)φ(x3)φ(x4)]〉 upto some order in the coupling constants. Then,

instead of calculating new Feynman diagrams involving φ 2 as an external op-

erator, we can instead study the coincident-limit of 〈T [φ(x1)φ(x2)φ(x3)φ(x4)]〉
when x4 → x3. In this limit we will find poles and logarithms in

x34 ≡ x3 − x4. However, the powers of x34 can be matched with the OPE

(1.36) to read off several different three-point functions. Among these we can

find 〈T [φ(x1)φ(x2)φ 2(x3)]〉. Poles in x34 correspond to operators of lower di-

mension than 2Δφ , and from the logarithms we can read off the anomalous

dimensions of the exchanged operators.

We will come back to study the OPE in the conformal case which contains

no physical scales, where CΔ,l in (1.36) simplifies drastically. In such case the

region of convergence of the OPE is known as well [42].

1.3 Conformal field theories

1.3.1 The conformal group and the conformal algebra

At the f.p.’s of the RG the Poincaré symmetry from Sec. 1.1.1 might be ex-

tended. I.e. if we consider a massless theory, then when all of the β -functions

are zero there is no running of coupling constants. This also leads to a traceless

SE tensor (1.28). At this point in the RG there is no dependence on the RG

scales. This leads to a scale invariance of the theory, enhancing the Poncaré

symmetry group

xμ → λ xμ λ ∈ R ⇒ O(x)→ O(λ x)
λ Δ . (1.38)

Here Δ is the scaling dimension of O , which in the free theory can be found

from dimensional analysis.

In condensed matter, the temperature, T , is tuned to the critical temperature,

Tc, of a second-order phase transition (where the system continuously shifts

to a new phase) when all of the masses and β -functions are zero. This means

that QFT’s at their respective RG f.p.’s are used to describe second-order p.t.’s.

See [43, 44] and references therein. In Tab. 1.1 we have the relation between

a mass and |T −Tc|.
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For d = 2 it is proven that scale symmetry also implies invariance under spe-
cial conformal transformations (SCT’s), while in d > 2 it is only conjectured

[45, 46]. In two dimensions, SCT’s are Möbius transformations, that preserves

angles, but not lengths, and in higher dimensions they are its correspondent

xμ → xμ − x2
νaμ

1−2aρxρ +a2
ρx2

σ
. (1.39)

Together with the Poincaré transformations (1.3) and the scaling transforma-

tion (1.38) they form the conformal O(d,2)-symmetry group (in Euclidean

space it is O(d + 1,1)),6 where only a SO(d,2) ∈ O(d,2) subgroup can be

written as infinitesimal transformations.7 Note that the conformal group is a

Lie matrix group, unlike the inhomogeneous Poincaré group (1.2). A confor-
mal field theory (CFT) is a QFT invariant under the scaling transformations

(1.38) and the SCT’s (1.39) [48, 49].

Let us now look at the conformal algebra. The generators, D and Kμ , to the

scaling transformations and the SCT’s respectively are given by

D = i xμ∂μ , Kμ = i(2xμxν∂ν − x2
ν∂μ) . (1.40)

We refer to D as the dilation operator. The Poincaré algebra (1.5) is extended

with the non-trivial commutation relations

[D,Pρ ] = +iPμ ,

[D,Kρ ] =−iKμ ,

[Pμ ,Kν ] = 2 i(δμνD−Mμν) ,

(1.41)

which yields the conformal algebra.

We can understand the conformal algebra in a more compact way by em-

bedding the spacetime in a (d +2)-dimensional space

(XA) = (X+,X−)⊕ (xμ) , X+ = 1 , X− = xμημνxν , (1.42)

where A ∈ {+,−,0, ...,d −1}. The inner product is

X ·Y ≡ XAgABY B = xμημνyν − X+Y−+X−Y+

2
. (1.43)

We choose X± s.t.

X ·X ≡ XAgABXB = 0 . (1.44)

Due to this constraint, the vector XA (1.42) is called a lightcone (LC) coordi-
nate. The common choice of X± is

X+ = 1 , X− = xμημνxν ⇒ X ·Y =−(x− y)2

2
. (1.45)

6In two dimensions the conformal group is extended to two copies of the infinite-dimensional

Virasoro-symmetry: Vir×Vir (see [47] and references therein).
7Needed for finding the generators.
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We define the space’ corresponding antisymmetric angular momentum gener-

ator in the following way

Jμν = Mμν , Jμ+ = Pμ , Jμ− = Kμ , J+− = D . (1.46)

With these we can write the full conformal algebra more compactly [50, 51]

[JAB,JCD] =−i(gACJBD −gADJBC −gBCJAD +gBDJAC) . (1.47)

The LC formalism is very useful for finding tensor structures of propagators

with spinning fields.

1.3.2 Radial quantization

When we construct a Hilbert space for a QFT we need to consider (d − 1)-
dimensional spacetime foliations, all orthogonal to the time direction. The

Hamiltonian operator, which describes time evolution of the theory, then moves

states in between these foliations. That said, we are free to choose which fo-

liations to use. In a CFT, a convenient choice is spherical, all centered at the

origin. This is called radial quantization [52]. As we act with the Dilation

operator, D, we are translated from one foliation to another. We can thus treat

D as a Hamiltonian: the energy density of the theory.

We will thus label operators by their eigenvalue of D, which are their scaling

dimensions, Δ. In addition to this, the operators are also labelled by their quan-

tum spin, l, corresponding to the angular momentum generator, Mμν . Since

we can translate states in spacetime with Pμ (the generator for translations) it

is enough to study states at origo, where we have

D|Δ, l〉= iΔ|Δ, l〉 , Mμν |Δ, l〉= Σμν |Δ, l〉 . (1.48)

Here Σμν is the spin matrix. Due to the conformal algebra (1.41), Pμ and Kμ
will act as raising or lowering operators respectively

DPμ |Δ, l〉= [D,Pμ ] |Δ, l〉+ iPμD|Δ, l〉= i(Δ+1)Pμ |Δ, l〉 ,
DKμ |Δ, l〉= [D,Kμ ] |Δ, l〉+ iKμD|Δ, l〉= i(Δ−1)Kμ |Δ, l〉 . (1.49)

This has a very important consequence: it is enough to know the states with

the lowest scaling dimensions, Δ, called primaries. These operators are anni-

hilated by the SCT generators, Kμ . The rest, called descendants, can be found

by applying Pμ . This creates an infinite tower of descendants for each primary.

Moreover, due to the nature of Pμ (1.4), the descendants are total derivatives

of primaries. All and all, this means that we can label all operators in a CFT

with the scaling dimensions and spin of the primaries.

Due to the radial quantization, an operator at origo (x = 0) can be described

as a state on a sphere (foliation)

|Δ, l〉= Oμ1...μl
Δ (0)|0〉 , (1.50)
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where |0〉 is the vacuum state. This is the operator-state correspondence. In

addition, using Pμ we can translate an operator at an arbitrary point in space-

time to origo

Oμ1...μl
Δ (x)|0〉= eiPμ xμ |Δ, l〉 , (1.51)

which means that we only have to focus on primaries at the origin.

Since the Hamiltonian describes the energy density, its eigenvalues should

be real. This means that it should be Hermitian

H = H† . (1.52)

This yields the unitary bounds for the scaling dimensions [53]. For a scalar

Δ ≥ d −2

2
, (1.53)

while for an operator with spin l (in the symmetric, traceless representation of

the Lorentz group)
Δ ≥ d −2+ l . (1.54)

Note that the free scalar (1.20) saturates the unitary bound.

Unitarity also implies that the OPE coefficients in (1.36) are real, which in

particular means that their squares are not negative

λO1O2
Oi ∈ R ⇒ (λO1O2

Oi)
2 ≥ 0 . (1.55)

1.3.3 Two- and three-point functions

Let us now make use of the conformal symmetry and see that it completely

fixes all of the two- and three-point functions upto the normalization of the

fields, the OPE coefficients and the scaling dimensions and spin of all pri-

maries. Higher-point functions can then be described in terms of the lower-

point functions using the OPE. This means that all of the propagators in a CFT

is classified by the CFT data. That is, the scaling dimensions and spin of the

primaries, as well as the OPE coefficients.

We will restrict ourselves to the Euclidean signature, and study the con-

straints on the correlators (propagators in Euclidean signature) that follow

from conformal symmetry. Note that for two vectors, XA and Y A, only the

scalar product X ·Y is non-zero (since X ·X = Y ·Y = 0). This means that the

two-point function 〈O1(X)O2(Y )〉 and three-point function 〈O1(X)O2(Y )O3(Z)〉
can only depend on X ·Y as well as X ·Y , Y · Z and Z ·X respectively. The

powers of these products can be found from dimensional analysis and scaling

invariance. In particular this fixes the two- and three-point functions by the

conformal symmetry.

For scalars, the two-point function is given by (here we are using (1.45))

〈O1(x1)O2(x2)〉= AdδO1,O2

(−2X1 ·X2)
Δ+

12
2

=
AdδO1,O2

|x12|Δ+
12

, (1.56)
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where xi j ≡ xi − x j and Ad is a constant which we may normalize to one by a

redefinition of the fields. We can see that the two-point function is the massless

limit of (1.19) when

Ad =
1

(d −2)Sd
, Sd =

2Γ d
2

π
d
2

. (1.57)

Here Sd is the solid angle: the area of a (d−1)-dimensional sphere embedded

in a d-dimensional Euclidean space.

In the rest of this Section we will normalize the fields s.t. Ad is one. The

three-point function for scalars is then

〈O1(x1)O2(x2)O3(x3)〉=
λO1O2

O3

|x12|
Δ+

12
−Δ3
2 |x23|

Δ+
23

−Δ1
2 |x31|

Δ+
31

−Δ2
2

, (1.58)

where the constant λO1O2
O3

is the OPE coefficient entering in the OPE

O1×O2 at (1.36). This OPE is simplified in a CFT. Firstly, due to the operator-

state correspondence, there is an intuitive picture of the it: if we consider

two operators at points x and y, then we can view these as states on a sphere

enveloping these two points. Using the operator-state correspondence again,

these states are described by the exchanged operators in the OPE. Moreover,

the β -functions are zero, which simplifies the differential operators, CΔ,l(μ,y),
in (1.36, 1.37). The sum runs over the primaries, and CΔ,l generates a tower of

descendants for each primary. CΔ,l can be found by matching the three-point

functions with the two-point functions (1.56) using the OPE

CΔ,l(x)≡ 1+
xμ∂μ

2
+O(∂ 2) . (1.59)

1.3.4 Bootstrap equation

Regarding the four-point function, we are not able to fix it using the conformal

symmetry. However, we can use the OPE in different ways, to find the general

bootstrap equation. It is a powerful, non-perturbative equation that holds in all

CFT’s (and is a result of the conformal symmetry).

Let us consider four identical scalars. Using the conformal symmetry we

can write the corresponding four-point function in terms of a function, f (u,v),
depending on the dimensionless conformal cross-ratios u and v.

〈φ(x1)φ(x2)φ(x3)φ(x4)〉= Ad f (u,v)
|x12|2Δφ |x34|2Δφ

, (1.60)

u =
x2

12x2
34

x2
13x2

24

∈ (0,1) , v =
x2

23x2
14

x2
13x2

24

∈ (0,1) . (1.61)
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This function satisfy the bootstrap equation (or the crossing equation). It is

found by applying the OPE in two different ways: either we study the OPE’s

of φ(x1)×φ(x2) and φ(x3)×φ(x4) (the s-channel), or φ(x1)×φ(x3) and

φ(x2)×φ(x4) (the t-channel)8

f (u,v) = vΔφ ∑
OΔ,l

(λ φφ
OΔ,l )

2GΔ,l(u,v)

= uΔφ ∑
OΔ,l

(λ φφ
OΔ,l )

2GΔ,l(v,u) =
uΔφ

vΔφ
f (v,u) .

(1.62)

In particular, this equation is found using only symmetry arguments assuming

associativity of the OPE. This means it holds in every CFT. The sum runs over

all primaries in the theory, labelled by their scaling dimensions and spin.

This bootstrap equation is solved when we have found the scaling dimen-

sions and spin of all the exchanged primaries, OΔ,l , together with their respec-

tive OPE coefficients, (λ φφ
OΔ,l )

2.

By using the OPE, we can describe higher-point functions in terms of four-

point functions. This means that the set of the scaling dimensions and spin of

all primaries, together with the set of the OPE coefficients, completely classify

a CFT. Together, these two sets form the CFT data.

The function GΔ,l(u,v) in the bootstrap equation is called a conformal block.

E.g. in even dimensions it is given in terms of hypergeometric functions [54,

55]. It can be found by comparing above bootstrap equation to the two-point

functions (1.56)

vΔφ GΔ,l(u,v) =
xμ1

12 ...x
μl
12

|x12|l−Δ
xμ1

34 ...x
μl
34

|x34|l−Δ CΔ,l(x2)CΔ,l(x4)
〈OΔ,l(x2)OΔ,l(x4)〉

Ad
.

An alternative way of finding GΔ,l(u,v) is using the conformal symmetry.

More specifically, since it is invariant under conformal transformation it has

to satisfy the conformal Casimir equation [55]

J 2 GΔ,l(v,u)
|x13|2Δφ |x24|2Δφ

= cΔ,l
GΔ,l(v,u)

|x13|2Δφ |x24|2Δφ
, (1.63)

J 2 =−(JAB
1 + JAB

2 )2

2
,

cΔ,l = Δ(Δ−d)+ l(l +d −2) .

(1.64)

Here J 2 is the Casimir of the conformal group, with eigenvalue cΔ,l . JAB
i is

the conformal generators (1.46) acting on the point Xi

JAB
i = XA

i
∂

∂XB
i
−XB

i
∂

∂XA
i
, (no sum over i). (1.65)

8In the case of different external operators, the exchanged operators differ in the two channels.
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Let us briefly summarize the importance of the bootstrap eq. (1.62). It can be

solved exactly in certain two-dimensional CFT’s [56], called rational theories.

In these theories there is a finite number of primaries.

In higher dimensions it can be studied numerically using semidefinite pro-

gramming [57] (if the theory is unitary s.t. (1.55) holds), or the method of

determinants [58]. Among other things this yields impressive accuracy for the

anomalous dimensions in the 3D Ising model [59].

Analytically the bootstrap equation can be studied in the large spin expan-

sion [60, 61], or in Mellin space [62, 63, 64]. It is also possible to project out

the OPE coefficients by studying the branch cuts of the bootstrap equation us-

ing the Lorentzian inversion formula (LIF) [65, 66]. This assumes analyticity

of the conformal blocks in the spin. In a similar manner, dispersion relations

for the four-point functions have been found by exploiting the analytical struc-

ture of the bootstrap equation [67, 68].

Through functional bootstrap we can see how the different approaches to

conformal bootstrap are connected to one another [69, 70].

Up until now we have considered a QFT, and studied the UV divergences

that appear in the quantized theory. We have seen that these divergences can

be taken care of through renormalization, where bare quantities (fields, masses

and coupling constants) contain divergences (1.22, 1.24) in such a way s.t.

there will be a cancellation of poles. In the process we introduced an RG

scale, μ , which gives rise to a RG flow. It describes how the theory change

w.r.t. μ through the β -functions (1.25) and the CS eq. (1.35).

At the f.p.’s of this RG, the Poincaré symmetry is enhanced to the conformal

group. With this extended symmetry group we are able to find the general

and non-perturbative bootstrap eq. (1.62) for the four-point functions (which

holds in any CFT). This equation is solved by the CFT data, which completely

classify all primaries in the theory, and thus also the CFT itself.

1.4 Coleman-Weinberg mechanism

There is a well-established method, called the Coleman-Weinberg (CW) mech-
anism [71], which allows us to flow along the RG to a first-order phase transi-
tions (where the system does not continuously shifts into a new phase) starting

from a (conformal) second-order one. In the process we can also find the β -

functions upto one-loop [72].

Let us explain this mechanism as we apply it to the hypercubic anistotropy
model (in Euclidean signature)

S =

∫
Rd

ddx
(
(∂μφ i)2

2
+λ i jklφ iφ jφ kφ l

)
, d = 4− ε , (1.66)
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with i, j, k, l ∈ {1, ...,N} and the coupling constants

λ i jkl =
λ 0

1

8
Di jkl +

λ 0
2

4!
δ i jkl . (1.67)

The tensor structures are given by

Di jkl = δ i jδ kl +δ ikδ jl +δ ilδ jk ,

δ i jkl =

{
1 , if i = j = k = l,
0 , else.

(1.68)

The model (1.66) satisfy a hypercubic global symmetry:

H(N) = SN �ZN
2 ⊂ O(N). The action of this symmetry permutes the different

φ i’s (SN) upto a difference in sign (ZN
2 ).9 Group elements of H(N) (unlike

O(N)) are not described by a set of continuous parameters, making H(N) a

discrete group.

Varying the hypercubic model (1.66) w.r.t. φ gives us the e.o.m.

∂ 2
μφ i =

λ 0
1

2
(φ j)2φ i +

λ 0
2

6
(φ i)3 , (no sum over i). (1.69)

The β -functions of this theory was found in [73, 74, 75]

β1 =−ε λ1 +
3(N +8)λ 2

1 +2λ1λ2

π2
+O(λ 3) ,

β2 =−ε λ2 +3
12λ1λ2 +λ 2

2

π2
+O(λ 3) .

(1.70)

The corresponding RG flow is depicted in Fig.1.1. If we set these β -functions

to zero we find the free Gaussian f.p. (G)

(λ ∗
1 )G , (λ ∗

2 )G = 0 , (1.71)

the Ising f.p. (I) with Z2-symmetry

(λ ∗
1 )I = 0 , (λ ∗

2 )I =
ε
3
+

17

81
ε2 +O(ε3) , (1.72)

the Heisenberg f.p. (H) with O(N)-symmetry

(λ ∗
1 )H =

ε
3(N +8)

+
3N +14

(N +8)2
ε2 +O(ε3) , (λ ∗

2 )H = 0 , (1.73)

and the cubic f.p. (C) with H(N)-symmetry where both of the couplings are

non-trivial

(λ ∗
1 )C =

ε
9N

− 19N2 −125N +106

243N3
ε2 +O(ε3) ,

(λ ∗
2 )C =

N −4

3N
ε +

17N3 +92N2 −534N +424

81N3
ε2 +O(ε3) .

(1.74)

9E.g. one element of H(3) is h =

⎛
⎝ 0 +1 0

0 0 +1

−1 0 0

⎞
⎠.
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Figure 1.1. The RG flow for the hypercubic anisotropy model (1.66) for N below and

above the critical value Nc. The black dot is the Gaussian f.p. (1.71), the red one is

I (1.72), the orange one is H (1.73) and the blue one is C (1.74). Note that C is only

fully attractive if N > Nc.

Due to the factor (N −4) in (λ ∗
2 )C there is a critical value, Nc, for N when the

cubic f.p. is fully attractive.10

1.4.1 Path integration

Let us now apply the CW mechanism to the hypercubic anistotropy model

(1.66). This was first done in [77]. The way to do this is to split φ into a

classical and a quantum piece

φ i = φclδ iN +�δφ i +O(�2) . (1.75)

In general the classical background, φcl , has N components (called axial or-
dering), but for simplicity we let only one of its components be non-zero (edge
ordering) [78]. In the rest of this Chapter we will use units s.t. � is one.

If we now expand the action in the quantum fluctuations, δφ , then the

single-order terms in δφ vanish by virtue of the e.o.m. (1.69). Keeping upto

quadratic terms in δφ yields

S[φ ] = S[φcl ]+δS[φcl ,δφ ]+O(δφ 3) ,

δS =
∫
Rd

ddx
2

δφ i(D−1)i jδφ j ,
(1.76)

where (D−1)i j is the inverse of the δφ -correlator

(D−1)i j ≡ δ i j(−∂ 2
μ +m2

i ) , (no sum over i), (1.77)

10Recent analysis on this subject states that Nc ≈ 2.915 [76].
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with the mass

m2
i ≡

λ1 +λ2

2
φ 2

cl +λ1φ 2
clδi1 , (no sum over i). (1.78)

Let us now path integrate out δφ keeping φcl fixed

Z =
∫

Dφ e−S[φ ] =
∫

Dφcle−S[φcl ]δZ[φcl ] . (1.79)

Here δZ contains the path integration over δφ

δZ =
∫

Dδφ e−δS+O(δφ3) ∝
1√

det(D−1)i j

= exp

(
− log det(D−1)i j

2

)
= exp

(
− tr log(D−1)i j

2

)
,

(1.80)

where we neglected overall constants and effects from path integrating out

higher orders in δφ . The trace of an operator is by definition given by the

spacetime integral over the operator acting on the Hilbert states

tr log(D−1)i j ≡
∫
Rd

ddx〈x| trH(N) log(D−1)i j|x〉 . (1.81)

The trace inside the bracket runs over the group indices i, j.
Let us Fourier transform the Hilbert states

|x〉=
∫
Rd

ddk
(2π)d e−i k x|k〉 , (1.82)

with the normalization

〈k′|k〉= (2π)dδ (k′ − k) ⇒ 〈x′|x〉= δ (x′ − x) . (1.83)

The operator (D−1)i j now acts on the exponential in (1.82), which allows us

to factor it out from the bracket in the trace (1.81)

tr log(D−1)i j =
∫
Rd

ddx
∫
Rd

ddk
(2π)d trH(N) log(G−1)i j(k) . (1.84)

This is given in terms of the corresponding inverse momentum propagator

(G−1)i j(k) = δ i j(k2
μ +m2

i ) , (no sum over i). (1.85)

In order to take the logarithm of this we use its Taylor expansion

log diag(a1, ...,aN) = ∑
n≥1

(−1)n+1

n
diag(a1 −1, ...,aN −1)n

= ∑
n≥1

(−1)n+1

n
diag

(
(a1 −1)n, ...,(aN −1)n

)

= diag

(
log(a1 −1), ..., log(aN −1)

)
.

(1.86)
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With this we finally have an expression for the trace

tr log(D−1)i j =
∫
Rd

ddx
N

∑
i=1

Pd(m2
i ,0)

2

=
∫
Rd

ddx
Pd(m2

1,0)+(N −1)Pd(m2
2,0)

2
,

(1.87)

which is expressed in terms of the following master integral

Pn(m2, m̂)≡
∫
Rn

dnk
(2π)n log(

√
k2 +m2 + m̂) . (1.88)

This master integral is divergent, but we regularize it using polar coordinates

and introducing a large momentum cutoff Λ 
 1 for the radius

Pn(m2, m̂) =
Sn

(2π)n

∫ Λ

0
dr rn−1 log(

√
r2 +m2 + m̂) (1.89)

=
Λn+2

n(n+2)(m2 − m̂2)

[
m̂√
m2

F1

(
n
2
+1;

1

2
,1;

n
2
+2;−Λ2

m2
,

Λ2

m̂2 −m2

)
+

+2F1

(
1,

n
2
+1;

n
2
+2;

Λ2

m̂2 −m2

)]
+

Λn

n
log(

√
Λ2 +m2 + m̂) .

Here Sn is the solid angle (1.57) in n dimensions, F1(a;b1,b2;c;x,y) is an Ap-

pell F1-series and 2F1 is a hypergeometric function. Due to the F1, we cannot

directly expand above function around large Λ (or for that matter small m2,

which in our case (1.78) corresponds to an expansion in the coupling con-

stants). This forces us to first expand around small m̂. After that we are able to

expand around large values of Λ (or alternatively around small values of m2)

Pn(m2, m̂) =
Sn

(2π)n

(
Λn
(

logΛ
n

− 1

n2
+

m̂
(n−1)Λ

+
m2 − m̂2

2(n−2)Λ2
+

− m2m̂
2(n−3)Λ3

− m2(m2 −2 m̂2)

4(n−4)Λ4
+ ...

)
(1.90)

+
π
2

csc
(π n

2

)((m2)
n
2

n
− (m2)

n
2−1m̂2

2

)
+

Γ 1−n
2

Γ n
2

2
√

π
(m2)

n−2
2 m̂

)
.

Finally we perform the ε-expansion

Pd(m2,0) =
(m2)2

64π2

(
log

(
m2

Λ2

)
− 1

2

)
+

m2Λ2

32π2
+

+
Λ4

32π2

(
logΛ− 1

4

)
+ ... .

(1.91)

Since the second row of this expression is just a general constant, we will

neglect it.
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1.4.2 Effective potential

Let us now study what effects path integrating out the quantum fluctuation,

δφ , has on the classical field, φcl . As we just saw, the path integral (1.80) is

divergent, which means it needs to be renormalized. To do this, we will first

have to study the classical potential of the model (1.66)

V (φcl) =

(
λ1 +

λ2

3

)
φ 4

cl
8

. (1.92)

Note that this potential is defined with a plus sign since the action describes an

energy in statistical physics (see Tab. 1.1). From this potential we can define

the mass (which in our case is zero)

∂V
∂ (φ 2

cl)

∣∣∣∣
φcl=0

= 0 , (1.93)

and the coupling constant

∂ 2V
∂ (φ 2

cl)
2

∣∣∣∣
φcl=0

=
1

4

(
λ1 +

λ2

3

)
. (1.94)

These will later be used to introduce a RG scale, μ .

After path integrating out δφ in (1.79) we find an effective potential, Veff,

for the classical background

Z ∝
∫

Dφcl exp

[
−
∫
Rd

ddx
(
(∂φcl)

2

2
+Veff(φcl)

)]
, (1.95)

where we neglect overall constants and contributions from higher order terms

in δφ . We thus have from (1.80) that the effective potential is given by

∫
Rd

ddxVeff(φcl)≡
∫
Rd

ddxV (φcl)+
tr log(D−1)i j

2

+
∫
Rd

ddxVc.t.(φcl)+ ... .

(1.96)

Here the trace is given by (1.87). As we will see in a moment, this effective po-

tential captures only one-loop effects. To capture higher loop contributions we

need to path integrate out higher orders of δφ . Vc.t.(φcl ,χ) contains counter-

terms which will cancel the divergences in the trace (1.87)

Vc.t.(φcl) = Aφ 2
cl +B

φ 4
cl
8

. (1.97)

The constant B will contain the divergent parts of the bare coupling constants.

Since we specified to the case when only one component of φ i
cl is non-zero, see
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(1.75), we cannot distinguish between the λ1- and λ2-interaction in V (φcl ,χ).
This means that B will contain the divergent parts of both λ 0

1 and λ 0
2 .

To find A we define a mass similar to (1.93)

∂Veff

∂ (φ 2
cl)

∣∣∣∣
φcl=0

= 0 , (1.98)

which gives us

A =−(N +2)λ1 +N λ2

128π2
Λ . (1.99)

Finding B is more challenging as the second derivative of Veff w.r.t. φ 2
cl is

divergent in the limit φcl → 0 (due to the logarithmic terms in (1.91)). The

resolution to this problem is to introduce an RG cutoff μ (of mass dimension

one) s.t.11

∂ 2Veff

∂ (φ 2
cl)

2

∣∣∣∣
φcl=μΔφ

=
1

4

(
λ1 +

λ2

3

)
. (1.100)

The constant B found from this equation is a cumbersome expression. How-

ever, among other things it contains the following logarithmic divergence

B � (N +8)λ 2
1 +2(N +2)λ1λ2 +N λ 2

2

64π2
logΛ . (1.101)

This is the divergent part of the bare coupling constants (with the linear com-

bination (1.92)) giving rise to the β -functions (1.70) (upto one-loop).12

When we plug the constants (1.99, 1.101) into the effective potential (1.96)

the dependence on the large momentum cutoff, Λ, vanish. The way we intro-

duced μ in (1.100) yields a minimum of Veff at μ

∂Veff

∂φcl

∣∣∣∣
φcl=μΔφ

= 0 , (1.102)

from which we find that the coupling constants are related as13

λ2 =−3λ1

(
1+

N −1

32π2
λ1

)
+O(λ 3

1 ) . (1.103)

We can see from the RG flow in Fig. 1.1 that this is a point in the RG flow

which does not flow towards any of the RG f.p.’s (1.71, 1.72, 1.73, 1.74). If

11Note that Δφ = 1+O(ε), meaning we can set φcl = μ +O(ε) after taking the derivatives (and

neglecting the O(ε)-terms).
12This term in B corresponds to the (ζga)

bc-terms from the bare coupling constant (1.24).
13We also find that the second derivative w.r.t. φcl evaluated at φcl = μΔφ is positive using

this relation between the coupling constants. It is also worth mentioning that there are other

solutions which cannot be treated perturbatively for small coupling constants. However, there

might exist some large N-limit under which these solutions are under control.
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Figure 1.2. A plot of the effective potential (1.104).

we plug in above solution into Veff we find

Veff =
N −1

256π2
φ 4

cl

(
log

(
φ 2

cl
μ2

)
− 1

2

)
. (1.104)

A plot of this effective potential is in Fig. 1.2.

Lastly we can perform the Higgs mechanism [79, 80, 81, 82]. That is, we

expand φcl around its minimum

φcl = μΔφ +σ = μ +σ +O(ε) , (1.105)

and then expand the potential (1.104) in the Higgs mode σ . This gives us a

final result for Veff, where we can see that the H(N)-symmetry is fully broken

Veff(σ) =
N −1

16π2
λ 2

1

(
μ2σ2

4
+

5 μ σ3

12
+

11σ4

48
+

−3 ∑
m≥5

(−1)m(m+1)−5
σm

μm−4

)
+ ... .

(1.106)

Here we have removed constant terms and (x)n is the Pochhammer symbol.

From the effective potential we can read off the acquired mass for σ

m2
σ =

N −1

32π2
λ 2

1 μ2 > 0 . (1.107)

Since there can be quantum tunnelling between the vacua (see Fig. 1.2), and

since we do not flow towards any f.p.’s in the RG, the theory at the point

(1.103) describes a first-order p.t. The theory at this point in the RG flow is

non-conformal due to the dimensionfull couplings.

Let us end this Chapter by summary of the CW mechanism [71]. It allows

us to flow along the RG from a second-order p.t. towards a first-ordered one.14

By path integrating out quantum fluctuations (1.75) we acquire an effective

potential, Veff, for the classical field (1.96). This potential contains divergences

14Note though that it is not necessary to start with a massless theory.
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and thus needs to undergo renormalization, which we did by defining the cou-

pling constants through an RG scale, μ , in (1.100). This also gives us the bare

coupling constants (1.101) from which we can find the β -functions [72].

The way we introduce μ in (1.100) tells us that Veff has a minima (1.102)

at φcl = μΔφ . This gives a constraint on the coupling constants (1.103) from

which we can keep track of where we are in the RG flow. Note that if we

were to only consider one interaction in our model, than this constraint would

completely fix the value of the coupling constant. Most likely will this value

be outside a perturbative regime where the coupling is small. E.g. if we were

to consider the O(N)-model (1.66) with λ2 = 0, then the non-trivial solution

to (1.103) is λ1 =−32π2

N−1 which is not infinitesimal for finite values of N. It is

thus favourable to consider at least two coupling constants when we apply the

CW mechanism.

All and all, the CW mechanism leads to a SSB of the global symmetries.

In the example we considered a discrete global symmetry (and moreover only

assumed φcl to have one non-trivial component in (1.75)). If we were to con-

sider a continuous global symmetry, e.g. O(N), then the Higgs mechanism

(1.105) would yield free massless Goldstone modes in addition to a mas-

sive Higgs mode [79, 80, 81, 82]. In such case there is an overall factor of

eηkTk ∈ O(N)/O(N − 1) in (1.105) corresponding to the broken part of the

symmetry, where ηk is the Goldstone mode, and the Tk’s are the generators for

the Lie algebra corresponding to O(N)/O(N −1).15

The Higgs mechanism yields that one component of φ i
cl (assuming it to

consist of N components) have become massive (the Higgs mode, σ ). This

is a quantum effect of the theory, and we say that σ has generated a mass

radiately. Moreover, due to this mass scale the conformal symmetry of the

original theory will break as well, and we are left with a non-conformal QFT

with Poincaré symmetry.

15The kinetic term of φcl will in general produce derivative-interactions between (∂μ ηk)2 and

σ . However, in the low-energy limit, kμ → 0, of ηk these interactions vanish.
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2. A single defect in a quantum field theory

We will now add a defect to the QFT and study the implications caused by

it. Our starting point for this discussion is the symmetries preserved by the

defect. Spacetime symmetries (Poincaré or conformal) are explicitly broken

into a subgroup parallel and orthogonal to it. Global symmetries are not nec-

essarily broken by the defect. However, they can be, and this can either occur

spontaneously or explicitly. A global symmetry might also break due to the

monodromy of a codimension two defect. We will then study renormaliza-

tion in the presence of a defect. There will be new UV-divergences as bulk

fields approach the defect that needs to be taken into account in bare quanti-

ties on the defect. At the f.p.’s of the corresponding RG flow we study how

the enhanced conformal symmetry yields a bootstrap equation for two-point

functions of bulk-local primaries. We also discuss the CW mechanism for a

CFT near a defect. We end this Chapter by a discussion on specific examples

of defects: boundaries, interfaces, monodromy and replica twist defects.

2.1 Symmetries
As we have seen in Ch. 1, a homogeneous QFT has ISO(d −1,1)-symmetry,

and in the conformal case the symmetry is enhanced to SO(d,2). A defect

of dimension p > 0 will be invariant under transformations orthogonal to it.

In the case of a flat or a spherical defect (the minimal amount of symmetry

breaking caused by a defect), this symmetry group will be SO(d − p) if the

time-axis is parallel to the defect

ISO(d −1,1)→ SO(d − p) , (2.1)

and SO(d − p−1,1) if the time-axis is orthogonal to the defect. In Euclidean

signature there is no time direction, and thus the defect enjoy

SO(d − p)-symmetry.

A defect-local operator will satisfy a subgroup of the bulk symmetries, with

one part describing transformations along the defect, and the other orthogonal

to it (the same as the defect itself). The orthogonal symmetry group will act

as a global symmetry group for the defect-local fields. For the same reasons

as in the Ch. 1, we let the defect-local operators at least be Poincaré invariant.

In which case (for a flat or spherical defect), they satisfy a

ISO(p−1,1)×SO(d − p)-symmetry if the time-axis is parallel to the defect

ISO(d −1,1)→ ISO(p−1,1)×SO(d − p) , (2.2)
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and ISO(p)×SO(d − p−1,1)-symmetry if the time-axis is orthogonal to the

defect. In Euclidean signature local fields on the defect are invariant under

ISO(p)×SO(d − p).
The defect is said to be conformal if defect-local operators satisfy confor-

mal symmetry along it, i.e. O(p,2)×SO(d − p) if the time-axis is parallel to

the defect
O(d,2)→ O(p,2)×SO(d − p) , (2.3)

and O(p+ 1,1)× SO(d − p− 1,1) if the time-axis is orthogonal to it.1 In

Euclidean signature the corresponding symmetry group is

O(p+1,1)×SO(d − p). If both the bulk and the defect is conformal, we call

the theory a defect conformal field theory (DCFT).

Note that for a codimension one defect, i.e. a boundary or an interface,

the group of rotations, SO(d − p), around it is trivial. This has important

consequences as we shall see in Sec. 2.5 and 2.6, where we study boundaries

and interfaces respectively.

Global symmetries in the bulk are in general broken in the presence of the

defect. This can occur in several different ways:

• Explicit symmetry breaking: a global symmetry is directly broken by an

interaction on the defect. E.g. the scalar Wilson defect (5) explicitly

breaks the bulk O(N)-symmetry down to O(N −1).
• Spontaneous symmetry breaking: the potential in the bulk has a non-

trivial minima due to the defect, which gives rise to the Higgs mech-

anism. E.g. for a boundary there is the extraordinary p.t. for the O(N)-
model near four dimensions where one component of the bulk scalar

has a non-trivial v.e.v. [84, 85, 86], or as in paper IV where the CW

mechanism is studied in the presence of a boundary.

• Symmetry breaking by monodromy: codimension two defects generally

carry a monodromy constraint, see e.g. (10), which might break the

global symmetries in the bulk. We will study these defects in detail in

Sec. 2.7 and Ch. 6.

2.2 Renormalization in the defect-limit

In a homogeneous QFT there are UV divergences from the coincident-limits

of fields that can be understood using renormalization and the OPE. In the

presence of a defect, there are additional UV-divergences coming from the

short-distance limit between the bulk-local operator and the defect itself as a

p-dimensional operator (we will refer to this limit as the defect-limit). To deal

with these new divergences there is an additional step in the renormalization

1In two dimensions we can consider one-dimensional defects. Then the group of rotations

around the defect is trivial: SO(d− p) = SO(1) = 1. In such case only one copy of the extended

Virasoro symmetry [83] is preserved by the defect: Vir×Vir → Vir.
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procedure, and this was first studied in [87] and expanded upon in paper III

for composite operators.2 Firstly, the bulk UV divergences are taken care of,

followed by a similar renormalization procedure near the defects. For certain

choices of renormalization schemes, e.g. dimensional regularization, both of

these two kinds of UV-divergences can be taken care of at the same time.

Local quantities in the bulk, like masses and interactions, are not affected

by the defect due to locality of the bulk theory. This can be seen by translating

the bulk fields far away from the defect where they are no longer affected by

it. Due to the translation symmetry of bulk-local fields, their properties, such

as anomalous dimensions, does not change under this operation.

On the other hand, local quantities (like interactions and masses) on the de-

fect itself are affected by both the coincident-limit of defect-local fields and the

defect-limits of bulk-local fields. E.g. bare coupling constants, ĝ0
b, on the de-

fect are in general given by (in dimensional regularization and upto quadratic

order in the coupling constants)

ĝ0
b = μdim(g0

b)

(
ĝb +

(ζ 1
ĝb
)a1a2ga1

ga2
+(ζ 2

ĝb
)a1b1ga1

ĝb1
+(ζ 3

ĝb
)b1b2 ĝb1

ĝb2

ε
+ ...

)
,

which depend on both the renormalized coupling constants (dimensionless) in

the bulk, ga, and on the defect, ĝa. There is still only one renormalization scale,

μ . The β -functions corresponding to interactions on the defect are found from

the derivative w.r.t. μ

β̂b = μ
∂ ĝb

∂ μ
. (2.4)

Similarly, the mass anomalous dimension, γm̂l , and the boundary anomalous

dimension matrix, γ i j
Ô

, are defined as

γm̂ j ≡ μ
∂ m̂ j

∂ μ
, γ i j

Ô
≡−μ

∂ZOi
Ô j

∂ μ
, (2.5)

where ZOi
Ô j

describes how a bulk-local field mixes with defect-local ones

in the defect-limit. This mixing is explained by the defect operator product
expansion (DOE): the OPE between a bulk-local field and the defect itself

O(x) = ∑̂
OΔ̂,l̂,s

μO
ÔΔ̂,l̂,s

xi1
⊥...x

is
⊥

|x⊥|Δ−Δ̂+s
ĈΔ̂,l̂,s(μ,x‖,x⊥)ÔΔ̂,l̂,s(x‖) . (2.6)

The sum runs over defect-local fields, ÔΔ̂,l̂,s, of scaling dimension Δ̂,

SO(p− 1,1)-spin l̂ and SO(d − p)-spin s. There is a new set of OPE coeffi-

cients, μO
ÔΔ̂,l̂,s

, referred to as defect operator product expansion coefficients.

2In both of these two papers boundaries are considered, but similar arguments apply for more

general defects as well. In Sec. 2.7.1 we will go through the technical details of how this is

done for a codimension two defect.
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ĈΔ̂,l̂,s is a differential operator which depends on the RG scale μ . We identify

defect-local fields through the DOE, and they are to be treated as renormalized

fields in the defect-limit.

The CS eq. (1.35) for the propagator (1.29) is generalized into (see e.g. [88]

in the presence of a boundary)

0 =

(
δ i jμ

∂
∂ μ

+δ i jβa
∂

∂ga
+δ i jγmk

∂
∂mk

+ γ i j
O +δ i jβ̂a

∂
∂ ĝb

+

+δ i jγm̂l

∂
∂ m̂l

+ γ i j
Ô

)
DO j ,

(2.7)

which can be used to find the differential operator in the DOE (2.6) (similar

to the case without as defect (1.35)). Although masses and couplings on the

defect behave technically similar to the bulk masses and interactions, they

physically describe different b.c.’s on the defect.

In a DCFT, the DOE of a scalar simplifies into [89]

O(x) = ∑̂
OΔ̂,s

μO
ÔΔ̂,s

|x⊥|Δ−Δ̂+s
Ĉd−p(x2

⊥∂ 2
‖ )ÔΔ̂,s(x‖) ,

Ĉd−p(x) = ∑
m≥0

xm

(−4)mm!
(

Δ̂− p−2
2

)
m

,

ÔΔ̂,s(x‖) = xi1
⊥...x

is
⊥Ô i1...is

Δ̂
(x‖) .

(2.8)

where s is the SO(d− p)-spin of the defect-local field. The exchanged defect-

local fields are now all primaries (annihilated by the generators of the SCT’s

along the defect), and the differential operator Ĉd−p(x2
⊥∂ 2

‖ ) generates the tow-

ers of descendants.

Note that the exchanged fields does not have any SO(p− 1,1)-spin. Such

spinning operators only appear in the DOE of a bulk-local field with non-

trivial SO(d − 1,1)-spin, say l, wherein such case the DOE contains defect-

local operators with SO(p−1,1)-spin l̂ ≤ l [89, 90].

2.2.1 Stress-energy tensor near a defect

If there exist fundamental fields on the defect (which does not exist in the

bulk) that are charged under their own global symmetry not present in the

bulk theory, then we can apply Noether’s theorem in the usual way to find

conserved currents localized to the defect. An example of this is the model (8)

of Graphene which we mentioned in the introduction.

Naively we could imagine that it is also possible to apply Noether’s theorem

to the residual parts, ISO(p−1,1) and SO(d − p), of the Poincaré symmetry

group (2.2) of a local operator on the defect. Though this will not yield the
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correct currents as we should instead study the defect-limit of the SE tensor,

T μν , in the bulk (which originates from the bulk Poincaré symmetry,

ISO(d−1,1)). In the DOE of T μν we find defect-local currents corresponding

to the symmetry groups preserved by the defect, see e.g. [89, 91, 92]. This

was also studied in paper III for a boundary near three dimensions.

Firstly, let us consider a non-conformal defect (2.2). Then in the DOE of

T μν we find the pseudo stress-energy tensor, τab, which corresponds to the

ISO(p− 1,1)-symmetry of the defect (see [93] and paper III for a boundary

wherein Stokes’ theorem have been used)

∂μT μa(x) = δ (d−p)(x⊥)∂bτba(x‖) , Δτ = p+O(ga, ĝb) . (2.9)

The pseudo SE tensor has SO(p− 1,1)-spin two, and it measures the energy

emitted/absorbed by the defect. Since we expect an energy-flow between the

bulk and the defect, τab is not conserved. Similar to the bulk SE tensor (1.28),

its trace seems to be proportional to the β -functions for interactions, Ôc, lo-

calized to the defect (see [13, 94] and paper III for different kinds of defects)

τa
a = β̂cÔc . (2.10)

This operator vanishes in the conformal case (see e.g. paper III), which means

that then there is no energy being absorbed/emitted by the defect.

Let us now specify to the conformal case (2.3). By studying the DOE of

T μν we can then find the protected displacement operator, Di, corresponding

to the SO(d − p)-symmetry. It is found from the following Ward identity of

diffeomorphisms (small translations w.r.t. the orthogonal coordinates) of the

defect [89]

∂μT μi(x) = δ (d−p)(x⊥)Di(x‖) , ΔD = p+1 . (2.11)

The action of this SO(d − p)-spin one primary translates the defect in the or-

thogonal directions.

Likewise, if a continuous global symmetry, G, of the bulk theory is broken

down to a subgroup H ⊂ G, then in the DOE of the bulk Noether current,

Ji j
μ , we also find two interesting operators. For this discussion we specify to

G = O(N) and H = O(N −1), where Ji j
μ is given by

Ji j
μ (x) = φ i∂μφ j −φ j∂μφ i , i, j ∈ {1, ...,N} . (2.12)

We will assume that the Nth component of the scalar, φ i, has a non-zero v.e.v.

(〈φ i〉 ∝ δ iN) which breaks the O(N)-symmetry. The number of broken gener-

ators are then

dim O(N)/O(N −1) = dim O(N)−dim O(N −1)

=
N(N −1)

2
− (N −1)(N −2)

2
= N −1 ,

(2.13)
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which means that we can split Ji j
μ in two parts: Jαβ

μ and JNα
μ with

α , β ∈ {1, ...,N − 1}.3 Here Jαβ
μ corresponds to the preserved symmetry H

and JNα
μ to the broken part G/H.

In the non-conformal case (2.2), we find the pseudo Noether current, jαβ
a ,

localized on the defect (similar to τab)

∂ μJαβ
μ (x) = δ (d−p)(x⊥)∂ a jαβ

a (x‖) , Δ j = p−1+O(ga, ĝb) . (2.14)

This operator has ISO(p− 1,1)-spin one and O(N − 1)-spin two. Similar to

τab, this operator vanishes in a DCFT (see [92] for a boundary).

Specifying to the conformal case (2.3), we find the protected tilt operator,

tα , from the Ward identity of infinitesimal transformations of G [95, 96, 97]

∂ μJNα
μ (x) = δ (d−p)(x⊥)tα(x‖) , Δt = p , (2.15)

which is a primary with O(N − 1)-spin one. From the two- and four-point

function of tα we can find the metric and Riemannian tensor (respectively)

corresponding to the conformal manifold G/H [98, 99].

2.3 Conformal bootstrap near a defect

Let us now focus on a DCFT (2.3), and study how the conformal symmetry

constrains the correlators. Due to the SO(p,2)-symmetry along the defects,

defect-local operators behave in a similar manner as in the homogeneous case

(see Sec. 1.3). That is, defect one-point functions are trivial, and the defect-

defect two-point functions (1.56) are completely fixed (upto field normaliza-

tion).4 Due to the DOE (2.8) (or the broken bulk conformal symmetry), the

one-point functions in the bulk are no longer trivial, and are allowed to be

non-zero. This has important physical consequences, since a non-trivial v.e.v.

can break the global symmetries. E.g. the extraordinary p.t. near a boundary.

Bulk-defect two-point functions are fixed upto a DOE coefficient, which

can be compared to the OPE coefficients that appear in the three-point func-

tions in a homogeneous CFT. This means that the DOE coefficients, along with

the scaling dimension and spin (both transverse and parallel) of defect-local

fields are new additions to the CFT data.

The bulk-bulk two-point function is no longer fixed, and using the OPE and

DOE in different ways yields a bootstrap equation. Unlike that in the homoge-

neous case (1.62), it is not a result of crossing symmetry (of one OPE) as com-

pletely different operators (either bulk- or defect-local ones) are exchanged in

the two bootstrap-channels.

3Note that JNN
μ = 0 due to the antisymmetry of Ji j

μ =−J ji
μ .

4The normalization of defect-local fields is fixed by that for bulk-local fields (and vice versa).
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2.3.1 Bulk one- and bulk-defect two-point functions

Similar to a homogeneous CFT, LC coordinates are effective tools when find-

ing the analytical form of the correlators [89]. We split the LC coordinates into

components parallel and orthogonal to the defect. For a flat p-dimensional de-

fect we let

XA = XM
‖ ⊕XI

⊥ , (2.16)

where A ∈ {+,−,0, ...,d −1}, M ∈ {+,−,0, ..., p−1} and

I ∈ {1, ...,d − p−1}. Splitting the coordinates in this way yields

X‖ ·Y‖ ≡ XM
‖ gMNY N

‖ = xa
‖ηabyb

‖ −ημν
xμxν + yμyν

2
=−

s2
‖+ x2

⊥+ y2
⊥

2
,

X⊥ ·Y⊥ ≡ XI
⊥gIJY J

⊥ = xi
⊥ηi jy

j
⊥ = x⊥y⊥ .

Here sa
‖ = xa

‖ − ya
‖. These are two new scalar products in addition to (1.43).

Note that the scalar product for the parallel coordinates also depend on the

orthogonal coordinates. Due to the vanishing of the scalar product (1.44) the

two scalar products above are related to each other

X⊥ ·X⊥ =−X‖ ·X‖ =−x2
⊥ . (2.17)

Due to this, the bulk one-point function, 〈O(x)〉, can only depend on the com-

bination X⊥ ·X⊥. Using dimensional analysis we find 〈O(x)〉 to be on the form

(neglecting the field normalization factor)

〈O(x)〉= μO
�

|X⊥ ·X⊥|Δ
2

=
μO

�

|x⊥|Δ , (2.18)

where we used the DOE (2.8) to determine that μO
� is the DOE coefficient

of the identity exchange on the defect. Similarly, we can determine that the

coefficient, μO
Ô , in 〈O(x)Ô(y)〉 is the DOE coefficient for the exchange of Ô .

This correlator can only depend on X⊥ ·X⊥ and X‖ ·Y‖. Moreover, 〈O(x)Ô(y)〉
should equal 〈Ô(x)Ô(y)〉 in the defect-limit. This means that the power of

X⊥ ·X⊥ should be proportional to Δ− Δ̂. Using dimensional analysis we can

then determine the power of X‖ ·Y‖ as well

〈O(x)Ô(y)〉= μO
Ô

|X⊥ ·X⊥|Δ−Δ̂
2 (−2X‖ ·Y‖)Δ̂

=
μO

Ô

|x⊥|Δ−Δ̂(s2
‖+ x2

⊥)Δ̂
. (2.19)

The two correlators 〈O(x)〉 and 〈O(x)Ô(y)〉 can be compared to the three-

point functions (1.58) in a homogeneous CFT as they are both completely

fixed by conformal symmetry upto an OPE coefficient.
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2.3.2 Bootstrap equation

The two-point function, 〈O1(x)O2(y)〉, for two (different) bulk-local scalars is

not fixed by the conformal symmetry, and it is often difficult to find using stan-

dard Feynman diagram techniques as this requires defect-defect, bulk-defect

and bulk-bulk propagators. We will write 〈O1(x)O2(y)〉 in terms of a function

f (ξ ,η) which depend on the two cross-ratios ξ and η

〈O1(x)O2(y)〉= Ad
(2X⊥ ·X⊥)

Δ−
21
4 (2Y⊥ ·Y⊥)

Δ−
12
4

(−2X ·Y )
Δ+

12
2

f (ξ ,η)

= Ad
|2x⊥|

Δ−
21
2 |2y⊥|

Δ−
12
2

|s|Δ+
12

f (ξ ,η) ,

(2.20)

where Δ±
ab ≡ Δa±Δb and Ad is a field normalization constant. The cross-ratios

are given by

ξ =
−X ·Y

2
√

(X⊥ ·X⊥)(Y⊥ ·Y⊥)
=

s2

4 |x⊥| |y⊥| ,

η =
X⊥ ·Y⊥√

(X⊥ ·X⊥)(Y⊥ ·Y⊥)
=

(x⊥y⊥)
|x⊥| |y⊥| = cosϕ .

(2.21)

The cross-ratio ξ diverges as x⊥,y⊥ → 0, while η is related to the angle, ϕ ,

relative to the defect.

Now we can approach the defect in two different ways using the OPE: either

we first use the bulk OPE which allows us to express 〈O1(x)O2(y)〉 in terms

of bulk one-point functions (which is fixed upto a constant through (2.18)).

On the other hand, we can apply the DOE to each bulk operator, which allows

us to express 〈O1(x)O2(y)〉 in terms of the orthogonal defect-defect two-point

functions. This yields a bootstrap equation [89, 100]

f (ξ ,η) = ∑
OΔ,l

λO1O2
OΔ,l μ

OΔ,l
�Gbulk(Δ, l;ξ ,η)

= ξ
Δ+

12
2 ∑̂

OΔ̂,s

μO1
ÔΔ̂,s

μO2
ÔΔ̂,s

Gdef(Δ̂,s;ξ ,η) .
(2.22)

The exchanged bulk-local operators have SO(d)-spin l. Since we consider

external scalars, the exchanged defect-local operators only have non-trivial

SO(d − p)-spin, s, and no SO(p)-spin. This bootstrap equation looks similar

to that for a four-point function in a homogeneous CFT (1.62), with the ma-

jor difference that here there are two entirely different operators in the two

channels: either bulk- or defect-local operators. It yields two entirely different

conformal blocks, Gbulk(Δ, l;ξ ,η) and Gdef(Δ̂,0,s;ξ ,η), in the two channels.

48



If we compare above bootstrap equation to (2.18, 2.19) we find them to be

given by

Gbulk(Δ, l;ξ ,η) =
1

|2x⊥|
Δ−

12
2 |2y⊥|

Δ−
21
2

sμ1 ...sμl

|s|l−Δ CΔ,l(x)
〈O(x)〉

Ad
,

Gdef(Δ̂,0,s;ξ ,η) = 2Δ+
12

xi1
⊥...x

is
⊥

|x⊥|s−Δ̂

yi1
⊥...y

is
⊥

|y⊥|s−Δ̂
Ĉd−p(x2

⊥∂ 2
‖ )Ĉd−p(y2

⊥∂ 2
‖ )×

× 〈ÔΔ̂,0,s(x)ÔΔ̂,0,s(y)〉
Ad

.

(2.23)

An alternative approach to find the conformal blocks is to solve their corre-

sponding Casimir equations [89]. The bulk block satisfy the same eq. (1.63)

as those in a homogeneous CFT

J 2

⎛
⎝ |x⊥|

Δ−
12
2 |y⊥|

Δ−
21
2

|s|Δ+
12

Gbulk(Δ, l;ξ ,η)

⎞
⎠= cΔ,l

|x⊥|
Δ−

12
2 |y⊥|

Δ−
21
2

|s|Δ+
12

Gbulk(Δ, l;ξ ,η) .

The defect block however satisfy two Casimir equations: one for the parallel

LC coordinates, and another for the orthogonal ones

L 2 Gdef(Δ,s;ξ ,η)

|x⊥|Δ1 |y⊥|Δ1
= ĉΔ̂,0

Gdef(Δ,s;ξ ,η)

|x⊥|Δ1 |y⊥|Δ1
, (2.24)

S 2 Gdef(Δ,s;ξ ,η)

|x⊥|Δ1 |y⊥|Δ1
= ĉ0,s

Gdef(Δ,s;ξ ,η)

|x⊥|Δ1 |y⊥|Δ1
. (2.25)

The conformal Casimir operators are expressed in terms of the parallel/orthogonal

components of the conformal generators, JAB
1 , at (1.65)

L 2 =−(JMN
1 )2

2
, S 2 =−(JIJ

1 )2

2
, (2.26)

with the corresponding eigenvalues

ĉΔ̂,s = Δ̂(Δ̂− p)+ s(s+d − p−2) . (2.27)

The Casimir eq.’s (2.24, 2.25) for Gdef can be solved in general [89]

Gdef(Δ,0,s; χ,ϕ) =
Γd−p+s−2Γ d−p

2 −1

Γ d−p
2 +s−1

Γd−p−2

χ−Δ̂

2s ×

× 2F1

(
d − p+ s

2
−1,− s

2
;
d − p−1

2
;sinϕ2

)
×

× 2F1

(
Δ̂+1

2
,
Δ̂
2

; Δ̂+1− p
2

;(2 χ)−2

)
,

(2.28)
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which is expressed in the cross-ratio

χ =
−X‖ ·Y‖

2
√
(X⊥ ·X⊥)(Y⊥ ·Y⊥)

=
s2
‖+ x2

‖+ y2
‖

4 |x⊥| |y⊥| = ξ +
cosϕ

2
. (2.29)

The bootstrap eq. (2.22) have been studied numerically for a codimension

one defect assuming only bulk-interactions in [27, 100, 96] and only defect-

interactions in [101, 102]. A codimension two defect was numerically boot-

strapped in [97]. Note that in the case of semidefinite programming, then the

bulk OPE coefficients, λO1O2
OΔ,l μ

OΔ,l
�, are assumed to be positive. This prop-

erty is however not guaranteed by assuming the bulk and the defect theory to

be unitary.

LIF’s have also been developed for conformal defects of codimension strictly

greater than one in [103, 104, 105]. The main difference from the homoge-

neous case is that there is now one LIF for the bulk OPE coefficients [103]

(assuming analyticity in the SO(d,2)-spin l), and another one for the DOE

coefficients [104] (assuming analyticity in the SO(d − p)-spin s). Dispersion

relations for the bulk two-point function near a defect of codimension strictly

greater than one was found in [106]. We will discuss the special case of codi-

mension one defects in Sec. 2.5 where we introduce boundaries.

2.4 Coleman-Weinberg mechanism
We will now study the CW mechanism in the presence of a defect. It has not

been worked out in general before this thesis (as far as we are aware). We

will go through how path integration in DQFT’s works, and how a v.e.v. on

the defect will stretch out into the bulk using the DOE (2.6). This will in turn

induce a SSB both in the bulk and on the defect. In Sec. 2.5 where we study

boundaries, we will come back to this topic and connect this discussion to the

results of paper IV.

Let us consider a Euclidean scalar field theory in the presence of a flat defect

S =

∫
Rd

ddx
(
(∂μφ)2

2
+V (φ)

)
+
∫
Rp

dpx‖V̂ (φ̂) , (2.30)

with a potential in both the bulk, V (φ), and on the defect, V̂ (φ̂). Note that

V̂ (φ̂) is not always known, wherein in such case we cannot apply the CW

mechanism using the technology in this Section. The first thing we want to do

is to expand φ around a classical background (in both the bulk, φcl , and on the

defect, φ̂cl)

φ = φcl +�δφ +O(�2) , φ̂ = φ̂cl +�δ φ̂ +O(�2) . (2.31)

Terms linear in δφ and δ φ̂ in the action gives us the e.o.m. and the b.c. re-

spectively (something we will see in more detail in Sec. 2.5). Thus it brings
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the action onto the form

S[φ , φ̂ ] = S[φcl , φ̂cl ]+�2δS[φcl , φ̂cl ,δφ ,δ φ̂ ]+O(�3) ,

δS[φcl , φ̂cl ,δφ ,δ φ̂ ] = δSbulk[φcl ,δφ ]+δSdef[φ̂cl ,δ φ̂ ] ,
(2.32)

δSbulk[φcl ,δφ ] =
∫
Rd

ddx
(
(∂μδφ)2

2
+

m2(φcl)

2
δφ 2

)
,

δSdef[φ̂cl ,δ φ̂ ] =
∫
Rp

dpx‖
m̂(φ̂cl)

2
δ φ̂ 2 .

(2.33)

We will now shift to units s.t. � = 1. Keeping φcl fixed, the action for δφ is

that of a scalar field theory with different masses in the bulk, m2, and on the

defect, m̂

m2(φcl) =
∂ 2

∂φ 2
cl

V (φcl) , m̂(φ̂cl) =
∂ 2

∂ φ̂ 2
cl

V̂ (φ̂cl) . (2.34)

Note that this is a slight abuse of notation as m̂ does not necessarily have the

correct units of mass (depending on the dimension, p, of the defect). We note

that by varying δS w.r.t. δ φ̂ we find the e.o.m. and the b.c.5

D−1[δφ ]≡ (−∂ 2
μ +m2)δφ = 0 ,

b.c.[δ φ̂ ]≡ m̂δ φ̂ = 0 .
(2.35)

Path integration of DQFT’s has been worked out in [107, 108]. In these works

they assume a Gaussian theory with several curved defects inside a curved

bulk. In path integrating out δφ in (2.32) we are interested in the case of a

single flat defect in a flat spacetime. To do this we write the defect contribution

as a dirac δ -function added to the path integral

Z =
∫

Dφ e−S[φ ] =
∫

Dφcl e−S[φcl ,φ̂cl ]δZ[φcl , φ̂cl ] ,

δZ =
∫

Dδφ e−δS =
∫

Dδφ δ (b.c.[δ φ̂ ])e−δSbulk =

=
∫

Dδφ e−δSbulk

∫
Dη exp

(
−
∫
Rp

dpx‖η b.c.[δ φ̂ ]
)

.

(2.36)

If we complete the square w.r.t. δφ we find6

δZ = Zδφ Zη ,

Zδφ ≡
∫

Dδφ e−δSbulk ,
(2.37)

5In the case of a codimension one defect there might also be an additional contribution to this

b.c. coming from the partial integration of the bulk terms (as we shall see in Sec. 2.5).
6In completing the square we used

η b.c.[φ̂ ] = (−∂ 2
μ +m2)Db.c.(s‖,0,0)b.c.[φ̂ ]η = (−∂ 2

μ +m2)b.c.[φ̂ ]Db.c.(s‖,0,0)η ,

where we commuted the propagator (a function), Db.c.(s‖,0,0)≡ (−∂ 2
μ +m2)−1, with b.c.[φ̂ ].
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Zη ≡
∫

Dη exp

(∫
Rp

dpx‖
∫
Rp

dpy‖η(x‖)Db.c.(s‖,0,0)η(y‖)
)

.

Here Db.c.(s‖,x⊥,y⊥) is the bulk δφ -δφ correlator subject to the b.c.’s on the

defect. Its defect-limit appears in Zη . This is a function and is thus not affected

by path integrating out δφ in Zδφ . Since we introduced the b.c. on the defect

as a Dirac δ -function in the path integral (2.36), we can ignore the effects of

the defect in Zδφ .7 This means that Zδφ is on the same form as without a defect

(see Sec. 1.4), giving us a similar effective potential in the bulk

Zδφ ∝ exp

(
−
∫
Rd

ddx
∫
Rd

ddk
(2π)d

log(G−1)i j(k)
2

)

= exp

(
−
∫
Rd

ddx
Pd(m2,0)

4

)
,

(2.38)

which we expressed in terms of the master integral (1.89). Sometimes we keep

φcl fixed in the CW mechanism, giving us an overall factor of vol(Rd) which

we do not care about. However, this is no longer possible in the presence of a

defect, and φcl will depend on the normal coordinates, xi
⊥.

Let us now path integrate out η . Following the steps in Sec. 1.4

Zη ∝
√

det Db.c.(s‖,0,0) = exp

(
+

tr log Db.c.(s‖,0,0)
2

)

= exp

(∫
Rp

dps‖
2

〈s‖| log Db.c.(s‖,0,0)|s‖〉
)

.

(2.39)

If we Fourier transform the states

|s‖〉=
∫
Rp

dpk‖
(2π)p e−i k‖s‖ |k‖〉 , (2.40)

we find

Zη ∝ exp

(∫
Rp

dpx‖
∫
Rp

dpk‖
(2π)p

log Gb.c.(k‖,0,0)
2

)
. (2.41)

Here Gb.c.(k‖,x⊥,y⊥) is the momentum propagator (w.r.t. the parallel direc-

tions) subject to the b.c. of the defect. This is not known for general defects.

However, in the specific case of a boundary, this quantity has been worked

out in App. A.2 of paper IV. We will thus revisit this problem after having

introduced boundaries in Sec. 2.5.

Notice the similarity between the bulk contribution (2.38) to the effective

potential and that on the defect (2.41). Together they give (upto one-loop)

Veff(φcl) =V (φcl)+
Pd(m2,0)

4
+ c.t.’s+ ... ,

V̂eff(φ̂cl) = V̂ (φ̂cl)−
∫
Rp

dpk‖
(2π)p

log Gb.c.(k‖,0,0)
2

+ c.t.’s+ ... ,

(2.42)

7This is in particular important when calculating the trace corresponding to (1.81).
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where ’c.t.’s’ are the counter-terms (they differ in the bulk and on the defect).

The defect potential can be renormalized by introducing an RG scale by defin-

ing the defect couplings in a similar way as in a homogeneous QFT (1.100),

which in turn might give us a minima of the defect-local fields

〈φ̂cl〉= μΔφ̂ . (2.43)

We find the bulk v.e.v. using the DOE (2.6). Note that we are not at a confor-

mal f.p. in RG. In particular, this changes the operators exchanged in the DOE

as well as its differential operator, ĈΔ̂,l̂,s. However, to lowest order in x⊥ we

have (assuming the identity is not exchanged)8

〈φcl〉= μΔφ̂

x
Δφ−Δφ̂
⊥

+ ...= μΔφ̂ x
γφ̂
⊥ + ... , (2.44)

which is given in terms of the defect anomalous dimension, γφ̂ , of φ̂ . This

might induce a SSB of the global symmetries in the bulk, even though its

corresponding effective potential has not received any radiative one-loop cor-

rections. An example of this phenomena was studied in paper IV where no

bulk potential was considered. Another example of this, with a bulk potential,

will be studied in Ch. 5.

2.5 Boundary

Let us now discuss certain special cases of defects in greater detail. We will

start with boundaries, which are defects of codimension one with a bulk theory

defined on only one side of it. See [15, 91, 109] and references therein. We

will now refer to the DOE (2.8) as the boundary operator product expansion
(BOE). In the case when the bulk and the boundary theory are both conformal,

we refer to the model as a boundary conformal field theory (BCFT).

For codimension one defects the orthogonal symmetry group, SO(d − p),
is trivial. In addition to this, it can be proven that in the presence of a codi-

mension one defect, the one-point functions (2.18) are zero for spinning fields

[89]. This means that the exchanged operators in the BOE (2.8), and therefore

also in the bootstrap equation (2.22), are all scalars [100]

O(x) = ∑̂
O

μO
Ô

|x⊥|Δ−Δ̂
Ĉ1(x2

⊥∂ 2
‖ )Ô(x‖) , (2.45)

8Here we rescaled φ̂cl s.t. the DOE coefficient for its exchange does not appear.
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where the conformal blocks in both channels are known in closed form for any

spacetime dimension d [109]

Gbulk(Δ;ξ ) = ξ Δ/2
2F1

(
Δ
2
,
Δ
2
,Δ− d −2

2
,−ξ

)
,

Gbndy(Δ̂;ξ ) = ξ−Δ̂
2F1

(
Δ̂, Δ̂− d −2

2
,2 Δ̂−d +2,−ξ−1

)
.

(2.46)

Since there is only one orthogonal coordinate the cross-ratio η in (2.21) is

one (either x⊥, y⊥ > 0 or x⊥, y⊥ < 0), and we are left with only the cross-

ratio ξ . Let us mention that the conformal blocks for spinning fields (e.g. the

Noether current and the SE tensor) have been worked out in [91], and those

for a fermionic two-point function in [110].

The lack of spinning fields in the bootstrap equation have important con-

sequences for analytical bootstrap: since LIF’s require analyticity in the spin,

we cannot find one in a BCFT. Thus it is important to develop other analyti-

cal methods to bootstrap these theories. This has been done, e.g. functional

bootstrap [111, 112]. Another method is the discontinuity method developed

in paper II for a boundary and extended in paper V to work for interfaces. This

method is studied in detail in Ch. 4, where it is also generalized to hold for

two different external operators.

2.5.1 Propagators

Let us now specify to the free O(N)-model near a flat boundary. Its Lagrangian

description is given by

S =
∫
Rd
+

ddx
(
(∂μφ i)2

2
+

m2

2
(φ i)2

)
+
∫
Rd−1

dd−1x‖
m̂
2
(φ̂ i)2 , (2.47)

with i ∈ {1, ...,N} and Rd
+ = {x‖ ∈ Rd−1, x⊥ > 0}. Note that in addition to

the standard mass-term in the bulk, m2, we can now consider a boundary-mass

term, m̂, as well. As we will see in a moment, m̂ physically determines the p.t.

(and b.c.) of the theory.

Let us vary the action w.r.t. the bulk and boundary scalars (φ and φ̂ )

δS =
∫
Rd
+

ddx(∂aφ i∂aδφ i +∂⊥φ i∂⊥δφ i +m2φ iδφ i)+
∫
Rd−1

dd−1x‖m̂ φ̂ iδ φ̂ i

=
∫
Rd
+

ddx(−∂ 2
μφ i +m2φ i)δφ i +

∫
Rd−1

dd−1x‖(−∂⊥φ̂ i + m̂ φ̂ i)δ φ̂ i .

If we set the variations, δφ and δ φ̂ , to zero we find the e.o.m. and the b.c.

(−∂ 2
μ +m2)φ i = 0 ,

∂⊥φ̂ i = m̂ φ̂ i .
(2.48)
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In the bulk we have the KG eq. (1.11), and on the boundary we have Robin

b.c.’s. As we can see, there are no scales in these equations if m2 = 0 and either

m̂ = 0 (Neumann b.c.)

∂⊥φ̂ i = 0 , (2.49)

or m̂ →±∞ (Dirichlet b.c.)9

φ̂ i = 0 . (2.50)

These are the conformal f.p.’s of the free BQFT (2.47). The theory with Neu-

mann b.c. is called the special phase transition in the condensed matter liter-

ature, and that with Dirichlet is called the ordinary phase transition [15].

In an interacting BQFT we can consider boundary-local interactions, e.g.

a quartic interaction,
[
(φ̂ i)2

]2
, in d = 3− ε (see paper III). Such interactions

describe a special p.t., but now the Neumann b.c. (2.49) gets modified by the

interactions [113]. We will study this theory in more detail in Ch. 5, where we

also consider a sextic interaction,
[
(φ i)2

]3
, in the bulk. We call this theory the

φ 6 − φ̂ 4 model.

Without any boundary-interactions we can consider an interacting theory

with Dirichlet b.c. (2.50). However, this may also have non-trivial conse-

quences. E.g. for a quartic interaction,
[
(φ i)2

]2
, in the bulk in d = 4− ε .

Then if the sign of m̂ is not the same as the bulk coupling, a SSB of the O(N)-
symmetry in the bulk will occur. This results in an O(N −1)-symmetry of the

theory. The conformal f.p. where this is the case is called the extraordinary
phase transtion [84, 85, 86].

Let us now solve the DS equation in the presence of the boundary (2.47)

(without any interactions). At the RG f.p. the DS eq. (1.12) is then accompa-

nied by Dirichlet b.c.

lim
x⊥→0

Di j
b.c.(x,y) = 0 , (2.51)

or Neumann b.c.
lim

x⊥→0
∂x⊥Di j

b.c.(x,y) = 0 . (2.52)

We solve these problems using the method of images originally used in elec-

trostatics [114]. This is done by adding an image field on the other side of

the boundary (−x⊥ or −y⊥). Technically, this amounts to adding a Dirac δ -

function which is always zero (assuming x⊥ and y⊥ are both strictly greater

than zero) on the RHS of the DS eq. (1.12)

(−∂ 2
μ +m2)Di j

b.c.(x,y) = δ (d)(s‖,x⊥− y⊥)+ω δ (d)(s‖,x⊥+ y⊥) . (2.53)

The constant ω is to be tuned such that the b.c. (2.51) or (2.52) holds. We

can now write the propagator Di j
b.c(x,y) in terms of two propagators from a

homogeneous QFT (1.19)

Di j
b.c.(x,y) = Di j(s‖,x⊥− y⊥)+ω Di j(s‖,x⊥+ y⊥) . (2.54)

9This can be seen by dividing both sides of the b.c. in (2.48) with m̂.
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Applying the b.c. yields

ω =±1 , (2.55)

with a minus sign for Dirichlet b.c., and plus for Neumann.

The BQFT propagator for the more general Robin b.c. (2.48) was found in

paper IV

lim
x⊥→0

(∂x⊥ − m̂)Di j
b.c.(x,y) = 0 . (2.56)

In such case we had to consider an infinite amount of images to solve the

corresponding DS equation. Although not on a closed form, the propagator

was found to be given by

Di j
b.c.(s‖,x⊥,y⊥) = Di j(s‖,x⊥− y⊥)+Di j(s‖,x⊥+ y⊥)+

−2 m̂
∫ ∞

0
dze−m̂zDi j(s‖,x⊥+ y⊥+ z) .

(2.57)

This is on the same form as the wave function in quantum mechanics on a

half-line [115]. It reduces down to the correct result for Neumann/Dirichlet

b.c. (2.54) in the limits m̂ → 0 and m̂ → ∞.10

The corresponding momentum propagator (Fourier transformed w.r.t. s‖)

was found in Sec. A.2 of paper IV. Due to its complicated form, we only write

its boundary limit here

Gi j
b.c.(k‖,0,0) =

δ i j√
k2
‖+m2 + m̂

. (2.58)

An interesting property that follows from the method of images, is that the

propagators (at the conformal f.p.’s (2.51, 2.52)) are symmetric under mirror-

ing the spacetime points through the boundary x⊥ → −x⊥, y⊥ → −y⊥ (and

picks up a phase if only one of the spacetime points are mirrored ξ →−ξ −1)

Di j
b.c.(s‖,−x⊥,−y⊥) = Di j

b.c.(s‖,x⊥,y⊥) . (2.59)

This is a classical property of the BQFT propagator and it is called image sym-
metry. Nevertheless it was found to hold for the φ 4-model near four dimension

at a quantum level (at least upto O(ε2)) in paper II.

10Note that the results of paper IV does not hold for m̂ → −∞ (see its eq. 60). To study the

positive large m̂ limit we partially integrate s.t. the overall factor of m̂ vanishes. We can then

see that only the z = 0 limit of the integrand survives

m̂
∫ ∞

0
dze−m̂zDi j(s‖,x⊥+ y⊥+ z) = Di j(s‖,x⊥+ y⊥)+

∫ ∞

0
dze−m̂z∂zDi j(s‖,x⊥+ y⊥+ z)

m̂→+∞−→ Di j(s‖,x⊥+ y⊥) .
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While on the topic of image symmetry, let us mention the following prop-

erty of the boundary conformal blocks

Gbndy(Δ̂;e±πi(ξ +1)) = e∓πiΔ̂Gbndy(Δ̂;ξ ) . (2.60)

This analytical property of the conformal blocks was found and used in paper

II and V to constrain the CFT data entering in the bootstrap equation.

2.5.2 Coleman-Weinberg mechanism

Let us now revisit the CW mechanism from Sec. 4.2. In the case of a boundary,

the momentum propagator, Gb.c.(k‖,0,0), is known (2.58). This brings the

contribution to the effective potential (2.42) onto the form

Veff(φcl) =V (φcl)+
Pd(m2,0)

4
+ c.t.’s+ ... ,

V̂eff(φ̂cl) = V̂ (φ̂cl)+
Pd−1(m2, m̂)

2
+ c.t.’s+ ... ,

(2.61)

where we remind the reader that Pn(m2, m̂) is the master integral (1.89). Note

that we need to expand Pn(m2, m̂) around small values of m̂ (1.90). In partic-

ular this makes it difficult to apply the CW mechanism to a theory with the

boundary-term, m̂, in the action (2.47) not at its RG f.p.’s.

The effective potentials above are on the same form as that derived in paper

IV. In that work, the CW mechanism for a d = 3− ε dimensional BCFT with

only a boundary potential (m2 = 0, m̂ �= 0) was developed. In particular, this

did not yield an effective potential in the bulk, Veff = 0, but only one on the

boundary. This gives us a non-trivial v.e.v. (2.43) on the boundary, which

extends into the bulk using the BOE (2.44). It leads to a SSB of the global

symmetry in both the bulk and on the boundary.

In this case, the relevant master integral (1.89) simplifies

Pn(0, m̂) =
SnΛn

(2π)nn

(
Λ2

(n+2)m̂2 2F1

(
1,

n+2

2
;
n+4

2
;

Λ2

m̂2

)
+

− Λ
(n+1)m̂ 2F1

(
1,

n+1

2
;
n+3

2
;

Λ2

m̂2

)
+ log(Λ+ m̂)

)
.

(2.62)

Its expansion around large Λ is

Pn(0, m̂) =
Sn

(2π)n

(
Λn
(

logΛ
n

− 1

n2
+

m̂
(n−1)Λ

− m̂2

2(n−2)Λ2
+

+
m̂3

3(n−3)Λ3
+ ...

)
+

π csc(π n)
n

m̂n
)

.

(2.63)
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In paper IV this was further expanded in ε for n = d −1

Pd−1(0, m̂) =
m̂2

4π

(
log

(
m̂
Λ

)
− 1

2

)
+

Λ m̂
8π

+
Λ2

4π

(
log Λ− 1

2

)
+ ... .

In Ch. 5 we will study the CW mechanism applied to the φ 6− φ̂ 4 model. This

is an example when there is both a bulk and a boundary effective potential.

We will study the one-loop effects, where only the effective potential on the

boundary receives a contribution.

2.6 Interface

The other kind of codimension one defects are interfaces, where a bulk theory

is defined on each side of it (they are allowed to differ from each other). This

gives rise to three different QFT: one on each side of the interface, and a

(d−1)-dimensional one on the interface. When the three theories are all con-

formal, we refer to the model as a interface conformal field theory (ICFT).

Having two bulk theories imply some important physical consequences: prop-

agators are never expected to satisfy image symmetry (2.59), and the OPE

between two bulk fields on opposite sides of the interface (and thus also the

bulk-channel for these correlators) does not converge. So even though the con-

formal blocks take on the same analytical structure (2.46) as in a BCFT, only

the two-point function of bulk fields on the same side of the interface satisfy

the bootstrap eq. (2.22). A method to analytically bootstrap such correlators

was developed in paper V, and it is a modification of the method developed for

a BCFT in paper II.

2.6.1 The folding trick

To make sure that the energy emitted/absorbed by the interface is the same on

both sides of it, we let the interface-limit of the normal-parallel components

of the SE tensors from the two bulk theories be the same [116]. This creates

b.c.’s that relates bulk fields from the two sides with each other

T̂⊥a
+ = T̂⊥a

− . (2.64)

Here ± denotes fields from the two sides of the interface. Above equation

has many different solutions for the boundary-local fields. In paper V we

considered the following solution

φ̂ a
+ = φ̂ a

− , ∂⊥φ̂ a
+ = ∂⊥φ̂ a

− . (2.65)

To deal with this b.c., we apply the folding trick [117]. I.e. we collect the two

bulk theories on the same side of the interface by making the shift x⊥ →−x⊥
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for only one bulk theory. Effectively, this creates a BQFT for a linear combi-

nation of the bulk fields. E.g. for the case above we find Neumann/Dirichlet

b.c.’s for the linear combinations φ a
+±φ a−

lim
x⊥→0

[φ a
+(x‖,x⊥)−φ a

−(x‖,−x⊥)] = 0 ,

lim
x⊥→0

∂⊥[φ a
+(x‖,x⊥)+φ a

−(x‖,−x⊥)] = 0 .
(2.66)

These b.c.’s can be written in terms of projectors acting on a scalar in the

(N ×1)⊕ (1×N)-representation of O(N)×O(N)

Φi
α =

(
φ i−
φ i
+

)
α
, (Π±)

i j
αβ =

δ i j

2

(
1 ±1

±1 1

)
αβ

, (2.67)

which yields

(Π±)
i j
αβ Φ j

β =

(
φ i−±φ i

+

±φ i−+φ i
+

)
α
. (2.68)

Correlators can now be found using the method of images

(DΦ)
i j
αβ (s‖,x⊥,y⊥) = δαβ Di j(s‖,x⊥− y⊥)+χ ik

αβ Dk j(s‖,x⊥+ y⊥) ,

where Di j is the propagator (1.19) in a homogenous QFT. The constant ω in

(2.54) is generalized to a matrix difference, χ i j
αβ , between the two projectors

(Π±)
i j
αβ for Dirichlet and Neumann b.c.’s

χ i j
αβ = (Π+)

i j
αβ − (Π−)

i j
αβ = δ i j

(
0 1

1 0

)
αβ

. (2.69)

This yields the correlator

(DΦ)
i j
αβ (s‖,x⊥,y⊥) =

(
Di j(s‖,x⊥− y⊥) Di j(s‖,x⊥+ y⊥)
Di j(s‖,x⊥+ y⊥) Di j(s‖,x⊥− y⊥)

)
αβ

. (2.70)

Note that this propagator, (DΦ)
i j
αβ , is on the same form as the free theory

propagator (1.19) in a homogeneous QFT (it is allowed to differ at a quantum

level). This is no coincidence, and one way to see this is to add the following

Dirac δ -function in the path integral for a free scalar theory (1.10)

Z =

∫
Dφ eiS[φ ] =

∫
Dφ+Dφ−ei(S+[φ+]+S−[φ−])δ (φ̂+− φ̂−)

=
∫

Dφ+Dφ−Dη ei(S+[φ+]+S−[φ−]+Ŝ[η ,φ̂+,φ̂−]) ,
(2.71)

S±[φ±] =
∫
Rd±

ddx
(
(∂μφ i±)2

2
+

m2

2
(φ i

±)
2

)
,

Ŝ[η , φ̂+, φ̂−] =
∫
Rd−1

dd−1x‖η(φ̂+− φ̂−) .
(2.72)
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Here Rd
+ = {x‖ ∈ Rd−1, x⊥ > 0} and Rd− = {x‖ ∈ Rd−1, x⊥ < 0}. Hatted

operators denote those living on the interface generated by the δ -function. If

we vary the action w.r.t. the fields we find the KG equation (1.11) in the bulk

and the same b.c.’s as in (2.65).

2.7 Monodromy twist defect
Let us now study the (O(N)-flavoured) monodromy defect. This object is of

codimension two and carry a monodromy constraint for the bulk fields [28,

29]. That is, if we transport a bulk field around the defect it transforms under

its global symmetry group. E.g. in paper I this was studied for an O(N)-model,

where the defect carry the monodromy

φ i(x‖,r,θ +2π) = gi jφ j(x‖,r,θ) , gi j ∈ O(N) , (2.73)

using polar coordinates in the orthogonal directions: r > 0, θ ∈ [0,2π). This

defect is characterized by its twist: the group element gi j.

Since the orthogonal symmetry group SO(d − p) = SO(2) is Abelian, the

DOE (2.8) simplifies [29]

φ i(x) = ∑̂
Os

μφ i

Ôs

eisθ

rΔ−Δ̂s
Ĉ2(r2∂ 2

‖ )Ôs(x‖) . (2.74)

Here s is the SO(2)-charge of the defect-local field Ôs. With this at hand, we

find that the global symmetry group is broken along the defect by the mon-

odromy action (2.73). In the case of O(N) with N ≥ 2, this was first studied in

paper I, and further studied in [118].

2.7.1 CFT data from the defect-limit

Let us here illustrate the methods of paper III in the presence of a monodromy

twist defect. That is, we will study the defect-limit of a bulk-bulk two-point

function to read off the bulk-defect two-point functions (or equivalently due

to conformal symmetry the scaling dimensions and OPE coefficients (2.18,

2.19)). In paper III this was done for a boundary, but it works just as well for

lower dimensional defects as we will show here.

We will consider the same theory as in paper I: the O(N)-flavoured mon-

odromy twist defect with monodromy (2.73). Let us first study the bulk two-

point function using the DOE (2.74)

〈φ i(x)φ j(y)〉= δ i j ∑
Ôs Ôs′

μφ
Ôs

r
Δφ−Δ̂s
1

μφ
Ôs′

r
Δφ−Δ̂s′
2

e−i sθ1+i s′ θ2×

×C2(r2
1∂ 2

‖ )C2(r2
2∂ 2

‖ )〈Ôs(x‖)Ôs′(y‖)〉 .
(2.75)
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Here we are using the polar coordinates x⊥ = r1(cosθ1,sinθ1) and

y⊥ = r2(cosθ2,sinθ2) with r1, r2 > 0 and θ1, θ2 ∈ [0,2π). Assuming that the

defect-defect two-point function is on the form (1.56) (with normalization of

φ s.t. Ad = 1), and only keeping terms at the lowest order in r1, r2 yields

〈φ i(x)φ j(y)〉= δ i j (μφ
Ôs
)2eisϕ

(r1r2)
Δφ−Δ̂s |s‖|2 Δ̂s

+ ... , ϕ ≡ θ2 −θ1 , (2.76)

where Ôs is now the lowest dimensional defect-local operator in the DOE

(2.74) of φ . Expanding the CFT data in ε

(μφ
Ôs
)2 = μ(0)

s + ε μ(1)
s +O(ε2) ,

Δφ = Δ(0)
φ + ε Δ(1)

φ +O(ε2) ,

Δ̂s = Δ̂(0)
s + ε Δ̂(1)

s +O(ε2) ,

(2.77)

gives us the following ε-expansion

〈φ i(x)φ j(y)〉= δ i jeisϕ

(r1r2)
Δ(0)

φ −Δ̂(0)
s |s‖|2 Δ̂(0)

s

[
μ(0)

s +

+ ε
(

μ(1)
s +(Δ̂(1)

s −Δ(1)
φ )μ(0)

s log(r1r2)+

−2 Δ̂(0)
s μ(0)

s log |s‖|
)]

+ ... .

(2.78)

On the other hand, this correlator was found in [105] upto O(ε) using the

LIF’s developed for a DCFT

〈φ i(x)φ j(y)〉= δ i j f (z, z̄)
(r1r2)

Δφ
, (2.79)

with the dynamical function

f (z, z̄) =
z1−υ z̄

1−|z|2
(

1

1− z
+ ε

υ(υ −1)

2

N +1

N +4
Φ(z,1,υ) log |z|

)
+(z ↔ z̄) .

This is expressed in terms of the Hurwitz-Lerch transcendent

Φ(z,s,a)≡ ∑
k≥0

zk

(k+a)s , (2.80)

and the complex cross-ratio11

z =
s2
‖+ r2

1 + r2
2 −
√
(s2

‖+ r2
1 + r2

2)
2 −4r2

1r2
2

2r1r2
eiϕ . (2.81)

11In appendix A of [103] we see that z = r w with r = χ−
√

χ2−4
2 , w = η +

√
η2 −1 and

χ =
s2
‖+r2

1+r2
2

r1r2
, η = cosφ .
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Expanding (2.79) in ε , r1 and r2

〈φ i(x)φ j(y)〉= δ i j (r1r2)
υ

|s‖|2(υ+1)
(eiυ ϕ + e−iυ ϕ)+ ... . (2.82)

Comparing this with (2.78) tells us that above expression contains two defect-

local operators with SO(2)-charge

s =±υ , (2.83)

both of which has the CFT data

μ(0)
±υ = 1 , Δ(0)

φ = 1 , Δ̂(0)
±υ = 1+υ . (2.84)

Focusing on the defect operator with s =+υ , we find at O(ε) in (2.79)

〈φ i(x)φ j(y)〉 � ε eiυ ϕδ i j (r1r2)
υ

|s‖|2(υ+1)

(
− υ Hυ−1 +1

2υ
+

+
(υ −2γφ −1)N +υ −8γφ −1

2(N +4)
log(r1r2)+

+
(υ −2)N +υ −5

N +4
log |s‖|

)
.

(2.85)

Here Hx is the harmonic number. If we now compare this with (2.78) we find

μ(1)
+υ =−υ Hυ−1 +1

2υ
,

Δ(1)
φ =−1

2
+ γφ ,

Δ̂(1)
+υ =−1

2
+

(υ −1)(N +1)

2(N +4)
.

(2.86)

This CFT data, together with (2.84), is consistent with the results from paper

I. With this at hand we have found the defect-defect and bulk-defect two-point

functions from the bulk-bulk correlator. By studying higher order terms in r1

and r2 we can read off the CFT data for other defect-local primaries.

2.8 Replica twist defects

The monodromy constraint (2.73) from the Sec. 2.7 can be generalized to

branch cuts with n sheets

φ i
a(x‖,r,θ +2π) = gi jφ j

a+1(x‖,r,θ) , gi j ∈ O(N) , (2.87)

where φ i
a, with a∈ {1, ...,n} and i∈ {1, ...,N}, is the fundamental scalar on the

ath sheet. The replica twist defect is the defect with above monodromy where
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the QFT on each sheet are all the same. As explained in the Introduction, these

defects are important when finding the Rényi entropy in a QFT [30, 31].

If we consider n replicas of the bulk theory, we should identify the

(n+1)th bulk field with the first one. This gives us the monodromy constraint

for a general φ i
a

φ i
n+1 ≡ φ i

1 ⇒ φ i
a(x‖,r,θ +2π n) = gi j1

n

∏
m=2

g jm−1 jmφ jm
a (x‖,r,θ) . (2.88)

Since O(N) is closed, gi j1 ∏n
m=2 g jm−1 jm ∈O(N). To avoid clutter we thus write

above monodromy constraint as

φ i
a(x‖,r,θ +2π n) = gi jφ j

a (x‖,r,θ) , gi j ∈ O(N) . (2.89)

In Ch. 6 we will study how this monodromy breaks the global O(N)-symmetry

along the defect. This generalizes the result in paper I, though it makes use of

the same method. In this Chapter we will also extract the anomalous dimen-

sions in d = 4− ε of the defect-local fields (upto first order in the coupling

constant) by applying the e.o.m. to the DOE (2.74).

63



3. Multiple defects in a quantum field theory

As we saw in Ch. 2, already considering one defect is a difficult task providing

us with new non-trivial phenomena. Yet we can always consider more defects,

and try to explore the physical consequences in doing this. Even less of the

symmetries in the bulk will be preserved by the multiple defects, and thus

these models are even more of a challenge to study. Nevertheless, let us briefly

discuss such systems, and how they differ from a theory with a single defect.

3.1 Symmetries and OPE’s
The Poincaré or conformal symmetry in the bulk is broken in the same way

as for one defect, i.e. each defect will be charged under an orthogonal group

SO(d − p), and a defect-local field on top of such defect is charged under

SO(p−1,1)×SO(d − p) (assuming flat defects). This is due to localization,

where each defect is only affected by the nearby bulk.

A quite interesting scenario is when two defects intersect with each other.

Then there will also be a QFT on the intersection. E.g. if we consider two flat

defects of dimension p < d and q ≤ p. Then we can imagine an intersection of

dimension r < q. The intersection itself will enjoy a SO(d− p)×SO(d−q)×
SO(p− r)× SO(q− r)-symmetry which arises from orthogonal rotations of

the intersection. Local fields on top of this intersection will in addition satisfy

a local Poincaré SO(r− 1,1)- or conformal SO(r,2)-symmetry. See e.g. Fig.

1 in paper VII for an illustration on two intersecting boundaries.

As in the case of a single defect, local characteristics, such as anomalous

dimensions, β -functions and OPE coefficients, of the bulk theory are not af-

fected by the defects nor possible intersections between them (since the UV

divergences these quantities arise from are the coincident-limits of bulk fields).

Likewise, the corresponding characteristics on each defect are not affected

by other defects nor any intersections (since these defect quantities arise from

their corresponding coincident-limits of defect-local fields and defect-limits

of bulk-local fields).

In the case of an intersection between two defects, local quantities on the in-

tersection will be affected by both of the defect theories in addition to the bulk

theory. Thus the intersection data will in general depend on the intersection

angle (dimensionless) between the two defects.

Regarding propagators: if there is no intersection, then those on the defects

behave as in a p- or q-dimensional homogeneous QFT as in Sec. 1.2.2. The

ones in the bulk are more complicated as they are now affected by both defects.
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If the two defects intersect: then propagators on the intersections behave

as in a r-dimensional homogeneous QFT, while those on the defect behave as

in a p- or q-dimensional DQFT (see e.g. Sec. 2.3 for the conformal case).

Propagators involving bulk fields are now affected by both defects in addition

to the intersection theory, giving them a complicated analytic structure.

There will be several new OPE’s in play. In addition to the usual bulk-

bulk OPE (Sec. 1.3) there is a DOE for each defect (Sec. 2.3) and a defect-

defect OPE on each defect (similar to the bulk-bulk OPE (1.36) but for the

parallel coordinates). In the case of an intersection, there is also one defect-

intersection DOE for each defect and an intersection-intersection OPE. In the

conformal case (when the intersection, both of the defects and the bulk are all

conformal), these give rise to a conformal bootstrap equation for bulk one- and

bulk-intersection two-point correlators [119].

3.2 Correlation functions between defects
Let us consider two non-intersecting conformal defects, Dp and Dq, of dimen-

sions p and q, and discuss the correlation function, 〈DpDq〉, between these

two defects. From a Feynman diagrammatic point of view, this correlator is

described by correlators of defect-local fields running between two operators

on the same defect as well as one operator on each defect (see e.g. Fig. 2 of

paper VI). The latter diagrams will describe a Casimir effect which describes

how the two defects affect each other.

In order to obtain any Feynman rules we need to know the action for the

two defects. Sometimes this is indeed known, e.g. the one-dimensional scalar

Wilson line in four dimensions

D1 = exp

(
−h
∫
R

dx‖φ̂(x‖)
)

. (3.1)

Here h is a magnetic field along the defect, which can be treated as a coupling

constant of finite size [13]. In Ch. 7 we will study these defects in more detail.

However, in general, integral representations of the defects are unknown.

It is thus important to have other means of finding 〈DpDq〉. One such idea

would be to find a bootstrap equation assuming the two defects are conformal.

As seen from symmetry, a conformal defect on its own can be expressed in

terms of a series of bulk-local operators [120]. E.g. if we Taylor expand above

scalar Wilson line it will be expressed as a series of bulk-local operators.1 This

expansion allows us to decompose 〈DpDq〉 in terms of bulk-local operators

〈DpDq〉= ∑
OΔ,l

CDp
OΔ,lC

Dq
OΔ,l G

p,q
OΔ,l

({ηa}) , (3.2)

1The Taylor expansion is around h = 0, and as such the exchanged operators in the summand

are not affected by the defect.
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where CDp
OΔ,l and CDq

OΔ,l are some OPE coefficients that follow from the

expansion of the defects in terms of bulk-local operators, OΔ,l . A general form

of the conformal block G p,q
OΔ,l

({ηa}) is not known, but methods of finding these

blocks for different values of p, q and d have been found in [120, 121]. The

number of cross-ratios, ηa, is min(d− p,d−q, p+2,q+2). At the present day

we are not aware of another way of decomposing the defect-defect correlator,

and thus whether a bootstrap equation for 〈DpDq〉 exists or not is unknown.

We could imagine that another bootstrap-channel is found by decomposing

the two defects in terms of other conformal defects. We call such process a

fusion of defects. This was explored in paper VI, where two scalar Wilson

lines on the form (3.1) were fused, hoping to yield another conformal defect.

However, the results in paper VI tells us that this is not the case in general. As

it turns out, fusing two scalar Wilson lines yields a non-conformal defect

D f = exp

(
−2h ∑

n≥0

R2n

(2n)!

∫
R

dx‖∂ 2n
R φ̂(x‖)

)
. (3.3)

One way to understand this statement is that the distance, R, between the two

defects is a scale of the theory, and thus has to be preserved after the fusion.

This scale then enters in the interactions on the fused defect, making them

dimensionfull. In turn, this makes the fused defect action non-conformal.

In Ch. 7 we cover the technical details of how fusion was done in paper VI.

We also generalize this fusion to hold for six dimensions (in the free theory)

as well as show that it also holds in the interacting theory (at least to first order

in the bulk couplings).

3.3 Parallel and intersecting boundaries
Let us now discuss models with two boundaries. These can either be parallel

(a pair of slabs) or intersect each other (a wedge). In both of these systems

there is a new parameter. For two parallel boundaries the distance, L, between

them will become a new length scale of the theory. On the other hand, for two

intersecting boundaries the dimensionless intersection angle, θ , between them

plays a central role.

Each boundary is equipped with a b.c., e.g. for a free scalar with a La-

grangian description we can consider

S =

∫
Rd

ddx
(
(∂μφ i)2

2
+

m2

2
(φ i)2

)
+∑

±

∫
Rd−1

dd−1x‖
m̂±
2

(φ̂ i
±)

2 . (3.4)

Here the two boundary masses, m̂±, are allowed to differ from each other, and

φ̂ i± ≡ φ̂ i(x‖)
∣∣
x⊥=±L. By varying the fields we find the KG eq. (1.11) in the

bulk together with the two b.c.’s

∂⊥φ̂ i
± = m̂±φ̂ i

± . (3.5)
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Each m̂± has its own RG flow, with the f.p.’s m̂± = 0 (Neumann b.c.) and

|m̂±| → ∞ (Dirichlet b.c.) as in to Sec. 2.5. Note that this gives different

configurations of b.c.’s at the RG f.p.’s. E.g. both boundaries can either be

equipped with Neumann or Dirichlet b.c.’s. Alternatively one boundary can

have Neumann while the other one has Dirichlet b.c.’s.

In the case of a pair of slabs, we may also consider periodic (+) or anti-

periodic (−) b.c.’s, which relate the boundary fields on the two boundaries to

each other [84, 122, 123]

φ̂ i
− =±φ̂ i

+ . (3.6)

Similar to models with a single boundary, the method of images can be used

to find propagators. Although this is more difficult, as it in general requires an

infinite amount of images [124, 125, 126, 127]. It is worth mentioning that for

fractional values of θ in the case of a wedge

θ =
aπ
b

, a, b ∈ Z≥1 , (3.7)

only a finite number
(
2 numerator

(b
a

)−1
)

of images are required, where

numerator
(b

a

)
removes all common factors before taking the numerator. See

Fig. 2 in paper VII for an illustrative example.

3.3.1 Wedge

Let us now specify to a wedge. We will refer to these theories as a wedge
quantum field theory. At the intersection, there is a (d −2)-dimensional QFT

which we refer to as the edge. We will call one of the boundaries the wall, and

the other (intersecting at an angle θ ) the ramp.

Through a certain asymptotic, we retrieve a pair of slabs from a wedge.

This is achieved by considering an infinitesimally small angle, θ → 0, and

large parallel coordinates along the boundaries, |x‖| → ∞, while at the same

time keeping the arc length, |x‖|θ = 2L, fixed. This arc length is then the

distance between the two parallel boundaries.

In the limit θ → π where the wedge "unfolds", there is no reason to expect

that the edge theory should disappear. Rather, in the general case, the edge

theory will split the boundary in two regions (the wall and the ramp theory),

becoming an interface on top of the boundary. This limit is thus rather com-

plicated in general. One example of this phenomena is in paper VII (see its

eq. (2.31)), where one side of the interface (on the boundary) is equipped with

Dirichlet b.c. and the other side with Neumann.

Let us turn our focus to the conformal case, when the edge, the boundaries

and the bulk are all conformal. We call such theory a wedge conformal field
theory (WCFT). As previously stated, edge correlators behave as in a (d−2)-
dimensional homogeneous CFT, and correlators involving operators on the
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same boundary behave as in a BCFT (with a (d −1)-dimensional bulk). Cor-

relators with operators on different boundaries are less restricted since there is

no well-defined OPE between wall and ramp operators. We are left with only

the boundary-edge BOE’s, which means that only the boundary conformal

block decomposition in (2.46) is valid.

Bulk correlators are more difficult. Even the two simplest bulk correlators

we can consider: the scalar bulk one-point function, 〈O(x)〉, and the scalar

bulk-edge two-point function, 〈O(x) ˆ̂O(y‖)〉, are not fixed by the residual con-

formal symmetries [119]. Here, and in the rest of this thesis, we denoted edge

operators and its corresponding quantities with a double hat. Let us place the

wall at xd−1 = 0 and use polar coordinates for the normal directions

xd = ρ cosϕ , xd−1 = ρ sinϕ , ϕ = arctan

(
xd−1

xd

)
, (3.8)

with ρ > 0 being the radial distance from the edge to the bulk operator, and

ϕ ∈ (0,θ) being the angle between the bulk operator and the wall. The bulk

one-point functions, 〈O(x)〉, and the bulk-edge two-point function, 〈O(x) ˆ̂O(y‖)〉,
can be expressed in terms of a function, f (ϕ) and g(ϕ) respectively, which de-

pend on the single cross-ratio ϕ

〈O(x)〉= f (ϕ)
ρΔ , 〈O(x) ˆ̂O(y‖)〉=

g(ϕ)
ρΔ− ˆ̂Δ(s2

‖+ρ2)
ˆ̂Δ
. (3.9)

For both of these correlators we can use the wall or ramp bulk-boundary BOE

followed by the corresponding boundary-edge BOE to express the bulk op-

erator in terms of edge ones. This gives us two different conformal block

decompositions, one where wall operators are exchanged, and another with

ramp operators [119]

f (ϕ) = cscΔ(ϕ)

(
aO +∑̂

O

bÔGΔ̂,0

(
tanϕ

))

= cscΔ(θ −ϕ)

(
aO ′ +∑̂

O ′
bÔ ′GΔ̂′,0

(
tan(θ −ϕ)

))
,

(3.10)

g(ϕ) = sin
ˆ̂Δ−Δ(ϕ)∑̂

O

cÔGΔ̂n,
ˆ̂Δ

(
tanϕ

)

= sin
ˆ̂Δ−Δ(θ −ϕ)∑̂

O ′
cÔ ′GΔ̂′

m,
ˆ̂Δ

(
tan(θ −ϕ)

)
,

(3.11)

where non-primed (hatted) quantities corresponds to wall data, and primed to

ramp ones. We call the two different sides of the bootstrap equations for the
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wall- and ramp-channel. The products of BOE coefficients are

aO(θ) = μO
�(θ) , aO(θ ′) = μO ′

�(θ) ,

bÔ(θ) = μO
Ô μ̂ Ô

�(θ) , bÔ ′(θ) = μO
Ô ′ μ̂ Ô ′

�(θ) ,

cÔ(θ) = μO
Ô μ̂ Ô

ˆ̂O
(θ) , cÔ ′(θ) = μO

Ô ′ μ̂ Ô ′
ˆ̂O
(θ) .

(3.12)

We expressed the boundary-edge coefficients, μ̂Ô
ˆ̂O
, with a hat, and explicitly

wrote out its dependence on the intersection angle, θ . Finally we have the

single conformal block

GΔ̂, ˆ̂Δ(η) = η Δ̂− ˆ̂Δ
2F1

(
Δ̂− ˆ̂Δ

2
,
Δ̂− ˆ̂Δ+1

2
, Δ̂− d −3

2
,−η2

)
. (3.13)

Notice that the main difference between the two bootstrap eq.’s (3.10, 3.11)

is the exchange of the identity operator in the bulk one-point function. More-

over, the two equations are symmetric under ϕ → θ −ϕ , which is the same

as exchanging the two boundaries. This symmetry tells us that we are free to

exchange the b.c.’s on the two boundaries. E.g. a WCFT with Dirichlet b.c.

on the wall and Neumann on the ramp is the same as the vice versa.

Free bulk correlators (3.9) were found from the bootstrap eq.’s (3.10, 3.11)

in [119]. In particular, if the bulk theory has O(N)-symmetry, we expect the

bulk one-point function of the fundamental scalar, φ i, to have a vanishing one-

point function. This was indeed found for d < 4 at the end of Sec. 4 in [119].

Near six dimensions it is possible to have a non-vanishing v.e.v. of φ i. Though

this is a quantum effect emerging from a cubic interaction in the bulk, which

explicitly breaks the O(N)-symmetry.

In paper VII a WCFT was considered, and a way to find the bulk-edge

correlator (3.9) in the interacting theory using the e.o.m. was developed. We

will illustrate this method for more complicated b.c.’s than those in paper VII

in Ch. 5 (in the presence of a single boundary).
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Part II:
Defects, conformal symmetry and fusion





4. The discontinuity method in a BCFT

We will now explain the discontinuity method from paper II and V in detail.

In these papers, this analytical method was applied to several different BCFTs

and ICFTs near four and six dimensions. This method has also been applied

to a supersymmetric BCFT in [128], and it projects out the OPE coefficients

from the bootstrap equation for two external scalars

f (ξ ) = ∑
O

λO1O2
O μO

�Gbulk(Δ;ξ )

= ξ
Δ+

12
2 ∑̂

O

μO1
Ô μO2

ÔGbndy(Δ̂;ξ ) ,
(4.1)

where the conformal blocks are given by (2.46), which we write out again here

Gbulk(Δ;ξ ) = ξ Δ/2
2F1

(
Δ
2
,
Δ
2
,Δ− d −2

2
,−ξ

)
,

Gbndy(Δ̂;ξ ) = ξ−Δ̂
2F1

(
Δ̂, Δ̂− d −2

2
,2 Δ̂−d +2,−ξ−1

)
.

(4.2)

Prior to this thesis, the discontinuity method has only been applied to two-

point functions with identical external scalars. Here we will generalize it to

mixed correlators where the external scalars might differ. We will also show

that it is possible to project out both the bulk OPE and the BOE coefficients

from above bootstrap equation, depending on which branch cut we study of

the conformal blocks.

4.1 Discontinuities of the conformal blocks

To start with, a hypergeometric function pFq(..., z) has a branchcut along z> 1.

This means that for the conformal blocks (4.2), the bulk block, Gbulk(Δ;ξ ),
has a branch cut along ξ <−1 (this is the same as sending one of the external

bulk operators to its mirror point x⊥ → −x⊥) coming from the 2F1(...,−ξ )
and the boundary-block, Gbdy(Δ̂;ξ ), has one along −1 < ξ < 0 coming from

the 2F1(...,−ξ−1). In addition, the factors ξ Δ/2,ξ−Δ̂,ξ
Δ+

12
2 have branch cuts

along the entire negative axis ξ < 0. See Fig. 4.1. We will show how the

bulk OPE coefficients can be found from the branch cut along ξ < −1, and

the BOE coefficients from the branchcut along −1 < ξ < 0.
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Re

Im

Figure 4.1. The branch cuts of the bootstrap eq. (4.1): the blue line is that of the bulk

2F1, while the orange originates from the boundary 2F1.

Firstly we define the discontinuity of an arbitrary function f (ξ ) along a real

interval I ⊂ R as

disc
ξ∈I

f (ξ ) = lim
α→0+

[ f (ξ + iα)− f (ξ − iα)] , ξ ∈ I . (4.3)

Note that the boundary-channel lacks a discontinuity along ξ <−1 if
Δ+

12
2 − Δ̂ ∈ Z, or equivalently

Δ̂m =
Δ+

12

2
+m , m ∈ Z . (4.4)

In the case of identical external scalars, Δ1 = Δ2, these operators correspond to

the boundary-limit of normal derivatives acting on the scalar. These are then

the operators that appear in the conformal block decomposition in a general-
ized free field theory (GFF): the free theory with the bulk correlator given by

the massless limit of (2.54) with arbitrary Δφ . The BOE coefficients are then

given by eq. (B.45) in [100].

Likewise, we can move the ξ
Δ+

12
2 -factor to the bulk-channel, which then

does not have a discontinuity along −1 < ξ < 0 assuming the exchanged bulk

operators have the scaling dimensions

Δn = Δ+
12 +2n , n ∈ Z . (4.5)

These operators correspond to scalar double traces: φ1(∂μ)
2nφ2. In the case

of Δ1 = Δ2, these are the operators that appear in the conformal block de-

composition in a GFF, with the bulk OPE coefficients given by eq. (B.44) in

[100].

In particular, if we assume exchanged operators of scaling dimensions (4.4,

4.5), we can completely remove one side of the bootstrap eq. (4.1) (in the free

theory) by commuting the discontinuity (along either ξ <−1 or

−1 < ξ < 0) with the infinite sums. Due to this wonderful analytical property,

we will assume this spectrum of operators when we extract bulk OPE and BOE

coefficients from the two bootstrap channels.
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It is not fully known when we are allowed to commute the discontinuity

with these infinite sums in the bootstrap eq. (4.1). In paper II (see its eq.

(2.10)) this was discussed using the radial coordinates [129] for defect con-

formal blocks. In particular, the radial coordinate for the bulk-channel has

a branch cut along ξ < −1 while the one for the boundary has one along

−1 < ξ < 0. This means that it is important to double check the result against

some known CFT data. E.g. in paper II and V the anomalous dimension of φ̂
and ∂⊥φ̂ was found using the image symmetry of the conformal blocks (2.60).

This gave results consistent with the older literature.

4.1.1 Discontinuity along ξ <−1

Firstly, let us study the discontinuity of the bulk blocks (4.2) along ξ < −1

assuming exchanged scalar double traces (4.5)

disc
ξ<−1

Gbulk(Δn;ξ ) = anξ Δ(f)
φ +1−Δn

2 ×

× 2F1(Δ(f)
φ +1−Δ1 −n,Δ(f)

φ +1−Δ2 −n,Δ(f)
φ +2−Δn,−ξ )+

+bnξ
Δn
2 2F1(Δ1 +n,Δ2 +n,Δn −Δ(f)

φ ,−ξ ) , (4.6)

where

an =
2π2i csc[π(Δ(f)

φ −Δ+
12)]ΓΔn−Δ(f)

φ

ΓΔ1+nΓΔ2+nΓΔ1+n−Δ(f)
φ

ΓΔ2+n−Δ(f)
φ

ΓΔ(f)
φ +2−Δn

,

bn = eπ iΔ+
12 − e2π iΔ(f)

φ −2i
sin[π(Δ1 +n−Δ(f)

φ )]sin[π(Δ2 +n−Δ(f)
φ )]

sin[π(Δ+
12 −Δ(f)

φ )]
,

(4.7)

and Δ(f)
φ is a constant, which is given by the scaling dimension (1.20) of a

fundamental field (without anomalous dimension)

Δ(f)
φ =

d −2

2
. (4.8)

We wish to find an orthogonality relation for discGbulk, but this is difficult due

to the two different 2F1’s. However, the bn-term vanishes in the case when we

consider two free scalars with scaling dimension Δ1 = Δ2 = Δ(f)
φ . In such case

it reduces to the discontinuity studied in eq. (4.11) of paper II. Alternatively,

this term vanishes when Δ(f)
φ , Δ1 and Δ2 are all integers.

Let us consider one of these two scenarios, where we only need to focus on

the an-term in discGbulk. In such case we can use the following 2F1-identity

2F1(a,b,c,z) = (1− z)−a
2F1

(
a,c−b,c,

z
z−1

)
, (4.9)
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to rewrite the discontinuity as a Jacobi-polynomial

disc
ξ<−1

Gbulk(Δn;ξ ) = cn

P
(Δ(f)

φ ,−Δ−
12)

Δ1+n−Δ(f)
φ −1

(t)

(1+ t)
Δ−

12
2

, (4.10)

with

cn =−
π i2Δ(f)

φ −Δn+1
2

Δ−
12
2 +1ΓΔn−Δ(f)

φ

ΓΔ1+nΓΔ2+n−Δ(f)
φ

, t =−ξ +2

ξ
. (4.11)

Due to orthogonality of the Jacobi polynomial, the discontinuity (4.10) of the

bulk block satisfies∫ +1

−1
dt Ξm(t) disc

ξ<−1
Gbulk(Δn;ξ ) = dmδmn , (4.12)

where

dm =−
π i2Δ(f)

φ −Δm+1
2

Δ(f)
φ −Δ−

12
2 +2ΓΔm−Δ(f)

φ +1

ΓΔ2+mΓΔ1+m−Δ(f)
φ

,

Ξm(t) =
(1− t)Δ(f)

φ

(1+ t)
Δ−

12
2

P
(Δ(f)

φ ,−Δ−
12)

Δ1+n−Δ(f)
φ −1

(t) .

(4.13)

This orthogonality relation is only valid if the coefficient, dm, on the RHS of

(4.12) (which originates from the integration measure) is non-zero and conver-

gent. E.g. in the case of two identical scalars Δ1 = Δ2 = Δ(f)
φ , the discontinuity

is orthogonal if n ≥ 1. In which case the φ 2-conformal block (n = 0) has a no

branch cut along ξ <−1.

4.1.2 Discontinuity along −1 < ξ < 0

Let us now study the analytic structure of the boundary-channel, and consider

the discontinuity of the boundary conformal block (4.2) along −1 < ξ < 0

assuming boundary operators of dimension (4.4) is exchanged. In such case,

we find again two terms with hypergeometric functions. One term vanishes if

Δ+
12 and Δ(f)

φ are both integers.1 Assuming this, we can again use the identity

(4.9) to write the discontinuity as a Jacobi polynomial

disc
−1<ξ<0

Gbdy(Δ̂m;ξ ) = ĉm

P
(Δ(f)

φ ,−Δ(f)
φ )

Δ̂m−Δ(f)
φ −1

(t)

(1+ t)Δ(f)
φ −Δ+

12
2

, (4.14)

1E.g. this occurs if Δ1 = Δ2 = Δ( f )
φ in even dimensions.
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with

ĉm =−
π i eπ i(Δ(f)

φ −m)
2

Δ(f)
φ −Δ+

12
2 +1Γ

2(Δ̂m−Δ(f)
φ )

ΓΔ̂m
ΓΔ̂m−2Δ(f)

φ

. (4.15)

The discontinuity (4.14) satisfy the orthogonality relation

∫ +1

−1
dt Ξ̂n(t) disc

−1<ξ<0
Gbdy(Δ̂m;ξ ) = d̂nδmn , (4.16)

where

d̂n =

√
π i2

Δ̂n+n−Δ(f)
φ eπ i(Δ(f)

φ −n+1)ΓΔ̂n−Δ(f)− 1
2

ΓΔ̂n−Δ(f)
φ

,

Ξ̂n(t) =
(1− t)Δ(f)

φ

(1+ t)
Δ+

12
2

P
(Δ(f)

φ ,−Δ(f)
φ )

Δ̂m−Δ(f)
φ −1

(t) .

(4.17)

Similar to the disc
ξ<−1

Gbulk, this relation is only valid if the coefficient, d̂n, is non-

zero and convergent. In the case of Δ1 = Δ2 = Δ(f)
φ , this is the case if n ≥ 2.

Then the conformal block for the φ̂ (m = 0) and ∂⊥φ̂ (m = 1) exchange have

no branch cut along −1 < ξ < 0.

4.2 OPE coefficients

We will see how the orthogonality relations (4.12, 4.14) can be used to project

out the bulk OPE and BOE coefficients from the bootstrap eq. (4.1). The

orthogonality relation only holds for free scaling dimensions (without taking

into account the anomalous dimensions), and thus we first need to expand

the CFT data around the free theory. To illustrate this we consider the ε-

expansion, although in principle, the method work for other expansions as

well, e.g. that around large N

Δ1 = Δ(f)
1 + ε γ1 +O(ε2) ,

Δ2 = Δ(f)
2 + ε γ2 +O(ε2) ,

(4.18)

Δn = Δ(f)
n + ε γn +O(ε2) ,

Δ̂m = Δ̂( f )
m + ε γ̂m +O(ε2) ,

(4.19)

λO1O2
On μOn

� = λ ( f )
n + ε δλn +O(ε2) ,

μO1
Ôm

μO2
Ôm

= μ( f )
m + ε δ μm +O(ε2) .

(4.20)
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We will then write the bootstrap eq. (4.1) in the following way

f (ξ ) = Gb +Hb = Gi +Hi +O(ε2) , (4.21)

where b stands for bulk and i for interface (boundary). We let the anomalous

dimensions be contained in Gb and Gi as well as the operators accompanying

OPE coefficients of O(ε) which does not have a branch cut along ξ < 0 (such

as φ̂ , ∂⊥φ̂ and φ 2)

Gb = ∑
n

λ ( f )
n Gbulk(Δn;ξ )+ ε ∑

n′
δλn′Gbulk(Δ

( f )
n′ ;ξ ) ,

Gi = ∑
m

μ( f )
m Gbdy(Δ̂m;ξ )+ ε ∑

m′
δ μm′Gbulk(Δ̂

( f )
m′ ;ξ ) .

(4.22)

On the other hand, we let Hb and Hi contain the operators at O(ε) which have

a non-trivial discontinuity along ξ <−1 and −1 < ξ < 0 respectively

Hb = ε ∑̃
n

δλñGbulk(Δ
( f )
ñ ;ξ ) ,

Hi = ε ∑̃
m

δ μm̃Gbulk(Δ̂
( f )
m̃ ;ξ ) .

(4.23)

Note that the free scaling dimensions enter in Hb and Hi. If we now take the

discontinuity along ξ < −1 or −1 < ξ < 0, and commute it with the infinite

series in Hb and Hi we find

ε ∑̃
n

δλñ disc
ξ<−1

Gbulk(Δn;ξ ) = disc
ξ<−1

(Gi −Gb) ,

ε ∑̃
m

δ μm̃ disc
−1<ξ<0

Gbdy(Δ̂m;ξ ) = disc
−1<ξ<0

(Gb −Gi) .
(4.24)

By applying the orthogonality relations (4.12, 4.14) we find corrections to the

OPE coefficients

δλñ =
dñ

ε

∫ +1

−1
dt Ξñ(t) disc

ξ<−1
(Gi −Gb) ,

δ μm̃ =
d̂m̃

ε

∫ +1

−1
dt Ξ̂m̃(t) disc

−1<ξ<0
(Gb −Gi) .

(4.25)

If any of these formulas are used at O(εk) with k ≥ 2, then ε → εk in above

formulas. That said, at some order in the expansion parameters we expect

other operators than normal derivatives (4.4) and scalar double traces (4.5)

(or to be precise: operators with the same scaling dimensions at O(ε0)) to be

exchanged. If so, above formulas are not valid anymore.

It is worth mentioning that operators with scaling dimensions (4.4, 4.5) will

mix with other kinds of operators,2 which means that above formulas actually

2E.g. φ1(∂ 2
μ )

nφ2 will mix with (∂ 2
μ )

n(φ1φ2) as they both have the same scaling dimension (4.5)

in the free theory.
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give a sum of OPE coefficients. To go to higher orders, we have to solve

the mixing problem by studying several different mixed bulk-bulk correlators.

This is in general very difficult.

The first of these formulas (for the bulk OPE coefficients) is the one used

in paper II and V (upto O(ε2)) as well as in [128], in the case of two identical

external scalars Δ1 = Δ2 = Δ(f)
φ . However, the second formula for the BOE

coefficients has not been used in the literature before.

Though the BOE coefficients were still found in paper II and V by resum-

ming the bulk OPE coefficients,3 and then using the following orthogonality

relation for the boundary blocks themselves (and not their discontinuity)

δmn =
∮

|w|=ε̃

dw
2π i

wn−m−1
2F1(1−m,−m− d−4

2 ,2(1−m),−w)×

× 2F1(n,n+ d−2
2 ,2n,−w) .

(4.26)

Here we integrate over a small circle with infinitesimal radius ε̃ � 1 s.t. we

can apply the residue theorem to poles of the integrand at w = ξ−1 = 0. This

orthogonality relation was first found in paper II.

All and all, the discontinuity method provides us with the OPE coefficients

in terms of the anomalous dimensions. This is a rewarding resolution to the

bootstrap eq. (2.22), although it requires calculating difficult infinite sums in

Gb and Gi if there are infinitely many operators at the previous orders in the

expansion parameters (see Sec. 4.5 in paper II).

4.2.1 BOE coefficients of the φ −φ correlator

In the remaining part of this Chapter, we will find the BOE coefficients at

O(ε2) that appear in the φ −φ correlator (when Δ1 = Δ2 = Δ(f)
φ ) in

d = 4−ε using the second formula in (4.25). We will show that this results in

an agreement with paper II.

To start with, the bootstrap eq. (4.1) is then solved by a finite number of

operators in the free theory, and thus also at O(ε) as the BOE coefficients

enter squared in the bootstrap equation [100]

Gb = 1± (1±αε + ε2δλφ2)Gbulk(Δφ2 ,ξ )+ ε
α
2

Gbulk(Δφ4 ;ξ ) ,

Gi = (1±1+ ε2δ μφ̂ )Gbdy(Δφ̂ ;ξ )+

+

(
1∓1

2
Δ(f)

φ + εα + ε2δ μ∂⊥φ̂

)
Gbdy(Δ∂⊥φ̂ ;ξ ) .

(4.27)

Here Δ0 ≡ Δφ2 , Δ1 ≡ Δφ4 , Δ̂0 = Δ̂φ̂ , Δ̂1 ≡ Δ̂∂⊥φ̂ and α is a free parameter (that

is related to the anomalous dimension of φ 2). Neumann b.c. correspond to +1

3Resumming conformal blocks is often difficult, and some methods to do so is in App. C of

paper V.
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and Dirichlet to −1. The expansion of these blocks are in App. A of paper II.

The contributions from new OPE coefficients at O(ε2) are

Hb = ε2 ∑
n≥1

δλnGbulk(2(n+1);ξ ) ,

Hi = ε2 ∑
m≥2

δ μmGbulk(m+1;ξ ) .
(4.28)

By taking the discontinuity along −1 < ξ < 0 of the difference Gb −Gi we

find the integrand of the BOE coefficients (4.25)

δ μm≥2 =

√
π Γm

(−4)mΓm− 1
2

∫ +1

−1
dt
(

a1 log

(
1+ t

2

)
+

+a2
1− t
1+ t

log

(
1− t

2

)
+a3 +a4

1− t
1+ t

)
P(+1,−1)

m−1 (t) ,

(4.29)

with the coefficients

a1 =±α(2α −1) ,

a2 = α(2α − γ(1)φ4 +1) ,

a3 = α(2(3±1)α +5∓1)+

−4(α γ(1)φ4 ±2γ(2)φ ∓ γ(2)φ2 +(1±1)γ(2)φ̂ − (1∓1)γ(2)∂⊥φ̂ ) ,

a4 = 2γ(2)φ .

(4.30)

Performing the integration over t yields

δ μm≥2 =

√
π Γm

22m−1(m−1)Γm− 1
2

((−1)m(m2 −m−1)α(2α − γ(1)φ4 +1)

m(m−1)
+

∓ α(2α −1)

m(m−1)
+2(1∓ (−1)m)γ(2)φ +

+(−1)m(±γ(2)φ2 +(1±1)γ̂(2)φ̂ − (1∓1)γ̂(2)∂⊥φ̂ )

)
. (4.31)

By inserting the anomalous dimensions (see Sec. 4.2 in paper II), this result is

in agreement with the corresponding BOE coefficients found in eq. (4.35) of

paper II.
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5. Correlators from the equation of motion

In this Chapter we illustrate the method used in paper VII. We will consider

a BCFT with both a bulk- and a boundary-interaction. Due to the conformal

symmetry, the bulk-bulk correlator (2.20) is given by an unknown function

f (ξ ), which depends on the single cross-ration ξ . By applying the bulk e.o.m.

order by order in the couplings we are able to find f (ξ ) as an perturbative

expansion in these couplings. At each order we will have undetermined con-

stants, which are fixed by the b.c.’s.

This idea is not new in itself, and has been applied to a BCFT prior to this

thesis in [130]. In this Chapter we will apply this method to the φ 6− φ̂ 4 model

in d = 3− ε [131], governed by the action

S =

∫
Rd
+

ddx
(
(∂μφ i)2

2
+

g0

48
(φ i)6

)
+
∫
Rd−1

dd−1x‖
λ0

8
(φ̂ i)4 . (5.1)

Here Rd
+ = {x‖ ∈ Rd−1, x⊥ > 0} and i ∈ {1, ...,N}, giving this model O(N)-

symmetry. This is an interesting BCFT as it has an RG f.p. where both the

bulk- and the boundary-interactions are non-zero.1 We are unaware of any

results on the bulk φ −φ correlator beyond the free theory. Using the e.o.m.

we are able to find this correlator upto first order in g0 and second order in

λ0 without much effort. Furthermore, we will study the boundary-limit of

this correlator using the methods from paper III to read off the anomalous

dimension of φ̂ .

We will also comment on the operators being exchanged in the bulk and

boundary bootstrap channels (4.1), and read off the non-trivial OPE coeffi-

cients. From this analysis we will see that we cannot naively use the disconti-

nuity method from Ch. 4.

Lastly, we will apply the CW mechanism and flow along the RG away

from the conformal f.p.’s. This gives us an effective potential on the bound-

ary (only taking into account one-loop effects) for a first-order p.t., where a

SSB of the O(N)-symmetry occurs. Due to the BOE (2.44), the bulk O(N)-
symmetry is spontaneously broken as well. Applying the Higgs mechanism

tells us that there exist massless Goldstone modes invariant under O(N − 1)-
transformations, and a Higgs mode with both a bulk and a boundary mass.

1Paper III studies this model at the RG f.p. where only the boundary coupling is non-zero.
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5.1 Renormalization group flow

The φ 6 − φ̂ 4 model (5.1) has the e.o.m. and b.c.

∂ 2
μφ i =

g0

8
φ 4φ i ,

∂⊥φ̂ i =
λ0

2
φ̂ 2φ̂ i ,

(5.2)

where we have suppressed the summations over the O(N)-indices. The β -

function for the bulk coupling is not affected by the boundary and thus it can

be directly borrowed from the bulk φ 6-theory [132]

βg =−2ε g+
3N +22

8π2
g+O(g2) . (5.3)

The boundary β -function is (upto two-loops) [131, 88]

βλ =−ε λ − π(N +4)

8π
g+

N +8

4π
λ 2 − (N +4)(N −62)

64π2
λ g+

− (5N +22) log2

2π2
λ 3 + ... .

(5.4)

Setting both of these β -functions to zero gives us three RG f.p.’s. Aside from

the trivial Gaussian f.p.
g∗G , λ ∗

G = 0 , (5.5)

there is also the long-range f.p. (LR) studied in paper III

g∗G = 0 , λ ∗
LR =

4π ε
N +8

+
32π(5N +22) log 2

(N +8)3
ε2 +O(ε3) , (5.6)

and two f.p.’s where both the bulk and boundary couplings are non-trivial

g∗ =
16π2ε

3N +22
+O(ε2) , (5.7)

λ ∗
± =±2π

√
2(N +4)ε

(N +8)(3N +22)
+

+
2π

N +8

(
1+

(N +4)(N −62)

4(3N +22)
+

4(N +4)(5N +22) log2

(N +8)(3N +22)

)
ε +O(ε3/2) .

We will mostly focus on the latter two f.p.’s. Here the bulk-interaction is at the

tricritical point, i.e. the point in the phase diagram (pressure vs. temperature)

where three phases coexist (e.g. solid, liquid and gas). Note that at these

tricritical points, λ ∗± admits an expansion in
√

ε , while g∗ is expanded in ε .

Moreover, there exist no f.p. where only the bulk-interaction is non-trivial.

The RG flow is depicted in Fig. 5.1, and the tricritical f.p. with λ ∗
+ is the fully

attractive one.
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G

LR

TC-

TC+

g
Figure 5.1. The RG flow of the φ 6 − φ̂ 4 model (5.1). The black dot (G) is the trivial

Gaussian f.p. (5.5), the red one is the LR f.p. (5.6), the orange (TC−) is the tricritical

point (5.7) with λ ∗−, and the blue (TC+) that with λ ∗
+. The blue f.p. is fully attractive.

5.2 The correlator upto O(
√

ε)
Let us consider the tricritical f.p. (5.7) and find the bulk-bulk correlator using

the e.o.m. and the b.c. (5.2). From conformal symmetry we know that it has

to be on the form2

〈φ i(x)φ j(y)〉= Adδ i j F(ξ )
|4x⊥y⊥|Δφ

, (5.8)

with the cross-ratio, ξ , given by (2.21)

ξ =
s2

4x⊥y⊥
. (5.9)

We wish to find F(ξ ) from (5.2). Let us first solve it upto O(
√

ε)

∂ 2
μ〈φ i(x)φ j(y)〉= O(ε) , (5.10)

〈∂⊥φ̂ i(x‖)φ j(y)〉= (N +2)λ ∗±
2

〈φ̂ 2(x‖)〉( f )〈φ̂ i(x‖)φ j(y)〉( f ) +O(ε) = O(ε) ,

where the subscript ( f ) means the correlator from the free theory. Note that

〈φ̂ 2(x‖)〉 is trivial due to the conformal symmetry along the boundary. At this

order we are asked to solve the classical KG eq. (1.11) with Neumann b.c.

2If we compare with (2.20) we have that F(ξ ) = Adδ i jξ Δφ f (ξ ). We find it more convenient

to work with F(ξ ) when we are solving the e.o.m. due to the lack of s‖ in the prefactor

of 〈φ i(x)φ j(y)〉. Of course, it does not matter which notation we use. The end result for

〈φ i(x)φ j(y)〉 is the same.
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(2.49). The bulk e.o.m. gives us

Ad

x
Δφ+2

⊥ (4y⊥)Δφ

(
ξ (ξ +1)F ′′(ξ )+Δφ (Δφ +1)F(ξ )+

+

(
(Δφ +1)(2ξ +1)−

(
Δφ − d −2

2

)
x⊥
y⊥

)
F ′(ξ )

)
= 0 .

(5.11)

Since F(ξ ) should only depend on the cross-ratio, the
x⊥
y⊥ -term has to vanish.

This puts a constraint on the scaling dimension of the bulk field

Δφ =
d −2

2
+O(ε) . (5.12)

This is indeed the correct result for a free bulk scalar (1.20), which should not

get affected by the boundary coupling. The differential eq. (5.11) then yields

4ξ (ξ +1)F ′′(ξ )+2d(2ξ +1)F ′(ξ )+d(d −2)F(ξ ) = 0 , (5.13)

which can be solved upto two constants A and B

F(ξ ) = Aξ−Δφ +B(ξ +1)Δφ . (5.14)

By applying the Neumann b.c. to (5.8) we can fix one of the constants

AdΔφ y⊥
2(s2

‖+ y2
⊥)

d
2

(A−B) = 0 ⇒ B = A . (5.15)

At this point we have

F(ξ ) = A(ξ−Δφ +(ξ +1)Δφ ) . (5.16)

Since this has the same form of a free scalar, its conformal block decomposi-

tion is also the same. That is, in the bulk-channel only the identity operator

and φ 2 is exchanged, and in the boundary-channel only φ̂ is exchanged [100]

λ φφ
� = A+O(ε) ,

λ φφ
φ2 μφ2

� = A+O(ε) ,

(μφ
φ̂ )

2 = 2A+O(ε) .

(5.17)

Moreover, it tells us that neither φ 2 nor φ̂ receives an anomalous dimension

γφ2 = O(ε) , γφ̂ = O(ε) . (5.18)

The constant A can be fixed by normalization, which we will chose to be

λ φφ
� = 1 , (exactly) ⇒ A = 1 , (5.19)
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which gives us

F(ξ ) = ξ−Δφ +(ξ +1)Δφ ,

λ φφ
φ2 μφ2

� = 1+O(ε) ,

(μφ
φ̂ )

2 = 2+O(ε) .

(5.20)

This is the same correlator as that found in Sec. 2.5. Note that there are no

non-trivial Feynman diagrams at O(
√

ε) for the bulk-bulk correlator. Thus the

corrections to the CFT data is expected to be trivial at O(
√

ε).

5.3 The correlator at O(ε)
At O(ε), the e.o.m. (5.2) becomes

∂ 2
μ〈φ i(x)φ j(y)〉= (N +4)(N +2)g∗

8
〈φ 2(x)〉2

( f )〈φ i(x)φ j(y)〉( f ) +O(ε3/2) ,

〈∂⊥φ̂ i(x‖)φ j(y)〉= λ ∗±
2
〈φ̂ 2φ̂ i(x‖)φ j(y)〉λ +O(ε3/2) . (5.21)

Here the subscript λ denotes the correlator at O(λ ∗±). In order to solve this

differential equation we need 〈φ 2(x)〉( f ) and 〈φ̂ 2φ̂ i(x‖)φ j(y)〉λ .

Firstly let us find 〈φ 2(x)〉( f ). It can be found from the φ ×φ bulk OPE3

〈φ i(x)φ j(y)〉( f ) = Adδ i j ∑
O

1

|s|2Δφ
CΔ,l(x)〈O(x)〉( f ) , (5.22)

where we rescaled the exchanged bulk operator as O → λ φφ
O O . We will

compare this with the coincident-limit of the correlator (5.8, 5.20)

〈φ i(x)φ j(y)〉( f ) = Adδ i j
(

lim
y→x

1

sΔφ
+

1

|2x⊥|2Δφ

)
, (5.23)

from which we can see that the first term in (5.22) corresponds to the identity

exchange, and the second to the v.e.v. of φ 2

〈φ 2(x)〉( f ) = Ad
μφ2

�

|2x⊥|2Δφ
, μφ2

� = 1 . (5.24)

This is on the form (2.18) we expect from conformal symmetry, and is consis-

tent with the CFT data in (5.20).4

3Remember that spinning operators have trivial one-point functions in the presence of a codi-

mension one defect [89].
4We rescaled the one-point function with a factor 2−2Δφ for simplicity.
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Figure 5.2. The diagram at O(λ ) for the φ̂ 3-φ correlator, where the LHS of the thick

line represents the boundary, and the RHS the bulk.

Next up we need to find 〈φ̂ 2φ̂ i(x‖)φ j(y)〉λ . It is given by the Feynman

diagram in Fig. 5.2

〈φ̂ 2φ̂ i(x‖)φ j(y)〉λ =−16(N +2)λ ∗
±Adδ i j×

×
∫
Rd−1

dd−1z‖
1

|x‖ − z‖|3Δφ [(z‖ − y‖)2 + y2
⊥]

Δφ

=−16(N +2)λ ∗
±Adδ i jJd−1

3Δφ ,Δφ
(−s‖,y2

⊥) .

(5.25)

In the second line we performed the shift z‖ → z‖+ x‖, and wrote it in terms

of the following master integral

Jn
a,b(z,w

2)≡
∫
Rn

dnx
x2a[(x− z)2 +w2]b

=

=
Γa+b

ΓaΓb

∫ 1

0
du(1−u)a−1ub−1In

a+b(0,0,u(1−u)z2 +uw2)

=
π

n
2 Γa+b− n

2
Γ n

2−a

ΓbΓ n
2
(z2 +w2)a+b− n

2
2F1

(
a+b− n

2
,n− a

2
,
n
2
,

z2

z2 +w2

)

=
π

n
2 Γa+b− n

2
Γ n

2−aΓ n
2−b

ΓaΓbΓn−a−b

1

|z|2(a+b)−n
, if w = 0. (5.26)

It gives us

〈φ̂ 2φ̂ i(x‖)φ j(y)〉λ ∗± = Adδ i jμφ
φ̂3

y⊥
(s2

‖+ y2
⊥)

3
2

+O(ε) ,

μφ
φ̂3 =

(N +2)λ ∗±
2π2

+O(ε) .
(5.27)

This has the expected form (2.19) from conformal symmetry.
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We have now everything we need to solve the e.o.m. at O(ε). We will

consider the ε-expansion

Δφ =
d −2

2
+ ε γφ +O(ε2) ,

F(ξ ) = F(0)(ξ )+ ε F(1)(ξ )+O(ε
3
2 ) ,

(5.28)

where F(0)(ξ ) is the solution of F(ξ ) at (5.20) upto O(
√

ε). By expanding the

bulk e.o.m. (5.21) in ε we find a differential equation for F(1)(ξ )

0 =
δ i jε

8π x
5
2
⊥
√

y⊥

{
ξ (ξ +1)F ′′

(1)(ξ )+
3(2ξ +1)

2
F ′
(1)(ξ )+

3

4
F(1)(ξ )+

− 1

2

(
(N +2)(N +4)g∗

256π2ε
− γφ

)(
1√
ξ
+

1√
ξ +1

)
+

−γφ

[(
1

ξ
3
2

− 1

(ξ +1)
3
2

)
+

x⊥
y⊥

(
1

ξ
3
2

+
1

(ξ +1)
3
2

)]}
.

(5.29)

If we demand that F(1)(ξ ) should only depend on the cross-ratio ξ , then we

need to set the
x⊥
y⊥ -term to zero. It yields

γφ = 0 . (5.30)

This agrees with the older literature [132]. It can also be seen by assuming

that Δφ is not affected by the boundary coupling λ . Then in the case without a

boundary there are no non-trivial Feynman diagrams for the φ −φ correlator

at O(g). Thus γφ has to be zero upto O(ε).
Above constraint brings (5.29) into

0 = ξ (ξ +1)F ′′
(1)(ξ )+

3(2ξ +1)

2
F ′
(1)(ξ )+

3

4
F(1)(ξ )+

− (N +2)(N +4)g∗

512π2ε

(
1√
ξ
+

1√
ξ +1

)
,

(5.31)

which has the solution

F(1)(ξ ) =
(N +2)(N +4)g∗

256π2ε

(
1√
ξ
+

1√
ξ +1

)
log(

√
ξ +

√
ξ +1)

+
A√
ξ
+

B√
ξ +1

.

(5.32)

There will be a x⊥-pole in the boundary-limit of ∂⊥φ i(x), and thus we cannot

naively apply the b.c. (5.21). To understand the origin of this pole we study
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the BOE (2.8) of ∂⊥φ i (which is a descendant of φ i in the bulk)

〈∂⊥φ i(x)φ j(y)〉= Adδ i j ∑̂
O

∂x⊥
μφ

Ô

|x⊥|Δφ−Δ̂
BΔ̂(x

2
⊥∂ 2

x‖)〈Ô i(x‖)φ j(y)〉 (5.33)

= Adδ i j ∑̂
O

⎛
⎝ (Δ̂−Δφ )(μφ

Ô)
2

|x⊥y⊥|Δφ−Δ̂+1(s2
‖+ y2

⊥)Δ̂
+O(x

1−Δφ+Δ̂
⊥ )

⎞
⎠ .

Here we plugged in the form (2.19) of the bulk-boundary correlator and ex-

panded in x⊥. To the lowest orders in x⊥ the boundary fields φ̂ and ∂⊥φ̂ are

exchanged. In the ε-expansion of their CFT data we have

(μφ
φ̂ )

2 = 2+O(ε) , Δφ̂ = Δ( f )
φ + ε γφ̂ +O(ε

3
2 ) ,

(μφ
∂⊥φ̂ )

2 = ε(μφ
∂⊥φ̂ )

2
ε +O(ε

3
2 ) , Δ∂⊥φ̂ = Δ( f )

φ +1+O(ε) ,
(5.34)

where we remind the reader that Δ( f )
φ is given by (4.8). Plugging this into

(5.33) yields

〈∂⊥φ i(x)φ j(y)〉=
ε Adδ i jγφ̂

x⊥
√

s2
‖+ y⊥

+ 〈∂⊥φ̂ i(x‖)φ j(y)〉+O(ε
3
2 ,x⊥) ,

〈∂⊥φ̂ i(x‖)φ j(y)〉= ε Adδ i j y⊥
(s2

‖+ y⊥)
3
2

(μφ
∂⊥φ̂ )

2
ε +O(ε

3
2 ) .

So from the pole in x⊥ we can read off the anomalous dimension of φ̂ , while

the x0
⊥-term should be matched with the b.c. in (5.21).

For the solution (5.32) this yields

γφ̂ =−(N +2)(N +4)g∗

512π2ε
,

(μφ
∂⊥φ̂ )

2
ε = A−B .

(5.35)

The b.c. (5.21) with (5.27) now gives us

B = A− (N +2)(λ ∗±)2

4π2ε
. (5.36)

Finally we normalize the theory according to (5.19)

A = 0 . (5.37)

This gives us

F(1)(ξ ) =
(N +2)(N +4)g∗

256π2ε

(
1√
ξ
+

1√
ξ +1

)
log(

√
ξ +

√
ξ +1)

− (N +2)(λ ∗±)2

4π2ε
√

ξ +1
.

(5.38)
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Note that the λ ∗±-term breaks the image symmetry (x⊥ →−x⊥ or ξ → ξ +1)

from Sec. 2.5. We retrieve the same φ − φ correlator as in paper III when

g∗ → 0, λ ∗± → λ ∗
LR and ε → ε2. Note that by using the e.o.m. we just had to

calculate one tree-level Feynman diagram for the φ̂ 3 −φ correlator at O(
√

ε)
rather than two two-loop φ −φ diagrams at O(ε).

5.4 Conformal block decomposition

Let us now decompose (5.38) in the conformal blocks at (2.46), and read off

the OPE coefficients. For this purpose we use the same notation as in Ch. 4

f (ξ ) = ξ Δφ F(ξ ) , (5.39)

which admits the conformal block decompositions at (4.1).

We consider the following ε-expansions

λ φφ
φ2n μφ2n

� ≡ δn,1 + ε δλn +O(ε
3
2 ) ,

(μφ
∂ m
⊥ φ̂ )

2 ≡ 2δm,0 + ε δ μm +O(ε
3
2 ) .

(5.40)

Starting with the bulk-channel, we note that the conformal blocks for φ 2n,

n ∈ {1,2,3}, are given by

Gbulk(Δφ2 ;ξ ) =

√
ξ

ξ +1
− ε

2

(
log

(
ξ

ξ +1

)
− γφ2g∗

ε
logξ

)
+O(ε

3
2 ) ,

Gbulk(Δφ4 ;ξ ) =

√
ξ

ξ +1
log(

√
ξ +

√
ξ +1)+O(

√
ε) ,

Gbulk(Δφ6 ;ξ ) = 3

(
log(

√
ξ +

√
ξ +1)−

√
ξ

ξ +1

)
+O(

√
ε) .

Since F(1)(ξ ) in (5.38) has no log(ξ )-term we immediately find

γφ2 = O(ε
3
2 ) , (5.41)

which has to be the case as there are no non-trivial Feynman diagrams for

the bulk φ 2 − φ 2 correlator at O(g∗) in the homogeneous theory without a

boundary. This means that (5.38) is a linear combination of the three blocks

above at O(ε0)

√
ξ F(1)(ξ ) =

3

∑
n=1

δλnGbulk(n;ξ ) , (5.42)
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with the bulk OPE coefficients

δλ1 =
(N +4)(N +2)g∗

256π2ε
− (N +2)(λ ∗±)2

4π2ε
,

δλ2 =
(N +4)(N +2)g∗

256π2ε
,

δλ3 =
(N +4)(N +2)g∗

768π2ε
.

(5.43)

Note that there is no mixing in the bulk-channel due to the e.o.m. (5.2).

To decompose in boundary blocks we need to look at the full F(ξ ) at (5.28).

We can expand the conformal block from the free theory (for φ̂ ) in ε using

the Mathematica package HypExp [133, 134]. By expanding around large ξ
we can then read off the same anomalous dimension at (5.35) as well as the

following BOE coefficents

δ μ0 =
(N +2)(N +4)g∗

256π2ε
log4− (N +2)(λ ∗±)2

4π2ε
,

δ μ1 =−(N +2)(λ ∗±)2

16π2ε
.

(5.44)

Due to the b.c. (5.2) there is no mixing between boundary operators. Note that

the ∂⊥φ̂ -exchange (δ μ1) arises due to the boundary-interaction.

At the next order there are five Feynman diagrams for the φ −φ correlator

at O(ε
3
2 ) (three at O(gλ ) and two at O(λ 3)). To find this correlator using the

e.o.m. we need to calculate two φ 5 −φ diagrams at O(
√

ε) and four φ̂ 3 −φ
diagrams at O(ε) (two at O(g) and two at O(λ 2)). To avoid the calculation of

all of these (three-loop) Feynman diagrams we could instead try to bootstrap

the theory using the discontinuity method from Ch. 4.

Since we want to preserve O(N)-symmetry, we expect the exchanged bulk

primaries to contain an even amount of φ ’s (as we have already seen at O(ε)).
Schematically they would be on the form On ≡ ∂ 2n1

μ φ 2n2 with n1 ∈ Z≥0, n2 ∈
Z≥1 and n ≡ 2n1 +n2 (the exact location of the derivatives are not specified).

At O(ε0), the corresponding scaling dimensions are integers

Δ(0)
n = 2(n2 Δ(0)

φ +n1) = n ∈ Z≥1 . (5.45)

Following Ch. 4, we study the discontinuity along ξ <−1 of the bulk blocks

hoping to find an orthogonality relation

disc
ξ<−1

Gbulk(n;ξ ) ∝ P
( 1

2 ,0)
n−3

2

(t) . (5.46)

However, this Jacobi polynomial is not orthogonal since the argument
n−3

2 ∈ Z≥−1

2 is not strictly an integer or a half-integer for n ∈ Z≥1.5

5We also to expressed this discontinuity in terms of other polynomials, e.g. Chebyshev or

Gegenbauer, but we always found them to be non-orthogonal for the same reason.
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On the other hand, we could try to project out BOE coefficients by studying

the discontinuity along ξ ∈ (−1,0). As we have already learned from Sec.

4.1.2, the discontinuity of the boundary block will contain two hypergeometric

functions if normal derivatives in d = 3 are exchanged (or operators with half-

integer scaling dimensions: Δ̂(0)
m ∈ Z≥0+ 1

2 ). This makes it difficult to find an

orthogonality relation for this discontinuity.6

5.5 CFT data upto O(ε)
In this Section we present a summary of the CFT data found upto O(ε).
Firstly, we found that the bulk fields φ and φ 2 does not recieve any anomalous

dimensions at this order. Furthermore, we normalized the bulk OPE coeffi-

cient for the identity exchange to be

λ φφ
� = 1 , (exactly). (5.47)

At the bulk tricritical point (5.7), φ̂ receives an anomalous dimension

Δφ̂ =
1− ε

2
− (N +2)(N +4)

32(3N +22)
ε +O(ε

3
2 ) , (5.48)

which is in agreement with [131]. In addition to this, we have the non-trivial

OPE coefficients

λ φφ
φ2 μφ2

� = 1+
(N −24)(N +2)(N +4)

16(N +8)(3N +22)
ε +O(ε

3
2 ) ,

λ φφ
φ4 μφ4

� =
(N +2)(N +4)

16(3N +22)
ε +O(ε

3
2 ) ,

λ φφ
φ6 μφ6

� =
(N +2)(N +4)

48(3N +22)
ε +O(ε

3
2 ) ,

(5.49)

(μφ
φ̂ )

2 = 2+
(N +2)(N +4)

3N +22

(
log2

8
− 2

N +8

)
ε +O(ε

3
2 ) ,

(μφ
∂⊥φ̂ )

2 =
(N +2)(N +4)

2(N +8)(3N +22)
ε +O(ε

3
2 ) .

(5.50)

At the LR f.p. (5.6), when g∗ = 0, φ̂ does not receive any anomalous dimen-

sion upto O(ε2). This is in agreement with paper III. At this f.p. only φ 2 is

6We encounter the same problem with multiple 2F1’s if we assume exchanged boundary opera-

tors with scaling dimensions Δ̂(0)
m ∈ Z≥1

2 or Δ̂(0)
m ∈ Z≥1.
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exchanged in the bulk-channel, and the non-trivial OPE coefficients are

λ φφ
φ2 μφ2

� = 1− 4(N +2)

(N +8)2
ε2 +O(ε3) ,

(μφ
φ̂ )

2 = 2− 4(N +2)

(N +8)2
ε2 +O(ε3) ,

(μφ
∂⊥φ̂ )

2 =
(N +2)

(N +8)2
ε2 +O(ε3) .

(5.51)

5.6 Coleman-Weinberg Mechanism

Finally let us study the CW mechanism applied to the φ 6− φ̂ 4 model (5.1) and

flow along the RG away from the conformal f.p.’s. If we vary the field

φ i = φ i
cl +�δφ i +O(�2) , (5.52)

we find (in addition to the e.o.m. and b.c. at (5.2))

S[φcl ,δφ ] = S[φcl ]+�2δS[φcl ,δφ ]+O(�3) ,

δS[φcl ,δφ ] =
∫
Rd

ddx
(
(∂μδφ i)2

2
+δV (φcl ,δφ)

)
+
∫
Rd−1

dd−1xδV̂ (φ̂cl ,δ φ̂)

=
∫
Rd
+

ddx
2

δφ i(−∂ 2|b.c.)i jδφ j .

From this point on, we set �= 1. The potential terms are given by

δV (φ 2
cl,δφ 2) =

δφ i(m2)i jδφ j

2
, δV̂ (φ̂cl ,δ φ̂) =

δ φ̂ im̂i jδ φ̂ j

2
, (5.53)

with the bulk and boundary masses for δφ (keeping φcl constant)

(m2)i j = m2
1δ i j +aφ i

clφ
j

cl , m2
1 =

gφ 4
cl

8
, a =

gφ 2
cl

2
,

m̂i j = m̂1δ i j + â φ̂ i
cl φ̂

j
cl , m̂1 =

λ φ̂ 2
cl

2
, â = λ .

(5.54)

This brings the differential operator (−∂ 2|b.c.)i j to the form

(−∂ 2|b.c.)i j =−δ i j∂ 2 +(m2)i j +δ (x⊥)b.c.i j ,

b.c.i j =−δ i j∂⊥+ m̂i j .
(5.55)

Following Sec. 2.4 we write the b.c. as a dirac δ -function when we path

integrate out δφ . In the effective potentials for φcl we find

Veff(φcl) � −
∫
Rd

ddk
(2π)d

trO(N) log Gi j(k)
2

,

V̂eff(φ̂cl) � −
∫
Rd−1

dd−1k‖
(2π)d−1

trO(N) log Gi j
b.c.(k‖,0,0)

2
,

(5.56)
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where the trace runs over the O(N)-indices. The momentum propagator in the

homogeneous theory is given by

Gi j(k) =
δ jk

k2 +m2
1

− aφ i
clφ

j
cl

(k2 +m2
1)(k

2 +m2
2)

, (5.57)

and that satisfying the b.c. is (see App. A in paper IV for details on this)7

Gi j
b.c.(k‖,0,0) = Hi j

m1
(k‖)+aφ i

clφ
k
cl

Hk j
m1
(k‖)−Hk j

m2
(k‖)

m2
1 −m2

2

,

Hi j
m (k‖) =

(
m̂i j +

√
k2
‖+m2δ i j

)−1

=
1√

k2
‖+m2 + m̂1

⎛
⎝δ i j − â φ̂ i

cl φ̂
j

cl√
k2
‖+m2 + m̂2

⎞
⎠ .

(5.58)

Here we defined

m2
2 ≡ m2

1 +aφ 2
cl =

5gφ 4
cl

8
, m̂2 ≡ m̂1 + â φ̂ 2

cl =
3λ φ̂ 2

cl
2

. (5.59)

To find the logarithms in (5.56) we use

log(a�) = � log(a) ,

log(�+b|φcl〉〈φcl |) = ∑
n≥1

(−1)n+1bn

n
φ 2(n−1)|φcl〉〈φcl |

=
|φcl〉〈φcl |

φ 2
cl

log(1+bφ 2
cl) .

(5.60)

The logarithm of the bulk propagator (5.57) is thus

logGi j(k) = log

(
δ jk

k2 +m2

)
+ log

(
δ jk − aφ jφ k

k2 +m2
2

)

=−δ jk log(k2 +m2
1)+

φ j
clφ

k
cl

φ 2
log

(
1− aφ 2

cl

k2 +m2
2

)

=−
(

δ jk − φ j
clφ

k
cl

φ 2

)
log(k2 +m2

1)−
φ jφ k

φ 2
log(k2 +m2

2) ,

(5.61)

giving us the trace in (5.56)

trO(N) logGi j(k) =−(N −1) log(k2 +m2
1)− log(k2 +m2

2) . (5.62)

7Hi j is found by making the ansatz Hi j = b̂δ i j + ĉ φ̂ i
cl φ̂

j
cl , and then finding the coefficients b̂, ĉ

from (H−1)i jH jk = δ ik.
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Likewise, the trace of the boundary propagator (5.58) is

trO(N) logGi j
b.c.(k‖,0,0) =−(N −1) log(m̂1 +

√
k2
‖+m2

1)− log(m̂2 +
√

k2
‖+m2

2) .

All and all, it allows us to express the effective potentials in (5.56) in terms of

the master integral (1.88, 1.90) (upto one-loop)

Veff(φcl) =V (φcl)+
(N −1)Pd(m2

1,0)+Pd(m2
2,0)

4
+Vc.t.(φcl)+ ... , (5.63)

V̂eff(φ̂cl) = V̂ (φ̂cl)+
(N −1)Pd−1(m2

1, m̂1)+Pd−1(m2
2, m̂2)

2
+V̂c.t.(φ̂cl)+ ... .

The ε-expansion of the master integrals in d = 3− ε is

Pd(m2,0) =−|m|3
12π

+
m2 Λ
4π2

+
Λ3

6π2

(
log Λ− 1

3

)
+ ... , (5.64)

Pd−1(m2, m̂) =
m̂2 −m2

8π
log

(
m2

Λ2

)
+

m2

8π
− m̂|m|

2π
+

Λ2

2π

(
log Λ− 1

2

)
+ ... .

The lack of a log(m2)-term in the bulk is due to the the bulk coupling, g,

having no non-trivial RG f.p. at one-loop. In particular this means that the

bulk potential will stay the same.

The classical potentials are

V (φcl) =
g
48

φ 6
cl , V̂ (φ̂cl) =

λ
8

φ̂ 4
cl . (5.65)

These satisfy

∂ 2V
∂ (φ 2

cl)
2
(φcl)

∣∣∣∣
φ i

cl=0

= 0 ,
∂ 3V

∂ (φ 2
cl)

3
(φcl)

∣∣∣∣
φ i

cl=0

=
g
8
,

∂ V̂
∂ (φ̂ 2

cl)
(φcl)

∣∣∣∣∣
φ̂ i

cl=0

= 0 ,
∂ 2V̂

∂ (φ 2
cl)

2
(φcl)

∣∣∣∣
φ̂ i

cl=0

=
λ
4
.

(5.66)

Based on these (and using the BOE (2.44)), we introduce the RG scale through

∂ 2Veff

∂ (φ 2
cl)

2

∣∣∣∣
φ i

cl=0

= 0 ,
∂ 3Veff

∂ (φ 2
cl)

3

∣∣∣∣
φ i

cl=μ
Δφ̂ x

γφ̂
⊥ δ iN+...

=
g
8
,

∂V̂eff

∂ (φ̂ 2
cl)

∣∣∣∣∣
φ̂ i

cl=0

= 0 ,
∂ 2V̂eff

∂ (φ 2
cl)

2

∣∣∣∣
φ̂ i

cl=μ
Δφ̂ δ iN

=
λ
4
,

(5.67)

where γφ̂ is the boundary anomalous dimension (5.35) (with the coupling con-

stant not tuned to the RG f.p.).
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We define the counter-terms in (5.63) as

Vc.t. = Aφ 4
cl +

Bφ 6
cl

48
, V̂c.t. = Âφ 2

cl +
B̂ φ̂ 4

cl
8

. (5.68)

By implementing (5.67) on the effective potentials (5.63) (together with (5.64,

5.68)) we are able to tune the constants A, B, Â and B̂ s.t. the divergences in Λ
vanish. In particular, we find that B̂ contains

B̂ �
(
(N +8)λ 2 − (N +4)g

2

)
log Λ

2
. (5.69)

This is in fact the divergent part of the bare boundary coupling. Using the

technology from Sec. 1.2.2 (under the exchange log Λ → ε−1) we find exactly

the same β -functions (5.4) (upto one-loop).

It brings the effective potential to

Veff(φcl) =V (φcl)+ ... , (5.70)

V̂eff(φ̂cl) =
λ φ̂ 4

cl
8

+

(
(N +8)λ 2 − (N +4)g

2

)
φ̂ 4

cl
2

(
log

(
φ̂ 2

cl
μ

)
− 3

2

)
+ ... .

The way we introduced the RG scale, μ , in (5.67) tells us that V̂eff has a mini-

mum at this point

φ̂ i
cl

∂ V̂eff

∂ φ̂ i
cl

∣∣∣∣∣
φ̂2

cl=μ+O(ε)

= 0 ⇒ g =− 8π λ
N +4

+
2(N +8)λ 2

N +4
. (5.71)

This relation between the coupling constants does not flow to any of the f.p.’s

in the RG flow in Fig. 5.1. Inserting this into V̂eff yields

V̂eff =
λ φ̂ 4

cl
8

(
log

(
φ̂ 2

cl
μ

)
− 1

2

)
+ ... . (5.72)

A plot of the boundary effective potential for N = 2 is in Fig. 5.3, where we

can see that it has an O(N)-invariant minima at
√μ as in (2.43). This means

that φ̂cl has received a non-trivial v.e.v.

〈φ̂ i
cl〉= μΔφ̂ δ iN =

√
μ δ iN +O(ε,λ ) . (5.73)

As was explained in Sec. 2.4 the BOE will in turn induce a v.e.v. in the bulk

(2.44) (to lowest order in x⊥)

〈φ i
cl〉= μΔφ̂ x

γφ̂
⊥ + ...=

√
μ δ iN +O(ε,λ ,x⊥) . (5.74)

This means that a SSB of the O(N)-symmetry occurs, leaving us with

O(N − 1)-symmetry. We can thus apply the Higgs mechanism and expand

around this minimum
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Figure 5.3. The effective potential, V̂eff(φ̂cl), on the boundary for N = 2.

φ i
cl = eηkT k

(
√

μ +σ)δ iN +O(ε,λ ,x⊥) ,

φ̂ i
cl = eη̂kT k

(
√

μ + σ̂)δ iN +O(ε,λ ) .
(5.75)

Here σ is the Higgs mode, ηk is the massless Goldstone mode and T k is

a generator of the Lie algebra corresponding to O(N)/O(N − 1), with k ∈
{1, ...,N −1} due to (2.13). Expanding around the v.e.v. (5.75) yields kinetic

terms to ηk and σ in the bulk

S =
∫
Rd

ddx

(
(∂μσ)2

2
+

(
√μ +σ)2(∂μηk)2

2
+Veff

)
+
∫
Rd−1

dd−1x‖V̂eff .

In the low-energy limit (kμ → 0) of ηk, its mixed interactions with σ vanish

and thus becomes free. If we expand the effective potentials in σ we find

interactions which break the O(N)-symmetry down to O(N − 1) both in the

bulk and on the boundary

Veff =
g
48

6

∑
n=1

(
6

n

)
μ3− n

2 σn , (5.76)

V̂eff =
λ μ
2

σ2 +
5λ √μ

6
σ3 +

11λ
24

σ4 −6λ ∑
n≥5

(−1)n(n+1)−5

μ
n
2−2

σn ,

where we neglected constant terms. This is an effective field theory for a first-

order p.t. The Higgs mode has received the bulk and boundary masses (using

the relation (5.71) between the coupling constants)

m2
σ =

5g μ2

8
=−5π λ μ2

N +4

(
1− N +8

4π
λ
)

, m̂σ = λ μ . (5.77)

For the fields to be physical (with positive energy) we require m2
σ > 0. This

leads to λ < 0 (and g > 0 due to (5.71)) if we consider infinitesimal couplings,

λ � 1, and finite values of N ∈ Z≥1.
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6. The O(N)-flavoured replica twist defect

Here we will apply the methods in paper I (which concerns a monodromy

twist defect) to a replica twist defect in an O(N)-model. By studying the

monodromy of the defect we will show how the O(N)-symmetry is broken in

the same way as in paper I. The difference lies in the SO(2)-charges of the

defect-local fields, which now depend on the number of replicas, n.

In addition to this we apply the bulk e.o.m. to the DOE (2.74) to extract the

anomalous dimensions of defect-local fields. This idea was first developed in

[135] where it was applied to the OPE in a homogeneous CFT. It was gener-

alized to a codimension one defect in a free scalar theory in [27], and later to

a boundary in an interacting theory in [130] (see also Sec. 3.2 in paper V).

For a monodromy defect this method has been applied in [136] for a Z2-twist,

and in paper I for an O(N)-twist. This method was generalized in [137, 138]

for codimension one and two defects (respectively) to extract the anomalous

dimension of defect-local tensor operators. In this Chapter we apply it to the

O(N)-flavoured replica twist defect in a CFT near four dimensions.

6.1 Monodromy of replica twist defects

As we saw in Sec. 2.7, codimension two defects are special in the sense that

they can carry a monodromy action for the bulk-local fields. We will consider

a replica twist defect in an O(N)-model, where there are n replicas of the bulk

theory. Its monodromy action is given by (2.89)

φ i
a(x‖,r,θ +2π n) = gi jφ j

a (x‖,r,θ) , gi j ∈ O(N) . (6.1)

By conjugation, a general O(N)-element is given by

(gi j) = diag(R±
1 , ...,R

±
p ,±1) , (6.2)

where the last O(1) = Z2-element is not present if N is even, and R±
α ,

α ∈ {1, ..., p}, is a general O(2)-matrix characterized by an angle ϑa

R±
α =

(±cosϑα ∓sinϑα
sinϑα cosϑα

)
, ϑα ∈ [0,2π) . (6.3)

Here R+
α ∈ SO(2) ⊂ O(2) is a proper rotation (with determinant one), and

R−
α ∈ O(2) an improper one (with determinant minus one). We allow each

element in the twist (6.2) to differ in this aspect (±).
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To understand how the global O(N)-symmetry is broken along the defect

we make use of the DOE (2.74)

φ j(x) = ∑
s

μφ j

Ôs

eisθ

rΔφ−Δ̂s
Ĉ2(r2∂ 2

‖ )Ôs(x‖) , (6.4)

where we have characterized the defect-local fields by their SO(2)-charge s.

The idea is to study which values of s is valid for the monodromy (6.1) to hold.

From this we can find the subgroups of O(N) under which defect-local fields

might be charged under.

Due to the form of the twist (6.2) we need to study the cases R±
1 and ±1

separately. We will start with the latter

φ N
a (x‖,r,θ +2π n) =±φ N

a (x‖,r,θ) . (6.5)

If we now apply the DOE (6.4) to both sides of this equation we find

e2π ins =±1 ⇒ s =
m±
2n

∈Q . (6.6)

Here m± is even/odd for ±1 respectively.

Let us now proceed with R±
1 , where we find the system of equations{

φ 1
a (x‖,r,θ +2π n) =±cosϑ1φ 1

a (x‖,r,θ)∓ sinϑ1φ 2
a (x‖,r,θ) ,

φ 2
a (x‖,r,θ +2π n) = sinϑ1φ 1

a (x‖,r,θ)+ cosϑ1φ 2
a (x‖,r,θ) .

(6.7)

We now use the DOE (6.4) and compare powers of r. This is the same as

comparing the terms including the same defect-local operators Ôs(x‖) on the

two sides.1 We find{
e2π insμφ1

Ôs
=±cosϑ1μφ1

Ôs
∓ sinϑ1μφ2

Ôs
,

e2π insμφ1

Ôs
= sinϑ1μφ1

Ôs
+ cosϑ1μφ2

Ôs
.

(6.8)

When one of the trigonometric functions in R±
1 vanish (i.e. ϑ1 ∈ {0, π

2 ,π,
3π
2 }),

we find charges in the same class as (6.6). This is expected as in such case we

have R±
1 = diag(±1,±1) (± signs not related) after conjugation.

Otherwise, the first equation is generally solved by

μφ1

Ôs
=∓ sinϑ1

e2π ins ∓ cosϑ1
μφ2

Ôs
. (6.9)

Then from the second equation of (6.8) we find

(e2π ins − cosϑ1)(e2π ins ∓ cosϑ1) =∓sinϑ 2
1 . (6.10)

This equation has different solutions for s depending on whether R±
1 is proper

or improper. In the proper case we find

(e2π ins − cosϑ1)
2 =−sinϑ 2

1 ⇒ e2π ins = cosϑ1 ± isinϑ1 , (6.11)

1Since the anomalous dimensions are included in Δ̂s it is safe to assume no mixing.
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which has the solution

s =
m
n
+

ϑ1

2π n
, m ∈ Z . (6.12)

If we insert this charge back into (6.9) we find

μφ1

Ôs
=±i μφ2

Ôs
. (6.13)

The corresponding two defect-local operators both have SO(2)-charge given

by (6.12). Let us now move on to the improper solution of (6.10). In such case

(e2π ins − cosϑ1)(e2π ins + cosϑ1) = sinϑ 2
1 ⇒ e4π ins =±1 .

This is solved by (6.6). It corresponds to one defect-local operators with even

SO(2)-charge (w.r.t. m±), and another with odd charge.

To summarize:

• The Z2-element in (6.2) gives us one defect operator with either even or

odd (w.r.t. m±) SO(2)-charge (6.6).

• Each proper R+
a gives us a pair of defect operators with the fractional

charge (6.12). Their DOE coefficients are related by (6.13).

• Lastly, each improper R−
a gives us one defect operator with even (w.r.t.

m±) charge (6.6), and another defect operator with odd charge.

With this information at hand we can see how the bulk O(N)-symmetry is

broken along the defect by counting the number of defect fields with the same

SO(2)-charge. That is, the DOE splits into several different sums, where each

sum runs over different classes of SO(2)-charges. If we assume that in total

there exist:

• n+ defect fields with charge s ∈ Z
n ,

• n− with s ∈ Z
n + 1

2n ,

• 2n1 with s ∈ Z
n + ϑ1

2π n ,

• 2n2 with s ∈ Z
n + ϑ2

2π n ,
...

• 2nq with s ∈ Z
n +

ϑq
2π n ,

where 0 ≤ n± ≤ N, 0 ≤ nr ≤ N
2 , r ∈ {1, ...,q} and 0 ≤ q ≤ p with p from the

twist (6.2), then the O(N)-symmetry is broken down to

O(N)→ O(n+)×O(n−)×O(2n1)× ...O(2nq) . (6.14)

This means that the defect-local fields are in irreducible representations of

these subgroups of O(N).
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6.2 Anomalous dimensions from the equation of motion

Let us now extract the anomalous dimensions of the defect-local operators

from the DOE (6.4) using the e.o.m. (in the process we will also find the DOE

coefficients in the free theory).

In d = 4− ε we can consider a quartic bulk-interaction

S =

∫
Rd

ddx
(
(∂μφ i)2

2
+

λ
8

φ 4

)
, (6.15)

where φ 4 ≡ [(φ i)2]2. The bulk coupling has the non-trivial Wilson-Fisher
(WF) f.p. [139]

λ ∗ =
(4π)2ε
N +8

+O(ε2) , (6.16)

which gives us the following e.o.m. at the conformal f.p.

∂ 2
μφ i = λ ∗(φ j)2φ i , λ ∗ =

8π2ε
N +8

+O(ε2) . (6.17)

This yields the following DS equation

∂ 2
yμ 〈Ôs(x‖)φ i(y)〉= λ ∗〈Ôs(x‖)(φ j)2φ i(y)〉 . (6.18)

We will start by studying the free theory where RHS of this equation is zero.

For simplicity we will consider the bulk-defect correlator, which using the

DOE (6.4) can be written as

〈Ôs(x‖)φ i(y)〉= μφ i

Ôs
eisθ ∑

m≥0

aΔ̂s,m

rΔφ−Δ̂s−2m
∂ 2m
‖

Ad

|s‖|2m . (6.19)

The LHS of the classical DS eq. (6.18) is then

∂ 2
μ〈Ôs(x‖)φ i(y)〉= (∂ 2

‖ +∂ 2
r + r−1∂r + r−2∂ 2

θ )〈φ i(x)Ôs(y‖)〉

= μφ i

Ôs
eisθ ∑

m≥0

aΔ̂s,m−1 +(Δ̂s −Δφ +2m+ s)(Δ̂s −Δφ +2m− s)aΔ̂s,m

rΔφ−Δ̂s−2(m−1)
×

×∂ 2m
‖

Ad

|s‖|2m . (6.20)

In the free theory this is to be zero on its own. By comparing powers of r and

avoiding trivial solutions, we find

(Δ̂s −Δφ )
2 −2m(2(Δφ +1)−d)− s2

(−4)mm!(Δ̂s − d−2
2 )m

= 0 , Δφ =
d −2

2
. (6.21)

This has several different solutions. The Pochhammer symbol in the denomi-

nator is zero if

Δ̂s = Δφ − k−m , k ∈ Z≥1 , (6.22)
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which is only valid for non-unitary theories on the defect (as it violates the

unitary bound (1.53) in p = d −2 dimensions). Another solution is when the

numerator of (6.21) is zero

Δ̂s = Δφ ± s . (6.23)

We will now move on to the interacting theory, and study the RHS of the DS

eq. (6.18)

λ ∗〈Ôs(x‖)(φ j)2φ i(y)〉= (N +2)λ ∗〈φ 2(y)〉〈Ôs(x‖)φ i(y)〉+O(ε2) .
(6.24)

In order to extract CFT data from this equation, we need the one-point function

of φ 2 (at O(ε0)), which is found from the coincident-limit of 〈φ(x)φ(y)〉.

6.2.1 Dyson-Schwinger equation

The φ −φ correlator can be found from the DS eq. (1.12) in radial coordinates

(∂ 2
‖ +∂ 2

r1
+ r−1

1 ∂r1
+ r−2

1 ∂ 2
θ1
)Di j(s‖,r1,r2,ϕ) = r−1

1 δ i jδ (d−2)(s‖)δ (r1 − r2)δ (ϕ) ,

where Di j(s‖,r1,r2,ϕ)≡ 〈φ i(x‖,r1,θ1)φ j(y‖,r2,θ2)〉 and ϕ ≡ θ2−θ1. Details

on how this differential equation is solved are in App. B of [140]

Di j(s‖,r1,r2,ϕ) = Adδ i j ∑
s

ΓΔ̂s

ΓΔφ ΓΔ̂s−Δφ+1

eisϕ

(r1 r2)
Δφ

(4ξ )−Δ̂s×

× 2F1

(
Δ̂s, Δ̂s − p−1

2
,2 Δ̂s − p+1,−ξ−1

)
.

(6.25)

Here Δ̂s is given by

Δ̂s = Δφ + |s| , (6.26)

which is a subclass of the free theory solution (6.23), and the cross-ratio is

ξ =
s2
‖+(r1 − r2)

2

4r1r2
. (6.27)

Before we find 〈φ 2〉, let us extract the DOE coefficients. We do this by com-

paring (6.25) to the expression found from the DOE (6.4)

Di j(s‖,r,r′,δθ) = ∑
s
(μφ i

Ôs
)†μφ j

Ôs

eisϕ

(r1r2)
Δφ

Ad

|s‖|2 Δ̂s
.

If we know expand (6.25) in r1,r2 we find

(μφ i

Ôs
)†μφ j

Ôs
= δ i j ΓΔ̂s

ΓΔφ ΓΔ̂s−Δφ+1

. (6.28)
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These are on the same form as in paper I.

Now we will proceed with finding 〈φ 2〉. In d = 4 the summand simplify

using the following 2F1-identity

2F1

(
|s|+ 1

2
, |s|+1,2 |s|+1,−ξ−1

)
= 4|s|

√
ξ

ξ +1

ξ |s|

(
√

ξ +
√

ξ +1)2|s| .

The coincident-limit, r2 → r1 ≡ r, ϕ → 0, of (6.25) is then

Di j(s‖,r,r,0) =
Adδ i j

|s‖|
√

s2
‖+4r2

∑
s

⎛
⎝ 2r

|s‖|+
√

s2
‖+4r2

⎞
⎠

|s|

. (6.29)

After the change in variables s = t
n (s.t. t ∈ Z+υ with υ ≡ ϑ

2π ), this is re-

summed in the same way as in App. B.2 of paper I. We find

Di j(s‖,r,r,0) =
2Adδ i j

|s‖|
√

s2
‖+4r2

(
2r

|s‖|+
√

s2
‖+4r2

) 2υ
n

1−
(

2r
|s‖|+

√
s2
‖+4r2

) 2
n

= Adδ i j

(
n
s2
‖
− 2υ −1

2r |s‖|
+

6υ(υ −1)−n2 +1

12nr2
+O(s‖)

)
.

We can identify one-point functions of a bulk-local operator O (times

|s‖|Δ−2Δφ λ φφ
O μO

�) by comparing above expansion with the bulk OPE (1.36).

The first term corresponds to the identity exchange, the second to the bulk

scalar φ itself (since the bulk O(N)-symmetry is broken by the defect)

〈φ i(x‖,r,θ)〉=
Ad μφ

�δ iN

r2
+O(ε) , μφ

� =
1

2
−υ , (6.30)

and the last one to φ 2 which we are interested in

〈φ 2(x‖,r,θ)〉=
Ad μφ2

�

r2
+O(ε) , μφ2

� =
6υ(υ −1)−n2 +1

12n
. (6.31)

As a sanity check we see that this reduces to the result in paper I when there

is only one replica: n = 1.
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6.2.2 Anomalous dimensions

We are now ready to find the anomalous dimensions of the defect-local oper-

ators, Ôs, that appear in the DOE (6.4) using the DS eq. (6.18). The RHS of

the DS eq. (6.24) is given by

〈Ôs(x‖)λ (φ j)2φ i(y)〉= μφ i

Ôs
eisθ ∑

m≥0

(N +2)Ad μφ2

�aΔ̂s,mλ

rΔφ−Δ̂s−2(m−1)
∂ 2m
‖

Ad

|s‖|2m .

Powers in r can now be compared to the LHS of (6.18), i.e. (6.20), which

gives us

aΔ̂s,m−1 +(Δ̂s −Δφ +2m+ s)(Δ̂s −Δφ +2m− s)aΔ̂s,m = (N +2)Ad μφ2

�aΔ̂s,mλ .

Let us now expand both sides in ε (where we use as input that the bulk anoma-

lous dimension, γφ , start first at O(ε2) [139])

Δφ =
d −2

2
+O(ε2) , Δ̂s =

d −2

2
+ |s|+ ε γ̂s +O(ε2) , (6.32)

which yields the anomalous dimension of the defect-local fields

γ̂s =
N +2

N +8

μφ2

�

|s| =
N +2

N +8

6υ(υ −1)−n2 +1

12n |s| . (6.33)

This is a new result, which reduces down to the result in paper I when n = 1.
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7. Fusion of two defects

In this Chapter we study fusion of two scalar Wilson defects (5). In the free

theory we generalize the results of paper VI to work in six dimensions. We

will then move on to study an interacting theory with cubic interactions in

d = 6− ε .

By studying the one-point function of bulk fields in the presence of the two

defects we find the RG flow for the defect couplings. This is a slight gener-

alization of the corresponding results in [94], and we use the more traditional

way of calculating Feynman diagrams [13] assuming the bulk interactions are

small w.r.t. those on the defects. In particular, we find that the couplings

on the two defects are not affected by each other, which is what we expect

since their corresponding β -functions measure divergences in their respective

defect-limit of bulk-local fields as well as in the coincident-limit of defect-

local fields on the corresponding defect.

Specifying to the real-valued f.p.’s of the defects, we compare the bare one-

point function in the presence of the two defects with that near the fused defect

(at first order in the bulk couplings). We find that they are exactly the same,

and there are no modifications needed to the fused defect. The underlying

reason for this is that the path integral for the two defects is the same as that

for the fused defect. We check that this is indeed the case for line defects in

d = 4− ε with a quartic bulk-interaction as well.

The difference between the model with two defects and that with the fused

defect lies in renormalization of the theory. Diagrams with bulk vertices con-

necting the two defects have logarithmic divergences in the fusion-limit (as

the distance between the defects goes to zero). Such divergences are ab-

sorbed in the bare coupling constant on the fused defect, giving us different

β -functions and renormalized correlators. So in addition to UV divergences

in the coincident-limit of defect-local fields and in the defect-limit of bulk-

local fields, the β -functions on the fused defect also take into account UV

divergences in the fusion-limit of the two defects.

7.1 Model

Let us first introduce the model we consider. In the bulk we have

S =
∫
Rd

ddx
(
(∂μφ i)2

2
+

(∂μσ)2

2
+

g1

2
σ(φ i)2 +

g2

3!
σ3

)
, (7.1)
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where d = 6− ε and i ∈ {1, ...,N}. The scalars φ i are invariant under O(N).
We consider two parallel surface defects, D±, of dimension p = 2, spanned

along x̂a
‖, a ∈ {1,2}. They are separated by a distance 2R, R ≡ |Ri|, in the

orthogonal directions x̂i
⊥, i ∈ {1, ...,d − p}

D± = exp

(
−
∫
Rp

dpx
[
hφ
±φ̂ i±(x±)+hσ

±σ̂(x±)
])

. (7.2)

Here x± ≡ xax̂a
‖±Rix̂i

⊥ and hφ
±, hσ± are couplings (or magnetic fields) localized

on the respective defects. Due to their φ i±-interaction, the O(N)-symmetry

of the model is broken down to O(N − 2) by the defects (in the case when

i+ = i− the symmetry is broken down to O(N − 1)). This is an explicit sym-

metry breaking caused by the defect interactions, and thus differs from e.g.

the extraordinary p.t. near a boundary (which is a SSB).

The effective action is given by

Seff = S+∑
±

logD± . (7.3)

Since the β -functions for the bulk couplings arise from divergences in the

coincident-limit of the bulk fields, they are not affected by the defect cou-

plings. This means that we can borrow these results from the bulk theory (7.1)

without the defects [141, 142]

β1 =−ε
2

g1 +
(N −8)g3

1 −12g2
1g2 +g1 g2

2

12(4π)3
+O(g4) ,

β2 =−ε
2

g2 − 4N g3
1 −N g2

1g2 +3g3
2

4(4π)3
+O(g4) .

(7.4)

In the case when N = 0 and the φ i-fields are not present, there is a negative

sign in front of the g3
2-term in β2. Due to this we find no real-valued RG f.p.

By including the O(N)-scalars we can expand in large N 
 1

β1 =−ε
2

g1 +
N g3

1

12(4π)3
+O(g4) ,

β2 =−ε
2

g2 − 4N g3
1 −N g2

1g2

4(4π)3
+O(g4) .

(7.5)

Setting these β -functions to zero yields a Gaussian f.p. and two non-trivial,

real-valued f.p.’s1

g∗2 = 6g∗1 +O

(
ε,

1

N

)
, g∗1 =±

√
6(4π)3ε

N
+O

(
ε,

1

N

)
. (7.6)

Note that these f.p.’s go as
√

ε , which differ from the WF f.p. (6.16) in

d = 4− ε . The RG flow is depicted in Fig. 7.1.

1In particular, this result is valid for N ≥ 1039 [142]
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G

-

+

g1

g
2

Figure 7.1. The RG flow of the cubic O(N)-model (5.1) at large N near six dimensions.

The black dot (G) is the trivial Gaussian f.p. (5.5) and the two red dots (±) are the

attractive f.p.’s at (7.6).

We will proceed with finding the f.p.’s of the defect-interactions in (7.2).

The corresponding β -functions measure divergence in the respective near dis-

tance limits. This means that e.g. the β -functions on D+ does not depend on

the interactions on D−. In turn this tells us that the defect β -functions are the

same on the two defects, and it can be found from the theory with only one

defect. We will calculate Feynman diagrams in the theory with both defects

(considering small bulk-interactions) to show that this is indeed the case. We

allow the defect couplings, hφ
± and hσ±, to be of finite size.

7.2 Free theory

Correlators in the presence of the two defects (7.2) are found by expanding

D± in its interactions and then applying Wick’s theorem. This was done for a

single insertion of a bulk field in paper VI. In general, it gives us

〈D+D−...〉= 〈D+〉〈D−〉〈D+D−〉
(

∑
±
〈D±...〉N +δ 〈D+D−...〉N

)
. (7.7)

Here the dots represent any combination of operators. 〈D±〉 describes self-

interactions on D±, and 〈D+D−〉 is a non-perturbative (w.r.t. R) Casimir effect

between the defects. See Fig. 2 in paper VI for a diagrammatic representation

of these correlators.
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For the purposes of this Chapter we are not interested in 〈D±〉 and 〈D+D−〉.
Thus we normalize the correlators by dividing with these factors

〈D+D−...〉N ≡ 〈D+D−...〉
〈D+〉〈D−〉〈D+D−〉 = ∑

±
〈D±...〉N +δ 〈D+D−...〉N . (7.8)

The remaining three correlators, 〈D±...〉N and δ 〈D+D−...〉N , can be found

using standard Feynman diagrams techniques, where 〈D±...〉 is the one-point

function in the presence of one of the defects, D±, and δ 〈D+D−...〉 is the sum

of Feynman diagrams connecting the two defects. We will see an example of a

δ 〈D+D−...〉-diagram later in when we take into account the bulk-interactions.

The one-point function of φ i and σ in the presence of the two defects D± is

given by the third diagram in Fig. 2 of paper VI

〈D+D−φ i(x)〉N = ∑
±
〈D±φ i(x)〉N ,

〈D±φ i(x)〉N =−hφ
±δ ii±K±(x) ,

(7.9)

〈D+D−σ(x)〉N = ∑
±
〈D±σ(x)〉N ,

〈D±σ(x)〉N =−hσ
±K±(x) ,

(7.10)

where the integral K±, which is the corresponding integral from paper VI, is

given by

K±(x) =
∫
Rp

dpz〈σ(x)σ(z±)〉
∣∣
hφ
±,hσ±=0

. (7.11)

The integrand is the same as the connected part of 〈D+D−σ(x)σ(y)〉N . It is

not affected by the defects interactions, and is thus the massless limit of the

correlator (1.19)

〈σ(x)σ(y)〉∣∣
hφ
±,hσ±=0

= 〈D+D−σ(x)σ(y)〉conn
N =

Ad

|x− y|2Δφ
. (7.12)

The integrals K± are special cases of the master integral (1.18)

K±(x) = AdIp
Δφ
(0,x‖,x⊥∓R) =

Adπ
p
2 ΓΔφ− p

2

ΓΔφ

1

|x⊥∓R|2Δφ−p . (7.13)

In the interacting theory we will find it useful to Fourier transform w.r.t. the

normal distances, s±⊥ ≡ x⊥∓R, to the defects

∏
c=±

∫
Rd−p

dsc
⊥eikc

⊥sc
⊥K±(x) =

Adπ
p
2 ΓΔφ− p

2

ΓΔφ

δ (k±)Id−p
Δφ− p

2
(k∓⊥,0,0)

=
δ (k±)

k2∓
, (exactly).

(7.14)
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The momenta k± is that flowing between the bulk field and the defect D±.

It describes how momenta is being absorbed/emitted by the two defects. The

Dirac δ -function tell us that the momenta is only affected by one of the defects.

Note that the one-point functions (7.9, 7.10) are the forms we expect a one-

point function to have from conformal symmetry (2.18),2 from which we can

read off the BOE coefficients

μφ i
�± =−hφ

±δ ii±
ΓΔφ−1

4πΔφ
, μσ

�± =−hσ
±

ΓΔφ−1

4πΔφ
. (7.15)

Here the �± subscript denotes the identity exchange on the respective defect.

7.3 Interacting theory
We will now proceed to the interacting theory, and find the β -functions of the

defect couplings as well as the corresponding RG f.p.’s.

The one-point functions at first order in the bulk couplings are given by the

two Feynman diagrams in Fig. 7.2. If a diagram contains n defect points of

the same field, we have to divide the symmetry factor with a factor n! to avoid

overcounting (which is seen from the integration of the defect points). We find

〈D±φ i(x)〉(1)N = 2
(
−g1

2

)
(−hφ

±)(−hσ
±)δ

ii±L±
±(x) ,

δ 〈D+D−φ i(x)〉(1)N = 2
(
−g1

2

)
∑

a=±
(−hφ

a )(−hσ
−a)δ

iiaL+
−(x) ,

(7.16)

and

〈D±σ(x)〉(1)N =

(
2

2

(
−g1

2

)
(−hφ

±)(−hφ
±)δ

i±i±+

+
3!

2

(
−g2

3!

)
(−hσ

±)(−hσ
±)
)

L±
±(x) ,

δ 〈D+D−σ(x)〉(1)N =
(

2
(
−g1

2

)
(−hφ

+)(−hφ
−)δ

i+i−+

+3!
(
−g2

3!

)
(−hσ

+)(−hσ
−)
)

L+
−(x) .

(7.17)

Here La
b, with a,b =±, is the following integral

La
b(x)≡

∫
Rd

ddz 〈φ(x)φ(z)〉|h=0 Ka(z)Kb(z)

= Ad

∫
Rd−p

dd−pz⊥Ka(z)Kb(z)I
p
Δφ
(0,x‖,(z⊥− x⊥)2) (7.18)

=
A3

dπ
3 p
2 Γ3

Δφ− p
2

Γ3
Δφ

∫
Rd−p

dd−pz⊥
(|z⊥| |z⊥+ x⊥−aR| |z⊥+ x⊥−bR|)2Δφ−p ,

2The defects are placed at the orthogonal coordinates ±Ri, hence a shift in the denominator.
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Figure 7.2. The two diagrams that contribute to the one-point functions of φ i and σ .

The dot is the external bulk point, the dotted lines are either φ −φ or σ −σ correlators

and the solid lines are the two surface defects.

where in the last step we shifted z⊥ → z⊥+ x⊥.

We find it easier to study the UV divergences of these integrals in momen-

tum space, where we Fourier transform w.r.t. s±⊥

Ma
b(k

±
⊥)≡ ∏

c=±

∫
Rd−p

dd−psc
⊥eikc

⊥sc
⊥La

b(x) . (7.19)

This integral can then be performed using only the master integral (1.18).

M±
±(k

±
⊥) =

A3
dπ

3 p
2 Γ3

Δφ− p
2

Γ3
Δφ

δ (k±⊥)
∫
Rd−p

dd−pz⊥
|z⊥|2Δφ−p Ip

2Δφ−p(k
∓
⊥,−z⊥,0)

=
A3

d2d+p−4Δφ π
d
2+pΓ d+p

2 −2Δφ
Γ3

Δφ− p
2

Γ3
Δφ

Γ2Δφ−p|k∓⊥|
d+p

2 −2Δφ
δ (k±⊥)I

d−p
Δφ− p

2
(−k∓⊥,0,0)

=
δ (k±⊥)

8π2(k∓⊥)2

(
1

ε
− log |k∓⊥|+A

)
, (7.20)

M+
−(k

±
⊥) =

A3
dπ

3 p
2 Γ3

Δφ− p
2

Γ3
Δφ

∫
Rd−p

dd−pz⊥
|z⊥|2Δφ−p ∏

a=±
I p
Δφ− p

2
(ka

⊥,−z⊥,0)

=
A3

d4d−2Δφ πd+ p
2 Γ2

d
2−Δφ

ΓΔφ− p
2

Γ3
Δφ
|k+⊥|d−2Δφ |k−⊥|d−2Δφ

Id−p
Δφ− p

2
(−k+⊥− k−⊥,0,0)

=
1

(k+⊥)2(k−⊥)2(k+⊥+ k−⊥)2
, (exactly).

(7.21)
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Here A is the following constant

A = log

(
2
√

π

e
γE
2 −1

)
, (7.22)

which can be absorbed in the coupling constants (by defining minimal sub-

traction scheme couplings) without affecting the RG flow. Thus we will not

care about it.

Note that the diagram M+
− (in δ 〈D+D−φ i(k±)〉(1)N ) connecting the two de-

fects is convergent. So only the diagrams M±
± (in 〈D±φ i(k±)〉(1)N ), which are

affected by one of the defects, are divergent. This means that in the renor-

malization procedure, the couplings on D+ are not affected by those on D−
(and vice versa). This is the expected result since the bare couplings on D+

should capture UV divergences in the coincident-limit of defect-local fields in

addition to divergences in the limit as bulk-local fields approach D+.

To find the bare defect couplings we add the free theory correlators (7.9,

7.10) to those at first order in the coupling constants (7.16). We then make the

following ansatz for the bare coupling constants

hφ
± = μ

ε
2 h̃φ

±

(
1+aφ

±
h̃σ±g̃1

ε

)
,

hσ
± = μ

ε
2

(
h̃σ
±+bφ

±
(h̃φ

±)2g̃1

ε
+bσ

±
(h̃σ±)2g̃2

ε

)
,

(7.23)

where the constants aφ
±,b

φ
± and bσ± are tuned s.t. that the ε-poles in the corre-

lators vanish. Coupling constants with a tilde are renormalized ones (dimen-

sionless), and μ is the RG scale. By expanding the correlators in the bulk

couplings and in ε we find (by matching powers of k±)

bφ
± = bσ

± =
aφ
±
2

, aφ
± =− 1

8π2
. (7.24)

From which we find the β -functions (see Sec. 1.2)3

β φ
± =−ε

2
h̃φ
±− h̃φ

±h̃σ±g̃1

8π2ε
, β σ

± =−ε
2

h̃σ
±− (h̃φ

±)2g̃1

16π2ε
− (h̃σ±)2g̃2

16π2ε
. (7.25)

Setting these to zero gives us a Gaussian f.p. where both defect couplings are

zero,4 in addition to the following non-trivial ones(
(hφ

±)
∗,(hσ

±)
∗
)
∈
{(

0,−8π2ε
g∗2

)
,

(
±4π2ε

√
2g∗1 −g∗2
(g∗1)

3
2

,−4π2ε
g∗1

)}
.

3Here we used that the bulk β -functions are given by (7.5).
4The defect couplings can be zero while those in the bulk (7.6) are not.
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The first one is the same as that found in [94]. The bulk couplings are tuned

to their respective f.p.’s (7.6), where we find four complex f.p.’s

(
(hφ

±)
∗,(hσ

±)
∗
)
=

(
±i

√
π N ε

6
,±1

2

√
π N ε

6

)
, (7.26)

and two real-valued f.p.’s where only hσ± is non-trivial

(
(hφ

±)
∗,(hσ

±)
∗
)
= (0,h∗) , h∗ =∓1

6

√
π N ε

6
. (7.27)

The sign of h∗ is opposite to the bulk-couplings at their f.p. (7.6). If we restrict

ourselves to real-valued f.p.’s then the φ i±-term on the defects (7.2) vanish

D± = exp

(
−h∗

∫
Rp

dpx σ̂(x±)
)

. (7.28)

Note that since N 
 1, none of the f.p.’s (7.26, 7.27) have to be small.

By studying the derivative of β σ± we can check whether the real-valued f.p.

is attractive or not

∂h̃σ±β σ
±

∣∣∣∣
h̃φ
±=0, h̃σ±=h∗

=
ε
2
, (7.29)

which does not depend on the sign of h∗ at (7.27). Since this is positive, the

f.p.’s at (7.27) are minima of the β -function and they are thus attractive.

The one-point functions of φ i are trivial at this f.p. (giving us O(N)-symmetry),

while those for σ can be resummed in ε

〈D+D−σ(k±⊥)〉N = ∑
a=±

〈Daσ(k±⊥)〉N +δ 〈D+D−σ(k±⊥)〉N +O(g2) ,

〈D±σ(k±⊥)〉N =−h∗
δ (k±⊥)
(k∓⊥)

2− ε
2

,

δ 〈D+D−σ(k±⊥)〉N =− (h∗)2g∗2
(k+⊥)2(k−⊥)2(k+⊥+ k−⊥)2

.

(7.30)

Note that the RG scale has completely vanished at the f.p. We have

(h∗)2g∗2 =± π
5
2√
N

(
2ε
3

) 3
2

, (7.31)

which is at a subleading order in N. This means that δ 〈D+D−σ(k±⊥)〉N is

small compared to 〈D±σ(k±⊥)〉N .
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In Euclidean space we find

〈D±σ(x)〉N = ∏
c=±

∫
Rd−p

dd−pkc
⊥

(2π)d−p e−i kc
⊥sc

⊥〈D±σ(k±⊥)〉N

=− h∗

(2π)d−p Id−p
1− ε

4
(−s±⊥,0,0)+O(ε

3
2 )

=− h∗

(2π)2− ε
2 |s±⊥|2−

ε
2

,

(7.32)

which agrees with the free theory result at O(
√

ε), and has the correct scaling

dimension of σ . From this we can also read off the BOE coefficients

μσ
�± =− h∗

(2π)2− ε
2

+O(g2) . (7.33)

7.4 Fusion

Let us now fuse the two defects (7.28). This can be done by Taylor expanding

the two defects w.r.t. each component of Ri (remember that the two defects

are placed at ±Ri along the orthogonal coordinates)

D± = exp

(
−h

d−p

∏
i=1

∑
ni≥0

(±1)niRni
i

ni!
lim

Ri→0
∂ ni

i

∫
Rp

dpxσ(x+)

)
. (7.34)

Adding the exponents gives us the fused defect

D f = D+D− = exp

(
−2h

d−p

∏
i=1

∑
ni≥0

R2ni
i

(2ni)!

∫
Rp

dpx∂ 2ni
i σ̂(x+)

)
. (7.35)

This is the multivariate version of the result in paper VI. Since this is just a

Taylor expansion, we find the path integral, which generates all of the corre-

lators, to be the same for D+D− as for D f (see Sec. 3 of paper VI for a proof

on this). Note that the entire tower of terms w.r.t. Ri has to be kept to find the

same path integral. Ri should be treated as a distance scale of the theory, and

thus we keep it even after fusion of the two defects.

Let us also mention that two straight parallel lines are conformally equiv-

alent to two concentric circles. This means that above fusion is also true for

two concentric circular Wilson lines. Although not commented upon, this was

seen in paper VI. I.e. its eq.’s (2.21) and (5.4) are the same.

Since the path integral is the same for D+D− and D f , we expect the fusion

(7.35) to hold even in an interacting theory. We will check that this indeed the

case by showing that the expansion of 〈D+D−σ〉N in R is the same as 〈D f σ〉N
upto O(g2) (before renormalization of the couplings).
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To do this we need the full 〈D+D−σ〉(1)N at O(g2) in Euclidean space, see

(7.17). We are left to find

δ 〈D+D−σ(x)〉(1)N =−(h∗)2g∗2L+
− . (7.36)

We know from its Fourier transform (7.21) that L+
− is free of UV divergences.

So we are free to set ε = 0 before integration over z⊥ in (7.18)

L+
− =

∫
R4

d4z⊥
64π6

1

z2
⊥(z⊥+ s+⊥)2(z⊥+ s−⊥)2

. (7.37)

This integral has been done in the amplitude literature [143]. Its a rather

lengthy expression for general R, but by specifying to one dimensional x⊥
and R

Ri = Rδ i1 , R > 0 , (7.38)

it simplifies to5

L+
− =

1

64π4R

(
1

s+
log

( |s−|
2R

)
+

1

s−
log

( |s+|
2R

))
. (7.39)

The full one-point function of σ upto O(g2) is thus

〈D+D−σ(k±⊥)〉N =− h∗

4π2 ∑
a=±

[
1

(sa
⊥)2

+
h∗g∗2
8π2

(
log |sa

⊥|
(sa

⊥)2
+

1

2R|s−a
⊥ | log

∣∣∣∣ sa
⊥

2R

∣∣∣∣
)]

.

In the expansion of L+
− in R we find a logarithmic divergence

δ 〈D+D−σ(x)〉(1)N � −(h∗)2g∗2
32π4

log(R) ∑
n≥0

R2n

x2(n+1)
⊥

. (7.40)

Note that this is not an IR divergence since R is a distance scale. Still it should

not be absorbed in the bare couplings on D±. To avoid this logarithmic diver-

gence we instead expand the integrands (7.18) of La
b in R before we integrate

over z⊥. In this way we capture the logarithmic divergence in R as a pole in ε

〈D+D−σ(x)〉(1)N =−h2g2A3
dπ

3 p
2

Γ3
Δφ− p

2

Γ3
Δφ

∑
n≥0

anR2n×

× Jd−p
Δφ− p

2 ,2Δφ−p+n(−x⊥,0) ,

(7.41)

where Jn
a,b(z,w

2) is the master integral (5.26), and an is the constant

an =
(2Δφ − p)n

n!
+

(4Δφ −2 p)2n

(2n)!

=
2(n+1)(2n2 +4n+3)

3
+O(ε) .

(7.42)

5This integral can also be done using Feynman parametrization. Then the integrals over the

Feynman parameters simplify greatly in the case of (7.38).
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Figure 7.3. The single diagram at O(g2) in 〈D f σ(x)〉.

It gives us the ε-expansion

〈D+D−σ(x)〉(1)N =− h2g2

16π4x2
⊥

(
1

ε
+ log(x2

⊥)+A ′
)
+

+
h2g2

96π4 ∑
n≥1

2n2 +4n+3

n
R2n

x2(n+1)
⊥

,

(7.43)

which is not renormalized. We specified to (7.38) to simplify the Taylor ex-

pansion of |z⊥+ s±⊥|−2Δφ+p in R, and the constant A ′ is given by

A ′ = log(eγE+1π) . (7.44)

We will now compute 〈D f σ(x)〉(1)N and see that it exactly equals (7.41). If we

specify to (7.38), then

D f = exp

(
−2h ∑

n≥0

R2n

(2n)!

∫
Rp

dpx∂ 2n
R σ̂(x+)

)
. (7.45)

〈D f σ(x)〉(1)N is found from the single Feynman diagram in Fig. 7.3

〈D f σ(x)〉(1)N =−4h2g2

2
∑

m,n≥0

R2(m+n)

(2m)!(2n)!

∫
Rd

ddz
2

∏
i=1

∫
Rp

dpwi×

×〈σ(x)σ(z)〉h=0 lim
R′→0

∂ 2m
R′ 〈σ(z)σ(w‖x̂‖+R′x̂1

⊥)〉
∣∣
h=0

×
× lim

R′′→0
∂ 2n

R′′ 〈σ(z)σ(w‖x̂‖+R′′x̂1
⊥)〉
∣∣
h=0

.

Performing the integration over the parallel coordinates, and differentiating

lim
R′→0

∂ 2m
R′ [(z⊥+ x⊥−R′)2]−Δφ+

p
2 = (2m)!bm|z⊥+ x⊥|−2Δφ+p−2m ,

bm ≡ (2Δφ + p)2m

(2m)!
,

(7.46)
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gives us

〈D f σ(x)〉(1)N =−2h2g2A3
dπ

3 p
2

Γ3
Δφ− p

2

Γ3
Δφ

∑
n≥0

cnR2nJd−p
Δφ− p

2 ,2Δφ−p+n(−x⊥,0) ,

cn =
n

∑
m=0

bmbn−m =
an

2
.

(7.47)

This is exactly the same as (7.41), i.e.

〈D f σ(x)〉(1)N = 〈D+D−σ(x)〉(1)N . (7.48)

Thus the fusion (7.45) seems to hold even in the interacting theory. Note that

using D f , instead of D±, simplified the Feynman diagram calculation as we

did not need to calculate L+
− in (7.37) .

Let us now renormalize 〈D f σ(x)〉(1)N by making the following ansatz for the

coupling constant on the fused defect

h = μ
ε
2 h̃ f

(
1+b

h̃ f g̃2

ε

)
, (7.49)

where b is found by cancelling the ε-pole in (7.41). For this we need the free

theory result

〈D f σ(x)〉(0)N =−2Adπ
p
2 h2g2

ΓΔφ− p
2

ΓΔφ
∑
n≥0

(2Δφ − p)2n

(2n)!
R2n

x
2Δφ−p+2n
⊥

=−h2g2

2π2 ∑
n≥1

(2n+3)
R2n

x2(n+1)
⊥

+O(ε) .
(7.50)

By studying the full one-point function near the fused defect

〈D f σ(x)〉N = 〈D f σ(x)〉(0)N + 〈D f σ(x)〉(1)N , (7.51)

with the bare coupling (7.49) gives us

b =− 1

8π2
. (7.52)

This differ from the corresponding coefficient, bσ±, in the bare couplings (7.23)

on the two defects D± since the bare coupling constant on D f also take into ac-

count divergences in the fusion-limit. This gives rise to a different β -function

on D f

β f =−ε
2

h̃ f −
h̃2

f g̃2

8π2ε
, (7.53)
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which has a Guassian f.p. in addition to the following non-trivial f.p.

h∗f =−4π2ε
g̃2

=∓ 1

12

√
π N ε

6
. (7.54)

The sign of this coupling is opposite to the bulk couplings at the non-trivial

f.p. (7.6). For large values of N this coupling is of finite size.

Finally let us performing the sum over n in (7.43) to get the renormalized

correlator at O(ε)

〈D f σ(x)〉(1)N =−(h∗f )
2g∗2

8π4

(
log(x2

⊥)
2x2

⊥
+

1

4x2
⊥

log

(
x2
⊥−R2

x2
⊥

)

+
R2

3x2
⊥(x⊥+R)2

− R2

6(x⊥−R)2(x⊥+R)2

)
.

(7.55)

It would be interesting to check whether the fusion (7.45) holds at higher or-

ders in the bulk couplings. At O(g2
2) there is a diagram in δ 〈D+D−σ(x)〉(2)N

with a bulk vertex which connects the two defects. We wish to expand its in-

tegrand in R before doing any of the integrations over the normal coordinates

of the bulk vertices (since otherwise we end up with a L+
− integral (7.37) giv-

ing us log(R)-terms (7.40)). However, when we Taylor expand the integrand

we end up with a rational function in the normal coordinates that we should

integrate over (at each order in R). This makes the calculation of this diagram

rather difficult as the numerator will contain mixing of e.g. z2
⊥w2

⊥ and (z⊥w⊥)2

terms (both are to be integrated over z⊥, w⊥ ∈ Rd−p).

7.5 Line defects near four dimensios

We will end this Chapter by showing that fusion also seems to hold at a quan-

tum level in d = 4−ε . This calculation is similar to that in Sec. 7.4. Near four

dimensions we can consider a quartic interaction in the bulk (6.15), with two

p = 1 dimensional line defects on the form (7.2) (without the σ -term). The

bulk coupling has the non-trivial RG f.p. (6.16), and on the defects we have

the following attractive f.p.’s [13]

h∗± =±√
N +8± 4N2 +45N +170

4(N +8)
3
2

ε +O(ε2) , (7.56)

which is of finite size.

Fusing the defects (7.2) with a multivariate Taylor expansion yields

D f = exp

(
−h

d−p

∏
i=1

∑
ni≥0

δ ji+ +(−1)nδ ji−

ni!
Rni

i

∫
Rp

dpx∂ ni
i φ̂ j(x+)

)
. (7.57)
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Figure 7.4. The diagrams that contribute to the one-point function of φ i in d = 4− ε .

This reduces to the form (7.35) when i± = N (under the exchange σ → φ N).

At O(λ ) we find 〈D+D−φ i(x)〉(1)N from the diagrams in Fig. 7.4

〈D+D−φ i(x)〉(1)N = (−h)3

(
−λ

8

)
∑

a=±

(
4!

3!
δ i ia L̃a

a+

+
8!

2
(2δ i+i−δ i i+a +δ i i−a)L̃+a

−a

)
.

(7.58)

This is expressed in terms of the following integral

L̃a
b =

∫
Rd

ddz 〈φ(x)φ(z)〉|h=0 Ka(z)2Kb(z) . (7.59)

We will now perform the following steps (in order):

1. Specify to i± ≡ N and one-dimensional R (7.38) (for simplicity).

2. Integrate over the parallel coordinate, z‖ ∈ R, in L̃a
b.

3. Expand in R.

4. Integrate over z⊥ ∈ Rd−1.

5. Expand in ε .

Doing this yields

〈D+D−φ i(x)〉(1)N =
h3λ δ iN

32π3|x⊥|
(

1

ε
+3(log |x⊥|+A )+

+
1

2
∑
n≥0

(n+1)(n+2)

n(2n+1)

R2n

x2n
⊥

)
,

A = log(
√

2π e
γE
2 +1) .

(7.60)
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On the other hand, for the fused defect we have

〈D f φ i(x)〉(1)N = (−h)3

(
−λ

8

)
4!

3!
δ iN

∫
Rd

ddz 〈φ(x)φ(z)〉|h=0×

×
3

∏
i=1

∫
Rp

dpwi ∑
ni≥0

R2ni

(2ni)!
∂ 2ni

i 〈φ(z)φ(wi)〉|h=0 (7.61)

=
4π2 pA4

dh3λ Γ4
Δφ− p

2
δ iN

Γ4
Δφ

∑
n≥0

dnR2nJd−p
Δφ− p

2 ,3Δφ− 3 p
2 +n

(−x⊥,0) ,

with the constants6

dn ≡
n

∑
m=0

bn−mcm =
(n+1)(n+2)

2
+O(ε) . (7.62)

Here bm, cm are given by (7.46, 7.47). If we expand 〈D f φ i(x)〉(1)N at (7.61) in

ε we find a perfect agreement with 〈D+D−φ i(x)〉(1)N at (7.60). This suggests

that the fusion (7.45) is valid in d = 4− ε as well.

〈D f φ i(x)〉(1)N is renormalized by the bare coupling

h = μ
ε
2 h̃ f

(
1+

λ̃ h̃2
f

8π2 ε
+O(λ̃ 2)

)
, (7.63)

which gives us the following β -function

β f =−ε
2

h̃ f +
h̃3

f λ̃
4π2

+O(λ̃ 2) . (7.64)

This β -function has the non-trivial f.p.

h∗f =±
√

N +8

8
+O(ε) . (7.65)

Note that this differs from (7.56) by a factor of
√

8 at O(ε0). Finally we can

resum 〈D f φ i(x)〉(1)N to find

〈D f φ i(x)〉(1)N =
(h∗f )

3λ ∗δ iN

32π3

(
3

|x⊥| log |x⊥|+ 1

|x⊥| log

(
x2
⊥−R2

x2
⊥

)
+

+
3

4R
arctanh

(
R

|x⊥|
)
− 1

2 |x⊥| −
x2
⊥

4(x2
⊥−R2)

)
+O(ε2) ,

where

(h∗f )
3λ ∗ =±

√
N +8

2
π ε +O(ε2) . (7.66)

6In general this constant is given by two 2F1 hypergeometric functions. For n= 0 the corrections

in ε are zero.
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Svensk sammanfattning

En kvantfältteori (QFT) är en fysikalisk teori som används för att teoretiskt

beskriva hur partiklar interagerar med varandra på atomnivå, det vill säga

partikelfysik. En välkänd sådan teori är kvantkromodynamik (QCD) som

beskriver hur kvarkar1 interagerar med varandra. Denna teori testas aktivt i

partikelacceleratorn LHC i CERN, där den ger mycket hög förutsägbarhet. En

QFT används även för att beskriva statistiska system inom kondenserad mate-

ria, och ger på så sätt effektiva modeller för olika material.

I en QFT kombineras tre olika fysikområden: fältteori, speciell relativitet-

steori och kvantmekanik. Fältteorier beskriver ett fälts, eller en vågs, rörelse

istället för enskilda partiklars rörelse. De definieras utifrån rörelseekvationer,

även kallade fältekvationer. Den mest välkända fältteorin är elektromagnetis-

men, som uppfyller de berömda Maxwell-ekvationerna, efter James Clerk

Maxwell 1861 och 1862.

Den speciella relativitetsteorin appliceras vid höga hastigheter relativt ljusets

och utvecklades av Albert Einstein 1905. Den innefattar den berömda formeln

"E = mc2". Denna formel beskriver all massa som energi, vilket innebär att

partiklar kan skapas och annihileras så länge energin är konstant.

Slutligen har vi kvantmekaniken, vilken beskriver fysiken på atomnivå.

Kvantmekaniken ger statistiska modeller. Till skillnad från den klassiska mekaniken

ges alltså inga exakta resultat, utan sannolikheter för olika utfall. Kvant-

mekaniken är även betydelsefull inom kemin.

I denna avhandling studeras defekter i QFT. En defekt är ett objekt av högre

dimension, till exempel en linje eller en yta, istället för en punktpartikel. En

defekt kan betraktas som en QFT av lägre dimension inuti den ursprungliga

teorin. Detta leder till en utmaning att studera defekter.

Defekter har flera fysikaliska tillämpningar. Exempelvis används de för

att beskriva Kondō effekten i metaller, efter Jun Kondō 1964. Kondō effek-

ten beskriver hur elektroner interagerar mot orenheter i metallen.2 En vanligt

förekommande defekt är Wilsonloopen, efter Kenneth Wilson 1974. Den an-

vänds för att beskriva kvarkinneslutning i QCD, vilket innebär att kvarkar inte

kan isoleras utan istället alltid förekommer i grupper om två och två (mesoner)

eller tre och tre (baryoner). Wilsonloopar används även i en topologiska QFT3

för att beskriva det fysikaliska fenomenet fraktionerad kvantmekanisk Hall-

effekt. Detta fenomen förutspår konduktansen för en elektron i två dimen-

1Beståndsdelarna i en proton eller en neutron.
2Områden där metallens mikroskopiska atomstruktur avviker.
3En QFT som är invariant under topologiska transformationer av rumtiden
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sioner och dess upptäckt ledde till nobelpriset i fysik 1998 som gick till Robert

Laughlin, Horst Störmer och Daniel Tsui.

En annan sorts defekt är en rand i en QFT. Randen halverar rumtiden dessa

teorier lever i. Den kan användas för att modellera ämnet grafen. Detta ämne

består av ett endimensionellt tunt lager kol som beskrivs av randen. Andre

Geim och Konstantin Novoselov tilldelades nobelpriset i fysik 2010 för deras

studier på grafen. En rand kan också användas för att beskriva Casimireffek-

ten, efter Hendrik Casimir 1948, vilken beskriver kraften som uppstår mellan

två metallplattor i kvantelektrodynamik.

Denna avhandling är en genomgående och teoretisk studie av defekter i

deras allmänhet i QFT. Avhandlingen fokuserar inte enbart på system med en

defekt, utan även system med flertalet defekter. I avhandlingen presenteras

de sju vetenskapliga artiklarna I - VII jag varit med och skrivit under min

doktorand. Dessutom redogörs generaliseringar av flera av dessa artiklar, vilka

har givit flertalet nya intressanta resultat.

Vi studerar renormering, en metod för att hantera divergenser som förekom-

mer i en QFT, när en defekt är närvarande. Detta gjordes i detalj i artikel III

för en rand och leder till ett renormeringsflöde, vilket beskriver hur en QFT

beter sig vid olika energiskalor.

Det finns speciella fixpunkter i detta flöde där en QFT har en utökad kon-

form symmetri vilket resulterar i en konform fältteori (CFT). Den konforma

symmetrin innebär bland annat att vi kan skala om rumtiden. Genom att stud-

era dessa symmetritransformationer kan vi lära oss mycket om en CFT. Bland

annat leder det till bootstrapekvationen, vilken används för att beskriva egen-

skaper hos de fält som befinner sig i teorin (CFT-data). En metod för hur denna

ekvation kan lösas i närheten av en rand utvecklades i artikel II och V. Meto-

den beskrivs i kapitel 4 där den generaliseras så att den håller för två olika fält,

istället för två identiska fält. Vi visar även hur liknande metoder kan användas

för att utvinna ännu mer CFT-data ur bootstrapekvationen.

Utöver detta så appliceras även Coleman-Weinberg-mekaniken (CW-

mekaniken), efter Sidney Coleman och Erick Weinberg 1973, vilken låter oss

följa flödeslinjer i renormeringsflödet från den konforma fixpunkten. Vilket

ger en effektiv teori för att beskriva första ordningens fasövergång. Ett exem-

pel på en sådan fasövergång är när is blir till flytande vatten vid noll grader

Celsius. I artikel IV studeras CW-mekaniken för en rand, och i denna avhan-

dling diskuteras även hur den skulle se ut för en mer allmän defekt. I kapitel

5 illustreras CW-mekaniken för en mer komplicerad rand än den i artikel IV.

I kapitel 5 appliceras även metoden som används i artikel VII. Denna artikel

behandlar korrelatorer4 för ett system nära två korsande ränder och hur de kan

hittas genom rörelseekvationen. I kapitel 5 appliceras denna metod till ett

system med en rand, vilket blir aningen mer komplicerat på grund av särskilda

tekniska skäl.

4Beskriver hur ett fält fortplantar sig i rummet.
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Artikel I är en studie på hur en särskild sorts defekt, av kodimension två,

bryter symmetrier av den ursprungliga teorin. Detta resultat generaliseras i

kapitel 6 för att gälla en mer allmän defekt, en replika vridningsdefekt. En

sådan defekt genererar kopior, eller replikor, av den ursprungliga teorin och

används för att hitta en fysikalisk sammanflätningsentropi. Denna entropi är

ett mått på hur mycket information det finns i en QFT.

Slutligen diskuteras artikel VI som behandlar fusion av två defekter. Även

denna artikel generaliseras i avhandlingen. I kapitel 7 tas först fram ett mer

allmänt resultat av denna fusion, som sedan visas hålla även när teorin kvan-

tiseras. Detta görs för skalära Wilson-defekter, vilka beskriver ett magnetiskt

fält längs en linje eller en yta.
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Mathématiques de l′IHÉS 68 (1988) 175–186.

[11] E. Witten, “Topological quantum field theory,” Communications in
Mathematical Physics 117 no. 3, (1988) 353–386.

[12] E. Witten, “Topological sigma models,” Communications in Mathematical
Physics 118 no. 3, (1988) 411–449.

[13] G. Cuomo, Z. Komargodski, and M. Mezei, “Localized magnetic field in the

O(N) model,” JHEP 02 (2022) 134, ���������������� �����
��.

[14] S. Giombi, E. Helfenberger, and H. Khanchandani, “Line Defects in Fermionic

CFTs,” ���������������� �����
��.

[15] H. W. Diehl, “The Theory of boundary critical phenomena,” Int. J. Mod. Phys.
B 11 (1997) 3503–3523, ��������	
���
��������.

[16] S. Teber, “Electromagnetic current correlations in reduced quantum

electrodynamics,” Phys. Rev. D 86 (2012) 025005, ���������������

��������.

[17] K. Symanzik, “Schrödinger representation and casimir effect in renormalizable

quantum field theory,” Nuclear Physics B 190 no. 1, (1981) 1–44.

[18] H. W. Diehl and F. M. Schmidt, “Critical Casimir effect in films for generic

non-symmetry-breaking boundary conditions,” New J. Phys. 13 (2011)

123025, ��������������� ���	
���
��
�
������.

124



[19] J. S. Dowker, “Vacuum averages for arbitrary spin around a cosmic string,”

Physical Review D 36 no. 12, (1987) 3742.

[20] P. de Sousa Gerbert and R. Jackiw, “Classical and quantum scattering on a

spinning cone,” Communications in Mathematical Physics 124 no. 2, (1989)

229–260.

[21] T. W. B. Kibble, “Topology of cosmic domains and strings,” Journal of
Physics A: Mathematical and General 9 no. 8, (Aug, 1976) 1387–1398.

[22] M. G. Alford and F. Wilczek, “Aharonov-bohm interaction of cosmic strings

with matter,” Physical Review Letters 62 no. 10, (1989) 1071.

[23] E. J. Copeland, R. C. Myers, and J. Polchinski, “Cosmic F and D strings,”

JHEP 06 (2004) 013, ��������	
���
���
��.

[24] C. G. Callan, Jr. and F. Wilczek, “On geometric entropy,” Phys. Lett. B 333
(1994) 55–61, ��������	
�����
�
��.

[25] S. N. Solodukhin, “The Conical singularity and quantum corrections to entropy

of black hole,” Phys. Rev. D 51 (1995) 609–617, ��������	
�����
�

�.

[26] D. Gaiotto, “Domain Walls for Two-Dimensional Renormalization Group

Flows,” JHEP 12 (2012) 103, ��������
��
��� ���	
���.

[27] F. Gliozzi, P. Liendo, M. Meineri, and A. Rago, “Boundary and Interface CFTs

from the Conformal Bootstrap,” JHEP 05 (2015) 036, ��������
��
����

���	
���.

[28] M. Billó, M. Caselle, D. Gaiotto, F. Gliozzi, M. Meineri, and R. Pellegrini,

“Line defects in the 3d Ising model,” JHEP 07 (2013) 055, ��������
�����


���	
���.

[29] D. Gaiotto, D. Mazac, and M. F. Paulos, “Bootstrapping the 3d Ising twist

defect,” JHEP 03 (2014) 100, ���������
��
�� ���	
���.

[30] P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field

theory,” J. Stat. Mech. 0406 (2004) P06002, ��������	
���
�
����.

[31] H. Casini and M. Huerta, “Entanglement entropy in free quantum field theory,”

J. Phys. A 42 (2009) 504007, ������
�
������ ���	
���.

[32] S. Helgason, “Differential geometry, lie groups and symmetric spaces,” Math.
Surveys Monogr 83 (1978) .

[33] E. Noether, “Invariante variationsprobleme,” Nachrichten von der Gesellschaft
der Wissenschaften zu GÃ¶ttingen, Mathematisch-Physikalische Klasse 1918
(1918) 235–257. ���	��������������� ���
��.

[34] F. J. Dyson, “The s matrix in quantum electrodynamics,” Phys. Rev. 75 (Jun,

1949) 1736–1755.

[35] J. Schwinger, “On the green’s functions of quantized fields. i,” Proceedings of
the National Academy of Sciences 37 no. 7, (1951) 452–455.

[36] R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics,”

Feynman’s Thesis - A New Approach To Quantum Theory (2005) 71–109.

[37] P. Minkowski, “On the anomalous divergence of the dilatation current in gauge

theories,” dynamics 41 (1976) 51.

[38] C. G. Callan, “Broken scale invariance in scalar field theory,” Phys. Rev. D 2
(Oct, 1970) 1541–1547.

[39] K. Symanzik, “Small distance behaviour in field theory and power counting,”

Communications in Mathematical Physics 18 no. 3, (1970) 227–246.

[40] K. Wilson, “On products of quantum field operators at short distances,”

125



Cornell report (1964) .

[41] K. G. Wilson and W. Zimmermann, “Operator product expansions and

composite field operators in the general framework of quantum field theory,”

Communications in mathematical physics 24 no. 2, (1972) 87–106.

[42] D. Pappadopulo, S. Rychkov, J. Espin, and R. Rattazzi, “OPE Convergence in

Conformal Field Theory,” Phys. Rev. D 86 (2012) 105043, ��������	
��

�

��������.

[43] M. Kardar, Statistical physics of fields. Cambridge University Press, 2007.

[44] J. Zinn-Justin, Quantum field theory and critical phenomena, vol. 171. Oxford

university press, 2021.

[45] J. Polchinski, “Scale and conformal invariance in quantum field theory,”

Nuclear Physics B 303 no. 2, (1988) 226–236.

[46] Y. Nakayama, “Scale invariance vs conformal invariance,” Phys. Rept. 569
(2015) 1–93, ��������	��	


 ��������.

[47] P. Francesco, P. Mathieu, and D. Sénéchal, Conformal field theory. Springer

Science & Business Media, 2012.

[48] A. M. Polyakov, “Conformal symmetry of critical fluctuations,” JETP Lett. 12
(1970) 381–383.

[49] G. Mack and A. Salam, “Finite-component field representations of the

conformal group,” Annals of Physics 53 no. 1, (1969) 174–202.

[50] L. Cornalba, M. S. Costa, and J. Penedones, “Deep Inelastic Scattering in

Conformal QCD,” JHEP 03 (2010) 133, ������	����		
� ��������.

[51] S. Weinberg, “Six-dimensional Methods for Four-dimensional Conformal

Field Theories,” Phys. Rev. D 82 (2010) 045031, �������		���

	

��������.

[52] S. Fubini, A. J. Hanson, and R. Jackiw, “New approach to field theory,”

Physical Review D 7 no. 6, (1973) 1732.

[53] S. Minwalla, “Restrictions imposed by superconformal invariance on quantum

field theories,” Adv. Theor. Math. Phys. 2 (1998) 783–851,

�����������������	�
.

[54] F. A. Dolan and H. Osborn, “Conformal four point functions and the operator

product expansion,” Nucl. Phys. B 599 (2001) 459–496,

�������������		��	
	.

[55] F. A. Dolan and H. Osborn, “Conformal partial waves and the operator product

expansion,” Nucl. Phys. B 678 (2004) 491–507, �������������	�	��
	.

[56] A. Belavin, A. Polyakov, and A. Zamolodchikov, “Infinite conformal

symmetry in two-dimensional quantum field theory,” Nuclear Physics B 241
no. 2, (1984) 333–380.

[57] R. Rattazzi, V. S. Rychkov, E. Tonni, and A. Vichi, “Bounding scalar operator

dimensions in 4D CFT,” JHEP 12 (2008) 031, ������	
	��			
 ��������.

[58] F. Gliozzi, “More constraining conformal bootstrap,” Phys. Rev. Lett. 111
(2013) 161602, ��������	������ ��������.

[59] F. Kos, D. Poland, and D. Simmons-Duffin, “Bootstrapping Mixed Correlators

in the 3D Ising Model,” JHEP 11 (2014) 109, �������
	��

�
 ��������.

[60] A. L. Fitzpatrick, J. Kaplan, D. Poland, and D. Simmons-Duffin, “The

Analytic Bootstrap and AdS Superhorizon Locality,” JHEP 12 (2013) 004,

��������������� ��������.

126



[61] Z. Komargodski and A. Zhiboedov, “Convexity and Liberation at Large Spin,”

JHEP 11 (2013) 140, ����������	
��� 
�������.

[62] R. Gopakumar, A. Kaviraj, K. Sen, and A. Sinha, “Conformal Bootstrap in

Mellin Space,” Phys. Rev. Lett. 118 no. 8, (2017) 081601, ����������	�����


�������.

[63] R. Gopakumar, A. Kaviraj, K. Sen, and A. Sinha, “A Mellin space approach to

the conformal bootstrap,” JHEP 05 (2017) 027, ����������	��
��


�������.

[64] P. Dey, A. Kaviraj, and A. Sinha, “Mellin space bootstrap for global

symmetry,” JHEP 07 (2017) 019, ����������	����� 
�������.

[65] S. Caron-Huot, “Analyticity in Spin in Conformal Theories,” JHEP 09 (2017)

078, ����������	����� 
�������.

[66] D. Simmons-Duffin, D. Stanford, and E. Witten, “A spacetime derivation of

the Lorentzian OPE inversion formula,” JHEP 07 (2018) 085,

����������	����� 
�������.

[67] A. Bissi, P. Dey, and T. Hansen, “Dispersion Relation for CFT Four-Point

Functions,” JHEP 04 (2020) 092, ����������	�
��� 
�������.

[68] D. Carmi and S. Caron-Huot, “A Conformal Dispersion Relation: Correlations

from Absorption,” JHEP 09 (2020) 009, ����������	����� 
�������.

[69] D. Mazac and M. F. Paulos, “The analytic functional bootstrap. Part I: 1D

CFTs and 2D S-matrices,” JHEP 02 (2019) 162, ����������	�����


�������.

[70] D. Mazac and M. F. Paulos, “The analytic functional bootstrap. Part II. Natural

bases for the crossing equation,” JHEP 02 (2019) 163, ����������	���
�


�������.

[71] S. Coleman and E. Weinberg, “Radiative corrections as the origin of

spontaneous symmetry breaking,” Phys. Rev. D 7 (Mar, 1973) 1888–1910.

[72] H. Yamagishi, “Coupling-constant flows and dynamical symmetry breaking,”

Physical Review D 23 no. 8, (1981) 1880.

[73] A. Aharony, “Critical behavior of anisotropic cubic systems,” Physical Review
B 8 no. 9, (1973) 4270.

[74] D. J. Wallace, “Critical behaviour of anisotropic cubic systems,” Journal of
Physics C: Solid State Physics 6 no. 8, (Apr, 1973) 1390–1404.

[75] I. J. Ketley and D. J. Wallace, “A modified epsilon expansion for a hamiltonian

with cubic point-group symmetry,” Journal of Physics A: Mathematical,
Nuclear and General 6 no. 11, (Nov, 1973) 1667–1678.

[76] L. T. Adzhemyan, E. V. Ivanova, M. V. Kompaniets, A. Kudlis, and A. I.

Sokolov, “Six-loop ε expansion study of three-dimensional n-vector model

with cubic anisotropy,” Nucl. Phys. B 940 (2019) 332–350,

����������	����
 
��������	����������.

[77] M. Alford and J. March-Russell, “Radiatively induced first-order phase

transitions the necessity of the renormalization group,” Nuclear Physics B 417
no. 3, (1994) 527–552.

[78] P. Arnold and L. G. Yaffe, “ε expansion analysis of very weak first-order

transitions in the cubic anisotropy model. i,” Physical Review D 55 no. 12,

(1997) 7760.

[79] P. W. Anderson, “Plasmons, gauge invariance, and mass,” Phys. Rev. 130 (Apr,

127



1963) 439–442.

[80] F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector

mesons,” Phys. Rev. Lett. 13 (Aug, 1964) 321–323.

[81] P. W. Higgs, “Broken symmetries and the masses of gauge bosons,” Phys. Rev.
Lett. 13 (Oct, 1964) 508–509.

[82] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global conservation laws

and massless particles,” Phys. Rev. Lett. 13 (Nov, 1964) 585–587.

[83] M. A. Virasoro, “Subsidiary conditions and ghosts in dual-resonance models,”

Phys. Rev. D 1 (May, 1970) 2933–2936.

[84] C. Domb, Phase transitions and critical phenomena. Elsevier, 2000.

[85] H. W. Diehl and M. Smock, “Critical behavior at supercritical surface

enhancement: Temperature singularity of surface magnetization and

order-parameter profile to one-loop order,” Phys. Rev. B 47 (Mar, 1993)

5841–5848.

[86] M. A. Shpot, “Boundary conformal field theory at the extraordinary transition:

The layer susceptibility to O(ε),” JHEP 01 (2021) 055, ���������	
���	�


�������.

[87] H. Diehl and S. Dietrich, “Field-theoretical approach to static critical

phenomena in semi-infinite systems,” Zeitschrift für Physik B Condensed
Matter 42 no. 1, (1981) 65–86.

[88] H. Diehi and E. Eisenriegler, “Walks, polymers, and other tricritical systems in

the presence of walls or surfaces,” EPL (Europhysics Letters) 4 no. 6, (1987)

709.

[89] M. Billò, V. Gonçalves, E. Lauria, and M. Meineri, “Defects in conformal field

theory,” JHEP 04 (2016) 091, ����������
�	��� 
�������.

[90] E. Lauria, M. Meineri, and E. Trevisani, “Spinning operators and defects in

conformal field theory,” JHEP 08 (2019) 066, ����������
�	�		


�������.

[91] C. P. Herzog and K.-W. Huang, “Boundary Conformal Field Theory and a

Boundary Central Charge,” JHEP 10 (2017) 189, ����������
��		�


�������.

[92] G. Cuomo, M. Mezei, and A. Raviv-Moshe, “Boundary Conformal Field

Theory at Large Charge,” ������	���
����� 
�������.

[93] Y. Nakayama, “Is boundary conformal in CFT?,” Phys. Rev. D 87 no. 4, (2013)

046005, �������	��
���� 
�������.

[94] D. Rodriguez-Gomez, “A Scaling Limit for Line and Surface Defects,”

������		�	
����� 
�������.

[95] A. Bray and M. Moore, “Critical behaviour of semi-infinite systems,” Journal
of Physics A: Mathematical and General 10 no. 11, (1977) 1927.

[96] J. Padayasi, A. Krishnan, M. A. Metlitski, I. A. Gruzberg, and M. Meineri,

“The extraordinary boundary transition in the 3d O(N) model via conformal

bootstrap,” SciPost Phys. 12 no. 6, (2022) 190, ������	���
�����


��������
����������.

[97] A. Gimenez-Grau, E. Lauria, P. Liendo, and P. van Vliet, “Bootstrapping line

defects with O(2) global symmetry,” ������		��
����� 
�������.

[98] N. Drukker, Z. Kong, and G. Sakkas, “Broken Global Symmetries and Defect

Conformal Manifolds,” Phys. Rev. Lett. 129 no. 20, (2022) 201603,

128



���������	
���
� ��������.

[99] C. P. Herzog and V. Schaub, “The Tilting Space of Boundary Conformal Field

Theories,” �������	��
����� ��������.

[100] P. Liendo, L. Rastelli, and B. C. van Rees, “The Bootstrap Program for

Boundary CFTd ,” JHEP 07 (2013) 113, ����������
��
� ��������.

[101] C. Behan, L. Di Pietro, E. Lauria, and B. C. Van Rees, “Bootstrapping

boundary-localized interactions,” JHEP 12 (2020) 182, ����������
�			�

��������.

[102] C. Behan, L. Di Pietro, E. Lauria, and B. C. van Rees, “Bootstrapping

boundary-localized interactions II. Minimal models at the boundary,” JHEP 03
(2022) 146, ����������
����� ��������.

[103] M. Lemos, P. Liendo, M. Meineri, and S. Sarkar, “Universality at large

transverse spin in defect CFT,” JHEP 09 (2018) 091, ����������
����


��������.

[104] P. Liendo, Y. Linke, and V. Schomerus, “A Lorentzian inversion formula for

defect CFT,” JHEP 08 (2020) 163, ���������	
�
��� ��������.

[105] A. Gimenez-Grau and P. Liendo, “Bootstrapping Monodromy Defects in the

Wess-Zumino Model,” ����������
�
��� ��������.

[106] J. Barrat, A. Gimenez-Grau, and P. Liendo, “A dispersion relation for defect

CFT,” ���������

����
 ��������.

[107] H. Li and M. Kardar, “Fluctuation-induced forces between rough surfaces,”

Physical review letters 67 no. 23, (1991) 3275.

[108] H. Li and M. Kardar, “Fluctuation-induced forces between manifolds

immersed in correlated fluids,” Physical Review A 46 no. 10, (1992) 6490.

[109] D. M. McAvity and H. Osborn, “Conformal field theories near a boundary in

general dimensions,” Nucl. Phys. B 455 (1995) 522–576,

����������������
�
���.

[110] C. P. Herzog and V. Schaub, “Fermions in Boundary Conformal Field Theory :

Crossing Symmetry and ε-Expansion,” ����������
�

�� ��������.

[111] A. Kaviraj and M. F. Paulos, “The Functional Bootstrap for Boundary CFT,”

JHEP 04 (2020) 135, ����������
���	� ��������.
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