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1 Introduction

Recent years have seen significant progress in computing holographic correlators using
bootstrap methods. A great deal of general results have been obtained in various full-fledged
string theory/M-theory models with a varying amount of supersymmetry (see [1] for a recent
review). In the bulk description, these holographic correlators correspond to scattering
amplitudes in AdS. Consistent with this expectation, the modern holographic correlator
program reveals much structural resemblance with the beautiful results in flat space. This
makes one optimistic that one can export the techniques and notions in flat space and
eventually establish a similar amplitude program in AdS.

Up until now, almost all the results in the literature are about correlators of scalar
operators. This is because one usually focuses on correlators of the superprimaries of
multiplets, which are scalars, in order to preserve the maximal amount of superconformal
symmetry. The latter plays an important role in the bootstrap methods of computing
correlators. Additionally, scalar correlators have a unique conformal tensor structure,
which simplifies the kinematical analysis and allows one to use powerful tools such as the
Mellin representation [2, 3]. However, correlators of spinning operators are also of great
importance. To see the necessity of studying spinning correlators, let us only mention
two instances. The first example is the computation of higher-point correlators. Either
as part of the algorithm [4] or as a consistency check [5], one considers the factorization
of the AdS amplitudes at internal propagators [6]. Even though the external particles
are restricted to be scalar superprimaries, spinning superconformal descendants are still
exchanged. Factorization then leads one to consider correlators of spinning operators. The
second example is to consider scattering amplitudes of purely bosonic theories in AdS, such
as Yang-Mills theory (YM) and Einstein-Hilbert gravity. There are no scalar operators in
the dual theories on the boundary and the basic operators are conserved currents. Note that
in flat space, it is the amplitudes of spinning particles which exhibit the most remarkable
properties. Similarly, in AdS we also need to study these spinning amplitudes in order to
have a more direct comparison with the flat-space story.

In this paper, we consider spinning correlators in 4d N = 2 SCFTs. More precisely,
we will study four-point correlators of operators residing in the flavor current multiplet.
In AdS, the flavor current is dual to the gluon field. We also revisit and rederive some of
the results of [7, 8] for N = 4 theories, where the four-point correlator of the stress tensor
multiplet is considered, and express these results in a more explicit form.

Our motivation is threefold. The first is to obtain an array of explicit results for
four-point correlators of superconformal descendants. Thanks to superconformal symmetry,
all component correlators can be packaged into a “super correlator” using the superspace
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formalism. Correlators of superconformal descendants can be related to that of the supercon-
formal primary via differential operators which we will derive. However, these expressions
of correlators are rather implicit. We will evaluate the action of the differential operators
and write the results in Mellin space and in terms of D-functions so that they can be readily
used, for example, in the construction of higher-point correlators via factorization.

The second motivation is to obtain explicit expressions for four-point amplitudes of
gluons and gravitons for bosonic YM and gravity in AdS5. These amplitudes are extremely
difficult to compute via diagrammatic expansions. This is especially true for the latter case
as already in flat space one faces an excessive amount of diagrams. However, we can obtain
them via supersymmetry even though these theories themselves are not supersymmetric.
Here we are using the important property that the tree-level four-gluon and four-graviton
amplitudes are the same in the supersymmetric and non-supersymmetric theories. This can
be seen from the fact that other fields are forbidden in the exchanges due to the R-symmetry
selection rule and the contributing diagrams are the same in both cases.

The third motivation is to explore possible generalizations of the double copy relation [9]
in AdS. The double copy relation in flat space is a remarkable structure which allows one to
obtain graviton amplitudes from gluon ones. However, the curved space generalization of
double copy is so far still elusive. In AdS, one such relation was found in Mellin space in [10]
for four-point correlators of the bottom components of the multiplets. Since the component
correlators are unified by the super correlator, the double copy property should also exist
in some form in other correlators. Specially, thanks to the aforementioned identification
with non-supersymmetric amplitudes at tree level, there should be a double copy relation
which relates the bosonic YM theory and the bosonic gravity theory in AdS. This would
constitute a direct analogy of the story in flat space.

In this paper, we will achieve the first two goals via a thorough analysis of the superspace
and the associated differential operators. While we did not manage to identify a precise
double copy relation for bosonic YM and gravity four-point amplitudes, we found ample
evidence for the existence of such a structure. For example, the differential operator
relating the four-gluon amplitude to the superprimary amplitude is precisely half of that
of the gravity one. Moreover, as a byproduct of our analysis, we will also introduce a
useful kinematic configuration where all polarizations are orthogonal to the positions in
the embedding space. This configuration has the advantage that spinning correlators
effectively become scalar correlators. We will write down explicitly the AdS four-gluon
and four-graviton amplitudes in this configuration which take a quite simple form. The
AdS double copy relation, which we leave to future work, should first manifest itself in this
simplified limit. Although holographic correlators are our main focus, the usefulness of this
configuration goes beyond this context and should be useful for the numerical bootstrap
as well.

1.1 Summary of results

N = 2 and N = 4 Superspace. In order to obtain the four-point function of flavor
currents we need to express the correlator of the entire multiplet in superspace. This can be
done with the formalism of harmonic superspace [11, 12]. This is possible because in [13],
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it was shown that the entire superspace expression depends on only one scalar function of
the cross ratios, which can be fixed by looking at the bottom component of the multiplet.
Such correlator was recently computed at tree level [14] and at one loop [15]. In this paper,
we find a way to relate the superspace formalism with the modern index-free formalism
and with that, all superspace computations become very explicit. Using the results of
the superspace literature, we obtain a differential representation of the supercharges Q
and Q and the superconformal charges S and S, which we report here in full detail with
our conventions. Then we follow the same logic that was adopted in [8] to promote to
superspace the correlator of four [0, 2, 0] half-BPS operators in N = 4 super Yang-Mills
(SYM). In this case, the correlator of four stress tensor superfields can be written as some
kinematical prefactor times a superspace invariant function, which must be annihilated by
all supercharges. By imposing that, the correlator takes the form

〈T
(
x1, θ1, θ̄1, t1

)
· · ·T

(
x4, θ4, θ̄4, t4

)
〉 = (ĝ12 ĝ34)2 Q8S8 θ4

1θ
4
2θ

4
3θ

4
4 Â (xi, ti) , (1.1)

where ĝij is the superpropagator in (6.8) and ti denotes the SU(4)R polarizations. The
function Â is proportional to the four-point function of the bottom component O ∼ trϕ{IϕJ}.
The entire superspace expression is thus fixed, provided we can actually compute those
superspace differentials explicitly. We discovered that the situation for eight supercharges is
almost identical: it is sufficient to merely halve the number of supercharges and Grassmann
variables in every formula. Indeed, the correlator of four supergluons is

〈O2
(
x1, θ1, θ̄1, ξ1

)
· · ·O2

(
x4, θ4, θ̄4, ξ4

)
〉 = (g12g34)2Q4S4 θ2

1θ
2
2θ

2
3θ

2
4 A(xi, yi) , (1.2)

with gij defined in (3.2) and yi is now the SU(2)R polarizations. The function A, as before,
is proportional to the four-point function of the lowest component O2. In the body of the
paper we work out this study in full detail and also provide some explicit results in position
and Mellin space for both the N = 4 and N = 2 case.

Component correlators. Once we have the expression in superspace we can extract the
various components by doing a Taylor expansion in the Grassmann variables θ and θ̄. More
precisely, one can write an appropriate superconformal differential operator, which selects
a specific operator inside the multiplet. The one for the stress tensor Tµν was computed
in [7] and the one for the flavor current Jµ is obtained here and is given in (3.5). Moreover,
in [7] it was shown that the various components of 〈TTTT〉 can actually be expressed in a
rather compact form in terms of a simple differential operator Di

Di = η̄α̇i
∂

∂xαα̇i

∂

∂ηiα
, (1.3)

acting on a seed function.1 We find a similar structure for the components of 〈O2O2O2O2〉.
For example, the correlators of four flavor currents J in N = 2 and of four stress tensors T
in N = 4 have a remarkably simple structure and are, again, related by simply halving all

1The quantities η and η̄ introduced above are polarizations used to contract the spin indices.
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the powers

〈J JJJ 〉 = D1D2D3D4 Λ(xi, ηi)Hgl , (1.4a)
〈T T T T 〉 = D2

1D2
2D2

3D2
4 Λ(xi, ηi)2Hgr . (1.4b)

Here Λ(xi, ηi) is a kinematic function defined in (5.20) and Hgl and Hgr are the four-
point functions of the respective bottom components. When we input the tree-level
correlators, (1.4) give AdS spinning gluon and graviton amplitudes which coincide with the
tree-level amplitudes in bosonic theories.

Correlators of top components. Among the various component correlators, the ones of
the top components of the multiplets are particularly interesting. These are the Lagrangians
L, L in N = 4 and the superpotentials W, W in N = 2. We compute their four-point
function, which take a very simple form

〈WWWW〉 = 1(
x2

12x
2
34
)3 ∆(4)

(
x2

12x
2
34

)2
x2

13x
2
24Hgl , (1.5a)

〈LL̄LL̄〉 = 1(
x2

12x
2
34
)4 ∆(8)

(
x2

12x
2
34x

2
13x

2
24

)2
Hgr , (1.5b)

where ∆(4) and ∆(8) are differential operators in the cross ratios, defined in (5.27) and (6.2),
respectively. These differential operators are very interesting in their own right. The one
of order eight first appeared in [16]. Later they were observed to be relevant for a, still
conjectural, hidden conformal symmetry in N = 4 SYM [17] and also in these N = 2
theories [18].2 Another interesting fact about them is that they are Casimir operators for
the u-channel OPE (when the four-point function is expressed as above). More details
about this are given in section 5.3.

Orthogonal polarization. Spinning correlators with generic polarizations are quite
complicated. In this paper, we propose to study and compute explicitly these correlators
in a special kinematic configuration in which all the polarizations are orthogonal to the
positions in embedding space. This has the advantage of effectively turning the spinning
correlator into a scalar one. We enforce this condition by choosing a particular frame (7.7b)
where, for each point, we fix a plane for xi. This, consequently, leaves two possibilities for
the polarizations in the orthogonal complement. We denote these different configurations
as +_, as they can be interpreted as the charge under a global U(1) group arising from
the breaking of the conformal group SO(2,4) → U(1) × SO(2,2). This fact also makes
it clear why only the correlators -++-, ++--, -+-+ are nonzero, while the all + and all -
configurations vanish.

Hints of a double copy. Finally, we turn our attention to the double copy relation. The
results summarized above are already very indicative of the existence of such a structure,
which even extends to the spinning components. These observations are so far only

2The hidden conformal symmetry for N = 2 theories was found in [14].
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kinematical. However, we are able to write down the dynamical part, i.e., the reduced
correlator of four supergluons in position space, as follows

Hgl ∝ csNsWs + ctNtWt + cuNsWu , (1.6)

in terms of some seed functions Ws,t,u and some differential operators Ns,t,u, all defined
in detail in section 9.1. Here Ws,t,u play the role of scalar propagator and Ns,t,u are the
“numerators” in the flat-space amplitude parlance. Then, by performing a simple replacement

cs,t,u −→ Ns,t,u , (1.7)

we obtain the supergraviton four-point function, up to a rational function R

N2
sWs + N2

tWt + N2
uWu = 9π2N2

8 Hgr + R . (1.8)

The existence of such an “almost” double copy for the bottom components naturally suggests
an extension to spinning correlators when written in superspace as in (1.4).

1.2 Structure of the paper

The rest of the paper is organized as follows. In section 2 we introduce the setup and review
the basics of superspace. In section 3–5 we apply the superspace techniques to two-, three-
and four-point functions and obtain correlators involving different N = 2 superconformal
descendants. We then compare the results with the case of stress tensor multiplet four-point
functions with N = 4 superconformal symmetry in section 6. In section 7 we present
the spinning correlators in an alternative form by explicitly evaluating the action of the
differential operators and introduce the orthogonal polarization configuration. So far, our
discussions are purely kinematical and apply to any N = 2 SCFTs at any point in the
moduli space. Starting from section 8 we will specialize to the holographic limit and
consider correlators from SYM and supergravity in AdS. We then present in section 9
various structures which are indicative of a double copy structure. The paper also contains
several appendices to which we relegate the technical details. Some explicit results are
made available in the supplementary material attached to this paper.

2 Superspaces for four dimensional N = 2

2.1 Setup

In this paper we will study half-BPS operators in four dimensional N = 2 superconformal
field theory (SCFT). There exist various holographic origins for these theories. An N = 2
theory can arise for instance from a stack of N D3-branes near 7-brane singularities in
F-theory [19, 20]. The near horizon metric is AdS5 times a compact five-dimensional space.
Only specific periodicities of this compact space, corresponding to different singularities,
give rise to a SCFT on the D3-branes. The 7-brane, which fills AdS, wraps an S3 of the
compact space, which locally is an S5. Hence its presence breaks the SO(6) isometry group
to SU(2)R×U(1)r — corresponding to the N = 2 R-symmetry group — times an additional
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O2 = [0;0](2;0)
2

λα = [1;0](1;−1)
5/2 λ̄α̇ = [0;1](1;1)

5/2

Q Q

W = [0;0](0;−2)
3 W = [0;0](0;2)

3

Q Q

Jµ = [1;1](0;0)
3

QQ

Figure 1. The supergluon multiplet. We are denoting the operators with [`, ¯̀](R;r)
∆ , where ` and ¯̀

stand for the Lorentz representation, R corresponds to the SU(2)R symmetry, r to the U(1)r and ∆
represents the conformal dimension.

global SU(2)L. Alternatively one can also start from the usual N = 4 SYM setup and add
probe flavor branes [21]. In particular, adding NF D7-branes, NF � N , filling AdS5 and
wrapping an S3 inside the S5, breaks half of the original supersymmetries thus giving a
N = 2 SCFT.

In both cases, on the 7-brane there is an eight dimensional N = 1 vector transforming
in the adjoint representation of a gauge group GF , which, from the CFT side, constitutes a
global flavor symmetry. In the second example we have introduced, this group has to be
identified with the SU(NF ). When reduced on the S3, this vector multiplet gives rise to an
infinite tower of Kaluza-Klein modes, which correspond to the N = 2 half-BPS operators
we are interested in.3 They are protected scalar superprimaries of the form

OIR(x, ξ, ξ′) = ξa1 · · · ξaR ξ
′
a′1
· · · ξ′a′R−2

O
I;a1···aR;a′1···a′R−2
R (x) , (2.1)

where I = 1, . . . , dim(GF ) is the color index in the adjoint representation of the flavor group
GF , ai is the SU(2)R R-symmetry index while a′i is an SU(2)L global symmetry index. We
have contracted these indices with auxiliary (commuting) polarization spinors ξ and ξ′ in
order to impose the appropriate symmetrization properties. Their half-BPS nature fixes
the conformal dimension ∆ = R.

In this work, we will focus on the superprimary with the lowest possible R-charge,
namely R = 2. This is dual to the supergluon in AdS. The corresponding supermultiplet is
in fact rather special since it contains the conserved flavor current for the group GF . As
depicted in the diagram of figure 1, this supermultiplet starts with the scalar Oab2 and then
it continues with two gluinos λaα and λ̄aα̇, the flavor current Jµ and two complex scalars
of opposite U(1) R-charge W and W. Let us conclude this section by mentioning that in
both holographic setups we have described, at large N the self-couplings of the gluons are
parametrically larger than their couplings to the gravitons [14, 15], with the latter being
suppressed by powers of 1/N . Consequently, at leading order in the large N expansion,
i.e., the tree-level approximation we will consider, the contribution from gravitons to the
connected correlator is absent.

3B1B̄1[0; 0](R;0)
R in the notation of [22] and B̂R/2 in the notation of [23].
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2.2 N = 2 Superspaces

An efficient approach to study different components of the same supermultiplet in a
supersymmetry preserving way is to group them, possibly in a way that makes shortening
conditions manifest. The best suited language for these purposes is the one of superspace.
The underlying idea is to enlarge the Minkowski space by adding Grassmann coordinates,
and possibly a compact internal manifold, in such a way that the superconformal group is
realized as the superspace isometries. In this work we will consider the N = 2 harmonic
superspace [11, 12] to derive the supercharges and then move to the analytic superspace to
make computations easier [13]. See also [24] for a review.

Let us take a generic multiplet in an N = 2 superconformal field theory whose primary
is a scalar (R+1)-plet of SU(2)R.4 We write it as a rank-R symmetric tensor which depends
on a four-vector xµ and two doublets of Grassmann spinors θαa and θ̄aα̇, transforming in
the fundamental and anti-fundamental of SU(2)R

Oa1···aR(x, θ, θ̄) = Oa1···aR(x) + θαa (QaαO)(x) + · · · (2.2)

A priori there are at most 28 terms in the expansion, but the shortening conditions can
reduce them.

We would like to consider the multiplets in (2.1), thus we need to impose the half-
BPS shortening conditions which can be realized in superspace as the following differen-
tial equation

D(a
α Oa1···aR)

(
x, θ, θ̄

)
= Dα̇bε

b(aOa1···aR)
(
x, θ, θ̄

)
= 0 , (2.3)

where the parentheses denote symmetrization and the differential operators are defined
in (B.1). As we did for the scalar component, in order to enforce the symmetrization of all
the indices, we contract them with the same auxiliary variable ξa

O(x, θ, θ̄, ξ) = ξa1 · · · ξaRO
a1···aR(x, θ, θ̄) . (2.4)

With this definition, the differential equations above become just differentiation with respect
to the operators ξaDa

α and ξbDbα̇ — where indices are raised and lowered with the εab
tensor.5 The idea now is to rotate the θαa and θ̄aα̇ to a different basis θ±α and θ̄±α̇ where the
latter two operators become simple derivatives. This is achieved by

θ+
α = ξaθ

a
α , θ−α = ξ̄aθaα , (2.5a)

θ̄+
α̇ = ξaθ̄aα̇ , θ̄−α̇ = ξ̄aθ̄

a
α̇ , (2.5b)

zµ = xµ + iθaσµθ̄b
(
ξaξ̄b + ξbξ̄a

)
, (2.5c)

with ξ̄ satisfying the property ξaξ̄
a = 1. After performing the change of variables the

covariant derivatives can be written as in (B.2). From there one easily sees that the
differential operators above become

ξaD
a
α = ∂

∂θ−α
, ξbDbα̇ = ∂

∂θ̄−α̇
. (2.6)

4From this moment on, in order to avoid cluttering, when referring to the half-BPS operators in (2.1),
we will often suppress the flavor and SU(2)L indices, reinserting them only when necessary.

5In our conventions ε12 = ε21 = 1.
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We conclude that the operator O depends only on the variables θ+, θ̄+ and z

half-BPS : O
(
z, θ+, θ̄+, ξ

)
. (2.7)

This is precisely the set of coordinates that defines the harmonic superspace [11, 12]. Indeed,
in harmonic superspace one has two Grassmann spinors θ+

α and θ̄+
α̇ , a four-vector zµ and

an SU(2) matrix

U =
(
u+

1 u−1
u+

2 u−2

)
=

 cos
√
χχ̄ iχ sin

√
χχ̄√

χχ̄

iχ̄ sin
√
χχ̄√

χχ̄
cos
√
χχ̄

 = 1√
1 + yȳ

(
1 −ȳ
y 1

)
. (2.8)

The parameters χ, χ̄ and y, ȳ are equivalent parametrizations of the matrix U . Unimodularity
of U implies u+

a u
−a = 1.

We have showed that harmonic superspace is the correct tool to accurately describe
the half-BPS operators of interest, although it is still not clear how to make contact with
the polarizations ξ. We will address this point shortly. Let us denote with T±±, T 0 the
generators of SU(2)R, then from [12] we know that O(z, θ+, θ̄+, ξ) can be written as a
function on a supercoset as follows

O
(
z, θ+, θ̄+, ξ

)
= Ω

(
z, θ+, θ̄+, ξ

)
· O(0) ,

Ω(z, θ+, θ̄+, ξ) ≡ exp
[
i
(
χT++ + χ̄T−−

)]
exp

[
i
(
−zµPµ − θ+αQ−α − θ̄+α̇Q−α̇

)]
,

(2.9)

where O(0) is a superconformal primary operator which is annihilated by this set of
generators

Mµν , Kν , S
α
a , S

α̇a, Q+
α , Q

+
α , T

++, (T−−)R+1 , (2.10)

and has a definite eigenvalue under D, r and T 0. The definitions of the generators together
with their commutation relations can be found in appendix A. The ± notation is related to
the usual one as follows

Q1
α = Q+

α , Q2
α = Q−α , Qα̇1 = Q

−
α̇ , Qα̇2 = −Q+

α̇ ,

Sα1 = Sα− , Sα2 = −Sα+ , S
α̇1 = S

α̇+
, S

α̇2 = S
α̇−

.
(2.11)

If we set z = θ+ = θ̄− = 0 we only have the R-symmetry group element acting on a
highest-weight state of weight R/2. This highest-weight state can be represented as a tensor
with R indices all in the “1” position O11···1(0). It is possible to show that

exp
[
i
(
χT++ + χ̄T−−

)]
· O11···1(0) = ξa1 · · · ξaRO

a1···aR(0) , (2.12)

with
ξa = u+

a , ξ̄a = u−a , (2.13)

where u±a are functions of χ and χ̄ as shown in the first parametrization of (2.8). This
completes our identification between operators and elements in the supercoset.

An equivalent formulation of superspace goes under the name of analytic superspace [13].
It is best seen by using the y, ȳ parametrization of U (2.8). It suffices to complexify the
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matrix U regarding y and ȳ as independent, and then setting ȳ = 0. This in turn leads to a
very simple form for the polarizations

ξa =
(

1
y

)
, ξ̄a =

(
0
1

)
. (2.14)

In the context of analytic superspace, the variables θ+
α and θ̄+

α̇ are often renamed as λα and
πα̇. Note that, if we forget about superspace, ξ is defined up to a rescaling ξ → λξ, where
λ can always be reabsorbed in the normalization of O2. Furthermore, ξ̄ is determined by
ξaξ̄

a = 1, which fixes it only up to a shift ξ̄a → ξ̄a + αξa for any α. With this point of view
in mind, (2.14) can be seen as merely a gauge fixing of the definitions of ξ and ξ̄.

Finally, let us remark that the topological twist, achieved with the chiral algebra
construction of [25], takes a rather nice form in these variables

y = z̄ . (2.15)

2.3 Computing supercharges

In order to compute the supercharges we can use the coset element Ω(z, θ+, θ̄+, ξ) defined
in (2.9). We act on a state |0〉 which is annihilated by all generators that we have taken at
the denominator of the coset, namely{

Mµν ,Kν , D, S
α
a , S

α̇a, r,Q+
α , Q

+
α , T

0
}
|0〉 = 0 . (2.16)

Let us now consider a generator XA ∈ SU(2, 2|2) associated with a parameter ωA. This
generates a transformation of the form

exp
(
iωAX

A
)
·
(
zµ, θ+

α , θ̄
+
α̇

)
=
(
zµ + δzµ, θ+

α + δθ+
α , θ̄

+
α̇ + δθ̄+

α̇

)
. (2.17)

We need to find those δz, δθ+ and δθ̄+. This can be done by equating two quantities: the
first is the action of the generator on Ω, while the second is a general variation of Ω with
respect to its parameters. For simplicity we can multiply on the left by the inverse of Ω so
that we obtain quantities that live in the algebra. Let us denote the superspace coordinates
collectively by z = (zµ, θ+

α , θ̄
+
α̇ ). We arrive to the equation

Ω(z)−1 exp
(
iωAX

A
)

Ω(z) |0〉 = Ω(z)−1 Ω(z + δz) |0〉 . (2.18)

Solving this equation gives the variations δz for an arbitrary generator XA, which could be
Qaα, Saα̇, etc. Then with the variations we can compute the operator by doing simply the
chain rule

XA ≡ δωA = ∂(δθ+α)
∂ωA

∂

∂θ+α + ∂(δθ̄+α̇)
∂ωA

∂

∂θ̄+α̇ + ∂(δzµ)
∂ωA

∂

∂zµ
+ ∂(δu+

a )
∂ωA

∂

∂u+
a
. (2.19)

Note that in the above equation we did not put the variation δu−a because, in harmonic
superspace, this variation is always vanishing. This is a consequence of the fact that the
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harmonic superspace is closed under the superconformal algebra.6,7 Furthermore, if we make
the change of variables to the y and ȳ parametrization, we also observe that derivatives
with respect to ȳ never appear. It is thus consistent to set ȳ = 0 as we remarked previously.

In harmonic superspace the generators are given in (B.3) for the Q’s and in (B.4)
for the S’s. The same generators in analytic superspace can instead be found in (B.5)
and (B.6) respectively.

3 Correlator of two supergluons (and higher Kaluza-Klein modes)

Now that we have introduced all the necessary ingredients to treat half-BPS operators
in superspace, we can start constructing correlators out of them. Let us start from the
easiest one, namely the two-point function. We denote the superfield corresponding to the
operators in (2.1) as follows

OI
R

(
z, θ+, θ̄+, ξ, ξ′

)
such that OI

R

(
z, ξ′

)
|θ+=θ̄+=0 = OIR(x, ξ, ξ′) . (3.1)

Here z collectively denotes z, θ+, θ̄+ and ξ. The two-point function can be written in terms
of the “superpropagator” gij defined as follows

gij ≡
1
z2
ij

(
ξij − 4i

θ+α
ij (zij)αα̇θ̄+α̇

ij

z2
ij

)
, (3.2)

where we have defined ξij = ξai ξja, θ+
ij = θ+

i − θ
+
j and the same for θ̄+

ij . With this definition
the two-point function reads simply

〈OI
R(z1, ξ

′
1)OJ

R(z2, ξ
′
2)〉 = δIJ (ξ′12)R−2 (g12)R . (3.3)

One can show that this superpropagator is indeed covariant under SU(2, 2|2) transfor-
mations.8 Also note that if the Grassmann variables are set to zero gij reduces to the
scalar propagator

gij
∣∣
θ+=θ̄+=0 = ξij

x2
ij

. (3.4)

The two-point function, other than being useful for the disconnected correlator, can
be used to compute the differential operator that extracts the spin-one component in the
multiplet VµR ≡ [1; 1](R−2;0)

R+1 . Indeed we are looking for an operator Dαα̇ of the form

Dk,αα̇ = i
∂

∂θ+α
k

∂

∂θ̄+α̇
k

+A(Rk)
∂

∂yk
σµαα̇

∂

∂zµk
, (3.5)

6Indeed we want that setting to zero ξ̄ = u− in (2.5) is consistent. Namely we want to make sure that
transformations within the harmonic subspace will not reintroduce any θ−’s.

7This also means that the variations δu+
a must be orthogonal to u−a, otherwise the constraint u+

a u
−a = 1

would be spoiled. It is easy to check that this is indeed the case.
8In particular one can check that(

Q±i +Q±j
)
gij =

(
Q
±
i +Q

±
j

)
gij = 0 ,

(
S−i + S−j

)
gij =

(
S
−
i + S

−
j

)
gij = 0 ,(

Sα+
i + Sα+

j

)
gij = −4

(
θαi + θαj

)
gij ,

(
S
α̇+
i + S

α̇+
j

)
gij = 4

(
θ̄α̇i + θ̄α̇j

)
gij .
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for some coefficient A(R) which might, in principle, depend on the SU(2)R representation of
the operator it acts on. In theory, one should explicitly verify that this operator commutes
with Kµ (see appendix A), to guarantee that it yields a conformal primary. However, as
anticipated before, it is much easier to start from the correlators of two superfields and
impose that

D1,αα̇D2,ββ̇ 〈OR(z1)OR(z2)〉
∣∣
θ+
i =θ̄+

i =0 = cVR 〈VRαα̇(x1)VRββ̇(x2)〉 (3.6)

is a conformally covariant two-point function of a spin-one operator.9 This fixes the value
of A(R) to be

A(R) = 2
R
. (3.7)

Furthermore, the normalization cVR turns out to be

cVR = 16
(
R2 − 1

)
. (3.8)

From now on we will focus on the operator with smallest dimension, namely OI
2(z), whose

superdescendant Vµ2 is precisely the flavor current J µ.

4 Correlator of three supergluons

The three-point function of supergluons was computed in N = 2 superspace in [27].
Using (2.5) we can map their notation to ours. In particular, one should observe that many
quantities drastically simplify as they should only depend on θ+ and θ̄+. As an example,
we have the identity

ξai
û b
a (zij)

(x2
ı̄jx

2
̄i)1/2 ξj b = gij , (4.1)

with gij given by (3.2). This necessarily follows from the general form of the two-point
function (3.3).

The other invariants, such as u b
a (Zi), Xi and Xi, can be computed explicitly and

expressed in terms of the analytic superspace variables. We can directly drop the θ−’s since
we know they will have to disappear in the end.

The various components can be extracted using the differential operator defined in (3.5).
We can then compare the results with some known basis of three-point functions. For
concreteness, we choose the one implemented in the package appeared in [28], whose
notations are reviewed in appendix E. We find

〈OI2(x1)OJ2 (x2)OK2 (x3)〉 = f IJK
ξ12 ξ13 ξ23
x2

12x
2
13x

2
23
, (4.2)

as expected. Applying the operator Dαα̇ on the first point leads to

〈J Iαα̇(x1)OJ2 (x2)OK2 (x3)〉 = −2f IJK (ξ23)2

(
Ĵ1

23

)
αα̇

(x2
12x

2
13)2 , (4.3)

9The same problem was solved in general for N = 1 supersymmetry in [26], where there are also N = 2
results but those are different from what we need. The differential operators defined there extract N = 1
superprimaries from N = 2 superprimaries rather than the conformal primaries directly. They are also
expressed in full superspace instead of harmonic superspace.
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where Ĵ1
23 is defined in (E.1). Applying two operators at the first two points yields zero.

This is expected since the flavor symmetry Ward identities relate this to a two-point function
〈JµO2〉. Finally, applying the operators on all three fields we get

〈J Iαα̇(x1)J Jββ̇(x2)JKγγ̇(x3)〉 = f IJK
4∑
i=1

λ+
i (T+

i )αα̇,ββ̇,γγ̇ , (4.4)

where the T+
i are the basis of three-point structures in (E.2). The coefficients that multiply

them are given by
λ+

1 = 48 , λ+
2 = −λ+

3 = λ+
4 = −80 . (4.5)

The precise linear relations satisfied by them are necessary to ensure conservation of J Iαα̇(x)
at all three points. Furthermore, conformal invariance allows in principle for another
structure T− which is parity odd. This structure does not appear in our example and this
is expected because the parity odd structure is associated to a ’t Hooft anomaly [29], which
cannot be present in N = 2.

Note that in all these cases A(2) = 1 was necessary to even have a combination of
conformally covariant structures at all. Any other value of A would have led to something
that is not a three-point function of a primary.

5 Correlator of four supergluons

The first correlator containing nontrivial dynamical information is the four-point function.
In [13] it has been shown that the superspace correlator of four analytic superfields can be
entirely determined in terms of a single bosonic scalar function of the superconformal cross
ratios u and v, which are defined as

u = x2
12x

2
34

x2
13x

2
24

= zz̄ , v = x2
14x

2
23

x2
13x

2
24

= (1− z)(1− z̄) . (5.1)

Such function can in turn be fixed by the correlator of the lowest component of the multiplet,
i.e. 〈O2O2O2O2〉. To perform the uplift from the bottom component to the full superspace
answer, we will follow closely the analysis in [7, 8] for N = 4 SYM. We will also briefly
summarize their results in section 6.

From now on we will drop the “+” from the Grassmann variables and denote zµ as xµ.
Furthermore, we will trade ξi for yi using (2.14).10 The correlator of four superfields, in
full analytic superspace, at leading order in the large N expansion can be written as

〈OI1
2 (z1)OI2

2 (z2)OI3
2 (z3)OI4

2 (z4)〉 = g2
12g

2
34

(
GI1I2I3I4

rational + GI1I2I3I4
anom

)
. (5.2)

The rational part can be simply obtained by starting from the rational part of the correlator
of four OI2, as in [15], and promoting the scalar propagators to the superpropagator gij

10Note that yi − yj ≡ yij = ξij ≡ ξai ξja.
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in (3.2).

GI1I2I3I4
rational = δI1I2δI3I4 + δI1I3δI2I4 U2 + δI1I4δI2I3

(U
V

)2

+ (C2,2,2)2

3

(
(ct − cs)

U
V

+ (cs − cu)U + (ct − cu) U
2

V

)
,

(5.3)

with
U ≡ g13g24

g12g34

θ,θ̄=0−−−→ αu , V ≡ g13g24
g14g23

θ,θ̄=0−−−→ αv

1− α , (5.4)

and
α = y13y24

y12y34
, α− 1 = y14y23

y12y34
. (5.5)

If we denote the structure constants of GF as f IJK , then we can express the color struc-
tures as

cs = f I1I2JfJI3I4 , ct = f I1I4JfJI2I3 , cu = f I1I3JfJI4I2 . (5.6)

Finally the constant C2,2,2 represents the O2’s three-point coefficient and it is related to
the flavor central charge through

C2
2,2,2 = 6

CJ
. (5.7)

The interesting part, however, is the anomalous one. Similarly to the N = 4 case, we would
like to write an ansatz that satisfies the superconformal Ward identities, namely that it is
annihilated by all supercharges and reproduces the lowest component correlator once we set
all the θ’s and θ̄’s to zero. A natural solution is11,12

GI1I2I3I4
anom =

(
Q−
)2 (

Q+
)2 (

S
−)2 (

S
+)2

[
θ2

1θ
2
2θ

2
3θ

2
4
F (x)
g2

12g
2
34

]
, (5.8)

where x denotes collectively (x1, x2, x3, x4) and F (x) implicitly contains the flavor indices.
Denoting with the label “i” the point in the correlator, we define

θ2
i = θ+α

i θ+
iα , θ̄2

i = θ̄+
iα̇θ̄

+α̇
i . (5.9a)

(Q±)2 =
(∑4

i=1
Qα±i

)(∑4
i=1

Q±iα

)
, (5.9b)

(S±)2 =
(∑4

i=1
S
±
iα̇

)(∑4
i=1

S
α̇±
i

)
. (5.9c)

Written in the form (5.8), and given the fact that all the Q’s and the S’s are nilpotent, it is
clear that the correlator satisfies half of the Ward Identities. It is less trivial to check that

11Notice that the order of Q± and S± does not matter since they are all mutually anticommuting.
12What may sound confusing at first is that we just said that all Q’s and Q’s acting on the correlator give

zero. In order to extract the Q, resp. Q, superdescendant from a superspace expression, however, one has
to act with the superspace covariant derivative D, resp. D, defined in appendix B. The same is true for
imposing shortening conditions: the equation is DO = DO = 0. The difference is in the order in which they
compose: D1D2f(θ) = D1(D2f(θ)) whereas [Q1, [Q2,O}} = (Q2(Q1O)). Other than that, the algebra is
the same.
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this satisfies the other half, but this is indeed the case. Alternatively, we could have taken
the barred version of (5.8) and the same reasoning would have applied.

Now that we have this formula we would like to find an explicit expression for F (x) and
we will do so in the next subsection by making a connection with the four-point function of
the lowest component. But before doing that, we need to simplify the expression in order
to make it more manageable. This is achievable by resorting to some tricks and clever
observations similar to the ones in [7]. We will proceed in two steps: first we will use the
fact that gij is annihilated by Q± and S−, thus we can pass it through them. At the same
time gij commutes with θ2

i , so that (5.8) becomes

g2
12g

2
34 GI1I2I3I4

anom =
(
Q−
)2 (

Q+
)2 (

S
−)2

S̃2
[
θ2

1θ
2
2θ

2
3θ

2
4F (x)

]
,

S̃α̇ ≡ g2
12g

2
34

(∑
i
S
α̇+
i

)
g−2

12 g
−2
34 =

4∑
i=1

S
α̇+
i − 8 θ̄α̇i .

(5.10)

Notice now that Q− and S
− do not involve any derivative with respect to x and the y

derivative in S− gives trivially zero since there is no dependence from y in (5.10). So they
can only act on the product of θ2

i returning

g2
12g

2
34 GI1I2I3I4

anom =
(
Q+
)2
S̃2×

×
[
x2

12x
2
13x

2
14

(
θ13x13
x2

13
− θ12x12

x2
12

)2 (θ14x14
x2

14
− θ12x12

x2
12

)2
F (x)

]
,

(5.11)

where by X2 we mean Xα̇ε
α̇β̇Xβ̇ .

In the following subsections we will present the results for the various components of
the superconformal four-point function. We mainly focus on insertions of the flavor current
but we also present some results for the top components W and W. The computations
presented here were performed in Mathematica with the package Superspace4d.13

5.1 Lowest component

The lowest component can be obtained from (5.11) by keeping only the terms that remove
a θ. This is because all other terms will either generate θ̄’s that will not be needed at this
order, or do not remove enough θ’s. In this way we get for the anomalous part

〈OI12 (x1)OI22 (x2)OI32 (x3)OI42 (x4)〉 = y2
12y

2
34

(x2
12x

2
34)2 (zα− 1)(z̄α− 1)Hgl(z, z̄) , (5.12)

where we finally introduced the function of the cross ratios F(z, z̄) which is related to F (x)
as follows

F (x) ≡ Hgl(x) =
C2

2,2,2
24

Hgl (z, z̄)
(x2

12x
2
34)2x2

13x
2
24
. (5.13)

13The source code is available at https://gitlab.com/maneandrea/superspace4d.
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Notice that this result is consistent with the Ward identities [30]. Comparing with [15], the
reduced correlator at the holographic limit is given by

Hgl(z, z̄) ≡ HI1I2I3I4gl (z, z̄) = csHs + ctHt + cuHu ,

Hs = 1
3(zz̄)2

(
D2321 −D3221

)
,

Ht = 1
3(zz̄)2

(
D2231 −D2321

)
,

Hu = 1
3(zz̄)2

(
D3221 −D2231

)
.

(5.14)

5.2 Current insertions

Let us start by considering the four-point function of one current and three O2, by definition
this can be obtained as

D1,αα̇〈OI1
2 (z1)OI2

2 (z2)OI3
2 (z3)OI4

2 (z4)〉
∣∣
θi=θ̄i=0 ≡ 〈J

I1
αα̇(x1)OI22 (x2)OI32 (x3)OI42 (x4)〉 (5.15)

where we have used the differential operator in (3.5) with A(2) = 1. An explicit computation
gives us14

ηα1 η̄
α̇
1 〈J

I1
αα̇O

I2
2 O

I3
2 O

I4
2 〉 = 24y23y34y24D1 [(η1x12x23x34x41η1)Hgl(x)]

= −24y23y34y24D1
[
L1

234Hgl(x)
]
,

(5.16)

where in the second line we have used (E.1) and similarly to [7] we have defined

Di = η̄α̇i
∂

∂xαα̇i

∂

∂ηiα
. (5.17)

Here and in the following we will contract the α, α̇ indices with auxiliary commuting spinor
variables, respectively ηα and η̄α̇. Now passing to two insertions, we find

ηα1 η̄
α̇
1 η

β
2 η̄

β̇
2 〈J

I1
αα̇J

I2
ββ̇
OI32 O

I4
2 〉 = −24y2

34D1D2 [(η1x13x32η2) (η1x14x42η2)Hgl(x)]

= −24y2
34D1D2

[
K12

3 K12
4 Hgl(x)

]
,

(5.18)

where the K is the invariant tensor in (E.1).
The four-point function of three currents and one O2 simply vanishes because of R-

symmetry conservation. In fact J is neutral under the SU(2) R-symmetry while O2 has
SU(2) spin 1.

The next and last non-trivial correlator is the one with all flavor currents. This reads

ηα1 η̄
α̇
1 η

β
2 η̄

β̇
2 η

δ
3η̄
δ̇
3η
γ
4 η̄

γ̇
4 〈J

I1
αα̇J

I2
ββ̇
J I3
δδ̇
J I4γγ̇〉 = 24D1D2D3D4 [Λ(x, η)Hgl(x)] , (5.19)

where we have introduced

Λ(x, η) =
((η1x12x23η3)(η4x41x12η2)− (η1x12x24η4)(η3x31x12η2)

x2
12

)2

= 1
x4

12

(
K13

2 K42
1 −K14

2 K32
1

)2
.

(5.20)

14The complete result together with the ones for the other correlators can be find in a Mathematica file in
the supplementary material attached to this paper.
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5.3 Correlator of the top components

As one can see from figure 1, together with the conserved current, at the same level of
the supermultiplet and with the same conformal dimension, we find another operator, the
superpotential W and its r-charge conjugate W. From the diagram in figure 1, it is also
clear that the combination of Q’s or Q’s that give the right operator does not mix with
derivatives ∂µ, unlike (3.5) for example. Therefore we immediately get

W(x) =
(
∂

∂ξa

∂

∂θaα

)2
O
(
x, θ, θ̄, ξ

) ∣∣
θ,θ̄=0 , (5.21a)

W(x) =
(
∂

∂ξa

∂

∂θ̄aα̇

)2

O
(
x, θ, θ̄, ξ

) ∣∣
θ,θ̄=0 . (5.21b)

We want to translate this result into analytic superspace. This can be done by a simple
change of variables using (2.5) and

y = ξ2
ξ1

= −ξ
1

ξ2 . (5.22)

When acting on O2 we do not need to consider the action of the Grassmann derivatives
on zµ since this is going to produce factors of θ̄ (for W) and θ (for W) that will be set to
zero anyway. The only derivatives we need to be careful about are those in y. A simple
computation shows

∂

∂ξa

∂

∂θaα
O2 =

(
2 + θ+

β

∂

∂θ+
β

+ θ̄+̇
β

∂

∂θ̄+̇
β

)
∂

∂θ+
α
O2 , (5.23)

and similarly for the barred analogue. In particular the ∂/∂y term drops out due to

ξa
∂y

∂ξa
= 0 . (5.24)

The terms in the parentheses give an overall prefactor since they simply count the homo-
geneity degree of the θ’s and θ̄’s. All in all, quite unsurprisingly, the differential operators
that we need are

W(x) = ∂

∂θ+
α

∂

∂θ+αO2
(
z, θ+, θ̄+, y

) ∣∣
θ+,θ̄+=0 , (5.25a)

W(x) = ∂

∂θ̄+α̇
∂

∂θ̄+
α̇

O2
(
z, θ+, θ̄+, y

) ∣∣
θ+,θ̄+=0 . (5.25b)

By an explicit computation one can also confirm that W and W do not depend on y, which
is not manifest from the above equation.

Since both these operators are charged, the only nonzero four-point function with
them is

〈W(x1)W(x2)W(x3)W(x4)〉 = 1
(x2

12x
2
34)3GW(z, z̄) , (5.26)

and permutations thereof. In order to obtain it, we can compute the derivatives in (5.11)
and retain only the terms θ2

1 θ̄
2
2θ

2
3 θ̄

2
4. The result is a differential operator acting on the
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function Hgl defined in (5.13). Let us denote H̃gl(zz̄, (1− z)(1− z̄)) ≡ Hgl(z, z̄) and G̃W in
the same way. The result takes a form reminiscent of [16], indeed it is a “square root” of
their result

G̃W(u, v) = u3 ∆(2)uv∆(2)u−2H̃gl(u, v) ≡ ∆(4)H̃gl(u, v) , (5.27)

with
∆(2) ≡ u∂2

u + v∂2
v + (u+ v − 1)∂u∂v + 2(∂u + ∂v) . (5.28)

Another way to present this result is through the Casimir differential operator15

D̂x ≡ ∂x x(1− x) ∂x . (5.29)

We obtain
GW(z, z̄) = (zz̄)3

z − z̄
D̂zD̂z̄ (z − z̄)(zz̄)−2Hgl(z, z̄) . (5.30)

As footnote 15 emphasizes, the Casimir that we used here acts naturally on the OPE of
W ×W . If we considered the correlator

〈W(x1)W(x2)W(x3)W(x4)〉 = G
u
W(z, z̄)

(x2
12x

2
34)3 , GuW(z, z̄) ≡ (zz̄)3GW

(1
z
,

1
z̄

)
, (5.31)

then we would have had16

GuW(z, z̄) = zz̄

z − z̄
DzDz̄ (z − z̄)Hgl(z, z̄) , (5.32)

which now is expressed in terms of the usual Casimir operator

Dx ≡ x2∂x(1− x)∂x . (5.33)

It seems that the combination of Casimir operators wants to act on the chiral channel,
namely the one which is annihilated by the highest number of supercharges. A possible,
handwavy, explanation of why this is true is the following: the unprotected operators that
are exchanged need to be half-BPS themselves, in order to respect the shortening condition in
the O2×O2 OPE. Let us denote the respective superprimaries as OL. In the neutralW×W
channel Q2Q2OL is allowed to appear together with some other superdescendants as well,
up to Q4Q4OL. So the superconformal blocks are nontrivial linear combinations of ordinary
bosonic blocks. This means that the expansions of the seed function Hgl in superconformal
blocks is not related in a simple way to the expansion of GW in ordinary conformal blocks.
If we consider the chiral channel, on the other hand, the R-charge conservation allows only
Q4OL to be exchanged. Therefore the conformal blocks expansion of FuW is going to be the
same as the superconformal block expansion of Hgl, up to prefactors in each single block.
Since the operator (z− z̄)−1DzDz̄(z− z̄) has the blocks as eigenfunctions, its job is precisely

15The hat emphasizes that this Casimir operator does not act naturally on the blocks of the (12) OPE
but rather on the 2↔ 3 crossed blocks

D̂z κh(1/z) = −h(h− 1)κh(1/z) , κh(x) ≡ zh 2F1(h, h; 2h;x) .

. 16Here we used the crossing relation Hgl(z, z̄) = zz̄Hgl(1/z, 1/z̄) which is easy to derive from (5.12).
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O = [0;0](0,2,0)
2

[1;0](0,1,1)
5/2 [0;1](1,1,0)

5/2

Q Q

[0;0](0,0,2)
3

[2;0](0,1,0)
3

[0;0](2,0,0)
3

[0;2](0,1,0)
3

Q Q

J SU(4)
µ = [1;1](1,0,1)

3

QQ

[1;0](0,0,1)
7/2 [0;1](1,0,0)

7/2

Q Q

[2;1](1,0,0)
7/2 [1;2](0,0,1)

7/2

Q QQ Q

L = [0;0](0,0,0)
4 L̄ = [0;0](0,0,0)

4

Q Q

Tµν = [2;2](0,0,0)
4

QQ

Figure 2. The supergraviton multiplet. We are denoting the operators as [`, ¯̀](p1,p2,p3)
∆ , where [`, ¯̀]

stands for the Lorentz representation, (p1, p2, p3) are the SU(4)R Dynkin labels and ∆ represents
the conformal dimension.

to provide these prefactors. The physical interpretation of such prefactors is simply the
linear relation between OPE coefficients

λO2O2(Q4OL) = P(∆, `)λWW(Q4OL) . (5.34)

Notice that there is an alternative way of rewriting (5.26) in terms of Hgl(x) in (5.13)

〈W(x1)W(x2)W(x3)W(x4)〉 = �2�4 (x2
24)2Hgl(x) = �1�3 (x2

13)2Hgl(x) , (5.35)

where �i = ∂
∂xµi

∂
∂xiµ

.

6 Correlator of four supergravitons

This section is devoted to a very brief review of the results in [7, 8]. In doing that, our
main intention is to show how the “squaring” of the results for supergluons in a N = 2
SCFT recovers their results.

The above-mentioned works investigate four-point functions of different components of
the energy-momentum supermultiplet in four dimensional N = 4 SYM. Among them, it is
given an explicit and compact form for the one involving one, two, three or four insertions
of the stress tensor Tαβ,α̇β̇ itself. These are the ones that we wish to compare to the results
discussed in the previous section. Let us recall that N = 4 is the holographic counterpart
of a theory of gravity and the stress tensor multiplet is mapped to the supergraviton
in AdS5 × S5.

In N = 4 superspace, given its half-BPS nature, the stress tensor superfield T depends
only on half of the original Grassmann variables θAα and θ̄α̇A, where A is the SU(4) R-symmetry
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group index. The lowest component is a scalar operator of conformal dimension two,
transforming in the (0, 2, 0) of SU(4) and in the adjoint of the SU(N) gauge group. It takes
the schematic form

O(x, t) =
(
tM1ΣM1

AB

) (
tM2ΣM2

CD

)
OAB,CD(x) , (6.1)

where the matrix ΣM
AB maps from SO(6) fundamental index M to antisymmetric SU(4)

ones and tM are some additional null polarization vectors. At the opposite side of the
multiplet, instead, we have the stress tensor Tαβ,α̇β̇ and the self-dual and anti-self-dual
part of the SYM Lagrangians L and L, which have opposite charge under the bonus U(1)Y
symmetry [31]. In order to better parametrize this multiplet, similarly to what we have
done before, we can introduce the harmonic variables, defining this time an SU(4) matrix as

uAB =
(
u+a
B u−a

′

B

)
. (6.2)

The upper index A gets split in two fundamental SU(2) and SU(2)′ indices a and a′, carrying
respectively ±1 U(1) charge. In this way one realizes the coset space

SU(4)
SU(2)× SU(2)′ ×U(1) . (6.3)

As a consequence, the Grassmann variables θAα also split as

θaα = u+a
A θAα , θa

′
α = u−a

′

A θAα , (6.4)

and similarly for θ̄α̇A. An equivalent description can be given in analytic superspace, where
the analytic variables are defined through the identification(

u+a
B u−a

′

B

)
=
(
δab 0
yab′ δ

a′
b′

)
. (6.5)

Accordingly, the SU(4) polarization vectors can be written as

tMΣM
AB = u+c

A εcdu
+d
B =

(
εab −yab′
yba′ εa′b′y

2

)
, (6.6)

where y2 = det yaa′ . With these coordinates we can write the four-point function of
T(xi, θai , θ̄a

′
i , ti) ≡ T(ẑi) as

〈T(ẑ1)T(ẑ2)T(ẑ3)T(ẑ4)〉 = ĝ2
12ĝ

2
34

(
Ĝrational + Ĝanom

)
. (6.7)

The rational terms can be written in terms of superpropagators

ĝij =
ŷ2
ij

x2
ij

, ŷaa
′

ij = yaa
′

ij − 4i
θαaij (xij)αα̇θ̄α̇a

′
ij

x2
ij

. (6.8)

This superpropagator is defined in such a way that when we set all the θ’s and θ̄’s to zero
we recover the usual free propagator

ĝij
∣∣
θa=θ̄a′=0 =

y2
ij

x2
ij

= tij
x2
ij

, (6.9)
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with y2
ij ≡ (yi − yj)2 = ti · tj ≡ tij . The explicit expression for the rational part is

Ĝrational = 1 + Û2 +
(
Û
V̂

)2

+ 4
N2

(
Û
V̂

+ Û + Û
2

V̂

)
, (6.10)

with
Û ≡ ĝ13 ĝ24

ĝ12 ĝ34

θ,θ̄=0−−−→ αᾱu , V̂ ≡ ĝ13 ĝ24
ĝ14 ĝ23

θ,θ̄=0−−−→ αᾱv

(1− α)(1− ᾱ) , (6.11)

and the SO(6) cross ratios

αᾱ = t13 t24
t12 t34

, (α− 1)(ᾱ− 1) = t14 t23
t12 t34

. (6.12)

The anomalous correlation function can be written as the action of supercharges

Qαa = ūA+aQ
α
A , Qαa′ = ūA−a′Q

α
A ,

S̄α̇a = ūA+aS̄α̇A , S̄α̇a′ = ūA−a′S̄α̇A ,
(6.13)

on a single function
Ĝanom = Q4Q′4S̄4S̄′4

[
θ4

1θ
4
2θ

4
3θ

4
4
F (x)
ĝ2

12ĝ
2
34

]
. (6.14)

Here we have defined Q = 1
12Q

α
aQ

b
αQ

β
bQ

a
β and Q′ = 1

12Q
αa′Qαb′Q

β b′Qβ a′ and similarly for
θ, S̄, S̄′. The function F now has to be identified with

F (x) ≡ Hgr(x) = 4
N2

Hgr(z, z̄)
(x2

12x
2
34x

2
13x

2
24)2 , (6.15)

in such a way that for the lowest component, i.e., the one at θ = 0 = θ̄, the anomalous part
of the correlator takes the familiar form

〈OOOO〉 = (t12 t34)2

(x2
12x

2
34)2 (zα−1)(z̄α−1)(zᾱ−1)(z̄ᾱ−1)Hgr(z, z̄) . (6.16)

In particular, in the supergravity limit we are considering, one can identify

Hgr(z, z̄) = −(zz̄)2D2422 . (6.17)

With an expression for Ĝanom, one can obtain correlators for the different components in
the supermultiplet by acting on (6.7) with an appropriate differential operators, similar
to (3.5), which selects the correct operator.17

6.1 Stress tensor insertions

In this section we report the results of [7] for the correlators involving the stress tensor and
the scalar O. Let us denote for brevity ηαi η̄α̇iηβi η̄β̇iTαiβi,α̇iβ̇i as T . With one single stress
tensor insertion we find

〈T OOO〉 = t23t34t24 D2
1

[
(η1x12x23x34x41η1)2Hgr(x)

]
, (6.18)

17This is the operator (2.16) in [8].

– 20 –



J
H
E
P
0
1
(
2
0
2
3
)
0
2
1

where Di is defined in (5.17). The two stress tensor insertions reads

〈T T OO〉 = (t34)2 (D1D2)2
[
(η1x13x32η2)2 (η1x14x42η2)2Hgr(x)

]
. (6.19)

Also in this case, the correlator with three T insertions and one O is trivially zero due to
R-symmetry conservation: T is a singlet under SU(4)R, while O belongs to the (0, 2, 0).

Finally, the correlator with all four stress tensors is given by

〈T T T T 〉 = 44 (D1D2D3D4)2
[
Λ(x, η)2Hgr(x)

]
, (6.20)

with Λ(x, η) defined in (5.20).

6.2 Correlator of the top components

Let us finish this section with the correlators of the Lagrangian. Since L and L carry
opposite U(1)Y charge, the only non vanishing four-point functions are the ones with two L
and two L. These are [16]

〈L(x1)L(x2)L(x3)L(x4)〉 = 1
(x2

12x
2
34)4 ∆(8)H̃gr(u, v) ≡ 1

(x2
12x

2
34)4GL(z, z̄) , (6.21)

together with its crossing symmetric version. Here H̃gr(zz̄, (1− z)(1− z̄)) ≡ Hgr(z, z̄) is the
reduced correlator defined in (6.16) and the eight-derivative operator ∆(8) is constructed
from ∆(2) in (5.28) as

∆(8) = u4(∆(2))2u2v2(∆(2))2u−2 . (6.22)

An alternative representation of the Lagrangian correlator is

〈L(x1)L(x2)L(x3)L(x4)〉 = �2
2�

2
4 (x2

24)4Hgr(x) = �2
1�

2
3 (x2

13)4Hgr(x) , (6.23)

with Hgr(x) defined in (6.15). This expression can be viewed as the “square” of the similar
representation of the supergluon case (5.3).

7 Evaluating the differential representation and the orthogonal frame

7.1 Quick overview of formalisms for four-point tensor structures

It can be convenient to write the correlator in a different basis of tensor structures. In
the previous section we have seen a representation in terms of Di acting on some seed
function. Here we want to use the embedding formalism — see appendix D for notations.
The four-dimensional formalism for general spin representations allows for tensor structures
of both even and odd parity. Here we want to instead use the dimension-agnostic formalism,
which deals with parity-even structures and can only be used for symmetric traceless
representations in parity-preserving theories, which is all we need. There are only two
building blocks

Hij = ηixij η̄j ηjxjiη̄i , Vi,jk = 1√
2
x2
ij x

2
ik

x2
jk

(
ηixikη̄i
x2
ik

− ηixij η̄i
x2
ij

)
. (7.1)
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We also need to define the kinematic prefactor

K(∆1,j1,̄1)...(∆4,j4,̄4) =
(
x2

24
x2

14

)κ1−κ2
2

(
x2

14
x2

13

)κ3−κ4
2 1

(x2
12)

κ1+κ2
2 (x2

34)
κ3+κ4

2
, (7.2)

where κi ≡ ∆i + (ji + ̄i)/2. For brevity, the labels (∆, j, ̄) will be denoted as (∆, `) is
j = ̄ = ` and as ∆ is j = ̄ = 0.

In order to translate from the seed representation to the embedding one, we evaluate
both correlators in a conformal frame and then compare them. Since the little group for four
points in four dimensions is SO(2), the structures are manifestly linearly independent and
therefore the comparison becomes trivial. The conventional conformal frame configuration
sets the point x4 at infinity [32]. While in theory this is as good a frame as another, in
practice it becomes very computationally expensive to evaluate the limit x4 →∞. For this
reason we chose a different frame defined as follows

xµ1 = (0, 0, 0, 0) ,

xµ2 =
(

z − z̄
(1 + z)(1 + z̄) , 0, 0,

z + z̄ + 2zz̄
(1 + z)(1 + z̄)

)
,

xµ3 = (0, 0, 0, 1) ,
xµ4 = (0, 0, 0, 2) .

(7.3)

The structures in this frame are related to those in the usual frame in the way explained
in [28]. However, we will not need this result since we never compare structures in different
frames. As one can easily check, the frame (7.3) has been chosen in such a way that the
cross ratios z and z̄ follow the usual definition.

7.2 Orthogonal configuration

Later we will also consider a special kinematic limit in which the structures simplify. Let us
introduce it now: it consists in taking the vector polarizations to be perpendicular to the
positions. Namely, if we contract Lorentz indices µ with a null vector hµ, the configuration
we are looking for is hµi xij,µ = 0 (without summing over i and for all j). In terms of our
spinor notation this is

ηixij η̄i = 0 , with hµi = −1
2σ

µ
αα̇η̄

α̇
i η

α
i . (7.4)

In embedding space, reviewed in appendix D, this reads

Pi · Zj = 0 , (7.5)

which immediately implies that Vi,jk is sent to zero.
When we have a result written directly in terms of embedding structures H and V ,

taking this configuration is very easy. However, the correlators with four insertions are
rather involved and it will not be possible to write them in embedding (at least without a
lot of work). Therefore it will be necessary to evaluate them in an explicit frame where this
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condition is automatically enforced. Note that the linear conditions that we must impose
are actually more than it seems because

ηixj η̄i = ηixiη̄i =⇒ ηixjkη̄i = 0 ∀ i, j, k . (7.6)

Let us now try to understand the most general solution to this system. Without loss of
generality we can put the first point at the origin. The remaining three points can be
arranged via conformal transformations so that they span a space of dimension p ≤ 2. If
p = 1 then we can choose hi’s without issues but the cross ratios become dependent, namely
z = z̄. The only possible choice is p = 2.18 In this case, since the hi’s are null, they span a
one-dimensional space

hµj = (0, h1
j , h

2
j = ±ih1

j , 0)µ , (7.7a)

xµj =
(
zj − z̄j

2 , 0, 0, zj + z̄j
2

)µ
. (7.7b)

There are in total 16 different choices that give non-vanishing polarizations (the boldface
index is an α or α̇ index)19

h+,µ
j ≡ −1

2
(
0, η2

j η̄
1
j , iη

2
j η̄

1
j , 0

)µ or h-,µ
j ≡ −1

2
(
0, η1

j η̄
2
j , −iη1

j η̄
2
j , 0

)µ
. (7.8)

In these configurations all the Vi,jk’s will vanish by construction, but, unfortunately, some
Hij ’s will vanish as well. Out of these 16, there are 6 configurations that keep nonzero the
maximal amount of Hij , which is four. If we call + the first choice in (7.8) and - the second
choice, then choosing as an example -++- for h1, h2, h3 and h4 leads to

H12 = 1
2 z12 z̄12 η

1
1η

2
2 η̄

2
1 η̄

1
2 , H13 = 1

2 z13 z̄13 η
1
1η

2
3 η̄

2
1 η̄

2
3 , H14 = 0 ,

H23 = 0 , H24 = 1
2 z24 z̄24 η

2
2η

1
4 η̄

1
2 η̄

2
4 ,

H34 = 1
2 z34 z̄34 η

2
3η

1
4 η̄

1
3 η̄

2
4 .

(7.9)

In general Hij is nonzero if the signs at the points i and j are opposite. Thus, the choices
with an equal number of + and - have four nonzero Hij ’s, those with three equal choices
have only three nonzero Hij ’s and the two ++++ and ---- have all Hij ’s set to zero.

The positions on the plane can be taken in the standard conformal frame, or in the
frame that we introduced before. Taking z and z̄ to be the usual cross ratios, we choose

z1 = z̄1 = 0 , z2 = 2z
z + 1 , z̄2 = 2 z̄

z̄ + 1 ,

z3 = z̄3 = 1 , z4 = z̄4 = 2 .
(7.10)

18Since the metric is not definite, one can in principle have the planes of the h’s and the x’s overlapping.
However, the only way to solve the constraints (7.6) is to have all x’s to be null and one hi proportional to
them. We want to avoid that because we need two independent cross ratios.

19Incidentally, this choice is equivalent to taking qi = −q̄i and qi = ±`i in the formalism and nota-
tions of [28].
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If we evaluate a correlator in the frame ++-- and in the frame -++- we can obtain the
functions multiplying all structures which are made out of Hij ’s, except for those that are
proportional to the product of five or six different Hij ’s: those will always be vanishing.

Finding an explicit form for the correlators (5.19) and (6.20) in terms of derivatives of
Hgl and Hgr is very hard and the final expressions would be too cumbersome. If however one
is interested in the orthogonal frame only, it is possible to greatly simplify the computations
by expressing the differential operator Di, in (5.17), directly in that frame.20 To this aim,
let us consider separately the two possible cases: point i is in the + configuration or point i
in the - configuration.

In the first case we have that η̄2
i = η1

i = 0, thus we get

Di = η̄1
i

(
∂

∂x1
i

+ i
∂

∂x2
i

)
∂

∂η1
i

+ η̄1
i

(
∂

∂x0
i

− ∂

∂x3
i

)
∂

∂η2
i

. (7.11)

The same situation arises for the second case which reads

Di = −η̄2
i

(
∂

∂x1
i

− i ∂
∂x2

i

)
∂

∂η2
i

− η̄2
i

(
∂

∂x0
i

+ ∂

∂x3
i

)
∂

∂η1
i

. (7.12)

In order to deal with the spacetime derivatives we can enlarge the conformal frame by
adding a single coordinate ζ for the - case and a coordinate ζ̄ for the + case. More precisely,
we should define

xµi =
(
zi − z̄i

2 ,
ζi + ζ̄i

2 ,
ζi − ζ̄i

2i ,
zi + z̄i

2

)µ
. (7.13)

So far this is just a relabeling of the four components, but the differential operators now
take an easier form

Di = 2 η̄1
i

∂

∂ζ̄i

∂

∂η1
i

− 2 η̄1
i

∂

∂z̄i

∂

∂η2
i

, + case , (7.14a)

Di = −2 η̄2
i

∂

∂ζi

∂

∂η2
i

− 2 η̄2
i

∂

∂zi

∂

∂η1
i

, - case . (7.14b)

Thanks to this we can set to zero the ζi’s for the points in the + case as well as the ζ̄i’s in
the - case. Furthermore we can set to (7.10) the zi’s or z̄i’s that are not involved in the
derivative. Then after each derivative we can also set the remaining ζ’s and ζ̄’s to zero
as well as the ηαi that is vanishing for the +/- case of point i. It is also without loss of
generality that one can set η̄α̇i = 1.

With this trick we can obtain all current and stress tensor insertions in the orthogonal
frame without the need of evaluating the full expression first. The results are presented
in the next section but are not shown explicitly. We refer the reader to the attached
Mathematica file for the explicit expressions.

20Normally going to the conformal frame does not commute with the action of generic differential operators
such as ∂/∂xµi or ∂/∂ηαi . However, for our purposes, we only care about the differential operator Di.
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7.3 Current and stress tensor correlators

Now we will list all four-point functions involving the current and the O2 scalar or the
stress tensor and the O scalar. Let us start with the single current insertion. It is given by

〈J I1OI22 O
I3
2 O

I4
2 〉 = K(3,1)222 y23y24y34

(
V1,23 a1(z, z̄) + V1,24 a2(z, z̄)

)
, (7.15)

where K(3,1)222 is the kinematic prefactor defined in (7.2) and

a1 = 2
√

2v
(
(1 + z + z̄)Hgl + z̄(z̄ − 1)∂z̄Hgl + z(z − 1)∂zHgl

)
, (7.16a)

a2 = 2
√

2v
(
−Hgl + z̄ ∂z̄Hgl + z∂zHgl

)
. (7.16b)

The analog for N = 4 reads

〈T OOO〉 = K(4,2)222 t23t34t24
(
(V1,23)2 b1 + V1,24V1,23 b2 + (V1,24)2 b3

)
, (7.17)

with the definitions

b1 = 16 v2

z − z̄
((z − 1)2z2(z − z̄)∂2

zHgr + 4(z − 1)z2(z̄ − 1)z̄∂z∂z̄Hgr (7.18a)

+ 2(z − 1)z
(
3z2 − 2zz̄ + z + 2(1− 2z̄)z̄

)
∂zHgr

+ 2z
(
3z2 + 2z(z̄ + 1) + 3z̄2 + 2z̄ − 2

)
Hgr − (z ↔ z̄)) ,

b2 = 32 v2

z − z̄
((z − 1)z2(z − z̄)∂2

zHgr + 2z2z̄(z + z̄ − 2)∂z∂z̄Hgr (7.18b)

+ 2z
(
z2 − 2zz̄ + z − 2(z̄ − 1)z̄

)
∂zHgr − 2z(z + z̄ − 2)Hgr − (z ↔ z̄)) ,

b3 = 16 v2

z − z̄
(z2(z − z̄)∂2

zHgr + 4z2z̄∂z∂z̄Hgr − 2z(z + 2z̄)∂zHgr − 4zHgr − (z ↔ z̄)) .

(7.18c)

Note that these two correlators are identically zero in the kinematic limit η ⊥ x.
The first nontrivial correlators in this kinematic configuration are the ones involving

at least two spinning operators insertions. For currents, we can rewrite the correlators in
embedding formalism as

〈J I1J I2OI32 O
I4
2 〉 = K(3,1)(3,1)22 y

2
34
(
W1W2 c1 +W 1W2 c2 +W1W 2 c3 +W 1W 2 c4 +H12 c5

)
,

(7.19)
with the definitions

W1 = V1,23 + V1,24 , W2 = V2,13 + V2,14 ,

W 1 = V1,23 − V1,24 , W 2 = V2,13 − V2,14 ,
(7.20)

and ci ≡ ci(z, z̄) some polynomials involving up to second derivative in z and z̄ of Hgl(z, z̄).21

21The explicit expressions for these correlators, together with all the others that will follow, can be found
in a Mathematica file in the supplementary material attached to this paper.
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The function c5 is the only one that survives in the orthogonal frame and it reads

c5(z, z̄) = 4(z̄ − 1)z̄(z2 − 3zz̄ − 6z + 8z̄)
z − z̄

∂z̄Hgl(z, z̄)+

4(z − 1)z(3zz̄ − 8z − z̄2 + 6z̄)
z − z̄

∂zHgl(z, z̄)

− 16(z − 1)z(z̄ − 1)z̄∂z∂z̄Hgl(z, z̄)− 4(zz̄ − 2z − 2z̄ + 12)Hgl(z, z̄)

(7.21)

As for the stress tensor, we use the trick explained in section 7.2 to extract only the
Hij component. The correlator restricted to the H’s reads

〈T T OO〉 = K(4,2)(4,2)22 (t34)2H2
12 d1(z, z̄) +O(Vi,jk) . (7.22)

The coefficient function d1 is an expression of the form

d1 =
2∑
i=0

2∑
j=0

qi,j(z, z̄) ∂iz∂
j
z̄Hgr . (7.23)

We relegate the explicit result to the supplementary material.
Finally let us show the correlators with four insertions. Also in this case we will

sidestep the computation of the full correlator and go directly to the orthogonal frame
configuration.22 There are three orthogonal frames which give a nonzero answer: -++-,
-+-+ and --++. Of course there are also the conjugated versions of those, but they are
redundant. In the current case the correlator can be written as

〈J I1J I2J I3J I4〉 = K(3,1)(3,1)(3,1)(3,1)
(
Hs e1 +Ht e2 +Hu e3 + · · ·

)
, (7.24)

with ei being functions of the cross ratios and with the definition

Hs = H12H34 , Ht = H14H23 , Hu = H13H24 . (7.25)

The ellipses represent tensor structures that vanish in any orthogonal frame. Going to the
three frames shown above allows us to solve for all the ei. Note that in the -++- frame only
Ht vanishes, while in -+-+ Hu vanishes and finally in --++ Hs vanishes. The specific linear
combinations appearing in each +_ basis are

E1(u, v) = e1 + 1
u
e3 from -++-,

E2(u, v) = e1 + v

u
e2 from -+-+,

E3(u, v) = e2 + 1
v
e3 from --++.

(7.26)

Let us now for a moment forget the original correlator and let us reinterpret (7.24),
without the ellipses, as a new four-point function of identical scalar operators of conformal
dimension 3. This is a consistent truncation of the crossing equations,23 so we can study

22The full expression for 〈JJJJ 〉 is however available upon request.
23Notice that one can argue that the tensor structures appearing represent a complete set just by noticing

that they are the same ones appearing in generalized free theory.
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how this new correlator behaves under 1 ↔ 3 exchange and write the resulting crossing
equations for the Ei’s. With the normalization in (7.26), we find

E1(u, v) =
(
u

v

)3
(−E3(v, u)|cs↔ct) ,

E2(u, v) =
(
u

v

)3
(−E2(v, u)|cs↔ct) .

(7.27)

Notice that the minus sign comes from the fact that, as can be seen from (5.6), under the
1↔ 3 exchange, cs → −ct, and vice-versa, cu → −cu. For any given choice of flavor group,
one can compute the crossing matrix of the cs,t,u and derive a system of crossing equations
for the Ei’s from (7.27).

The situation is different in the stress tensor case. The correlator can be written as a
combination of six structures now, modulo vanishing ones

〈T T T T 〉 = K(4,2)···(4,2)
(
H2
s f1+H2

t f2+H2
u f3+HsHt f4+HsHu f5+HtHu f6+· · ·

)
. (7.28)

Now we can only compute three independent combination of functions fi, so not all of them.
In particular we can only compute

F1 = f1 + u−2f3 + u−1f5 from -++-,
F2 = f1 + v2u−2f2 + vu−1f4 from -+-+,
F3 = v2u−2f2 + u−2f3 + vu−2f6 from --++.

(7.29)

These functions satisfy the following crossing equations

F3(u, v) =
(
u

v

)4
F1(v, u) , F2(u, v) =

(
u

v

)4
F2(v, u) = F1

(
u

v
,

1
v

)
, (7.30)

where we have used the fact that

H̃gr(u, v) =
(
u

v

)2
H̃gr(v, u) = 1

v2 H̃gr

(
u

v
,

1
v

)
. (7.31)

7.4 A brief comment on the interpretation of the orthogonal frame

In the previous section we took the correlator in a convenient frame in order to obtain
simpler and more manageable expressions. However, a closer look reveals a deeper physical
interpretation of this configuration. Choosing a specific frame breaks part of the conformal
group, but we can still consider the part which is left unbroken and try to reinterpret the +_
polarizations we have introduced before. In particular, the choice of a plane for xi and its
orthogonal complement for hi breaks the conformal group into SO(2, 4) → U(1)× SO(2, 2).
We choose the plane [03] for the coordinates and the plane [12] for the spin polarizations

h+_,µ
j = (0, h+_

j , ±ih+_
j , 0)µ , (7.32a)

xµj =
(
zj − z̄j

2 , 0, 0, zj + z̄j
2

)µ
. (7.32b)
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The U(1) factor is a global symmetry from the point of view of the two-dimensional theory
on the plane. The coordinates are indeed left unchanged and the spin polarizations rotate
with a sign that depends on whether we choose the + or the - frame. Vice versa, conformal
transformations on the [03]-plane have no effect on the polarizations and act on z and z̄
as an holomorphic and an anti-holomorphic transformation respectively. To summarize,
a rotation of an angle ϕ in the [12]-plane and of an angle ψ in the [03]-plane have the
following effect

η1 → e
1
2 (iϕ−ψ) η1 , η2 → e

1
2 (−iϕ+ψ) η2 ,

η̄1 → e
1
2 (−iϕ−ψ) η̄1 , η̄2 → e

1
2 (iϕ+ψ) η̄2 ,

h+ → e−iϕ h+ , h- → eiϕ h- ,

z → eψ z , z̄ → e−ψ z̄ .

(7.33)

Consider now an operator Vµ1···µs in four dimensions. The cases we are interested in
are s = 1 and s = 2, but for generality we keep s arbitrary. When we go to an orthogonal
frame we contract all indices of V either with h+,µ or with h-,µ. Let us denote then

V ±(z, z̄) ≡ h+_,µ1 · · ·h+_,µs Vµ1···µs . (7.34)

In the two-dimensional theory this is a scalar operator with global U(1) charge ∓s. From
this interpretation it is obvious that there are only three possible frames: they correspond
to the correlators of V ± which are nonzero by charge conservation and these are exactly
the ones we have seen before. The crossing equations in this orthogonal frame then reduce
to those of a charged scalar operator of dimension s+ 2 in two dimensions.

An operator with dimension ∆ and spin (j, ̄) will contribute as a sum of operators
with dimension ∆ + n and different spins, as explained in detail in [33]. Let us denote the
exchanged operator as

O(j,̄)
α1···αj , α̇1···α̇̄(x) . (7.35)

When we contract the indices with η and η̄ we can put some indices along the plane and some
along the orthogonal direction. The ones on the plane will contribute to the two-dimensional
spin while the others will contribute to the global U(1) charge, q. Furthermore we can have
some derivatives along the orthogonal direction which will still make the operator a primary
in two dimensions. A generic component will look like

(∂1 − i∂2)m(∂1 + i∂2)nO(j,̄)
1...12...2,1...12...2

(
η1
)a (

η2
)j−a (

η̄1
)b (

η̄2
)̄−b

. (7.36)

It then has the following charges under the parallel and orthogonal rotations

U(1) : q = ̄− j
2 + a− b+ n−m,

SO(2, 2) : ∆ = ∆ + n+m, l = j + ̄

2 − a− b .
(7.37)

Each of this components is exchanged through the usual Dolan-Osborn conformal block [34]

g∆,l = z
∆−l

2 z̄
∆+l

2 2F1
(

∆−l
2 , ∆−l

2 ; ∆− l, z
)

2F1
(

∆+l
2 , ∆+l

2 ; ∆ + l, z̄
)

+ (z ↔ z̄) . (7.38)
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8 AdS amplitudes

8.1 Mellin space representation

In the orthogonal configuration, all the correlators described so far effectively appear as scalar
four-point functions. For scalar correlators an alternative to position space representation is
the Mellin space formalism [2, 3], which is particularly illuminating in the holographic limit.
Consider four generic scalar operators of dimension ∆i. Their correlator can be written as

〈O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)〉 = K∆1∆2∆3∆4G∆1∆2∆3∆4(u, v) . (8.1)

The corresponding Mellin amplitude is defined through the integral

G∆1∆2∆3∆4(u, v) =
∫ i∞

−i∞

dsdt
(4πi)2u

s
2 v

t−∆2−∆3
2 M∆1∆2∆3∆4(s, t)Γ∆1∆2∆3∆4(s, t, u) ,

Γ∆1∆2∆3∆4(s, t, u) = Γ
(∆1 + ∆2 − s

2

)
Γ
(∆3 + ∆4 − s

2

)
Γ
(∆1 + ∆4 − t

2

)
Γ
(∆2 + ∆3 − t

2

)
Γ
(∆1 + ∆3 − u

2

)
Γ
(∆2 + ∆4 − u

2

)
,

(8.2)

where s, t, u are the Mellin-Mandelstam variables. They are not independent, but are
constrained to satisfy s + t + u = ∑4

i=1 ∆i. The expression above allows us to define the
Mellin amplitudeM(s, t) for a generic scalar correlator. However, for the four-point function
of the scalar supergluons OI2 and supergravitons O, we would like to include the constraints
coming from the superconformal Ward Identities as well. Superconformal symmetry dictates
that the four-point function of all supergluons and all supergravitons takes respectively
the form in (5.13) and in (6.16).24 This is realized in Mellin space by considering as our
defining amplitude the reduced Mellin amplitude [14, 35, 36], which is nothing but the
Mellin transform of H̃gl(u, v) and H̃gr(u, v)

H̃gl(u, v) =
∫ i∞

−i∞

dsdt
(4πi)2u

s
2 v

t−4
2 M̃gl(s, t)Γ2222(s, t, ũ) ũ = u− 2 = 6− s− t , (8.3a)

H̃gr(u, v) =
∫ i∞

−i∞

dsdt
(4πi)2u

s
2 v

t−4
2 M̃gr(s, t)Γ2222(s, t, ũ) ũ = u− 4 = 4− s− t . (8.3b)

The expressions for the supergluon and supergraviton reduced Mellin amplitude are respec-
tively [14, 36]

M̃gl(s, t) = 4cs
3(s− 2)

( 1
t− 2 −

1
ũ− 2

)
+ 4ct

3(t− 2)

( 1
ũ− 2 −

1
s− 2

)
+ 4cu

3(ũ− 2)

( 1
s− 2 −

1
t− 2

)
, (8.4a)

M̃gr(s, t) = 8
(s− 2)(t− 2)(ũ− 2) . (8.4b)

24More precisely, we are only Mellin transforming the anomalous part. This is allowed because the
protected part does not contribute to the Mellin amplitude [35].
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On the other hand, we have shown that in the orthogonal frame, the four-point function
with two or four insertions are simply given in terms of polynomials in u and v multiplying
derivatives of the lowest-component correlator H̃gl(u, v) and H̃gr(u, v). This action is easily
realized in Mellin space where any differential operator becomes a difference operator.25

Consider a generic function f(s, t), then

u∂u : f(s, t)→ s
2 × f(s, t) ,

v∂v : f(s, t)→ t− 4
2 × f(s, t) ,

umvn : f(s, t)→
(f(s, t)Γ2222(s, t, ũ))s→s−2m,t→t−2n+4−∆2−∆3

Γ∆1∆2∆3∆4(s, t, u) ,

(8.5)

where ũ = −s − t + 6 or ũ = −s − t + 4 depending whether we are acting on M̃gl
or M̃gr.supplementary material Through the action of this difference operator26 we are
able to determine the Mellin amplitude for all the correlators we have described before:
namely the ones with two or four current/tensor insertions in the orthogonal frame and
alsoMWWWW andMLLLL which are naturally scalars. From these results, we can then
go back to position space by guessing an expression in terms of D-function through (C.7).
We expect that the correlators can be written as a sum of D-functions because, if we were
to perform an honest diagrammatic calculation, all the exchange Witten diagram have
the correct quantum numbers to truncate into a finite sum of contact diagrams [37]. It is
important to notice that the position space result obtained as such correspond to the full
correlator, namely it consists of both the anomalous part and the protected one. In the
following, we will show explicitly that if we compare the results from the inverse Mellin
transform with the one obtained by the direct action of the differential operator on H̃gl
and H̃gr, their difference is exactly the connected component of the protected part in (5.3)
and (6.10).

8.2 One spinning insertion

Let us start by briefly discussing the correlators with just one current or stress-tensor
insertion in the supergravity limit. These examples fall outside the above discussion of
scalar Mellin amplitudes since they vanish in the orthogonal configuration. It is nonetheless
possible to describe them in Mellin space following [6]. More precisely, in [6] they adopt
the Mellin formalism to describe a correlator of scalars plus a spin-J insertion. We are
not reviewing this method here since all the details for 〈T OOO〉 can already be found
in [4, appendix C] and the insertion of one J is very similar. We instead just report for
completeness the position space results for the full correlators. Following the notation

25In particular, the Mellin amplitudes of the bottom components are related to the reduced Mellin
amplitudes via the action of difference operators [14, 35, 36].

26We provide the expressions for all the difference operators in a Mathematica file in the supplementary
material attached to this paper.
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in (7.15) and (7.17), for 〈JO2O2O2〉 we find

afull
1 (u, v) = −2

√
2u2v(csD3221 + ctD2231 − cuD3131) ,

afull
2 (u, v) = −2

√
2u2

(
csD3212 − ct

1
v
D3113 + cuD3122

) (8.6)

with the rational part

afull
1 − aanom

1 = −2
√

2u
3 (v(cs − cu) + u(ct − cu)) ,

afull
2 − aanom

2 = 2
√

2u
3v (−cs + ct + u(ct − cu)) .

(8.7)

By substituting V1,23 = v−1(V1,24 − uV1,34), in (C.29) of [4], for the stress-tensor insertion
we find

bfull
1 (u, v) = 32u2v

(
D̄4132 + v

(
D̄4141 + D̄4231 + D̄4242

))
,

bfull
2 (u, v) = −64u2(D̄4132 + uD̄4222 + v

(
D̄4141 + D̄4242 + (1− 2u)D̄4231 − 2uD̄4321

)
+ uvD̄4332) ,

bfull
3 (u, v) = v2 bfull

1

(
u

v
,

1
v

)
,

(8.8)

with
bfull
1 − banom

1 = 32uv(u+ v) ,
bfull
2 − banom

2 = −64u2 .
(8.9)

Notice that both these results are consistent with (and can be extracted from) the factor-
ization of the five-point function of supergluons in [5] and supergravitons in [4] respectively.

8.3 Two spinning insertions

Let us now consider the case with two spinning operators which are inserted at x1 and x2.
In the orthogonal frame, only the terms in (7.19) and (7.22) proportional to H12 survive.
By using the Schouten identities, this tensor can be rewritten in terms of hi in (7.4)

Hij = −ηixij η̄i ηjxjiη̄j + x2
ij ηiηj η̄iη̄j

orthogonal−−−−−−→
frame

1
2x

2
ij hi · hj . (8.10)

For two current insertions, the four point function in the orthogonal frame can be written as

〈J JO2O2〉ortho = 1
2h1 · h2y

2
34K3322GJJO2O2(u, v) . (8.11)

The corresponding Mellin amplitude then reads

MJJO2O2(s, t) = cs
10(t− u)

s− 2 − ct
4

t− 3 + cu
4

u− 3 − 10(ct − cu) . (8.12)

The interpretation of these terms is quite clear. The coefficient of cs is from the exchange
of the spin-1 gluon field. The singular parts of ct and cu are from exchanging the scalar
supergluon. Yet, their effective dimensions are shifted because of the external spinning
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operators. The last two terms represent additional contact interactions. Now let us
transform this Mellin amplitude back into position space,27

Gfull
JJO2O2 = 4u3

(
5cs

(
D4321 −D4312

)
− ctD2321 + cuD3221 + 5(ct − cu)D3322

)
, (8.13)

where we have introduced the superscript “full” to distinguish between the correlator
obtained from the Mellin amplitude and the correlator Ganom obtained by the direct action
of the differential operator on F̃ as in (7.19). If we compare the two, we find the two
quantities differ by a rational function of the cross ratios

Gfull
JJO2O2 − G

anom
JJO2O2 = 4

3u
(

cs
(1
v
− 1

)
+ ct
v

+ cu
)
. (8.14)

As mentioned earlier, this term should be identified with the protected part of the correlator
which we can also compute independently by acting on the protected part of the super
primary correlator with the superconformal differential operators. We find that we arrive
at the same answer

D1D2
(
g2

12g
2
34G

I1I2I3I4
rational

) ortho−−−→
frame

1
2x

2
12 h1 · h2K3322

4
3u
(

cs
(1
v
− 1

)
+ ct
v

+ cu
)

(8.15)

where Di is defined in (3.5).
For two stress tensor insertions we have

〈T T OO〉ortho = 1
4(h1 · h2)2 t234K4422GT T OO(u, v) , (8.16)

with the corresponding Mellin amplitude

MT T OO = 28
( 23

s− 2(3tu− 76)− 2
t− 4 −

2
u− 4 + 250

)
. (8.17)

The form of the amplitude also agrees with the expectation: the singular part in s corresponds
to an exchange diagram of a spin-2 graviton, while the poles in t and u come from the
exchange of the supergraviton, with an effective dimension shifted by 2. From this, we can
find the corresponding expression in position space

Gfull
T T OO = 28u4

(
D3412 +D3421 + 46D4411 − 164D4422 − 138D6422

)
. (8.18)

The difference with the anomalous part of the correlator gives the following protected part

Gfull
T T OO − Ganom

T T OO = 28u(v + 1)
v

. (8.19)

27It is important to note that the translation into position space is in principle not unique due to the
existence of D̄-function identities which add up to rational terms of the cross ratios. In Mellin space, the
rational terms are invisible and therefore gives rise to ambiguities. One can avoid the ambiguities by writing
down an ansatz which includes only the D̄-functions expected from Witten diagram calculations.
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8.4 Four spinning insertions: bosonic YM and gravity

In this subsection, we consider correlators in the orthogonal frame with four spinning operator
insertions. In the holographic limit, they correspond to gluon and graviton scattering
amplitudes in AdS. At tree level, these correlators obtained from the supersymmetric
theories coincide with those of the bosonic theories.

For the correlators of four currents, we have three components, each one corresponding
to a different ei. Let us define hij = hi · hi,

〈J JJJ 〉ortho = K3333
4

(
h12h34e1 + h14h23

v

u
e2 + h13h24

1
u
e3

)
, (8.20)

In Mellin space, we find

M(1)
J = 26

(
cs

25(t− u)
2(s− 2) + cs

4(t− u)
(s− 4) − ct

(s + 21)
(t− 4) + cu

(s + 21)
(u− 4) − 33(ct − cu)

)
,

(8.21)

M(2)
J = −M(1)

J

∣∣∣ s↔ t,
cs↔ct

, M(3)
J = −M(1)

J

∣∣∣ s↔u,
cs↔cu

(8.22)

Transforming back into position space, we find the full correlator of the first component is
given by

efull
1 = 25u3{cs

(
25(D4312 −D3412) + 33(D4323 −D3423)

)
+ ct(−39D2332 + 31D2343 + 33D3342)

+ cu
(
39D2323 − 31D3243 − 33D3324

)}
,

(8.23)

and the protected part is

efull
1 − eanom

1 = 25u

3v2
{
cs(v − 1)

(
−4u(v + 1) + 4v2 + v + 4

)
+ ct

(
4u
(
u2 − u(v + 1)− 1

)
− 3v + 4

)
+ cu

(
−4u3 + 4u2(v + 1) + 4uv2 + (3− 4v)v2

)}
.

(8.24)

For completeness, we report also the expressions corresponding to e2 and e3

efull
2 = 25u

4

v

{
cs
(
39D3322 − 31D4323 − 33D4332

)
+ ct(25(D1432 −D1342) + 33(D2433 −D2343))

+ cu
(
−39D3232 + 33D3243 + 31D4233

)}
,

(8.25a)

efull
3 = 25u4{cs

(
−39D3322 + 31D3423 + 33D4323

)
+ ct(39D2332 − 33D2343 − 31D2433)

+ cu
(
25(D3142 −D4132) + 33(D3243 −D4233)

)}
,

(8.25b)

which are related to efull
1 by crossing symmetry.
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For the correlators of four stress tensors we will consider the Mellin transform M(i)
T of

the three independent component Fi in (7.29), which are effectively correlators of scalars of
dimension four. The result reads

M(1)
T = 3 · 213

{(
− 529

(
3t2 − 42t+ 148

)
s− 2 −

(
1731t2 − 23676t+ 77896

)
s− 4 −

(
183t2 − 2526t + 8254

)
s− 6 − 3(s(75s + 72u− 1238) + 2520)

4(t− 6)

)
+ s↔ u

}
.

(8.26)

The other two components of the Mellin amplitude are related to this one through crossing

M(2)
T =M(1)

T

∣∣∣
t↔u

, M(3)
T =M(1)

T

∣∣∣
s↔t

. (8.27)

In position space, this becomes

F full
1 = 3 · 216u4

(
48D3443 + 4232D4141 − 6

(
3D3555 + 968D4253 + 1200D4354

+ 2116D5153 + 3270D5254 + 2334D5355
)

+ 3(5040D4242 + 5646D4343

− 4768D4444 − 9261D5445) + 4232
(
D4411 − 3D5513

)
+ 12(1260D4422

− 484D4523 − 1635D5524) + 18
(
941D4433 − 400D4534 − 778D5535

) )
,

(8.28)

and the protected part reads

F full
1 −Fanom

1 = 3 · 218u

((
u3 + 1

)
2v + 11

4
(
37(u2 + 1)− 2u

)
− 837

4 (u+ 1)v + 108v2
)
.

(8.29)
The other Fi can be easily obtained using their crossing properties as in (7.30).

8.5 Correlators of the top components

Finally we study the four-point function of the top components introduced in section 5.3
and 6.2. These are scalars by themselves, so there is no need to go to the orthogonal frame
and we can perform directly a Mellin transform. Let us start from the gluon case. Consider
GW as in (5.26), the corresponding Mellin amplitude reads

MW = cs
(2(t− u)

s− 2 + (t− u)
s− 4

)
+ ct

(2(u− s)
t− 2 + (u− s)

t− 4

)
+ 3(cs − ct) , (8.30)

where the poles correspond to the s- and t-channel exchange of the gluon field and we have
additional contact terms. The fact that cu does not appear is due to the nontrivial and
opposite U(1)r charge carried by W and W which allows exchange Witten diagrams in the
neutral channels. The position space expression in terms of D function reads

Gfull
W = −2u3cs

(
D3311 − 4D3322 − 2D4312 + 3D4332

)
+ 2u3ct

(
D1331 − 4D2332 − 2D1342 + 3D3342

)
,

(8.31)
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with the protected connected part given by

Gfull
W − Ganom

W = u(u+ v − 1)(cs − ct)
3v2 . (8.32)

For the correlator of four Lagrangians in (6.21), the Mellin amplitude is28

ML =
(
− 12

(
3t2 − 42t + 3u2 − 42u + 296

)
s− 2 − 48

(
t2 − 12t + u2 − 12u + 72

)
s− 4

− 6
(
t2 − 10t + u2 − 10u + 48

)
s− 6 − 90(3s− 16)

)
+ (s↔ t) .

(8.33)

Similar to the previous case, the poles represent the s- and t-channel exchange Witten
diagrams of gravitons and there are additional contact terms. In position space, we find

Gfull
L = 24u4

{(
4D1441 − 24D1452 + 12D1463 + 12D2442 − 48D2453 + 20D2464

+ 12D3443 − 40D3454 + 15D3465 − 60D4444 + 45D4455
)

+ (∆1 ↔ ∆3)
}
,

(8.34)

where by (∆1 ↔ ∆3) we simply mean to take the expression among parentheses and send
D∆1∆2∆3∆4 → D∆3∆2∆1∆4 . In this way the expected u↔ v symmetry is manifest. Finally,
by comparing this expression with the one obtained by the direct action of ∆(8) operator
on H̃gr, we recover the rational part

Gfull
L − Ganom

L = 16u
(
u2 + u(v − 2) + (v − 1)2)

v3 . (8.35)

It is instructive to compare our result to the ones known in the literature for the axio-
dilaton currents in [16, 39, 40]. The axion OC and the dilaton Oφ are obtained as a
linear combination of the self-dual and anti-self dual SYM Lagrangian: Oφ ∼ L+ L̄ and
OC ∼ i(L−L̄). By using the fact that the four-point functions with only one L or L̄ vanish,
it is straightforward to get

〈OφOCOφOC〉 = −K4444
π6

(
Gfull
L (u, v)− u4Gfull

L

(1
u
,
v

u

)
− Gfull

L

(
u

v
,

1
v

))
. (8.36)

Notice that in order to reproduce the correct result, we have to consider the full correlator.
Then according to the analysis in [16], it should be possible to write not only the anomalous
part as the action of ∆(8) on a scalar function of u and v, as in (6.21), but the protected
part as well. Indeed we find that we can rewrite (8.35) as

Gfull
L − Ganom

L ≡ Grational
L = ∆(8)

(
u

v

)
. (8.37)

Quite remarkably we find that the same seed function correctly reproduces the rational
part also of the N = 2 superpotential correlator in (8.32)

Gfull
W − Ganom

W ≡ Grational
W = ct − cs

3 ∆(4)
(
u

v

)
. (8.38)

Unfortunately the same property does not apply to the other spinning components.
28Similar expressions can also be found in [38].
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9 Towards double copy relations in position space

In this section we present preliminary results on the AdS generalization of the double copy
relation [9]. In flat space, the double copy relation provides an interesting perspective
on the nature of gravity, and gives an efficient way to construct gravitational amplitudes
from the amplitudes in non-gravitational gauge theories (see [41] for a pedagogical review).
As already mentioned in the introduction, a Mellin space double copy relation has been
found in [10] at tree level for the four-point functions of the lowest components of the
supermultiplets. Unfortunately, Mellin amplitudes are difficult to define for spinning
correlators [6], and therefore this formalism is not suitable for the discussion of AdS gluon
and graviton amplitudes. In the absence of a better representation, in this section we
search for such generalizations directly in position space.29 Although we did not succeed
in identifying a prescription that precisely gives the gravity correlators, we find a lot of
evidence which suggests such a relation should exist. At the same time, it should be noted
that where to look for the double copy relation is a priori unclear as there exist many
possibilities. Therefore, it is important to clarify what we have considered. Before we
proceed to enumerating the evidence, let us make two brief comments regarding this point
and mention some of the subtleties.

The first comment concerns the extra complexity coming from R-symmetry in super-
symmetric theories. If the double copy structure is extended by superconformal symmetry
to all the component correlators, it has to manifest itself in both the spacetime dependence
and the R-symmetry dependence. But since here we are only taking the first step in
finding such a relation, we will only focus on the spacetime part and avoid discussing how
double copy acts on R-symmetry. We are allowed to do that because we will only look at
correlators whose R-symmetry dependence can essentially be “factored out”. For example,
in the correlators of the bottom components the R-symmetry variables only appear in
the superconformal factors multiplying the reduced correlators. As another example, in
〈JOOO〉 and 〈T OOO〉 of the gluon and graviton theories respectively, both J and T
are R-symmetry neutral and there is a unique R-symmetry structure which appears as a
three-point function.

Another comment is about whether the AdS double copy relation should relate the
whole correlators or only parts of them. There are two different perspectives and they lead
to different expectations. From the superconformal symmetry perspective, all component
correlators naturally split into the sum of a protected part and a dynamical anomalous part.
It is possible that double copy exists only for the anomalous part. The reason to suspect
such a scenario is that the protected part is a bit too “simple” to host such a structure.
Especially when the theory admits a marginal coupling, the protected part is just the free
theory correlator where the dual theory is highly nonlocal and far from YM theory or
gravity. It is this possibility which we will investigate in the section. On the other hand,
this splitting is quite artificial for the 〈J JJJ 〉 and 〈T T T T 〉 correlators as they coincide
with the correlators in the bosonic theories. In the bosonic theories no such distinctions

29The existence of a double copy for CFT correlators has also been explored in momentum space, see for
instance [42–44].
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exist. Since in flat space double copy holds for the whole amplitude, we might also expect
that the AdS generalization is only present at the level of the full correlator as well. We
will leave the exploration of this possibility for future work.

9.1 Bottom components revisited

Let us begin by writing the supergluon reduced correlators (5.13) in the following form

Hgl ∝ csNsWs + ctNtWt + cuNsWu . (9.1)

The functions

Ws = x−2
12 D1122 , Wt = x−2

14 D1221 , Wu = x−2
13 D1212 , (9.2)

are the exchange Witten diagrams in the s-, t-, u-channels respectively where all external
and internal dimensions are 2. As we will see, they correspond to the scalar propagators,
1/s, etc., in flat space. The differential operators Ns,t,u are given by

Ns = Dt − Du , Nt = Du − Ds , Nu = Ds − Dt , (9.3)

where
Ds = 1

x2
12

∂

∂x2
34
, Dt = 1

x2
14

∂

∂x2
23
, Du = 1

x2
13

∂

∂x2
24
. (9.4)

They play the role of the kinematic numerators and increase the conformal dimension of
each external point by one. In deriving this representation we have used (C.2).

Clearly, we have the following relation by construction

Ns + Nt + Nu = 0 , (9.5)

which generalizes the color-kinematic duality in flat space. Note that this way of writing the
reduced correlator might seem similar to the differential representation advocated in [45–47].
However, an important difference is that our differential operators act on exchange Witten
diagrams, instead of on contact Witten diagrams. If we replace Ns,t,u by cs,t,u we get the
four-point function of bi-adjoint scalars

csc
′
sWs + ctc

′
tWt + cuc′uWu . (9.6)

This agrees precisely with the Mellin space result of [10] where it showed that the zero
copy gives conformally coupled bi-adjoint scalars on AdS5 × S1.30 On the other hand, if we
replace cs,t,u by Ns,t,u, we get a dimension 4 four-point function. Using the identities of
D-functions in appendix C, the result can be written as

N2
sWs + N2

tWt + N2
uWu = 9π2N2

8 Hgr + R , (9.7)

which is almost the supergraviton reduced correlator except there is a rational term

R = 1
(x2

12x
2
34)4

u2(u+ v + uv)
2v2 . (9.8)

Therefore, we find a double copy relation in position space which works up to terms with
transcendental degree zero.

30For the correlator of the lowest KK mode, the internal space is invisible and the correlator coincide with
that of the scalar theory on AdS5. The latter is a consistent truncation of the AdS5 × S1 theory.
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9.2 Double copy structures for spinning correlators

If we look at the expressions (5.19) and (6.20) together with (9.1) and (9.7) we immediately
notice that both the double copy and the zero copy are trivially satisfied, provided that the
“square” of the operators is defined as

(D1D2D3D4 ΛNs,t,u)2 ≡ D2
1D2

2D2
3D2

4 Λ2N2
s,t,u . (9.9)

The same would hold for the other insertions, as the reader can verify easily. However, the
expression above does not hold as an identity for differential operators — where the square
literally means applying the operator twice and it is only true when the operators commute.
Thus, defining the “square” in such a way would seem rather artificial. In this subsection
we propose a way to make this a bit more precise and also more similar to the flat-space
prescription. However, this comes at the expense of having to introduce the inverse of the
operator “Di”. Taking an inverse of a differential operator is not necessarily a bad thing,
for example �−1 can be easily defined. But we have to take care with the domain of Di
and make sure that the space of functions we deal with does not belong to the kernel of Di.
In this preliminary exploration we will not trouble ourselves with these details and assume
that such issues do not arise. Let us now analyze more carefully the cases of one and four
insertions.

For the anomalous part of the correlators with one spinning insertion we have the
following formulas

〈J I1OI22 O
I3
2 O

I4
2 〉 = D1 L1

234Hgl , (9.10a)
〈T O2O2O2〉 = D2

1 (L1
234)2Hgr , (9.10b)

where the relevant definitions can be found around (5.16) and (6.18). We are also dropping
overall numerical factors such as powers of 2, C2

2,2,2 and N2. As a trivial consequence of (9.7)
we can obtain a double copy relation for the spinning correlator through the following
replacement

cs,t,u −→ D2
1 (L1

234)2 Ns,t,u (D1L1
234)−1 . (9.11)

In performing this replacement we are considering a definite prescription for the action of
cs,t,u. More precisely, we assume to first take all color factors to the left of every spacetime
or polarization dependent quantity and then to perform the formal replacement above. In
this way the new numerator acts, from the left, on the gluon correlator giving the graviton
one. The expression (9.11) is only formal for now because we have not given a concrete
definition of the (nonlocal) operator (D1L1

234)−1. A more careful treatment is needed to
make this rigorous and we hope to come back to it in a future work. Note that D1L1

234 may
be written as

D1L1
234 = η̄1∂1x12x23x34x41η1 − η̄1∂1x14x43x32x21η1 . (9.12)

We can carry out the same exercise for two and four insertions. For brevity, let us show
only the case of four insertions

〈J I1J I2J I3J I4〉 = D1D2D3D4 Λ(x, η)Hgl , (9.13a)
〈T T T T 〉 = D2

1D2
2D2

3D2
4 Λ(x, η)2Hgr , (9.13b)
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with the definitions in (5.19) and (6.20). This, formally, leads to the double copy replacement

cs,t,u −→ D2
1D2

2D2
3D2

4 Λ(x, η)2 Ns,t,u (D1D2D3D4 Λ(x, η))−1 . (9.14)

Let us now address the case of the zero copy to a bi-adjoint scalar. Recall for the
correlator of the bottom component, replacing the numerators Ns,t,u with the color factors
cs,t,u yielded the amplitude for bi-adjoint scalars. We can check if the same is true for
spinning components. Formally, inverting the relations (9.11) and (9.14) we have

Ns,t,u −→ c′s,t,u (L1
234)−2D−1

1 L1
234 , (9.15a)

Ns,t,u −→ c′s,t,u Λ(x, η)−2(D2
1D2

2D2
3D2

4)−1D1D2D3D4 Λ(x, η) . (9.15b)

Of course, there is no obvious prescription on how to perform this replacement on an
arbitrary function. We can however use the representations (9.10a) and (9.13a) together
with (9.1). This leads to

〈J I1OI22 O
I3
2 O

I4
2 〉
∣∣
(9.15a) = cs c′sD1 (L1

234)−1D−1
1 L1

234Ws + (s→ t, u) , (9.16a)

〈J I1J I2J I3J I4〉
∣∣
(9.15b) = cs c′sD1D2D3D4Λ−1(D1D2D3D4)−1ΛWs + (s→ t, u) . (9.16b)

Given the result of (9.7), we do not expect the outcome to be the bi-adjoint scalar correlator
on the nose, but we might have to allow for some rational terms as well, possibly different
for each number of insertions. Notice that the operators in (9.16) are written in the form
of a commutator “[[a, b]] ≡ aba−1b−1.” If the operators Di and L or Λ commuted, then the
zero copy relation would be trivially satisfied. This unfortunately does not seem to be the
case. However, we could content ourselves with a slightly weaker property, namely that the
commutator acting on Ws,t,u equals the identity up to rational terms

[[D1, L−1]]Ws,t,u
?= Ws,t,u + R′ , (9.17)

and similarly for the four-insertions case. Unfortunately, we were not able to check this
because we did not manage to find an explicit expression for the nonlocal inverse operators
D−1
i . We will leave the verification of this possibility for the future.

Finally, let us consider the top components, namely the superpotential and the La-
grangian. Comparing the two four-point functions we see

〈WWWW〉 = 1
(x2

12x
2
34)3 ∆(4) (x2

12x
2
34)2x2

13x
2
24Hgl , (9.18a)

〈LL̄LL̄〉 = 1
(x2

12x
2
34)4 ∆(8) (x2

12x
2
34x

2
13x

2
24)2Hgr , (9.18b)

with all relevant definitions given in (5.26) and (6.21). A double copy relation for these
operators readily follows

cs,t,u −→
1

(x2
12x

2
34)4 ∆(8) (x2

12x
2
34x

2
13x

2
24)2 Ns,t,u

( 1
(x2

12x
2
34)3 ∆(4) (x2

12x
2
34)2x2

13x
2
24

)−1
.

(9.19)
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Also in this case the differential operator is just a formal expression because we do not
know how to write the inverse of ∆(4) in general. However, the situation here is a bit better
because we can diagonalize ∆(4) by simply expanding Hgl in the basis of superconformal
blocks in the u channel

∆(4)Hgl(z, z̄) =
∑
∆,`

a∆,` ∆(4)Gu∆,`(z, z̄)

= 1
16
∑
∆,`

a∆,` (∆− `)(∆− `− 2)(∆ + `)(∆ + `+ 2) gu∆+2,`(z, z̄) ,
(9.20)

where the superconformal blocks in the u channel of Hgluon
2222 and the ordinary conformal

blocks in the u channel of GW are given by, respectively31

Gu∆,`(z, z̄) = u2g∆+2,`

(1
z
,

1
z̄

)
, (9.21a)

gu∆,`(z, z̄) = u3g∆,`

(1
z
,

1
z̄

)
. (9.21b)

Therefore, the color-kinematic dual in the basis of conformal blocks is given by32

cs,t,u|∆,` (u-chan.) −→
1

(x2
12x

2
34)4 ∆(8) (x2

12x
2
34x

2
13x

2
24)2 Ns,t,u

16 (x2
12x

2
34)3

(∆− `)(∆− `− 2)(∆ + `)(∆ + `+ 2) .
(9.22)

10 Future directions

In this paper, we performed a detailed superspace analysis for four dimensional SCFTs
with N = 2 and N = 4 superconformal symmetry. We presented explicit formulas for how
spinning component correlators are related to the super primary correlators and results of
these correlators in the holographic limit. Among them, a particularly interesting result
is the tree-level four gluon and four graviton scattering amplitudes in bosonic YM and
Einstein gravity, which are otherwise difficult to obtain using diagrams. We also presented
preliminary results for how gluon and graviton correlators are related, which provide
evidence that an AdS extension of the double copy relation should exist. Our investigation
leads to a number of natural future directions.

• AdS double copy although we did not manage to extract a precise double copy
prescription in this paper, we obtained very explicit results for the spinning correlators
in terms of D-functions. It will be important to analyze in detail the structures of these
correlators in a future research and compare them with the structures in flat space. This
will probably provide more hints for how to find an exact double copy relation. We should
also investigate the other possibilities which were mentioned but not considered here.

31The blocks in the s channel are u−1g∆+2,`(z, z̄). To obtain those in the u channel we send z → 1/z and
multiply by u coming from the crossing of the kinematic factor. For the correlator of superpotentials the
kinematic factor gives a u3 instead.

32Note that the factor (x2
12x

2
34)2x2

13x
2
24 in front of ∆(4) in (9.19) is precisely the one that allows us to go

from Hgl to Hgl.
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• Numerical bootstrap in section 7.2, we pointed out that a closed sector of the
spinning correlators is obtained by restricting the polarizations to be in the orthogonal
configuration. This sector resembles a scalar four-point function. A concrete research
problem is to set up the numerical conformal bootstrap for this system and obtain bounds
on various CFT data. Such a bootstrap problem will not exploit the full set of constraints
coming from the spinning four-point function, but will still give rigorous bounds, albeit
suboptimal. On the other hand, we computed all structures of 〈J JJJ 〉 explicitly for
an N = 2 holographic theory at tree level. To our knowledge, this is the only nontrivial
example of an explicitly known spinning four-point function. This result is therefore also
useful to the full, four dimensional, bootstrap problem of currents as it can be used to
put points in the exclusion plots and compare with the bounds.

• Higher KK modes in this paper, we restricted our attention to correlators of half-BPS
multiplets with the lowest dimension. However, the superspace analysis can also be
generalized to more general half-BPS multiplets which correspond to higher KK modes
in AdS. Spinning correlators of these higher KK modes will be useful for bootstrapping
higher-point functions involving general half-BPS operators.

• Other dimensions it would also be interesting to extend the superspace analysis to
consider theories in other spacetime dimensions. In particular, the gluon and graviton four-
point functions are also determined by the super primary correlators via supersymmetry
and coincide with those in the bosonic theories at tree level. Using the results for super
primary correlators [14, 35, 36, 48, 49], we will be able to compute gluon and graviton
amplitudes in different AdS backgrounds. It would be interesting to see how the behavior
of these amplitudes changes with respect to spacetime dimensions.
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A Superconformal algebra

Following [23], we list of all non-vanishing (anti)commutators for the N = 2 superconformal
algebra in four dimensions SU(2, 2|2) and in Lorentzian signature, ηµν = diag(−1, 1, 1, 1)
with spinor indices contracted with ε12 = ε21 = 1. The conventions for Pauli matrices are
those of [50]. Furthermore, we denote

xαα̇ ≡ σµαα̇xµ , x̃α̇α ≡ σ̄µ α̇αxµ . (A.1)
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Similarly, we can express the Poincaré and special conformal generators in spinor notation
as follows

Pαα̇ = σµαα̇Pµ , K̃α̇α = σ̄µα̇αKµ ,

M β
α = −1

4 i(σ
µσ̄ν) β

α Mµν , Mα̇
β̇ = −1

4 i(σ̄
µσν)α̇β̇Mµν .

(A.2)

Let us denote the supercharges as Qaα, Qα̇a and Sαa , S
α̇a, with a = 1, 2. Then

{
Qaα,Qα̇b

}
= 2δabPαα̇ ,

{
Qaα,Q

b
β

}
=
{
Qα̇a,Qβ̇b

}
= 0 ,{

S
α̇a
,Sαb

}
= 2δabK̃α̇α ,

{
Sαa ,S

β
b

}
=
{
S
α̇a
,S

β̇b
}

= 0 ,{
Qaα,S

β
b

}
= 4

(
δab

(
M β
α − i

2δ
β

α D
)
−δ β

α Rab

)
,

{
Qaα,S

α̇b
}

= 0 ,{
S
α̇a
,Qβ̇b

}
= 4

(
δab

(
Mα̇

β̇+ i
2δ
α̇
β̇D
)
−δα̇β̇Rab

)
,

{
Sαa ,Qα̇b

}
= 0 ,[

M β
α ,M δ

γ

]
= δ β

γ M δ
α −δ δ

α M β
γ ,

[
Mα̇

β̇ ,M
γ̇

δ̇

]
=−δα̇

δ̇
Mγ̇

β̇+δγ̇β̇Mα̇
δ̇
,[

M β
α ,Pµ

]
= (σµν) β

α P ν ,
[
Mα̇

β̇ ,Pµ
]

= (σ̄µν)α̇β̇ P
ν ,[

M β
α ,Kµ

]
= (σµν) β

α Kν ,
[
Mα̇

β̇ ,Kµ

]
= (σ̄µν)α̇β̇ K

ν ,[
M β
α ,Qaγ

]
= δ β

γ Qaα− 1
2δ

β
α Qaγ ,

[
Mα̇

β̇ ,Qγ̇a

]
=−δα̇γ̇Qaβ̇+ 1

2δ
α̇
β̇Qγ̇a ,[

M β
α ,Sγa

]
=−δ γ

α Sβa + 1
2δ

β
α Sγa ,

[
Mα̇

β̇ ,S
γ̇a
]

= δγ̇β̇S
α̇a− 1

2δ
α̇
β̇S

γ̇a
,

[D,Qaα] = i
2Q

a
α ,

[
D,Qα̇a

]
= i

2Qα̇a ,

[D,Sαa ] =− i
2S

α
a ,

[
D,S

α̇a
]

=− i
2S

α̇a
,

[Kµ,Q
a
α] =−(σµ)αα̇S

α̇a
,

[
Kµ,Qα̇a

]
=Saα (σµ)αα̇ ,

[Pµ,Sαa ] =Qα̇a (σ̄µ)α̇α ,
[
Pµ,S

α̇a
]

=−(σ̄µ)α̇αQaα .
(A.3)

Finally we have the relations involving the U(2) R-symmetry generators

[Rab, Rcd] = δcbR
a
d − δadRcb. (A.4)

Their action on the supercharges reads

[Rab, Qcα] = δcbQ
a
α − 1

4δ
a
bQ

c
α ,

[
Rab, Qα̇c

]
= −δacQα̇b + 1

4δ
a
bQα̇c ,

[Rab, Sαc ] = −δacSαb + 1
4δ
a
bS

α
c ,

[
Rab, S

α̇c
]

= δcbS
α̇a − 1

4δ
a
bS

α̇c
.

(A.5)

One could also consider the SU(2) generators T ab defined as

T ab = Rab −
1
2δ

a
bR

c
c . (A.6)
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The trace part is the U(1) R-symmetry r ≡ Rcc, which assigns charge 1/2 (−1/2) to Qα
(Qα̇). With these generators the above relations become (note the “ 1

2” instead of the “1
4”)

[T ab , Qcα] = δcbQ
a
α − 1

2δ
a
bQ

c
α ,

[
T ab , Qα̇c

]
= −δacQα̇b + 1

2δ
a
bQα̇c ,

[T ab , Sαc ] = −δacSαb + 1
2δ
a
bS

α
c ,

[
T ab , S

α̇c
]

= δcbS
α̇a − 1

2δ
a
bS

α̇c
,

[r,Qcα] = 1
2Q

c
α ,

[
r,Qα̇c

]
= −1

2Qα̇c ,

[r, Sαc ] = −1
2S

α
c ,

[
r, Sα̇c

]
= 1

2S
α̇c ,

(A.7)

Finally recall that we require all our generators to be Hermitian, namely

(Qaα)† = Qα̇a , (Sαa )† = S
α̇a
, (M β

α )† = Mβ̇
α̇ , (Rab)† = Rba . (A.8)

When going to harmonic superspace it is cleaner to use the ± notation

Q1
α = Q+

α , Q2
α = Q−α , Qα̇1 = Q

−
α̇ , Qα̇2 = −Q+

α̇ ,

Sα1 = Sα− , Sα2 = −Sα+ , S
α̇1 = S

α̇+
, S

α̇2 = S
α̇−

,

T 0 = 2T 1
1 = −2T 2

2 , T++ = T 1
2 , T−− = T 2

1 .

(A.9)

The commutators in this notation read[
T 0, Q+

]
= Q+ ,

[
T 0, Q−

]
= −Q− ,[

T++, Q+
]

= 0 ,
[
T++, Q−

]
= Q+ ,[

T−−, Q+
]

= Q− ,
[
T−−, Q−

]
= 0 ,

(A.10)

[
T 0, S+

]
= S+ ,

[
T 0, S−

]
= −S− ,[

T++, S+
]

= 0 ,
[
T++, S−

]
= S+ ,[

T−−, S+
]

= S− ,
[
T−−, S−

]
= 0 ,

(A.11)

{
Q+
α , Q

+
α̇

}
=
{
Q−α , Q

−
α̇

}
= 0 ,{

Q+
α , Q

−
α̇

}
= −

{
Q−α , Q

+
α̇

}
= 2Pαα̇ .

(A.12)

{
Sα+, Sα̇+

}
=
{
Sα−, Sα̇−

}
= 0 ,{

Sα−, Sα̇+
}

= −
{
Sα+, Sα̇−

}
= 2K̃α̇α .

(A.13)

{
Q±α , S

α̇±
}

= 0 ,
{
Sα±, Q±α̇

}
= 0{

Q+
α , S

β−
}

= 4
(
M β
α − 1

2δ
β

α

(
iD + T 0 + r

))
,

{
Q+
α , S

β+
}

= 4δ β
α T++ ,{

Q−α , S
β+
}

= 4
(
−M β

α + 1
2δ

β
α

(
iD − T 0 + r

))
,

{
Q−α , S

β−
}

= −4δ β
α T−− ,{

S
α̇+
, Q
−
β̇

}
= 4

(
Mα̇

β̇ + 1
2δ
α̇
β̇

(
iD − T 0 − r

))
,

{
S
α̇+
, Q

+
β̇

}
= 4δα̇β̇ T++ ,{

S
α̇−
, Q

+
β̇

}
= 4

(
−Mα̇

β̇ − 1
2δ
α̇
β̇

(
iD + T 0 − r

))
,

{
S
α̇−
, Q
−
β̇

}
= −4δα̇β̇ T−− .

(A.14)

[
Pµ, S

α±] = Q
±
α̇ σ̄

α̇α
µ ,

[
Pµ, S

α̇±] = −σ̄α̇αµ Q±α . (A.15)
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B Differential representation

Below we write the covariant derivatives in the full superspace

Da
α = ∂

∂θαa
+ iσµαα̇ θ̄

α̇a ∂

∂xµ
, (B.1a)

Dα̇a = − ∂

∂θ̄α̇a
− iθαa σ

µ
αα̇

∂

∂xµ
. (B.1b)

With the variables defined in (2.5) the covariant derivatives read

Da
α = −ξa ∂

∂θ+α − 2iξaσµαα̇ θ̄−α̇
∂

∂zµ
+ ξ̄a

∂

∂θ−α
, (B.2a)

Dα̇a = ξa
∂

∂θ̄+α̇ + 2iξaθ−ασµαα̇
∂

∂zµ
− ξ̄a

∂

∂θ̄−α̇
. (B.2b)

Now we show all the Poincaré and special conformal supercharges in the two half-BPS
superspace formulations: harmonic and analytic. The “+” in θ+ and θ̄+ is omitted.

In harmonic superspace one has

Qaα = −u+a ∂

∂θα
+ 2iu−a θ̄α̇σµαα̇

∂

∂zµ
, (B.3a)

Qα̇a = u+
a

∂

∂θ̄α̇
+ 2iu−a θασ

µ
αα̇

∂

∂zµ
. (B.3b)

Sαa = −4u+
a u
−
b θ

α ∂

∂u+
b

+ 2u−a θ2εαβ
∂

∂θβ
+ iu+

a z̃α̇α ∂

∂θ̄α̇
− 2u−a θβσ

µ
βα̇z̃α̇α ∂

∂zµ
, (B.4a)

S
α̇a = 4u+au−b θ̄

α̇ ∂

∂u+
b

+ iu+az̃α̇α ∂

∂θα
+ 2u−aθ̄2εα̇β̇

∂

∂θ̄β̇
+ 2u−az̃α̇ασµαβ̇ θ̄β̇

∂

∂zµ
, (B.4b)

with z̃α̇α = σ̄µα̇αzµ and θ2 = θαθα, θ̄2 = θ̄α̇θ̄
α̇.

In analytic superspace instead the generators read

Q+
α = −y ∂

∂θα
+ 2iσαα̇θ̄α̇

∂

∂zµ
, Q−α = ∂

∂θα
, (B.5a)

Q
+
α̇ = −y ∂

∂θ̄α̇
− 2iθασαα̇

∂

∂zµ
, Q

−
α̇ = ∂

∂θ̄α̇
, (B.5b)

Sα+ = −2θ2εαβ
∂

∂θβ
+ 4yθα ∂

∂y
− iy z̃α̇α ∂

∂θ̄α̇
+ 2θβσµβα̇z̃α̇α ∂

∂zµ
, (B.6a)

Sα− = −4θα ∂
∂y

+ i z̃α̇α ∂

∂θ̄α̇
, (B.6b)

S
α̇+ = 2 θ̄2εα̇β̇

∂

∂θ̄β̇
+ 4y θ̄α̇ ∂

∂y
+ iy z̃α̇α ∂

∂θα
+ 2z̃α̇ασµαβ̇ θ̄β̇

∂

∂zµ
, (B.6c)

S
α̇− = −4 θ̄α̇ ∂

∂y
− i z̃α̇α ∂

∂θα
. (B.6d)
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C D functions

In this appendix, we collect some useful properties of D-functions. A general D-function is
defined as an integral over z ∈ AdSd+1

D∆1∆2∆3∆4(x1, x2, x3, x4) =
∫
dz0d

dz

zd+1
0

4∏
i=1

(
z0

z2
o + (~z − ~xi)

)∆i

. (C.1)

D-function of higher external dimensions can be obtained from lower ones by acting with
derivatives in x2

ij as follows

D···(∆i+1)···(∆j+1)··· =
d− 2Σ
2∆i∆j

∂

∂x2
ij

D···∆i···∆j ··· , (C.2)

where we have introduced Σ = 1
2
∑4
i=1 ∆i. We can write D-functions as functions of cross

ratios by introducing the D̄-functions

D∆1∆2∆3∆4 = π2
Γ
(
Σ− d

2

)
2∏4

i Γ(∆i)
(x2

14)Σ−∆1−∆4(x2
34)Σ−∆3−∆4

(x2
13)Σ−∆4(x2

24)∆2
D∆1∆2∆3∆4(u, v) . (C.3)

In this paper, all D-functions can be related to the basic D-function

D1111 ≡ Φ(z, z̄) = 1
z − z̄

(
2Li2(z)− 2Li2(z̄) + log(zz̄) log

(1− z
1− z̄

))
. (C.4)

From this expression, it is not difficult to verify the following useful relations

∂zΦ(z, z̄) =− Φ(z, z̄)
z − z̄

+ log u
(z − 1)(z − z̄) −

log v
z(z − z̄) ,

∂z̄Φ(z, z̄) =Φ(z, z̄)
z − z̄

− log u
(z̄ − 1)(z − z̄) + log v

z̄(z − z̄) .
(C.5)

These identities allow us to explicitly write D-functions as elementary functions of z and z̄.
There also exist simple properties relating D-functions with permuted external dimensions

D∆1∆2∆3∆4(u, v) = vΣ−∆2−∆3D∆2∆1∆3∆4(u, v) = uΣ−∆1−∆2D∆4∆3∆2∆1(u, v)
= D(Σ−∆3)(Σ−∆4)(Σ−∆1)(Σ−∆2)(u, v) ,
= D∆3∆2∆1∆4(v, u) ,

= v−∆2D∆1∆2∆4∆3

(
u

v
,

1
v

)
= v∆4−ΣD∆2∆1∆3∆4

(
u

v
,

1
v

)
,

= u−∆2D∆4∆2∆3∆1

(1
u
,
v

u

)
(C.6)

Finally, the Mellin space representation for these functions reads

D∆1∆2∆3∆4(u, v) =
∫
dsdtu

s
2 v

t
2 Γ
(
− s

2

)
Γ
(1

2(−∆1 −∆2 + ∆3 + ∆4)− s
2

)
× Γ

(
− t

2

)
Γ
(1

2(∆1 −∆2 −∆3 + ∆4)− t
2

)
× Γ

(s + t
2 + ∆2

)
Γ
(1

2(∆1 + ∆2 + ∆3 −∆4) + s + t
2

)
.

(C.7)
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D Embedding space formalism

It is well known that a convenient way to rephrase d dimensional conformal symmetry is by
embedding it in a higher dimensional space, Md+2, where conformal transformations act as
linear isometries. For this brief review we fix d = 4. Given a point PA ∈M6 in light-cone
coordinates (P+, P−, Pµ), the four dimensional theory lives in a section of the null cone
defined as

P · P = −P+P− + δµνP
µν = 0 . (D.1)

A particular parametrization of the coordinates give the so-called Poincaré section

PA = (1, x2, xµ) , xµ ∈ R4 . (D.2)

With this particular coordinate choice it is straightforward to see that

−2Pi · Pj = x2
ij . (D.3)

Every field in the original space can be uplifted to the null six dimensional cone by
requiring homogeneity and transversality properties [51]. Assuming the field to be a
symmetric traceless tensor with dimension ∆ and spin `, the homogeneity amounts to this
scaling behavior

VA1···A`(λP ) = λ−∆VA1···A`(P ) , λ > 0 , (D.4)

while transversality requires
PAVAA2···A` = 0 . (D.5)

It is convenient to further contract the tensor indices with an additional polarization vector
Z such that a generic tensor VA1···A`(P ) is just a polynomials in these variables

V (P,Z) ≡ VA1···A`(P )ZA1 · · ·ZA` , V (P, αZ + βP ) = α`V (P,Z) . (D.6)

To describe a symmetric traceless tensor, the polarization has to satisfy

Z · P = 0 , Z2 = 0 , (D.7)

so a convenient parametrization turns out to be

ZA = (0, 2h · x, hµ) , h2 = 0 , (D.8)

where x is the point on which P depends according to (D.2). As we have already seen
in (7.4), the 4d polarization hµ can be expressed in terms of the auxiliary commuting spinor
variables ηα and η̄α̇, we have been using, as hµ = −1

2σ
µ
αα̇η̄

α̇
i η

α
i . Notice that this rewriting

makes the null requirement automatically realized.
It can be shown [51] that, for parity invariant theories, all the possible tensor structures

appearing in any n-point function can be built out of just two basic invariants, Hij and Vi,jk
which we already encountered in section 7. These building blocks in embedding space read

Hij = −2 (Zi · Zj Pi · Pj − Zi · Pj Zj · Pi) ,

Vi,jk = Zi · Pj Pi · Pk − Zi · Pk Pi · Pj
Pj · Pk

.
(D.9)
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The relations between these formulas and their four-dimensional analogue in (7.1) can be
easily worked out using the explicit parametrizations in (D.2) and (D.8) — see also [52,
appendix A].

Let us conclude by mentioning how the orthogonal configuration we consider in sec-
tion 7.2 is translated in embedding space. The orthogonal condition is naturally realized by
requiring that for any i, j = 1, . . . , 4

Zi · Pj = 0 (D.3),(D.8)=======⇒ −hi · xij = 0 . (D.10)

E Tensor invariants

For reader’s convenience, we collect various basic invariant tensor structures appearing in
correlators involving spin-1 and spin-2 operators which were defined in appendix D of [28],
and express them in terms of the auxiliary fermion variables ηα and η̄α̇.

Ĵijk =
ηixikη̄i x2

ij − ηixij η̄i x2
ik

x2
jk

, Îij = ηjxij η̄i ,

Kjk
i = −ηixij x̄ikηk , K̂jk

i =

√√√√ x2
jk

x2
ijx

2
ik

Kjk
i ,

Lijkl = ηixij x̄jkxklx̄ilηi , L̂ijkl = 1√
x2
jkx

2
jlx

2
kl

Lijkl .

(E.1)

In terms of these invariants, the tensors appearing in the correlator of three currents
in (4.4) are

T+
i =

{
Ĵ1

23 Ĵ2
13 Ĵ3

12, Ĵ1
23Î23Î32, Ĵ2

13Î13Î31, Ĵ3
12Î12Î21

}
,

T−1 = Î12Î23Î31 + Î13Î21Î32 .
(E.2)

We will not report the tensors appearing in the four-point functions we have discussed since
they can be easily obtained from [28].
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