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We introduce a novel framework to study high-order gravitational effects on a binary from the scattering 
of its emitted gravitational radiation. Here we focus on the radiation-reaction due to the background 
of the binary’s gravitational potential, namely on the so-called tail effects, as the starting point to 
this type of scattering effects. We start from the effective field theory of a binary composite-particle. 
Through multi-loop and generalized-unitarity methods, we derive the causal effective actions of the 
dynamical multipoles, the energy spectra, and the observable flux, due to these effects. We proceed 
through the third subleading such radiation-reaction effect, at the four-loop level and seventh order in 
post-Newtonian gravity, shedding new light on the higher-order effects, and pushing the state of the art.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Since the first detection of gravitational waves (GWs) from 
a black-hole binary merger [1] by the Advanced LIGO [2] and 
VIRGO [3] collaboration, we have been rapidly shifting to a new 
era of gravitational-wave astronomy. At present we already have 
a worldwide network of second-generation ground-based GW ex-
periments, including the twin Advanced LIGO detectors in the US, 
Advanced Virgo in Europe [3], and the more recent KAGRA in Japan 
[4]. This network is planned to quickly expand, and provide a 
steeply increasing influx of GW data of ever-higher quality [5–7].

These exciting developments on the experimental frontier go 
hand in hand with a thrust in the theoretical frontier to push the 
program of high-precision gravity. For present GW sources the in-
spiral phase, in which typical velocities of the compact objects 
are non-relativistic, has been studied analytically via the post-
Newtonian (PN) approximation of General Relativity [8]. PN gravity 
forms the basis for theoretical generation of gravitational wave-
forms, to be matched against measured data. This analysis is not 
only probing new astrophysics and cosmology, but also new fun-
damental physics, such as strong gravity and QCD in extreme con-
ditions, which cannot be produced on Earth [9].
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The surge in efforts to push the state of the art in PN gravity in 
the conservative sector has culminated at the fifth PN (5PN) order: 
The point-mass potential was accomplished via a combination of 
traditional GR methods [10–12], and via the effective field theory 
(EFT) approach [13,14], and the complete quadratic-in-spin inter-
actions were accomplished via the EFT of spinning objects [15–17]. 
The completion of amplitude and phasing of radiation at the +4PN 
order (4PN orders beyond leading) is also currently underway [8]. 
Notably at these high orders there is an intricate class of effects 
that come into play, which affect both the conservative and radia-
tive sectors. These effects are the scattering of the binary’s emitted 
radiation off its own background.

This scattering exerts radiation-reaction forces on the binary, 
and contributes to the radiated energy-flux and to the binding en-
ergy of the binary. While leading radiation that yields a radiation-
reaction force at the 2.5PN order contributes only to the radi-
ated flux, the subleading effect that first involves such scattering, 
the so-called “tail”, enters at the 4PN order and already further 
affects the conservative dynamics. Such leading tail effects have 
been studied for a few decades now using traditional GR methods 
[18–22], which were extended to the next two subleading non-
linear orders, the so-called “tail of tail” (TT) and “tail of tail of tail” 
(TTT), in [23,24] and [25], respectively.

More recently, these effects have been studied via EFT methods, 
through two different approaches. One approach involves the one-
point function of the stress-energy tensor as probed by an emitted 
on-shell radiation graviton [26], and proceeded through to the TT 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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non-linear order. The other approach, which was led by Galley 
[27–29], also provides the radiation-reaction forces on the binary. 
The latter was applied to the leading radiation-reaction, namely 
without scattering [30,31], and proceeded only to the leading tail 
effect [32]. Very recently, the subleading tail effects at 5PN order 
have been approached in [33–35] and [36].

In this letter we introduce a novel framework to study such 
higher-order gravitational effects due to the scattering of radiation. 
First, we note that at the radiation scale the scattered gravitons 
can go on-shell, which naturally aligns with scattering-amplitudes 
methods. This is unlike the situation in two-body conservative in-
teractions, where the exchanged gravitons can never go on-shell. 
Using amplitudes methods at the orbital scale also alleviates the 
escalating complications of standard EFT methods with Feynman 
calculus involving the mixing of orbital and radiation modes.

The main idea that we put forward for the first time here is 
to think of the whole binary in analogy to elementary massive 
particles with gravitons scattered off of them. This is inspired by 
long-observed analogies of gravitational interactions of l-th multi-
pole moments of a macroscopic object in effective theories of grav-
ity, to gravitational scattering amplitudes with massive elementary 
particles of spin l/2, see e.g. [15,37], and review in [16]. Let us 
highlight though that the various amplitudes-driven approaches 
that followed the latter, initiated in [38–41], and recently reviewed 
in [42], implement their methods on single compact objects as ele-
mentary particles (and off-shell gravitions as noted), and thus have 
been tied to a treatment of the unbound problem of scattering two 
massive objects instead of the actual bound problem of the binary 
inspiral.

In contrast, we advocate an entirely orthogonal approach. By 
treating the whole binary as elementary massive particles our 
derivations lie directly in the binary inspiral problem and in PN 
theory, and are consequently directly applicable to present and 
planned GW experiments and measurements. In addition, a con-
nection of those previous approaches from the unbound to the 
bound problem seems to become infeasible, even in restricted con-
figurations, exactly when radiation-reaction effects – which we 
target in the novel formulation in this letter – show up [42]. More-
over, given the current state of the art we need to push these 
effects to high non-linear orders, which amounts to higher loops 
in QFT. Unlike previous works [42], in our present approach we do 
not invoke the propagation of quantum DOFs, which would in turn 
have to be laboriously excised from the meaningful classical con-
tributions. Rather we only work with classical propagating DOFs, 
which keeps our formulation considerably lighter, and thus more 
efficient for the problem at hand.

In this letter we focus on scattering due to the binary’s grav-
itational potential, namely on tail effects, as the staring point to 
tackle this generic type of radiation-scattering effects. We start 
from the EFT of a binary as composite particle, and use multi-loop 
integration [43,44] and generalized-unitarity methods [45–48], to 
set up a basis-unitarity inspired procedure to treat such effects, 
assembling pure tree amplitudes generated by the public code
IncreasingTrees [49] as building blocks. Since time reversal 
no longer holds we invoke the closed time path (CTP) formalism, 
which we extend to our new framework, and take a radiation-
reaction approach in order to uniquely capture the entirety of ef-
fects – on both conservative and dissipative sides. We derive here 
the causal effective action of the dynamical multipoles, the energy 
spectrum, and the observable flux due to these effects. We pro-
ceed through the third subleading effect, at the 4-loop level and 
7PN order, shedding new light on these higher-order effects, and 
pushing the state of the art.
2

2. From a binary-particle EFT to generalized unitarity

We start by recalling the effective action of a composite object 
coupled to the gravitational field, gμν ≡ ημν + hμν , that reads [16,
26,50]:

Seff(c)[gμν, yμ
c , e μ

c A] = − 1

16πG

∫
d4x

√
g R

[
gμν

]
+ Spp(c)[gμν(yc), yμ

c , e μ
c A](σc), (1)

where Spp(c) is the worldline point-particle action of the composite 
particle with the form [16,26,50,51]:

Spp(c)[hμν, yμ
c , e μ

c A](t) = −
∫

dt
√

g00

[
E(t)

+1

2
εi jk J k(t)

(
�

i j
LF + ω

i j
μuμ

)
−

∞∑
l=2

(
1

l! I L(t)∇L−2Eil−1 il

− 2l

(l + 1)! J L(t)∇L−2Bil−1il

)]
, (2)

where here the worldline parameter is the time coordinate, t . 
E here is the total energy of the composite object, and I L and J L

are definite-parity S O (3) tensors, with the superscript L for the 
indices i1 · · · il (l ≥ 2) in the Euclidean metric. They are coupled to 
the electric E and magnetic B components of the Riemann tensor, 
respectively. For the present work we only need to consider the 
total energy, and the leading quadrupole moment, Ii j .

As the system is radiating and the symmetry of time reversal 
is broken, the closed time path (CTP) formalism needs to be in-
voked [16,27,52], to integrate out the gravitational field from (1). 
This yields a new causal effective action of the binary multipoles, 
from which the radiation-reaction forces and the energy spectrum 
of emitted radiation can be derived. To switch onto the CTP for-
malism all degrees of freedom (DOFs) are formally doubled, and 
the action is defined as:

SCTP[{}1, {}2] ≡ S[{}1] − S∗[{}2], (3)

where {} denotes the set of all DOFs in the original action, S[{}]. 
For the doubled DOFs it is convenient to switch to the {+, −} basis, 
which for classical fields entails the propagator matrix with the 
{+, −} labels: G++ = G−− = 0, G+− = Gadv , G−+ = Gret , where 
the retarded and advanced propagators are given by

Gret/adv(x − x′) =
∫

dD p

(2π)D

e−ipμ(x−x′)μ

(p0 ± iε)2 − 	p 2
, (4)

namely the + or − iε prescription for the retarded or advanced 
propagator, respectively, and D ≡ d + 1 with d for the number of 
spatial dimensions.

In the standard EFT approach the gravitational field is inte-
grated out using Feynman diagrammatic expansion. Figs. 1.1a, 1.2a, 
2.a, and 3.a show example Feynman graphs that would need to 
be evaluated. Due to the non-relativistic context, the integration is 
over 3-dimensional spatial momenta, where the frequency of emit-
ted radiation, ω, is regarded as the mass scale of such Euclidean 
propagators. According to the generalized-unitarity paradigm, such 
Feynman integration can be equivalently accounted for by writing 
the resulting effective action as a linear combination:

Seff =
∫

dω

2π

∑
i∈MI

ciIi, (5)

where {Ii} are a complete set of master integrals that span the 
integral family of the problem, and the coefficients ci are rational 
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Fig. 1. Radiation-reaction and tail effects from the EFT and amplitudes perspectives. 
(1a), (2a): The Feynman graphs of maximal propagators, which contain all invariants 
of loop momenta. The double line represents the worldline of the binary particle, 
the squares represent quadrupole couplings, and the wiggly line represents the ra-
diation graviton emitted. The circle stands for the energy coupling, and the straight 
line for a potential graviton. (1b), (2b): The amplitude cuts used to evaluate the 
radiation reaction and tail effects. The black circles represent tree amplitudes with 
massive particles, including a 4-particle amplitude of 2 scalars and 2 gravitons, sggs, 
and the solid lines cut by dashed lines stand for the graviton-state sewing of the 
cut.

functions of the dimension d and scales of the problem, which in 
our case is only the frequency. To fix the coefficients ci we will 
evaluate the cuts that span this complete set of integrals.

We illustrate how this new method works by treating radiation-
reaction and tail effects at increasing loop orders. First, we ap-
proach radiation-reaction, depicted in Fig. 1. We start by consider-
ing the Feynman graphs with the maximal number of propagators 
that contain all possible invariants of loop momenta. Radiation re-
action has only one loop and thus one invariant, captured by the 
single graph in Fig. 1.1a. The integral family at one-loop order is 
then simply:

F (1)(λ;ω2) =
∫

dd 
E

(2π)d

1

(−
2
E + ω2)λ

= R(d, λ,ω2n(λ))F (1)(1;ω2) , (6)

where for integer λ, R is a rational function, with leading power of 
ω set by λ, and thus F (1)(1; ω2) is the master integral at one-loop 
order. We can then write the effective action as

SRR =
∫

dω

2π
cRR(ω)F (1)(1;ω2) , (7)

with cRR the coefficient to be fixed from unitarity cuts. Here we 
only need to evaluate one cut, as in Fig. 1.1b.

Our cuts are assembled from tree amplitudes as building blocks, 
contracted via graviton-state sewing, which inserts the relation:∑
states

ε
μν
k ε

αβ∗
k ≡ Pμν;αβ

k

= 1

2

(
Pμα

k Pνβ

k + Pμβ

k Pνα
k − 1

D − 2
Pμν

k Pαβ

k

)
, (8)

in which Pμν
k ≡ ημν − kμqν+kνqμ

k·q , and q is an arbitrary null ref-
erence momentum, of which all dependence eventually cancels in 
any cut due to gauge invariance [53]. For the quadrupole coupling 
to the graviton, we make the following definition:

MQ g ≡ λQ Jμνεμν ≡ λQ Jμνεμεν = −λQ Iab

× (k0kaε0εb + k0kbε0εa − kakbε0ε0 − k0k0εaεb) , (9)

with leading couplings only, and λQ ≡ √
2πG N . The cut in Fig. 1.1b 

is then assembled as:

CRR = λ2
Q Jμν

1 Pμν;αβ Jαβ

2

∣∣∣
P
=
2

E −ω2=0

= δ(
2
E − ω2)λ2

Q

(
Jμν

1 Jμν
2 − Jμμ

1 Jνν
2

d − 1

)
, (10)
3

which evaluates to

CRR = δ(P
)λ
2
Q

(d + 1)(d − 2)

(d + 2)(d − 1)
ω4κab(ω) , (11)

where κab(ω) = I i j
a (−ω)Ii j,b(ω) with a, b ∈ {+, −}, is the trace of 

the CTP quadrupole DOFs.
The CTP effective action can then be written as

SRR = 2πG N

5

∫
dω

2π
ω4

∑
a,b∈{+,−}

κab(ω)F (1)(1ab) , (12)

with the retarded and advanced propagators, F (1)(1−+/1+−) ≡
F (1)(1; (ω ± iε)2), so that finally we obtain

SRR = −i
G N

5

∞∫
−∞

dω

2π
ω5 I i j

−(−ω)I+,i j(ω) , (13)

in agreement with Galley et al. in [31,32], whose action is given in 
time domain, and up to an overall sign discrepancy between the 
two references [31,32] – we agree with the latter.

Let us proceed to the tail effect that is captured by the single 
Feynman graph depicted in Fig. 1.2a. The “integer-indexed” integral 
family that contains the 3 invariants constructed out of the 2 loop 
momenta reduces, using FIRE6 [44], to a master integral of only 
two propagators for the two loops:

F (2)(1X ,1Y ,0) =
∫

dd
1dd
2

(2π)2d

1

(−
2
1 + ω2

X )(−
2
2 + ω2

Y )

= F (1)(1;ω2
X )F (1)(1;ω2

Y ) , (14)

where the entries in F (2) stand for exponents of the 3 denomina-
tors that span the generic integral family, and X , Y label different 
possible iε prescriptions. We can then write for the tail effective 
action:

ST =
∫

dω

2π
cT(ω)F (2)(1X ,1Y ,0) . (15)

To assemble the cut that corresponds to this master integral 
and determine cT, we take a tree amplitude of 2 massive scalars 
and 2 gravitons as a building block, corresponding to the bina-
ry’s energy E , coupling to two gravitons. This is where we use the 
analogy between the coupling of the binary’s mass monopole to 
gravity and the gravitational scattering of massive scalar particles. 
The above amplitude can be extracted from [49], and since in the 
non-relativistic limit |	k|, |	p| � ms , it is then expanded in the large-
mass limit as:

Msggs(ms → ∞) =λgλE

ω2
k2

1

2(kμ
2 k3,μ)

[
(kμ

2 k3,μ)ε0
2ε

0
3

+ ωk2((ε
μ
3 k2,μ)ε0

2 − (ε
μ
2 k3,μ)ε0

3)

− ω2
k2

(ε
μ
2 ε3,μ)

]2 +O(m−1
s ), (16)

where 2 and 3 label the two gravitons, and λE is fixed from 
the 3-particle tree amplitude of 2 massive scalars and a graviton, 
Msgs ≡ λE(pμpν/m2

s )ε
μεν , so that λE ≡ −√

8πG N E . The graviton 
self-coupling, λg ≡ −√

32πG N , is similarly fixed from a 3-graviton 
amplitude [49]. With all the ingredients in place we can assemble 
the cut, shown in Fig. 1.2b, to fix the coefficient in (15):

C(2)
1,1,0 =

∑
states

MQ g(−ω)MsggsMQ g(ω)

∣∣∣P
1 =0,P
2 =0
ms→∞

= λ2
Q δ(P
1)δ(P
2)

× Jμν
I(−ω) Pμν;αβMαβ;γ σ

sggs Pγ σ ;ρτ Jρτ
I(ω)

∣∣∣
ms→∞ . (17)
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Fig. 2. The tail-of-tail effect from the Feynman and amplitudes perspectives. All no-
tations are similar to Fig. 1, with the grey circle for a 4-graviton tree amplitude. We 
similarly only include the Feynman graphs with cubic vertices, which are used to 
determine all allowed propagators.

Reducing the resulting integrals [44], and evaluating the master 
integrals with the appropriate CTP prescriptions, we finally find:

ST = 2

5
G2

N E

∫
dω

2π
ω6κ−+(ω)

×
[

1

εd
+ log

(
ω2

μ2

)
− iπ sgn(ω)

]
, (18)

with εd ≡ d − 3, and in agreement with equation (3.4) of Galley 
et al., up to an overall sign discrepancy [32]. The coefficient of 
the dimensional-regularization (DimReg) pole is even in ω. When 
mapped from the {+, −} to the {1, 2} CTP basis, terms that are 
even in ω lead to a separated action for the quadrupoles of the 
form eq. (3), and are thus conservative [28,29]. Thus, as noted in 
[32] this DimReg pole renormalizes the binding energy. We also 
absorb constant terms that are at the same εd order as the loga-
rithmic term into the logarithm scale μ. We apply similar implicit 
suppression to the following higher-order results.

We proceed to the tail-of-tail (TT) effect, for which no effective 
action has been previously derived. We start again by considering 
the Feynman graphs that contain the invariants from 3 loop mo-
menta. In this case 2 graphs, shown in Fig. 2.a, suffice to contain 
all the invariants, which span the integral family at the 3-loop or-
der:

F (3)(λ1, λ2, λ3, λ4, λ5, λ6)

=
∫ (

3∏
i=1

dd
i

(2π)d

)
1

Q λ1
1 Q λ2

2 Q λ3
3 Q λ4

4 Q λ5
5 Q λ6

6

, (19)

where the 6 invariants show up in the 6 denominators {Q i}. For 
relevant integer values of λi this integral is then reduced [44], and 
is found to be spanned by 2 master integrals, so that we can write 
the effective action of the TT effect as:

STT =
∫

dω

2π

[
c1(ω)F (3)(1,1,0,0,1,0)

+c2(ω)F (3)(1,1,1,1,0,0)
]
, (20)

where again the 3-loop master integrals F (3) contain entries for 
exponents of the 6 denominators, and we now suppress the labels 
for various iε prescriptions.

The 2 cuts that correspond to these 2 master integrals are 
shown in Fig. 2.b. The first cut in 2.b1 is assembled from build-
ing blocks that we already used in lower loop orders:

C(3)
1,1,0,0,1,0 = λ2

Q δ(Q 1)δ(Q 2)δ(Q 5)

× J I(−ω) PMsggs,1 PMsggs,2 P J I(ω)

∣∣∣
ms→∞ , (21)
4

Fig. 3. The tail-of-tail-of-tail effect from the Feynman and amplitudes perspectives. 
All notations and restrictions are similar to Figs. 1, 2. Graph a2 is also considered 
in its top-bottom mirror image, and graph b2 is evaluated as 2 cuts, which are 
swapped in a top-bottom mirror image.

where the sewing indices were suppressed for readability, and the 
resulting expression after evaluation is quite lengthy. The second 
cut in Fig. 2.b2 further requires the 4-graviton tree amplitude, M4, 
taken from [49], to which no special kinematics should be applied 
for our context. This cut is assembled as follows:

C(3)
1,1,1,1,0,0 = λ2

Q δ(Q 1)δ(Q 2)δ(Q 3)δ(Q 4)

× ( J I(−ω) P )(Msgs,1 P )Mtree
4 (PMsgs,2)(P J I(ω)) , (22)

where again we suppress the contraction indices for readability. 
Plugging in the values of cuts and the appropriate CTP prescrip-
tions, we finally find the CTP effective action of the TT effect:

STT = 107

175
G3

N E2
∫

dω

2π
ω7κ−+(ω)

×
[
π sgn(ω) + i

[
2

3εd
+ log

(
ω2

μ2
1

)]]
. (23)

Unlike in the tail effective action, the DimReg pole is now non-
conservative, as its coefficient is odd in ω leading to a CTP action 
that cannot be separated as in eq. (3) [28,29]. Thus, it must be 
removed prior to extracting dissipative observables from the ac-
tion. The most straightforward method of removal is to introduce 
a renormalized coupling to the quadrupole, similar to [26] (see Ap-
pendix).

Building on the procedure presented at lower loop orders, we 
briefly outline the derivation for the tail-of-tail-of-tail (TTT) effect, 
which proceeds along similar lines. There are 4 Feynman graphs, 
shown in Fig. 3.a, that span the integral family at the 4-loop order 
with 10 generic denominators. The relevant integrals are then re-
duced to 4 master integrals [44], so that the effective action of the 
TTT effect can be written as:

STTT =
∫

dω

2π

[
c1 F (4)

1,1,1,1,0,0,0,0,0,0 + c2 F (4)
1,0,0,1,1,1,1,0,0,0

+(
c3 F (4)

1,0,1,1,1,1,0,0,0,0 + c4 F (4)
1,1,0,1,0,1,1,0,0,0

)]
, (24)

where the entries in F (4) are for exponents of the 10 denom-
inators, and we suppress labels for various iε prescriptions and 
dependence in ω of the coefficients ci .

The 4 cuts that correspond to the 4 master integrals are shown 
in Fig. 3.b, where the cut C(4) in 3.b3, further requires 
1,0,0,1,1,1,1,0,0,0
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the 5-graviton tree amplitude, M5, taken from [49]. The cuts are 
then assembled as in the previous cases, and each is thousands of 
terms long to begin with. Substituting in the values of cuts and the 
proper CTP prescriptions, we arrive at the CTP effective action of 
the TTT effect:

STTT = − 4

525
G4

N E3
∫

dω

2π
ω8κ−+(ω)

×
[

107

2ε2
d

+ 107

εd
log

(
ω2

μ2
2

)
+ 107 log2

(
ω2

μ2
2

)

+20707426967

60399360
− 3103

4
ζ2 − 420 ζ3

−iπ sgn(ω)

[
107

εd
+ 214 log

(ω2

μ2
2

)]]
, (25)

where ζ2 ≡ π2/6 and ζ3 is Apéry’s constant. The DimReg poles 
now appear in both the conservative and dissipative parts. The 
non-conservative pole can be removed by renormalizing quadrupo-
les in the tail action, using exactly the same renormalization 
scheme as in TT.

3. From CTP effective actions to spectra and fluxes

It is useful to have the CTP effective actions in order to obtain 
the related radiation-reaction forces by varying with respect to the 
CTP DOFs, {qi±}, and then taking the physical limit, qi+ → qi and 
qi− → 0. We defer a discussion of the conservative sector for future 
work.

We can extract the energy spectrum in the CTP formalism by 
starting from the generalized Noether theorem [29], which tells us 
that in the time domain:

dE

dt
= −∂L

∂t
+ q̇i

[
∂ K

∂qi−

]
PL

+ q̈i

[
∂ K

∂q̇i−

]
PL

+ . . . , (26)

where L is the conservative potential of one of the time histo-
ries, K is the non-conservative potential, {qi} are the generalized 
coordinate variables or DOFs, and PL denotes the physical limit 
as noted, q+ → q and q− → 0. We then work out (26) with the 
CTP quadrupoles as our generalized DOFs, and if we then integrate 
over t , we arrive at∫

dt
dE

dt
= �E =

∫
dω

dE

dω
, (27)

where on the right-hand side we have the energy spectrum that 
we want.

Applying our generic derivation to the tail actions is then 
straightforward. First, we obtain the energy spectrum of radiation 
reaction as:

∞∫
0

dω
dERR

dω
= − G N

5π

∞∫
0

dωω6κ(ω) , (28)

where now κ(ω) ≡ I i j(−ω)Ii j(ω). Similarly, we obtain the follow-
ing power spectra:

dET

dω
= −2

5
G2

N E ω7κ(ω) , (29)

dETT

dω
= 428

525π
G3

N E2 ω8 log(ω/μ1)κ(ω) , (30)

dETTT

dω
= 856

525
G4

N E3 ω9 log(ω/μ2)κ(ω) , (31)
5

for the tail, TT and TTT effects, respectively. (29) and (30) are in 
agreement with [54], and (31) is new.

As a final check, we can also specialize to a circular orbit with 
orbital frequency � to get the energy flux in terms of the symmet-
ric mass ratio ν , and the PN parameter x = (�G N E)2/3. We then 
obtain:

P circ
RR = − 32

5G N
ν2x5, P circ

T = −128π

5G N
ν2x13/2 . (32)

For the TT and TTT we present the non-analytic contributions:

P circ
TT = 27392

175G N
ν2x8 ln x, P circ

TTT = 109568π

175G N
ν2x19/2 ln x . (33)

These results for the flux from a circular orbit are in complete 
agreement with [8,24,25,55,56].

4. Future prospects of the new unitarity framework

In this letter we introduced a novel framework to tackle higher-
order gravitational effects due to scattering of the binary’s emit-
ted radiation from its own gravitational background. Within this 
framework we derive the causal effective actions of the dynam-
ical multipoles, that encapsulate all conservative and dissipative 
physics, including those of the TT and TTT, that were never previ-
ously derived. We derive dissipative observables: first the generic 
energy spectra, and then the observed circular-orbit flux due to 
these effects. We find complete agreement with available results 
obtained via traditional GR and standard EFT methods. One can 
also derive the conservative dynamics from our actions, e.g. EOMs 
and binding energies. Given the current state of the art we set 
out to establish a framework which is able to push through these 
effects to higher PN orders. Here we proceeded through the third 
subleading such radiation-reaction effect, which corresponds to the 
4-loop level and the 7PN order. This is shedding new light on these 
higher-order effects, and pushing the state of the art.

Our novel framework utilizes multi-loop and generalized-
unitarity methods to set up an amplitudes-like computation which 
captures such radiation-scattering effects with high efficiency. In 
this letter we demonstrated that the new approach is already 
competitive with traditional GR methods, and even outpaces stan-
dard EFT methods, which become intractable already at subleading 
tail effects. Our framework constitutes the first direct applica-
tion of modern amplitude methods to the binary inspiral problem 
and thus to present and planned GW measurements, in PN the-
ory. Obvious extensions of this framework include subleading PN 
orders of the non-linear effects, and scattering of subleading radi-
ation from generic multipole sources off background generated by 
generic multipole sources. Both entail tree amplitudes with mas-
sive particles of any spin, namely also of higher spins. As noted 
the framework presented here should be straightforward to apply 
to the conservative as well as the radiative sector. We leave all 
these developments for future work.
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Appendix A. Renormalizing higher-order tails

The CTP effective actions in eqs. (18), (23), (25) contain DimReg 
poles, and go through a renormalization. As we illustrate below, 
there is an interplay among lower-order DimReg zeros and higher-
order DimReg poles, similar to that in purely conservative effective 
potentials as of the N3LO sectors. The renormalization we apply is 
essentially similar to that in [26], where the quadrupole moment 
gets renormalized and displays an RG flow as a Wilson coefficient 
of the EFT at the radiation scale. Here we shall demonstrate the 
renormalization needed for the extraction of dissipative physics, 
which was discussed in the above.

First, we note that the CTP effective action of radiation-reaction 
actually contains a piece proportional to a simple DimReg zero be-
yond the leading expression presented in eq. (13):

�SRR

∣∣∣
ε1

d

=εd
G N

20

∫
dω

2π
ω5

[
− π sgnω

(
κ+−(ω) + κ−+(ω)

)

+ i

(
9

10
− γE + logπ − log

ω2

μ2
0

)
(
κ+−(ω) − κ−+(ω)

)]
. (34)

In the effective action of the tail, eq. (18), the DimReg pole (and 
corresponding logarithm) is purely in the conservative part of the 
effective action, so it does not affect dissipative observables.

The first dissipative DimReg pole occurs in the TT effective ac-
tion, eq. (23). Following textbook renormalization procedures, (and 
Ref. [26]’s application in a similar context) we introduce a renor-
malized coupling to the quadrupoles:

κi j → κ i j ≡ κi j

(
1 + 214

105
ε−1

d G2
N E2ω2

)
. (35)

With this substitution in eq. (13) we find that

S T T ≡ (S R R + ST + ST T )

∣∣∣
κi j→κ i j

(36)

is free of dissipative DimReg poles through O(G3
N ). Extracting the 

O(G3
n) contribution from S T T defines the renormalized TT effective 

action:

SRen
TT = G3

N E2

10

∫
dω

2π
ω7κ−+(ω)

[
428

105

[
πsgnω+

i
(
γE − logπ + log

ω2

μ2
0

)]
− i

(
634913

22050
+ 16ζ2

)]
. (37)

While the TTT effective action, eq. (25), contains higher-order Dim-
Reg poles, the dissipative part only contains a simple pole. As such, 
the same renormalization in eq. (35) applied to the O(ε1

d ) part of 
the tail is sufficient to remove the dissipative TTT pole and obtain 
6

the renormalized action S T T T . We defer a discussion of the full 
renormalization including the conservative sector to future work.

With renormalized couplings, we also expect an RG flow of the 
quadrupoles (or equivalently κi j ). The flow equation can be found 
by allowing κ to depend on the log scale μ0 then demanding that 
S T T T does not depend on μ0. Doing so, we find

d

d logμ
κ = −428

105
(G NωE)2κ, (38)

in exact agreement with [26] (noting that d
dμκ ∼ 2 d

dμ Ii j ).
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