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Abstract: Computational atomic physics continues to play a crucial role in both increasing the under-
standing of fundamental physics (e.g., quantum electrodynamics and correlation) and producing
atomic data for interpreting observations from large-scale research facilities ranging from fusion
reactors to high-power laser systems, space-based telescopes and isotope separators. A number of
different computational methods, each with their own strengths and weaknesses, is available to meet
these tasks. Here, we review the relativistic multiconfiguration method as it applies to the General
Relativistic Atomic Structure Package [GRASP2018, C. Froese Fischer, G. Gaigalas, P. Jönsson, J. Bieroń,
Comput. Phys. Commun. (2018). DOI: 10.1016/j.cpc.2018.10.032]. To illustrate the capacity of the
package, examples of calculations of relevance for nuclear physics and astrophysics are presented.

Keywords: ATOMS; GRASP; atomic properties; relativistic atomic structure; multiconfigurational Dirac–
Hartree–Fock; finite difference numerical methods; angular integration; configuration interaction;
atomic wave function; configuration state function

1. Introduction

Atomic structure theory has developed for over a century in synergy with computa-
tional science and techniques. Early contributions came from Douglas Hartree, who was
inspired by Niels Bohr in the early 1920s to use his numerical skills on atomic systems. This
resulted in his publications on “The Wave mechanics of an Atom with a Non-Coulomb Cen-
tral Field” [1–4]. In these, he also proposed and used the self-consistent field (SCF) method
to solve what would later be labeled the Hartree equations, where both the potentials and
the wave functions are unknown. In 1930, Slater [5] and Fock [6] independently pointed
out that the Hartree method did not take into account the required anti-symmetry of the
wave functions under the exchange of two electrons and suggested ways to deal with this.
This led Hartree [7] to develop a more practical method than the one previously proposed
by Fock, which was later labeled Hartree–Fock. In these early days, the gross structures of
small ions were the testing ground, leaving out correlation and relativistic effects. Inspired
by this line of work, atomic systems became, and still are, fundamental testing grounds for
quantum mechanics, many-body physics and fundamental processes.
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As soon as the Hartree and Hartree–Fock methods were established, the interest turned
to the corrections: the most important being relativistic effects and electron correlation.
The theory of special relativity was incorporated into quantum mechanics by Dirac [8].
Dirac himself doubted its importance for atomic systems, which probably, together with the
increased complexity involved, delayed the development of fully relativistic and computa-
tional methods. Swirles, however, published a paper on relativistic self-consistent fields [9],
but they had to wait nearly 30 years before it became possible to attempt solutions.

The many-body instantaneous interactions introduce a correction to the Hartree–Fock
approach, by keeping the electrons apart (in contrast to the independent particle approach)
– a correlation of their motions [10]. To deal with this, the configuration interaction method
was introduced, a term that appeared in 1933 [11,12], but the method had been developed
earlier by, among others, Slater [13] and Condon [14]. The fully variational multiconfigura-
tion approach, which is in focus in this paper, was first explored by Hartree, Hartree, and
Swirles for O+ [15].

It is important to remember that the computational methods were very basic at these
early stages of atomic calculations. On the machinery side, researchers used slide rules,
hand calculators, and mechanical machines [16,17], while electronic computers started to
become available in the late 1950s. At this time, numerical methods were readily available
for the physics community, and when FORTRAN II appeared in 1958, simple calculations
were possible for the first time without having to use machine code. The history of atomic
structure calculations, leading to the methods described in this work, was reviewed by
Hartree [18,19]. The history of configuration interaction methods is also discussed in a
more recent review by Shavitt [20].

The introduction of electronic computers, accompanied by efficient numerical methods
and program languages, led to the start of a new era in the late 1950s for the variational
methods we will discuss in this paper, not the least through works by Hartree’s doctoral
students David Mayers [21] and Charlotte Froese [22]. It is clear that Hartree continued to
play an important role in the pioneering work on atomic calculations, which was recently
described in a monograph [23]. The development of the non-relativistic Hartree–Fock
theory for the newly introduced computers was led by Froese [24] and later extended to
the multiconfiguration numerical approach [25,26]. These methods and the associated
computer programs [27,28] are described in two monographs [29,30]. At the same time,
the relativistic methods had a renaissance through the pioneering work of Grant [31,32],
which was described in the review by the same author [33]. An effort in the early 1970s by
Desclaux, Mayers, and Grant [34] led to the first multiconfiguration Dirac–Hartree–Fock
(MCDHF) programs based on Slater determinants [35,36] and later on coupled configura-
tion state functions (CSFs) as eigenfunctions to the relevant angular momenta [37] with the
appropriate angular codes [38,39].

The structures of these earlier codes reflect the hardware and software then available.
Since then, tremendous progress has been made in the development of the computational
tools based on the MCDHF method [37,40–43] owing to improving software utilities, vastly
increasing speed, memory, and overall power of computer facilities that gave the General-
purpose Relativistic Atomic Structure Package (GRASP) the flexibility of today’s mark. Ten
years ago, the Computational Atomic Structure (CompAS) [44] group was formed. Its focus
is to develop methodologies that utilize modern computational technology to meet the
demands for accurate atomic data. Examples are a series of computations for transition
energies that achieve spectroscopic accuracy, i.e., the accuracy that is similar to what
can be obtained in experiments and that can be used to unambiguously assign observed
lines in plasmas to the correct transitions [45–49]. Other notable achievements are the
series of computations of energies and transition rates by Gaigalas and co-workers for the
complex Lanthanides for opacity modeling in relation to kilonova [50–52]. The CompAS
group is also using this opportunity to treat new challenges and applications opened
up by increased computation power paired with a deeper understanding of correlation
and other effects in atomic systems. Some examples of recent contributions to the front-
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line of atomic physics are hyperfine-quenched lines to determine isotope abundances
in planetary nebula [53], magnetically induced transitions to measure field strengths in
the solar corona [54–56], sympathetic cooling by negative ions [57], tests of models for
quantum electrodynamics (QED) in complex systems with quenched correlation [58–60],
electronic parameters relevant in nuclear physics [61–63], electron affinities and negative
ions properties [64,65]. At the core of all activities, the CompAS group is developing
state-of-the-art computer codes and methodologies for atomic structure calculations [44].

Here, we review the development of the relativistic multiconfiguration method as
it applies to GRASP [42,43], a suite of Fortran95 codes, adapted to run under MPI, that
compute approximate wave functions of atomic states and evaluate a large number of
atomic properties, such as transition energies and rates, diagonal and off-diagonal hyperfine
structures [66], Landé factors and magnetic interactions [67], isotope shifts and detailed
interactions with extended and deformed nuclei [68], electron densities [69], and atomic
state labels in various coupling schemes [70,71].

The present paper provides the necessary theoretical support for the GRASP2018
manual [72], which aims to guide users in the practical handling of the above codes. A
detailed account of multiconfiguration methods and relativistic atomic physics can be
found in [30,73]. To illustrate the capacity of the GRASP suite of codes, we look at a few
applications in nuclear physics and astrophysics. Atomic units [74] are adopted throughout.

2. Grasp Theory—Wave Functions
2.1. One-Electron Dirac Orbital Functions

For a particle in a spherically symmetric scalar potential qΦ = V(r), the wave functions
of the Dirac equation

i h̄
∂Ψ(r, t)

∂t
=
{

cααα · ppp + c2(β− I) + V(r)
}

Ψ(r, t) (1)

have the form
Ψ(r, t) = e−i Et/h̄ψ(r) , (2)

where E is an eigenvalue of the Dirac Hamiltonian

Hψ(r) =
{

cααα · ppp + c2(β− I) + V(r)
}

ψ(r) = Eψ(r) . (3)

Here, α and β are the usual 4 × 4 Dirac matrices, p ≡ −i∇ is the electron momentum
operator and c is the speed of light (=1/α = 137.035 999 084(21) a0Eh/h̄). The eigenfunc-
tions ψ(r) are called orbitals. The one-electron Hamiltonian H commutes with angular
momentum j = l + s, and thus, the orbitals can be taken as eigenfunctions of j2 and jz with
jm as resulting good quantum numbers. Introducing the quantum number κ

κ =

{
−(l + 1) for j = l + 1/2

+l for j = l − 1/2
, (4)

the orbitals can be written in spherical co-ordinates as [73]

ψnκm(r, θ, ϕ) =
1
r

(
Pnκ(r) Ωκm(θ, ϕ)

i Qnκ(r) Ω−κm(θ, ϕ)

)
, (5)

where Pnκ(r) and Qnκ(r) are the radial functions and Ωκm(θ, ϕ) are two-component spher-
ical spinors built from the coupling of the spherical harmonics Ylml

(θ, ϕ) and the spin

functions χ
(1/2)
ms . For these one-electron orbitals, the GRASP code adopts the usual spectro-

scopic notation
1s, 2s, 2p-, 2p, 3s, 3p-, 3p, 3d-, 3d, . . . , 4 f -, 4 f , 5g-, . . .

where the relations (4) between l, j and κ are exemplified for l ≤ 4 in Table 1.
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Table 1. Spectroscopic notation of relativistic shells.

s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2 g7/2 g9/2
s p- p d- d f - f g- g

l 0 1 1 2 2 3 3 4 4
j 1/2 1/2 3/2 3/2 5/2 5/2 7/2 7/2 9/2
κ −1 +1 −2 +2 −3 +3 −4 +4 −5

As it can be seen from this table, the nκm label of the relativistic orbital (5) is equivalent
to nljm. In the non-relativistic limit (c→ ∞), Pnκ → Pnl and Qnκ → 0, respectively.

2.2. Atomic State Function and Configuration State Functions

Relativistic atomic structure theory in GRASP treats the many-electron atom within
Furry’s bound state interaction picture [75] of quantum electrodynamics. The formalism
resembles that of non-relativistic atomic theory but is based on a Hamiltonian that uses
the Dirac operator cααα · ppp + c2(β− I) to describe the relativistic dynamics of electrons in the
field of other charged particles, as described in Section 2.3 below.

The program structure draws from the one of the non-relativistic program ATSP2K [28].
GRASP assumes that the wave function of an atomic state ΓJMJπ, with Γ being its identify-
ing label, J the total angular momentum quantum number, MJ the total magnetic quantum
number and π its parity, is approximated by an atomic state function (ASF), Ψ(ΓJMJπ),
which is a linear combination of configuration state functions (CSFs) in jj-coupling

Ψ(ΓJMJπ) ≡ |ΓJMJπ〉 =
NCSF

∑
α=1

cΓJ
α Φ(γα JMJπ) . (6)

For each CSF Φ(γα JMJπ), the multi-index label γα contains all the needed information
on its structure, i.e., the constituent subshells with their symmetry labels and the way
their angular momenta are coupled to each other, as described in Section 2.4. The main
difference with the non-relativistic program is the need to use four-component spinor
orbital functions (5) to build the configurational state functions (CSF) with accompanying
technical machinery to express the variational equations in computable form.

GRASP can perform both variational MCDHF and configuration–interaction (CI) calcu-
lations. The latter assume that all data on the CSFs, radial orbital functions and angular
coupling coefficients have previously been computed. The CI approach is therefore limited
to the eigenvalue problem

Hc = Ec , (7)

where H is the matrix of one of the chosen Hamiltonians of Section 2.3 in the CSF space
spanned by a given set {Φ(γα JMJπ)} and c = (c1, . . . , cNCSF )

t is the eigenvector corre-
sponding to the eigenvalue E, the total energy. Note that the magnetic quantum number MJ
is irrelevant for field-free atoms, as assumed for the MCDHF and CI approaches considered
in the present section. The mixing coefficients {cΓJ

α } appearing in (6) are therefore a priori
MJ-independent. However, the electronic magnetic quantum number MJ might become
relevant and affect the electronic structure when external perturbations and/or hyperfine
effects due to the coupling of the electronic J and nuclear I angular momenta are considered,
as described in Section 3.2.

The MCDHF approach determines the orbital components Pnκ(r), Qnκ(r) of the one-
electron orbitals (5) spanning the CSF space, permitting the numerical construction of the
CSFs. The radial functions Pnκ(r) and Qnκ(r) are defined on a grid

ri =
A
Z
(exp[B(i− 1)]− 1), i = 1, . . . , NP, (8)
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where A = 2× 10−6, B = 0.05, and NP = 590 are parameters that define the default grid.
The default grid is usually sufficient for light to medium heavy systems. For the heaviest
systems, it may be necessary to use a few thousand points, as is discussed in the accompa-
nying GRASP manual §13.5. The radial functions are obtained by solving a set of differential
equations (see Section 2.7) with finite difference methods [26,73]. Just as the wave functions
of a one-electron equation, the orbitals in GRASP make up an orthonormal set.

2.3. Dirac-Coulomb, Dirac-Coulomb-Breit Hamiltonians and QED Corrections

In GRASP, the Hamiltonian used for self-consistent calculations, see Section 2.7, is the
Dirac–Coulomb Hamiltonian

HDC =
N

∑
i=1

(
c αi · pi + c2(βi − I) + Vnuc(ri)

)
+

N

∑
j>i=1

1
rij

. (9)

The nuclear potential Vnuc(r) results from a nuclear charge density given by a two-parameter
Fermi distribution function [76]. The nuclear charge, the two parameters of the Fermi distri-
bution, the mass of the nucleus, the nuclear spin and the magnetic dipole and quadrupole
moments are, in the GRASP code suite, defined by the program rnucleus and saved in a
file isodata (see accompanying manual §2.2 and §8.1).

Corrections to the above Hamiltonian can be included in configuration interaction cal-
culations; see Section 2.8. To represent magnetic interactions and retardation effects [77–79],
one can add the so-called transverse photon interaction, which is correct to order of α2.

HTP = −
N

∑
j>i=1

[
αi · αj cos(ωijrij/c)

rij

+(αi ·∇i)(αj ·∇j)
cos(ωijrij/c)− 1

ω2
ijrij/c2

]
. (10)

In this expression, the ∇-operators act only on rij, while ωij represents the energy of
the virtual photon exchanged between two electrons, as described in QED [78]. In the
low-photon energy limit, when ωij → 0, the expression (10) reduces to the Breit interaction

HBreit = −
N

∑
j>i=1

1
2rij

[
αi · αj +

(
αi · rij

)(
αj · rij

)
r2

ij

]
. (11)

Adding the transverse photon interaction to the Dirac–Coulomb Hamiltonian gives the
Dirac–Coulomb–Breit Hamiltonian

HDCB = HDC +HTP ' HDC +HBreit . (12)

Additional important QED contributions are the self-energy (SE) correction and the vacuum
polarization (VP). The SE correction, which is the result of emission and absorption of a
virtual photon by the same electron, is given as a sum of one-electron corrections weighted
by the fractional occupation numbers of the one-electron orbitals in the wave function. The
VP correction, which is related to the creation and annihilation of virtual electron–positron
pairs in the field of the nucleus, can be described by a correction to the Coulomb potential.
The above QED terms [80–83] are included in the configuration interaction rci code, as
implemented in the original GRASP program [78], to yield the final Hamiltonian

HDCB+QED = HDCB +HSE +HVP . (13)

Nuclear recoil effects [68], hyperfine interactions [66], and symmetry breaking interac-
tions with external magnetic fields [84] are included in first-order perturbation theory;
see Section 3.
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2.4. Building Configuration State Functions

Adopting the following notation for a subshell containing w equivalent electrons

(nlj)w = (nκ)w ,

a general relativistic configuration consists of m groups of equivalent electrons

(n1κ1)
w1(n2κ2)

w2 ...(nmκm)
wm , N =

m

∑
i=1

wi , (14)

where wi is the occupation number of the relativistic subshell i [30].
The relativistic Hamiltonian for an N-electron system commutes with the total angular

momentum operator J = j1 + . . . + jN , and the solutions to the wave equation can be taken
as eigenfunctions of J2 and Jz with JMJ as good quantum numbers. Atoms are fermionic
systems, and wave functions are required to be antisymmetric with respect to permutations
of the electron co-ordinates. Not all states arising from the angular momentum coupling
J = ∑N

i=1 ji are permitted, because the Pauli exclusion principle selects only fermionic states
within each subshell of equivalent electrons. A configuration state function (CSF) is the
simplest approximation of a many-electron wave function being both antisymmetric and
an eigenfunction of J2 and Jz. Such a CSF can be built

• By using the well-known vector coupling techniques of angular momentum theory [85]
to couple sequentially, from left to right, the subshell angular momenta J = ∑m

i=1 Ji,

(((J1, J2)J12), j3)J123, . . . , J12...m−1, Jm)JMJ ,

associated with the m antisymmetric subshell wave functions

|(niκi)
wi αiνi Ji Mi〉 , (15)

• Antisymmetrize the resulting coupled products through the permutations restricted
to the exchange of electron coordinates involving different subshells [86].

In each wave function (15), ν is the seniority number [87,88], making it possible to
discriminate states arising from the same relativistic subshell [j]w configuration having the
same J-value. As shown in Table 2 extracted from [89], the seniority ν = 2 and ν = 6 are
needed to discriminate the two states J = 2 (or J = 4) arising from [7/2]4, i.e., from any
subshell (n f )4 or (ng-)4. If the seniority classification fails, i.e., if two levels appear with the
same (νJ) values, additional quantum numbers α are usually introduced to unambiguously
designate the state considered [90]. A systematic approach to classify the states uses the
theory of Lie groups [90] in which α contains the irreducible representations labels of the
invoked chain of groups. Unfortunately, a complete classification scheme remains an open
problem [91]. Therefore, from a practical point of view, we will restrict α to a simple number,
Nr, as suggested in [89,92]. As revealed by Table 2—see also Table A.5 of [73]—this case
arises for configurations [9/2]4 or [9/2]6 for which the same seniority, ν = 4, is assigned to
the two allowed J = 4 (or J = 6) values.
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Table 2. Subshell states [j]w are listed for j = 1/2, . . . , 9/2, in both seniority (ν) and quasi-spin (2Q)

representations. An extra number Nr is introduced for j = 9/2.

subshell ν J 2Q Nr subshell ν J 2Q Nr

[1/2]0 or [1/2]2 0 0 1 3 5/2 2
[1/2]1 1 1/2 0 3 7/2 2

3 9/2 2
[3/2]0 or [3/2]4 0 0 2 3 11/2 2
[3/2]1 or [3/2]3 1 3/2 1 3 13/2 2
[3/2]2 0 0 2 3 15/2 2

2 2 0 3 17/2 2
3 21/2 2

[5/2]0 or [5/2]6 0 0 3 [9/2]4 or [9/2]6 0 0 5
[5/2]1 or [5/2]5 1 5/2 2 2 2 3
[5/2]2 or [5/2]4 0 0 3 2 4 3

2 2 1 2 6 3
2 4 1 2 8 3

[5/2]3 1 5/2 2 4 0 1
3 3/2 0 4 2 1
3 9/2 0 4 3 1
4 4 1 1

[7/2]0 or [7/2]8 0 0 4 4 4 1 2
[7/2]1 or [7/2]7 1 7/2 3 4 5 1
[7/2]2 or [7/2]6 0 0 4 4 6 1 1

2 2 2 4 6 1 2
2 4 2 4 7 1
2 6 2 4 8 1

[7/2]3 or [7/2]5 1 7/2 3 4 9 1
3 3/2 1 4 10 1
3 5/2 1 4 12 1
3 9/2 1 [9/2]5 1 9/2 4
3 11/2 1 3 3/2 2
3 15/2 1 3 5/2 2

[7/2]4 0 0 4 3 7/2 2
2 2 2 3 9/2 2
2 4 2 3 11/2 2
2 6 2 3 13/2 2
4 2 0 3 15/2 2
4 4 0 3 17/2 2
4 5 0 3 21/2 2
4 8 0 5 1/2 0
5 5/2 0

[9/2]0 or [9/2]10 0 0 5 5 7/2 0
[9/2]1 or [9/2]9 1 9/2 4 5 9/2 0
[9/2]2 or [9/2]8 0 0 5 5 11/2 0

2 2 3 5 13/2 0
2 4 3 5 15/2 0
2 6 3 5 17/2 0
2 8 3 5 19/2 0

[9/2]3 or [9/2]7 1 9/2 4 5 25/2 0
3 3/2 2
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Due to the current restrictions of the GRASP2018 package “occupied subshells with
j ≥ 9/2 are restricted to a maximum of two electrons”, Nr will never be seen in the output
file rcsf.out produced by the rcsfgenerate program; see accompanying manual §3.2.
However, we deliberately keep the Nr notation, since the spin-angular library [93] allows
us to deal with the j = 9/2 subshell without any occupation restriction.

The above two-step procedure leads to the most general form of a CSF [30]

Φ(γJMJπ) ≡ |γJMJπ〉 (16)

= |(n1κ1)
w1 α1ν1 J1 (n2κ2)

w2 α2ν2 J2 J12(n3κ3)
w3 α3ν3 J3 J123 . . . (nmκm)

wm αmνm Jm JMJπ〉 .

In this notation, γ is the compact representation of a CSF, collecting all the needed informa-
tion for each subshell together with all the intermediate quantum numbers that unambigu-
ously define the CSF. The parity π is often omitted in the CSF notation since it can be easily
deduced from the collection of angular momenta hidden in γ, using π = (−1)∑N

i=1 li .
Each subshell wave function (15) can be built using a recursive coupling method in

terms of fractional parentage coefficients (CFPs) [30,73,86]. In addition to the seniority
classification, there exists an alternative representation of the same subshell wave function
provided by the quasi-spin formalism [91,94,95] that offers many advantages explored
in the spin-angular algebra [93,96]. In the quasi-spin classification scheme, also used in
Table 2, the subshell wave function (15) is rewritten as

|(niκi)
wi αiνi Ji Mi〉 = |(niκi)

wi αiQi Ji Mi〉 = |(niκi)αiQi MQi Ji Mi〉 , (17)

where (Q, MQ) carries the same information as (w, ν) through the following relations [73,91],

Q = (2j + 1− 2ν)/4 = (|κ| − ν)/2 , (18)

MQ = −(2j + 1− 2w)/4 = −(|κ| − w)/2 . (19)

A nice property of the quasi-spin operator Q(Q+, Q−, Qz) is that the ladder operators Q±
connect subshell wave functions with occupation numbers w and w± 2 having the same
seniority ν. The Wigner–Eckart (WE) theorem can be applied in the space of quasi-spin for
all individual subshell states much in the same way as for J-space, allowing an efficient
reduction and factorization of matrix elements and CFP matrices [96].

2.5. Second Quantization and Composite Tensor Operators

With complicated CSF structures, second quantization is the most convenient way
to handle the mathematics of CSFs and their matrix elements. An extensive jj-coupling
treatment, adequate for GRASP users who have no need for the technical details, can be
found in ([73], §6.8, pp. 368–390). Other treatments, mainly focusing on ls-coupling,
are the original lectures of Brian Judd [94] and Rudzikas’s monograph [91] giving the
Vilnius way of doing things. The rangular code from [96] is based on the quasi-spin
constructions, replacing the older formulation following Fano [86] used in earlier versions
of the ATSP2K [28] and GRASP [43] packages.

We define the electron creation operator a†
nκm as the operator that generates the Dirac

orbital when acting on the vacuum state |0〉 of the electron field

|nκm〉 = a†
nκm |0〉 . (20)

This is destroyed by the annihilation operator anκm so that

anκm |nκm〉 = |0〉 . (21)

Creation and annihilation operators anti-commute so that

{a†
r , as} = δrs, {a†

r , a†
s } = {ar, as} = 0 . (22)
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Thus, interchanging neighboring pairs of operators introduces a sign change, for example
a†

r a†
s = −a†

s a†
r (implying a†

r a†
r = 0) so that the algebra of creation and annihilation operators

is what we need for manipulating antisymmetric states obeying the Pauli exclusion princi-
ple: one electron only in each orbital state. Products a†

1a†
2 . . . a†

n |0〉 in which the operators
are all different therefore represent n-electron determinants from which we can generate
more complex n-electron states.

Subshells of Dirac electrons are useful subdivisions of CSFs, as the set of 2j + 1 states
{|nκm〉, m = −j, . . . ,+j} is equivalent in the sense that each of them can be expressed in
terms of the others under a rotation of axes. Focusing on a single subshell, we can drop n
and consider the (2j+1

w ) (0 ≤ m ≤ 2j + 1) equivalent antisymmetric states

|m1 . . . mw〉 = a†
m1
· · · a†

mw |0〉, M =
w

∑
i=1

mi (m1 > . . . > mw), . (23)

In the language of group theory ([73], §6.8.2), this belongs to a reducible representation
D j × · · · × D j (w factors). This can be decomposed as a direct sum, a Clebsch–Gordan
series, of irreducible representations D J , which can be used to characterize the subshell
states—see the list in Table 2. These can be further distinguished by the seniority number
ν, which is defined for each subshell configuration as the lowest value of w for which a
particular J appears. As explained above, the few cases in which J, ν fails to identify the
subshell state uniquely are labeled Nr in this table.

The operators a†
m, ãm = (−1)j−ma−m can be regarded ([73], §6.8.3) as defining irre-

ducible tensor operators, aaaκ†, aaaκ of rank j. From these, we can build composite tensor
operators using angular momentum theory such as[

aaaκ† × aaaκ′
](k)

q
= ∑

m,m′
aκ†

m aκ′
m′ 〈jm, j′m′|jj′kq〉. (24)

and more complex operators. Omitting the κ rank in the notation of creation and annihila-
tion operators acting on the same subshell (κ′ = κ), the three operators

Q+ =

√
2j + 1

2

[
aaa† × aaa†

](0)
0

, Q− = −
√

2j + 1
2

[aaa× aaa](0)0

Qz = −
√

2j + 1
4

{[
aaa† × aaa

](0)
0

+
[
aaa× aaa†

](0)
0

}
satisfy the commutation relations of the quasi-spin vector operator QQQ, enabling us to classify
subshell states in terms of the quantum numbers Q, MQ of (18) and (19), which are equiva-
lent to the classification J, ν in terms of the seniority scheme. The main use of the quasi-spin
classification is that MQ is related to the occupation number w so that relations between
states of the subshell configurations κw and κw±1 can be expressed entirely in terms of a
3j-symbol in quasi-spin.

2.6. Calculation of Matrix Elements

The above construction of the CSFs makes it possible to derive analytical expres-
sions for matrix elements of one- and two-electron interaction operators. A one-electron
irreducible tensor operator has the form

F(k)
q =

N

∑
i=1

f (k)q (i), (25)

where k and q are tensor indices. Examples of one-electron tensor operators are the first
part of the Dirac–Coulomb Hamiltonian and the operators describing the interactions with
the nuclear dipole and quadrupole moments.
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A two-electron scalar operator has the generic form

G(0)
0 =

1
2

N

∑
i 6=j

g(0)0 (i, j), (26)

where g(0)0 (i, j) is a scalar two-body interaction between two electrons

g(0)0 (i, j) = ∑
k

gk(ri, rj) T(k)(i) · T(k)(j) , (27)

where T(k)(i) · T(k)(j) is the scalar product of two tensors T(k)(i) and T(k)(j) acting on
electron coordinates i and j. Examples are the Coulomb interaction, the Breit interaction
and the specific mass shift interaction, arising from the nuclear recoil effect.

The matrix element of an irreducible tensorial operator between two CSFs, |γJMJ〉
and |γ′ J′MJ′〉, can be factorized thanks to the WE theorem [85],

〈γJMJ |T
(k)
q |γ′ J′MJ′〉 =

(−1)J−MJ

(
J k J′

−MJ q MJ′

)
〈γJ‖T(k)‖γ′ J′〉Edmonds, (28)

where 〈γJ‖T(k)‖γ′ J′〉 is a reduced matrix element independent of the M-quantum numbers
and of the q tensorial component. Another version of the WE theorem can be found in
Brink and Satchler [97]

〈γJMJ |T
(k)
q |γ′ J′MJ′〉 =

(−1)J−MJ
√

2J + 1
(

J k J′

−MJ q MJ′

)
〈γJ‖T(k)‖γ′ J′〉Brink-Satchler . (29)

Equating the l.h.s of (28) and (29) provides a relation between the two definitions of the
reduced matrix elements (RMEs)

〈γJ‖T(k)‖γ′ J′〉Edmonds =
√

2J + 1〈γJ‖T(k)‖γ′ J′〉Brink–Satchler . (30)

Many formulas in various papers may appear different due to this ambiguity. In the
present work, we adopt Edmonds’ formulation (28) of the WE theorem [85] that also fits
with Racah [98,99], Judd [100], Cowan [101], or Rudzikas [91], while Brink–Satchler WE
theorem (29) is coherent with Rose [102], except for an extra (−1)2k phase factor (As
pointed out by Judd [103], such a phase factor leaves the relation between RMEs phase-free
when k is integral, as is almost always the case. k is indeed integer (even or odd) for
all irreducible tensorial operators representing physical quantities, invariant under a 2π
rotation. However, as observed by Judd [94] and Rudzikas [91], phase systems can be
crucial for second quantization operators.).

The reduced matrix element of a one-electron operator between the CSFs, in turn,
can be expressed as a weighted sum over the active orbitals of one-electron reduced
matrix elements

〈γJ‖F(k)‖γ′ J′〉 = ∑
a,b

ξab;k〈naκa(1)‖f(k)(1)‖nbκb(1)〉. (31)

The reduced matrix element 〈naκa‖f(k)‖nbκb〉 depends only on the orbitals and on the
nature of the operator. It can be further reduced to a radial integral times a matrix ele-
ment involving the spherical spinors of the two orbitals. The spin-angular coefficients
ξab;k contain all information about the configuration and the angular couplings. They can
be expressed in terms of CFPs and recoupling coefficients necessary to match subshell
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states in the two CSFs [104,105]. These coefficients are computed by routines of the GRASP

librang90 library, which are then called by the rangular program for MCDHF approach,
the rci code for CI calculations, the rbiotransform and rtransition programs for transi-
tion properties, the rhfs and hfszeeman95 codes for hyperfine parameters and magnetic
interactions, the ris4 programs for isotope shifts and the rdensity program for radial
electron densities and natural orbitals, see accompanying manual §1.3 and §2.2.

For scalar two-electron operators, the application of the WE theorem (28) is trivial

〈γJMJ |G
(0)
0 |γ

′ J′MJ′〉 =
δJMJ ,J′M′J√

2J + 1
〈γJ‖G(0)‖γ′ J′〉 . (32)

Similarly to (31), the two-body reduced matrix elements can be expressed as [73]

〈γJ‖G(0)‖γ′ J′〉 = ∑
k

∑
abcd

ξabcd;kXk(abcd), (33)

with
Xk(abcd) = (−1)k〈a‖T(k)‖c〉〈b‖T(k)‖d〉Rk(abcd). (34)

The summations over (a, b, c, d) in (33) are running over the relativistic subshells naκa
while the summation over (i, j) in (26) runs over the electron coordinates ri. The effective
interaction strength, Xk(abcd), is specific to the nature of the interaction and involves only
the active orbitals [73,106]. It can be written in terms of a radial double integralRk(abcd)
and factors involving matrix elements of the spherical spinors of the active orbitals. The
spin-angular ξabcd;k coefficients are computed by the routines of the librang90 library,
which are then called by the rangular program for MCDHF approach, the rci program
for CI calculations, and the ris4 program for isotope shifts; compare to the accompanying
manual §2.2.

The Coulomb interaction 1/rij

1
rij

=
1

|ri − rj|
=

∞

∑
k=0

rk
<

rk+1
>

C(k)(θi, φi) ·C(k)(θj, φj) , (35)

where C(k)(θ, φ) = [4π/(2k+ 1)]1/2Ykq(θ, φ) is the renormalized spherical harmonic, which
fits with the generic form (27), whereas the Gaunt and Breit interactions involve composite
tensor operators, X(1k)K, with more convoluted radial parts [73]. The magnetic interactions
are therefore more complex but can similarly be reduced to angular factors multiplied by
two-electron radial integrals (see Sections 6.4 and 6.5 of [73] for the decomposition and for
individual interaction strengths, respectively).

In second quantization, operators such as the angular momentum JJJ are expressed in
the form

J̃JJ = ∑
κ,κ′

∑
m,m′

aκ†
m 〈κm | JJJ | κ′m′〉aκ′

m′ (36)

operating on the ket (23) to the right and on the corresponding bra to the left. Matrix
elements using CSFs as in (16) require detaching an active electron orbital, say |naκama〉 from
a subshell, matching one of the kets, 〈κm | JJJ | κ′m′〉, in (36). Actions are similar with the bra.
This is accomplished ([73], eq. (6.8.30)) by separating |κm〉 using

〈κwνJM|a†
m|κw−1ν̄ J̄ M̄〉 = w1/2〈κwνJM|

{
|κm〉 · |κw−1ν̄ J̄ M̄〉

}J

M
(37)
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where

〈κwνJM|
{
|κm〉 · |κw−1ν̄ J̄ M̄〉

}J

M

= (−1)J−M
(

J j J̄
−M m M̄

)
(−1) J̄−j+J(2J + 1)1/2 (jwνJ{ |jw−1ν̄ J̄)

where (jwνJ{ |jw−1ν̄ J̄) is a CFP. The latter can also be expressed in terms of reduced matrix
elements of creation and annihilation operators.

The construction (16) just couples the subshell states in the order chosen by the
CSF generator. Decoupling one electron from a ket subshell introduces a 3j-symbol, a
product of the active electron creation operator, and a CFP in the subshell position. Moving
the active creation operator to the end of the subshell sequence nearest to the interaction
operator where it selects the right matrix element involves interchanging with other creation
operators, introducing a factor −1 at each interchange. The interchanges introduce an
overall phase factor, while the replacement of the original subshell state by the parent
left behind changes the CSF coupling scheme, requiring a recoupling coefficient. Further
discussion may be found in ([73], §6.9).

A powerful spin-angular algebra based on angular momentum theory, on the concept
of the irreducible tensorial sets, second-quantization in a coupled tensorial form, quasi-spin
formalism and Wick’s theorem, reduced (in quasi-spin space) coefficients of fractional
parentage and on a generalized graphical method, is used in GRASP to evaluate the ξab;k
and ξabcd;k coefficients appearing in (31) and (33), as described in detail in [89,96,106,107].
The corresponding spin-angular library, implemented in GRASP2018, is fully documented
by Gaigalas [93] in the present Special Issue. Interesting illustrations on how this spin-
angular algebra is applied for some physical quantities can be found in [108,109] in jj- and
LSJ-coupling, respectively.

2.7. Multiconfiguration Dirac–Hartree–Fock

In the MCDHF method, the wave function of an atomic state ΓJMJ is approximated
by the atomic state function (6). For spectrum calculations, the orbital optimization often
targets simultaneously several atomic states that may belong to different J symmetries,
Γi Ji, i = 1, . . . , NASF (suppressing the MJ and parity π quantum numbers for brevity).
In this scheme, the different ASFs belonging to the same J (J = Ji = J j) are chosen to be
orthonormal, so that

(cΓi Ji
)†cΓj J j

= δi,j, (38)

where cΓJ is the column vector collecting the mixing coefficients {cΓJ
α , α = 1, . . . , NCSF} for

a given ASF. The energy of the atomic state ΓJ is

EΓJ = 〈ΓJM|HDC|ΓJM〉 =
1√

2J + 1
〈ΓJ||HDC||ΓJ〉

=
1√

2J + 1
(cΓJ)†H cΓJ , (39)

where the Hamiltonian reduced matrix H has the elements

Hαβ = 〈γα J||HDC||γβ J〉. (40)

The reduced matrix elements (40) can, as discussed above, be expressed in terms of angular
coefficients and radial integrals [30,73]

Hαβ = 〈γα J||HDC||γβ J〉 = ∑
ab

tαβ
ab I(a, b) + ∑

abcd;k
vαβ

abcd;kRk(ab; cd), (41)
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where now the factors involving matrix elements of the spherical spinors are absorbed in
the angular coefficients. The one-electron radial integrals are given by

I(a, b) = δκaκb

∫ ∞

0

{
Pnaκa(r)Vnuc(r)Pnbκb(r)− cPnaκa(r)

(
d
dr
− κ

r

)
Qnbκb(r)

+ c Qnaκa(r)
(

d
dr

+
κ

r

)
Pnbκb(r) + Qnaκa(r)

(
Vnuc(r)− 2c2

)
Qnbκb(r)

}
dr. (42)

The two-electron radial double integrals, the so-called Slater integrals, are given by

Rk(ab; cd) =
∫ ∞

0
[Pnaκa(r)Pncκc(r)

+Qnaκa(r)Qncκc(r)]
1
r

Yk(bd; r)dr. (43)

with Yk defined by

Yk(ab; r) = r
∫ ∞

0

rk
<

rk+1
>

[
Pnaκa(s)Pnbκb(s)

+Qnaκa(s)Qnbκb(s)
]
ds. (44)

In the Yk integral, r< and r> are the smaller and larger of r and s, respectively.
Multiconfiguration methods are energy driven. Introducing the radial orthonormality

condition
Cab ≡

∫
[Pnaκa(r)Pnbκb(r) + Qnaκa(r)Qnbκb(r)] dr− δna ,nb = 0, (45)

and applying the variational principle on the statistically weighted energy functional of the
targeted states γi Ji, i = 1, . . . , NASF

F ({c}, {P}, {Q}) =
∑NASF

i=1 (2Ji + 1)EΓi Ji

∑NASF
i=1 (2Ji + 1)

+ ∑
ab

δκaκb λab Cab . (46)

where Lagrange multipliers λab are introduced to ensure the orthonormality of the orbitals,
yields the equations for the radial functions Pnaκa(r), Qnaκa(r), see [30,73]

wa


V(a; r) −c

[
d
dr
−

κa

r

]

c

[
d
dr

+
κa

r

]
V(a; r)− 2c2


[

Pnaκa(r)

Qnaκa(r)

]
= ∑

b
εabδκa ,κb

[
Pnaκa(r)

Qnaκa(r)

]
. (47)

The potential V(a; r) consists of three terms

V(a; r) = Vnuc(r) + Y(a; r) + X(a; r), (48)

where the variations of the Rk(ab; ab) integrals weighted with the angular coefficients
and the state averaged expansion coefficients contribute to Y(a; r). Variations of the other
Rk(ab; cd) integrals and the off-diagonal I(a, b) integrals, again weighted with the angular
coefficients and the state-averaged expansion coefficients, contribute to the exchange
operator X(a; r) [110]. wa is the generalized occupation number of orbital a and εab are
energy parameters related to the Lagrange multipliers.

In B-spline methods [111], once off-diagonal Lagrange multipliers have been dealt
with, the radial functions Pa(r) = Pnaκa(r), Qa(r) = Qnaκa(r), are obtained as the solution
of an eigenvalue problem. However, the differential equation method used by GRASP,
where the radial functions are defined as a vector of values on a grid, requires that the
Dirac equation be rewritten as a pair of first-order differential equations [33,73,112]. In
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the first equation, we introduce XP
a (r) = X̄(a; r)Pa(r) = ∑b cabk(1/r)Yk(ab; r)Pb(r) as a

non-homogeneous term of the differential equation. Similarly, for the second equation,
we let XQ

a (r) = X̄(a; r)Qa(r) = ∑b cabk(1/r)Yk(ab; r)Qb(r). Furthermore, it is customary to
have the coefficient of the highest derivative be unity, so that

(Vnuc + Y(a; r))Pa(r)− c(
d
dr
− κa

r
)Qa(r) =

1
wa

∑
b

εabδκaκb Pb(r)− XP(a; r)

c(
d
dr

+
κa

r
)Pa(r) + (Vnuc(r) + Y(a; r)− 2c2)Qa(r) =

1
wa

∑
b

εabδκaκb Qb(r)− XQ(a; r) (49)

As a last step, the first equation should also be multiplied by −1, which considerably
changes the symmetry. In the self-consistent iterative method, Y(a; r), εab(b 6= a), XP(a; r),
XQ(a; r) are computed from current estimates and the orbital energy εaa, and updated
radial functions are solutions of the differential equation.

For bound states, it is required that the solutions are square integrable. A necessary,
but not sufficient, condition is that the radial amplitudes vanish as r → 0 and r → ∞. For
a point charge nuclear model, a rigorous analysis of the radial behavior at r = 0 leads to
power series of the form

Pnaκa(r) = rν(p0 + p1r + . . .), Qnaκa(r) = rν(q0 + q1r + . . .), (50)

where 2ν > −1 and pi, qi are determined by coupled linear algebraic equations. For a
more realistic model of the nuclear charge distribution, other conditions apply [73]. The
Equation (47), together with the accompanying boundary conditions, are solved iteratively
on the radial grid (8) by a finite difference self-consistent field (SCF) procedure. Briefly,
given initial estimates of the radial functions, the Hamiltonian matrix with elements (40)
is constructed and diagonalized to give expansion coefficients of the CSFs for each of the
ASFs. Improved estimates of the radial functions are then obtained by solving Equation (47).
The two last steps are repeated until the energy of the states and/or the radial functions do
not change anymore.

It is desirable to optimize all orbitals simultaneously, which is sometimes referred to
as the “full variational” (FV) approach. However, due to numerical convergence issues, the
MCDHF method often employs a layer-by-layer (LBL) strategy [113,114] (see Section 4.4,
and also in §3.5 of the manual [72]), in which only the newly introduced orbitals for the layer
considered are optimized while the remaining ones are kept frozen. In this context, a layer
is a set of new orbitals to be optimized consisting of one orbital per angular momentum
symmetry. The LBL approach is attractive as the computation time for each new layer is
much shorter than the corresponding computation time of the FV approach. The price to
pay for the LBL strategy is a larger active set of correlation orbitals to compensate for the
lost degrees of freedom.

Although GRASP focuses on atomic bound states, the MCDHF equations can generate
continuum orbitals provided different boundary conditions at rmax. GRASP ASFs can then
be used as target states in collision calculations in codes such as R-matrix [73,115]. In the
GRASP suite of programs, the MCDHF equations are solved by the rmcdhf program, which
reads the nuclear parameters, the CSFs list, as generated by the rcsfgenerate program and
the necessary angular data, produced by rangular, from disk files. The initial estimates of
the radial orbitals for the SCF procedure are generated by the rwfnestimate program and
can be taken as screened hydrogenic functions, functions from a Thomas–Fermi calculation
or converted non-relativistic orbitals; see the accompanying manual §3.3. For an overview
of the program and file flows for the MCDHF calculations, see Figures 1 and 2 of the manual.

2.8. Configuration Interaction

The MCDHF calculations are used to generate an orbital basis. Given this basis,
the final wave functions for the targeted states are obtained in relativistic configuration
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interaction (CI) calculations based on the Dirac–Coulomb–Breit and QED Hamiltonian (13).
For that step, the CSF expansions (6) may be extended in comparison with those used in
the previous MCDHF calculations to capture higher-order correlation contributions or to
test the adequacy of correlation models. In CI calculations, the matrix elements of the CSFs
are computed using the methods described in Section 2.6. The expansion coefficients of the
CSFs in the targeted states are then obtained by diagonalizing the Hamiltonian matrix. The
number of CSFs depends on the shell structure of the atomic system in question as well as
on the model for electron correlation. Even for moderate calculations, the number of zeroes
in the interaction exceeds the non-zero values, and sparse matrix methods are used. For
accurate calculations, a large number of CSFs are required, leading to very large matrices.
To handle these large matrices, the CSFs can a priori be divided into two groups. Let M be
the size of the total CSF space. The first group, P, with m elements (m� M) contains CSFs
that account for the major parts of the wave functions. The second group, Q, with M−m
elements contains CSFs that represent minor corrections. Allowing interaction between
CSFs in group P, interaction between CSFs in group P and Q and diagonal interactions
between CSFs in Q gives a matrix(

H(PP) H(PQ)

H(QP) H(QQ)

)
, (51)

where H(QQ)
ij = δijE

Q
i . The restriction of H(QQ) to diagonal elements results in a huge

reduction in the total number of matrix elements and corresponding computational time.
The assumptions of the approximation and the connections to the method of deflation
in numerical analysis are discussed in [30]. The structure of (51) is reminiscent of the
second-order Brillouin–Wigner perturbation theory [116–118]. This form of the CI matrix
has been available in the non-relativistic and relativistic multiconfiguration codes for a
long time [41,119], where the P and Q groups were named “zeroth-order” and “first-
order” sets, respectively. Our MCDHF/CI methods are therefore referred to as ‘Zero-First’
methods [120], i.e., ZF-MCDHF or ZF-CI.

GRASP uses sparse matrix methods for storing the interaction matrix in which only non-
zero off-diagonal elements are stored by column for the upper matrix, taking advantage
of matrix symmetry. The order of the CSFs is not important except when initial estimates
of the eigenvectors are required, in which case up to 4000 of the first CSFs are considered,
depending on a program parameter. Special iterative eigensolvers are used that determine
only selected eigenvalues in the lower portion of the spectrum [121] and matrix–vector
multiplication with sparse matrices. Much of the efficiency of variational methods relies on
the sparsity of the interaction matrix. In the GRASP suite of programs, the CI calculations
are performed by the rci program. Nuclear parameters, the CSFs list, as generated by
rcsfgenerate and radial orbitals, as produced by rmcdhf, are read from disk files. Angular
data needed to compute the Hamiltonian matrix elements are computed on the fly by calls
to the routines of the librang90 library. The program and file flows associated with a CI
calculation are displayed in Figures 1 and 2 in the accompanying manual. In GRASP, the
program rcsfzerofirst is used to partition the CSF expansion in zero- and first-order sets.
The ZF method is not the default mode but is only used to handle very large expansions
and matrices, as discussed in detail in section 14 of the manual [72] that is entirely devoted
to strategies for ZF-MCDHF and ZF-CI.

2.9. Transformation to Different Coupling Schemes

In fully relativistic calculations, quantum labels for the targeted states are obtained
in jj-coupling. Most often, this wave function representation is far from being pure, i.e.,
there is no dominant CSF whose quantum numbers can be used to label a state in a
proper way. Using the methods developed by Gaigalas and co-workers [70,122], the wave
function representation in jj-coupling is transformed to an approximate representation in
LSJ-coupling. This representation is normally purer and better suited for labeling. One
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should be aware of the fact that even in LSJ-coupling, the labeling is not straightforward,
and several components in the LSJ-coupling representation must be used recursively to
find unique labels [123]. In GRASP2018, the transformation from jj- to LSJ-coupling is
completed by the jj2lsj program that also determines unique labels. Transformations to
other coupling schemes, e.g., JK or LK, are completed by the coupling program; see the
accompanying manual §6.2 and §6.3. Needless to say, the programs to transform the wave
functions and assigning unique labels are important parts of the GRASP package.

3. Grasp Theory—Atomic Properties

Once the ASFs have been determined from MCDHF or CI calculations, measurable
properties such as hyperfine structure splittings, isotope shifts and rates for transitions be-
tween two states can be computed as expectation values of one- and two-electron operators.
For hyperfine structure and isotope shift, the combination of calculated electronic quantities
and high precision measurements allows nuclear parameters to be extracted [124]. Atomic
transition rates, on the other hand, are crucial in astrophysics and plasma physics for
diagnostic purposes, e.g., for determining element abundances, temperatures, and electron
densities [46].

3.1. Hyperfine Structures

The hyperfine structure of a fine structure level is caused by the interaction between
the electrons and the electromagnetic multipole moments of the nucleus. The Hamiltonian
for the interaction may be written as a multipole expansion

Hh f s = ∑
k≥1

T(k) ·M(k), (52)

where T(k) and M(k) are spherical tensor operators of rank k in the electronic and nuclear
spaces, respectively [125]. The k = 1 term represents the magnetic dipole interaction and
the k = 2 term the electric quadrupole interaction. For an N-electron atom, the electronic
tensor operators are [66,125]

T(1) =
N

∑
j=1

t(1)(j) =
N

∑
j=1
−i
√

2α r−2
j

(
αj C(1)(θj, ϕj)

)(1)
(53)

T(2) =
N

∑
j=1

t(2)(j) =
N

∑
j=1
−r−3

j C(2)(θj, ϕj). (54)

The matrix elements of the nuclear tensor operators are related to the conventional nuclear
magnetic dipole moment µI and electric quadrupole moment Q by

µI = 〈I I|M(1)
0 |I I〉 (55)

Q = 2〈I I|M(2)
0 |I I〉 (56)

where |IMI〉 is the nuclear wave function. Values of nuclear magnetic dipole and electric
quadrupole moments can be found in the recent compilation by Stone [126,127].

The hyperfine interaction couples the nuclear I and electronic J angular momenta
to a total momentum F = I + J and zero-order wave functions of the coupled states can
be written

|ΓI JFMF〉 = ∑
MI ,MJ

〈I JMI MJ |I JFMF〉|IMI〉|ΓJMJ〉. (57)
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If the hyperfine interaction is weak so that the interaction energy is small compared to
the fine structure separation, Hh f s can be treated in first-order perturbation theory. The
F-dependent hyperfine energy to be added to the energy of the ΓJ level is then given by

Eh f s
ΓI JF = 〈ΓI JFMF| ∑

k≥1
T(k) ·M(k)|ΓI JFMF〉 , (58)

where

T(k) ·M(k) = (−1)k
√

2k + 1
[
T(k) ×M(k)

](0)
0

. (59)

Factoring out the dependence on the F quantum number, the hyperfine energies can be
expressed in terms of the hyperfine interaction constants, A and B,

Eh f s
ΓI JF =

1
2

AΓJC + BΓJ

3
4 C(C + 1)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
, (60)

where
AΓJ =

µI
I

1√
J(J + 1)(2J + 1)

〈ΓJ‖T(1)‖ΓJ〉 , (61)

BΓJ = 2Q

√
J(2J − 1)

(J + 1)(2J + 1)(2J + 3)
〈ΓJ‖T(2)‖ΓJ〉 . (62)

and C = F(F + 1)− J(J + 1)− I(I + 1). Inserting the expression for the ASFs in terms of
CSFs (6) and using the results of Section 2.6, the reduced matrix elements in the hyperfine
interaction constants can be computed as sums over radial hyperfine structure integrals
weighted with the product of the expansion coefficients of the CSFs and the angular
coefficients, as expressed by Equation (31) for one-body operators. In GRASP, the hyperfine
structure constants are computed using the rhfs program. The nuclear parameters, the
CSF expansion, the radial orbitals, as obtained by rmcdhf, and the expansion coefficients
of the CSFs, as obtained by the rmcdhf or rci programs, are read from files. Specific
examples of computations of hyperfine constants are given in §6.1 of the manual. For
more recent developments, using several independently optimized radial orbital sets in
the computation of the hyperfine constants, see the article by Yan Ting et al. [128] in the
present Special Issue.

3.2. External Magnetic Fields

Neglecting diamagnetic contributions and choosing the direction of the external
magnetic field B in the z-direction, the interaction between the atomic electrons and the
field can be written

Hm = (N(1) + ∆N(1)) · B(1) ≡ (N(1)
0 + ∆N(1)

0 )B, (63)

where B = B(1)
0 = Bz is the magnetic field strength. The last term is the so-called Schwinger

QED correction. For the Zeeman effect on hyperfine levels, the Hamiltonian for the Zeeman
interaction should in principle also include the interaction with the nucleus, although it is
weak and can be neglected.

For an N-electron atom, the electronic tensor operators are [84,129]

N(1) =
N

∑
j=1

n(1)(j) =
N

∑
j=1
−i

√
2

2α
rj

(
αj C(1)(θj, ϕj)

)(1)
, (64)

∆N(1) =
N

∑
j=1

∆n(1)(j) =
N

∑
j=1

gs − 2
2

β jΣj, (65)
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where Σj is the relativistic spin-matrix and gs = 2.00232 is the g factor of the electron
spin corrected for QED effects [129]. If the magnetic field is weak, so that the interaction
energy is small compared to the fine-structure separation, the interaction can be treated in
first-order perturbation theory. A fine-structure level ΓJ is then split according to

〈ΓJMJ |N
(1)
0 + ∆N(1)

0 |ΓJMJ〉B (66)

= (−1)J−MJ

(
J 1 J
−MJ 0 MJ

)
〈ΓJ‖N(1) + ∆N(1)‖ΓJ〉B

=
MJ√

J(J + 1)(2J + 1)
〈ΓJ‖N(1) + ∆N(1)‖ΓJ〉B .

Usually, the dependence on the MJ quantum number is factored out, and the energy
splittings are expressed as

EΓJMJ = gJ MJ
B
2

, (67)

where gJ is the Landé factor

gJ = 2
〈ΓJ‖N(1) + ∆N(1)‖ΓJ〉√

J(J + 1)(2J + 1)
. (68)

Analogously, a hyperfine level ΓI JF for which off-diagonal effects are small is then split
according to

〈ΓI JFMF|N
(1)
0 + ∆N(1)

0 |ΓI JFMF〉B

= MF
F(F + 1) + J(J + 1)− I(I + 1)

2F(F + 1)
〈ΓJ‖N(1) + ∆N(1)‖ΓJ〉√

J(J + 1)(2J + 1)
B

= MF
F(F + 1) + J(J + 1)− I(I + 1)

2F(F + 1)
gJ

B
2

. (69)

The energy splittings of hyperfine levels are given by

EΓI JFMF = gF MF
B
2

, (70)

where the Landé factor is defined by

gF =
F(F + 1) + J(J + 1)− I(I + 1)

2F(F + 1)
gJ . (71)

In GRASP, the Landé factors for fine- and hyperfine structure levels are computed using
the hfszeeman95 program. The nuclear parameters, the CSF expansion, the radial orbitals,
as obtained by rmcdhf, and the expansion coefficients of the CSFs, as obtained by the
rmcdhf or rci programs, are read from files. Specific examples are given in §6.9 of the
accompanying manual.
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3.3. Isotope Shift
3.3.1. Mass Shift

The Dirac–Coulomb and Dirac–Coulomb–Breit Hamiltonians are valid under the
assumptions that the nucleus is infinitely heavy. The effect of the recoil motion of the
nucleus is given by the normal and specific mass shift operators [130,131]

HA
NMS =

1
2M

N

∑
j=1

(
p2

j −
αZ
rj

αj · pj −
αZ
rj

(
αj ·C(1)(θj, ϕj)

)
C(1)(θj, ϕj) · pj

)
, (72)

HA
SMS =

1
2M

N

∑
j 6=k

(
pj · pk −

αZ
rj

αj · pk −
αZ
rj

(
αj ·C(1)(θj, ϕj)

)
C(1)(θj, ϕj) · pk

)
, (73)

where M is the nuclear mass of the isotope with mass number A. Treating the operators in
first-order perturbation theory, with ASFs of the Hamiltonian with infinite nuclear mass as
zero-order functions, the isotope mass shift of a level ΓJ is given by

EA
ΓJ − EA′

ΓJ = KΓJ,MS

(
M′ −M

MM′

)
=

(KΓJ,NMS + KΓJ,SMS)

(
M′ −M

MM′

)
, (74)

where the level mass shift parameters KΓJ,NMS and KΓJ,SMS are defined by

KΓJ,NMS

M
= 〈ΓJMJ |HA

NMS|ΓJMJ〉 =
1√

2J + 1
〈ΓJ‖HA

NMS‖ΓJ〉, (75)

KΓJ,SMS

M
= 〈ΓJMJ |HA

SMS|ΓJMJ〉 =
1√

2J + 1
〈ΓJ‖HA

SMS‖ΓJ〉. (76)

Rewriting the operators in tensorial form, the expectation values can be evaluated according
to Equations (31) and (33) in terms of radial integrals (details are given in [132]). In
the GRASP suite of codes, the level mass shift electronic factors KΓJ,NMS and KΓJ,SMS are
computed by the ris4 program (see §6.1 in the manual for a specific example). The three
contributions associated with the three terms of (72) and (73) are reported separately.

3.3.2. Field Shift

In GRASP, the nuclear potential results from a two-parameter Fermi nuclear charge
distribution and the energy shift for a level from one isotope to another can in principle
be obtained by performing two separate calculations and subtracting the energies. This is
inconvenient and computationally expensive. A better way is to consider the level field
shift (FS) as a first-order perturbation

δEA,A′
ΓJ,FS = −

∫
R3

[
VA(r)−VA′(r)

]
ρe

ΓJ(r)d
3r , (77)

where VA(r) and VA′(r) are the potentials arising from the nuclear charge distributions of
the two isotopes and

ρe
ΓJ(r) = 〈ΓJMJ |

N

∑
i=1

δ(r− ri)|ΓJMJ〉 (78)

is the electron density of level ΓJ of the reference isotope. Assuming that the electron
density at the origin can be very well approximated with a spherically symmetric even
polynomial function according to

ρe
ΓJ(r) =

ρe
ΓJ(r)

4π
≈ bΓJ(r) = bΓJ,0 + bΓJ,2r2 + bΓJ,4r4 + bΓJ,6r6 , (79)
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and using the Laplacian operator in spherical coordinates to obtain ∇̂2rn+2 = (n + 2)(n + 3)rn

and the Poisson’s equation ∇̂2VA(r) = −4πρA(r), we obtain

δEA,A′
ΓJ,FS = ∑

0≤n≤6,n even
F ΓJ,n δ〈rn+2〉A,A′ , (80)

with

F ΓJ,n =
4π Z bΓJ,n

(n + 2)(n + 3)
, (81)

where we used the expression for differences in the nuclear radial moments between
isotopes A and A′,

δ〈rn+2〉A,A′ = 〈rn+2〉A − 〈rn+2〉A′ = 1
Z

∫
R3

rn+2
[
ρA(r)− ρA′(r)

]
d3r . (82)

In the expression above, Z is the atomic number and appears due to normalization. Ac-
counting for the level isotope shifts of an upper u and a lower l state in a transition gives
the experimentally measurable transition isotope shift

δνA,A′
k,IS = (∆KNMS + ∆KSMS)

(
M′ −M

MM′

)
+ ∑

0≤n≤6,n even

∆Fk,n

h
δ〈rn+2〉A,A′ , (83)

where ∆KNMS = Ku,NMS − Kl,NMS and ∆KSMS = Ku,SMS − Kl,SMS are the differences of
the mass shift parameters and the line electronic factors are given by

∆Fk,n = Fu,n − Fl,n =
4π Z ∆bk,n

(n + 2)(n + 3)
. (84)

Here, ∆bk,n = bu,n− bl,n is the difference of the polynomial function coefficients between the
upper (u) and the lower (l) level of the transition. For spherical nuclear charge distributions,
GRASP adopts for ρA(r) the Fermi distribution model [73,76].

Using the refined treatment of the field shift, effects of the variation of the electron
density (ved) over the nuclear volume as well as atomic energy shifts arising from changes
in nuclear charge distributions, including nuclear deformations, can also be estimated. The
level field shift (80) can be approximated by

δEA,A′
ΓJ,FS ≈ F ved

ΓJ,0 δ〈r2〉A,A′ , (85)

with
F ved

ΓJ,0 = F (0)ved
ΓJ,0 + F (1)ved

ΓJ,0 δ〈r2〉A,A′ , (86)

where F (0)ved
ΓJ,0 and F (1)ved

ΓJ,0 are estimated analytically from the parameters (a, c) defining
the Fermi distribution modeling the nuclear charge distribution of the reference isotope
and from the four coefficients F ΓJ,n(n = 0, 2, 4, 6) of Equations (80) and (81). Details are
given in the write-up of the relativistic isotope shift program ris4 [68]. For lighter systems,
where the electronic density is essentially constant inside the nuclear volume, it is justified
to only consider the first electronic factor ∆Fk,0 = 2

3 πZ∆ρe
ΓJ(0), and the nuclear quantity

δ〈r2〉A,A′ can be extracted from observed line shifts along isotope chains [63] and be directly
compared with predictions from nuclear theory [133]. The reduction (31) for the field shift
operator is relatively simple thanks to the scalar property of the radial electron density. The
spin-angular coefficients are identical to the weighing factors tαβ

ab of the one-electron radial
integrals I(a, b) appearing in Equation (41) for the Hamiltonian, which is another k = 0
tensorial operator. More details can be found in [68]—see also Section 3.4. In the GRASP

suite of codes, the electronic factors (81) of the level field shift (80), together with F (0)ved
ΓJ,0

and F (1)ved
ΓJ,0 of (86) are computed by the ris4 program; see §6.1 and §8.1 in the manual.
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3.3.3. Total Shift

The total isotope shift in frequency of a given spectral line k is obtained from the
differences of the level mass- and field shift electronic factors, which are each weighted by
the adequate mass and radial nuclear factors, respectively (see Equation (83)). The auxiliary
code fical of the GRASP suite of codes allows this calculation. Section 12 of the manual
provides a specific example of how to use ris4 together with fical to compute the effect
of nuclear deformation on the frequency isotope shift for the 1s22s 2S1/2 − 1s22p 2Po

1/2,3/2
transitions in 150,142Nd57+. Careful attention should be paid to the conventions used to
define the relevant ingredients [134].

3.4. Electronic Radial Densities and Natural Orbitals

The radial electron density D(r) of level ΓJ described by the ASF (6) can be calcu-
lated from

D(r) = 4πr2ρ(r) = ∑
α,β

(cΓJ
α )∗ Dαβ(r) cΓJ

β , (87)

where each density matrix element in the CSF space is given as a weighted sum of ra-
dial functions

Dαβ(r) =

[
∑
κ

∑
n′n

vα,β
nn′κ Iρ(n′κ, nκ; r)

]
, (88)

with
Iρ

(
n′κ, nκ; r

)
≡ [Pn′κ(r)Pnκ(r) + Qn′κ(r)Qnκ(r)] . (89)

The weighting coefficients vα,β
nn′κ can be estimated from the ξab;k=0 coefficients appearing in

the reduction (31) of 〈αJ‖F(0)‖βJ〉 (see [69] for more details). The radial density distribution
is normalized to the number of electrons∫ ∞

0
D(r)dr = N . (90)

Although the electron density has to be evaluated within the nuclear volume for FS cal-
culations (see Equation (77)), it is often interesting to probe the electronic radial density
distribution through the entire atomic volume to investigate the role of electron correlation
and relativity [69,135,136]. For the ground state of neutral beryllium, a good zeroth-order
wave function is usually built on the Layzer complex (LC) (1s22s2 + 1s22p2) that reflects
the near-degeneracy of the two components [137] (see Section 4.2). Electron correlation
can be included by building the CSF space, considering electron substitutions from this
multireference. The radial electron density calculated with such an MCDHF wave function
based on single and double (SD) substitutions from the LC to n = 3 is displayed (in black)
in the left panel of Figure 1. The correlation effect on the density is illustrated through the
blue curve corresponding to the difference between the electron densities calculated in
this correlation model, DSD(r) and in the two-configuration zeroth-order approximation,
DLC(r). This difference corresponds to a correlation energy of 0.0376 Eh, i.e., to '0.26 % of
the total binding energy.
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Figure 1. Left panel/in black: radial electron density DSD(r) for the ground state of beryllium using
the MR(1s22s2 + 1s22p2) − SD(n = 3) correlation model. In blue, difference between the radial
electron densities calculated using, respectively, this correlation model (DSD(r)) and correlation
limited to the Layzer complex (DLC(r)). Right panel: analysis of diagonal (in red) and off-diagonal
contributions (in green) to the total DSD(r)− DLC(r) difference (in blue). See text for discussion.

The radial electronic density is often viewed as the sum over the orbital densities
Iρ(nκ, nκ; r)

D(r) = ∑
nκ

qnκ Iρ(nκ, nκ; r) (91)

weighted by the total subshell occupation numbers evaluated over the entire CSF space

qnκ = ∑
α

∣∣∣cΓJ
α

∣∣∣2wα
nκ , (92)

where wα
nκ is the occupation number of subshell nκ in the CSF Φ(γα J). This is a naive

picture, as demonstrated in the right panel of the same figure, that shows the importance
of the off-diagonal matrix elements Dα,β(α 6= β) involving off-diagonal contributions
Iρ(n′κ, nκ; r)(n′ 6= n). The latter should never be omitted to obtain reliable results.

The radial density distribution (87) can be rewritten as

D(r) = ∑
κ

∑
n′n

ρκ
n′n Iρ(n′κ, nκ; r) , (93)

with
ρκ

n′n = ∑
α,β

(cΓJ
α )∗ vα,β

nn′κ cΓJ
β . (94)

A “by-product” of the electron density are the natural orbitals (NO){
P̃ακ(r) = ∑n uα,κ

n Pnκ(r)
Q̃ακ(r) = ∑n uα,κ

n Qnκ(r) ,
(95)

that diagonalize the density matrix ρκ

Uκ†ρκ Uκ = ρ̃κ . (96)

The NOs have the attractive feature that they concentrate the expansion coefficients to
relatively fewer CSFs, resulting in zero weights for others; see [29]. As an example, we take
1s22s2 1S in Be I. In Table 3, we display the expansion coefficients for an RCI calculation
based on a CSF expansion built on MCDHF-optimized orbitals up to n = 4 and accounting
for valence–valence electron correlation. Redoing the RCI calculation with CSFs built on
NOs gives exactly the same wave function (and energy), but it changes the expansion
coefficients, as seen in the right-most column in the table. Now, many of the CSFs have
zero expansion coefficients.
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The use of NOs is not common in Atomic Physics, unlike in Quantum Chemistry.
However, a recent study [138] suggests that natural orbitals might be a promising alterna-
tive to the LBL optimization scheme usually adopted in GRASP calculations (see Section 4)
to avoid convergence problems. NOs could also prove useful in connection with the treat-
ment of Lagrange multipliers during the orbital optimization process [139]. In GRASP, the
radial density function as well as the NOs are computed using the rdensity program. The
nuclear parameters, the CSF expansion, the radial orbitals, as obtained by rmcdhf, and
the expansion coefficients of the CSFs, as obtained by the rmcdhf or rci programs, are
read from files. The radial density function is written to file in the format that makes it
easy to print. The NOs are written to file in the same format as the radial wave functions
from rmcdhf and can be directly used by the rci program. Examples of how to use the
rdensity program to produce the radial density function and the NOs are given in §6.8 in
the manual.

Table 3. Mixing coefficients for the n = 4 active space valence correlation expansion of the 1s22s2 1S0

ground state of Be, using two different orbital bases: the MCDHF-optimized orbitals and their
corresponding natural orbitals (MCDHF/NO).

CSF MCDHF MCDHF/NO

2s (2) 0.953738 0.953740
2s (1) 3s (1) −0.001117 0.000000
2s (1) 4s (1) −0.001846 0.000000
2p (2) 0.242750 0.242750
2p-(2) 0.171674 0.171674
2p (1) 3p (1) 0.000254 0.000000
2p (1) 4p (1) 0.000302 0.000000
2p-(1) 3p-(1) 0.000178 0.000000
2p-(1) 4p-(1) 0.000214 0.000000
3s (2) −0.039770 −0.039787
3s (1) 4s (1) −0.001052 0.000000
3p (2) 0.004905 0.004922
3p-(2) 0.003467 0.003479
3p (1) 4p (1) −0.000333 0.000000
3p-(1) 4p-(1) −0.000237 0.000000
3d (2) −0.013120 −0.013134
3d-(2) −0.010712 −0.010723
3d (1) 4d (1) 0.000530 0.000000
3d-(1) 4d-(1) 0.000432 0.000000
4s (2) −0.004103 −0.004089
4p (2) 0.001628 0.001611
4p-(2) 0.001150 0.001138
4d (2) −0.002808 −0.002794
4d-(2) −0.002291 −0.002280
4f (2) 0.004766 0.004766
4f-(2) 0.004127 0.004127

3.5. Radiative Transition Properties

The atomic states are coupled to the radiation field. Following Grant [73,140], the
rate A for spontaneous emission from an upper state Γ′ J′MJ′ to any of the 2J + 1 states
ΓJMJ , MJ = −J,−J + 1, . . . , J of a lower energy level ΓJ is given by

A =
2ω

c
1

(2L + 1)(2J′ + 1)
|〈ΓJ‖O(L)‖Γ′ J′〉|2, (97)
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where O(L) = ∑N
j=1 o(j)(L) is the electric and magnetic multipole transition operator of rank

L and ω is the angular frequency of the transition. Instead of giving the rate, the strength
of a transition is often expressed in terms of the dimensionless oscillator strength

g f =
1
ω

1
(2L + 1)

|〈ΓJ‖O(L)‖Γ′ J′〉|2. (98)

Inserting the CSF expansions for the left and right-hand ASFs, the reduced matrix element
of the transition operator is

〈ΓJ‖O(L)‖Γ′ J′〉 = ∑
α,β

cΓJ
α cΓ′ J′

β 〈γα J‖O(L)‖γ′β J′〉. (99)

The reduced matrix elements between the CSFs can, according to Equation (31), be ex-
pressed in terms of spin-angular coefficients and operator strengths as

〈γα J‖O(L)‖γ′β J′〉 = ∑
a,b

ξab;L〈naκa(1)‖o(L)(1)‖nbκb(1)〉. (100)

The one-particle reduced matrix elements above can be further decomposed as

〈naκa‖o(L)‖nbκb〉 = 〈ja‖C(L)‖jb〉Me,m
a,b (ω; GL), (101)

where Me,m
a,b (ω; GL) is a quantity that can be expressed as a linear combination of three

radial integrals involving combinations of Pa(r), Qa(r), Pb(r), Qb(r) weighted by a spherical
Bessel function jL(ωr/c) (see [73], section 8.2.1). For electric multipoles

Me
a,b(ω; GL) = Me

a,b(ω; 0) + GL Ml
a,b(ω), (102)

where Me
a,b(ω; 0) is the Coulomb gauge integral and Ml

a,b(ω) is the longitudinal part.
GL is the gauge parameter [140,141]. Setting GL = 0, we obtain the matrix element in
the Coulomb gauge. Choosing GL =

√
(L + 1)/L, we obtain the matrix element in the

Babushkin gauge.
The Racah algebra used to express the reduced transition matrix elements appearing

in (97) and (98) in terms of spin-angular coefficients and operator strengths assumes that
the initial and final atomic states are built from a common and orthonormal orbital set.
This is a severe restriction, since a high-quality wave function requires that orbitals be
optimized for a specific electronic state. However, for very general initial and final state
CSF expansions, the only requirement being that they are closed under orbital de-excitation,
built on different and separately optimized orbital sets, it is possible to change the wave
function representation in such a way that the standard Racah algebra can be used for
the evaluation of the matrix elements in the new representation (see Olsen et al. [142]).
The procedure for the calculation of the transition matrix element can be summarized
as follows.

1. Perform MCDHF or CI calculations for the initial and< the final states, where the
radial one-electron orbital sets {(Pnκ , Qnκ)} and {(P′n′κ , Q′n′κ)} of the lower ΓJMJ
and upper Γ′ J′MJ′ state wave functions are not assumed to be the same.

2. For each κ, compute the radial orbital overlap matrix. Transform the two radial
one-electron orbital sets

{(Pnκ , Qnκ)} → {(P̃nκ , Q̃nκ)}, {(P′n′κ , Q′nκ)} → {(P̃′n′κ , Q̃′n′κ)} (103)

to a biorthonormal basis, i.e., a basis such that

〈(P̃nκ , Q̃nκ)|(P̃′n′κ , Q̃′n′κ)〉 = δn,n′ . (104)
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The orbital transformation in effect changes the CSFs, and we have

{Φ(γα J)} → {Φ̃(γα J)}, {Φ(γ′β J′)} → {Φ̃(γ′β J′)}. (105)

The orbital transformation is followed by a counter transformation of the CI expan-
sion coefficients

{C ΓJ
α } → {C̃ ΓJ

α }, {C Γ′ J′
β } → {C̃ Γ′ J′

β } (106)

to leave the total wave functions invariant, i.e.,

∑
α

C ΓJ
α Φ(γα J) ≡∑

α

C̃ ΓJ
α Φ̃(γα J), ∑

β

CΓ′ J′
β Φ(γ′β J′) ≡∑

β

C̃Γ′ J′
β Φ̃(γ′β J′) (107)

3. Use standard Racah algebra to compute the transition matrix elements in the new
biorthonormal representation.

In GRASP, the biorthogonal transformation is performed with the program rbiotransform.
The CSF expansions, required to be closed under de-excitation (see accompanying man-
ual §3.8), the radial orbitals, as obtained by rmcdhf, and expansion coefficients obtained
by rmcdhf or rci are read from file. The transformed radial orbitals and expansion coeffi-
cients are written back to file. The computation of transition rates and weighted oscillator
strengths, in both Babushkin and Coulomb gauges for electric multipoles, are completed
with rtransition. The CSF expansions, the transformed radial orbitals and expansion
coefficients, along with relevant energies needed to compute the transition frequencies ω,
are read from file. The program and file flow leading up to the transition calculations are
displayed in Figures 1 and 2 in the manual.

Transition matrix elements in, respectively, the Coulomb and Babushkin gauges,
approach matrix elements in the velocity and length forms in the non-relativistic limit.
The resulting rates and weighted oscillator strengths for the electric multipole transitions
computed in different gauges are known to be different when approximate wave functions
are used. It is generally found that parameters in the Babushkin gauge, which puts more
weight on the outer parts of the wave functions, are more accurate for excitations from
lower lying levels, but those obtained with the Coulomb gauge, which puts more weight
on the inner parts of the wave functions, are more accurate for excited states [143].

For highly accurate wave functions, that predict the observed transition energies to
fractions of a percent, a statistical analysis by Ekman et al. [144] suggests that the quantity

dT =
|AC − AB|

max(AC, AB)
, (108)

where AC and AB are the rates computed in the Coulomb and Babushkin gauges, can
be used to estimate the uncertainty of the computed rates. The uncertainty should be
interpreted in a statistical sense and applied to groups of transitions [114]. For convenience,
the dT parameter is written to file by the rtransition program along with the transition
rates and weighted oscillator strengths in both Coulomb and Babushkin gauges. Specific
examples of transition calculations are given in Sections 6.1, 6.3, 6.4, 9, 10, and 11 of the
manual. In §11.3, the programs are used to study the change of transition rates along an
iso-electronic sequence.

3.6. Unexpected Transitions

The transition operator is a one-electron operator, but occasionally, transitions appear
to be the result of “two-electron jumps” [14]. An example is the 2s3d 1D− 2p3s 1Po transition
in Be I. This anomaly occurs when there is extensive mixing of the wave function in either
the initial or final state. In the present case, the 1D wave function has a significant 2p2 1D
component that contributes to the electric dipole transition labeled 2s3d 1D − 2p3s 1Po

through the 2p2 1D− 2p3s 1Po CSF transition matrix element. This two-electron jump, also
classified as a “two-electron-one-photon” (TEOP) process [145], is therefore a consequence
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of electron correlation in the wave functions describing the initial and/or final levels. Note
that TEOP transitions may also appear at the uncorrelated level of approximation [146] if
the orbital relaxation resulting from the independent optimization of the initial and final
states is large enough to allow significant radial non-orthogonalities. An example is the
E1 radiative decay from 1s22s3p 3Po

0 to 1s22p2 3P1 in Be-like ions for which the E1 radial
integral 〈2s|r|2p〉 is multiplied by the non-zero radial overlap 〈3p|2p〉 integral involving
the spectator subshells. TEOP transitions may also appear for magnetic dipole or electric
quadrupole transitions [147].

Other a priori unexpected radiative transitions can be induced by symmetry-breaking
perturbations due to, for example, an external magnetic field (magnetic-field-induced tran-
sitions, MIT) and/or hyperfine interaction (hyperfine-induced transitions, HIT) and give
rise to new lines in the spectrum [148]. Depending on the magnetic field strength, B, and
the nuclear spin, I, the total Hamiltonian and the perturbed eigenstates can be expressed as
a linear combination of unperturbed ASFs (6) as follows,

B 6= 0, I = 0 : H = HDCB +Hm, |Γ̃MJ〉 = ∑
ΓJ

dΓJ |ΓJMJ〉

B = 0, I 6= 0 : H = HDCB +Hh f s, |Γ̃FMF〉 = ∑
ΓJ

dΓJ |ΓI JFMF〉 (109)

B 6= 0, I 6= 0 : H = HDCB +Hm +Hh f s, |Γ̃IMF〉 = ∑
ΓJF

dΓJF|ΓI JFMF〉,

whereHDCB is the Dirac–Coulomb–Breit Hamiltonian. Hm andHh f s are given by Equations (63)
and (52). Additional quantum numbers are incorporated in the labels of the ASFs as
needed for the different cases. The mixing coefficients, d, can be determined through, e.g.,
perturbation theory or by solving the full eigenvalue problem:

Hd = Ed (110)

where H, taking the B 6= 0, I 6= 0 case as an example, is the matrix with elements:

HΓJF,Γ′ J′F′ = 〈ΓI JFMF|HDCB + T(1) ·M(1) + T(2) ·M(2) (111)

+ (N(1) + ∆N(1)) · B(1)|Γ′ I J′F′MF〉.

Formulas for the relevant matrix elements can be found in [84]. In GRASP, the above matrix
elements are computed using the hfszeeman95 program [67]. The nuclear parameters, the
CSF expansion as produced by the rcsfgenerate, the radial wave functions as produced
by rmcdhf, and the expansion coefficients of the CSFs as obtained by the rmcdhf or rci
programs are read from file. The hfszeeman95 program diagonalizes the interaction matrix
to give the energies and expansion coefficients in Equation (109). In external magnetic
fields, the latter quantities are dependent on B and, given the mithit tool of hfszeeman95,
it is possible to map out the energy structure as a function of B beyond the weak Zeeman–
or Paschen–Back limits [149].

In the long wavelength approximation, the transition rate for an electric dipole (E1)
transition between an Γ̃′M′F and a lower Γ̃MF magnetic hyperfine structure substate is
given by

A(Γ̃′M′F → Γ̃MF) =
64π4e2a2

0
3hλ3 ∑

q
|〈Γ̃MF|O

(1)
q |Γ̃′M′F〉|2 (112)
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where λ = 2πc/ω is the wavelength and O(1)
q is the magnetic component of the electric

dipole transition operator O(1). Substituting Equation (109) into Equation (112) and using
the WE theorem together with an uncoupling of F, the rate (in s−1) can be rewritten as

A(Γ̃′M′F → Γ̃MF) =
2.02613× 1018

λ3 ∑
q

∣∣∣∣∑
ΓJF

∑
Γ′ J′F′

dΓJFd′Γ′ J′F′

×
√
(2F′ + 1)(2F + 1)(−1)F−MF

(
F 1 F′

−MF q M′F

)
× (−1)I+J′+F+1

{
J F I

F′ J′ 1

}
〈ΓJ||O(1)||Γ′ J′〉

∣∣∣∣2.

(113)

where the wavelength λ is expressed in ångström. The rates for unexpected symmetry
breaking transitions are computed by the mithit program. The program reads matrix
elements produced by hfszeeman95, and then, it constructs and diagonalizes the interaction
matrix for a specified B value to determine the expansion coefficients in (109). The needed
transition matrix elements are computed from the output of the rtransition_phase, which
is a modification of the rtransition program, that gives also phase information. In
Section §6.9 of the manual, there is an example of how to use the above programs to
compute hyperfine and magnetically induced transitions 2s2p 3Po

0 − 2s2 1S0 in Ni XXV.

4. Selection of CSFs

Starting with the concept of electron correlation, this section aims to guide the user of
GRASP into the important process of selecting CSFs in order to build the CSF space. This
selection ultimately determines the accuracy of computed transition energies and rates as
well as other properties.

4.1. Electron Correlation

Electron correlation is one of the most important concepts in computational atomic
physics. It can be defined as the effects beyond the single CSF, or Dirac–Fock, approximation.
Electron correlation is often divided into static correlation and dynamic correlation [30].
Static correlation is a long-range rearrangement of the single CSF electron charge distribu-
tion due to the strong interaction with a set of CSFs that can be formed from configurations
built from orbitals with the same principal quantum numbers as the ones that occupy
the reference state and where we may think of orbitals with the same principal quantum
numbers as being closely degenerate. The set of strongly interacting CSFs is known as
the multireference (MR) and includes, in the general case, also important CSFs formed
from configurations other than those above. Whereas it is natural to see the MR as a set of
important CSFs defining the lowest order approximation of the wave function, the MR is
sometimes also thought of as a set of important configurations with the CSFs followed by
angular couplings. This is the view taken in the accompanying manual.

Dynamic correlation is a short-range effect that arises from the singularity of the
1/rij electron–electron interaction near points of coalescence where rij = 0 and has a
wave function cusp condition associated with it [150]. These are not isolated points but
include entire regions of space. The more likely regions are those where the probability of
finding a pair of electrons is the highest. Dynamic correlation does in part depend on the
coupling conditions of the state. In a state where the spins of the electrons are aligned, e.g.,
1s2p 3Po

1 , the wave function is, by the Pauli exclusion principle, zero whenever r1 = r2. By
continuity, the probability for the two electrons to closely coincide is small, and the dynamic
electron correlation is fairly minor. For 1s2p 1Po

1 , the spins do not align, and there is a finite
probability for the electrons to coincide, and thus, the dynamic electron correlation is larger.

For many-electron systems, the largest contributions to electron correlation come from
pairs of electrons which occupy the same region in space. Thus, there are large contributions
from each doubly occupied orbital, with smaller additions from orbital pairs that occupy
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different shells. Just as for the static correlation, the dynamic correlation can be accounted
for by expansions over CSFs, and the effect should be to mimic the cusp behavior of the
exact wave function at points of electron coalescence.

4.2. Z-Dependent Perturbation Theory

Static and dynamic correlation can be understood in terms of Z-dependent pertur-
bation theory, which, for simplicity, we apply in non-relativistic theory. Introduce a new
variable ρ = Zr in which the Hamiltonian becomes

H = Z2
(
H(0) + Z−1V

)
, (114)

where

H(0) =
N

∑
i=1

(
−1

2
∇2

i −
1
ρi

)
, V =

N

∑
i>j

1
ρij

. (115)

Schrödinger equation now reads(
H(0) + Z−1V

)
Ψ =

(
Z−2E

)
Ψ. (116)

In this form, 1/Z appears as a perturbation parameter. Expanding the wave function

Ψ = Ψ(0) + Z−1Ψ(1) + Z−2Ψ(2) + · · · (117)

and the energy

E = Z2
(

E(0) + Z−1E(1) + Z−2E(2) + Z−3E(3) + · · ·
)

(118)

in terms of 1/Z and inserting in Equation (116) gives

(H(0) − E(0))Ψ(0) = 0

(H(0) − E(0))Ψ(1) = (E(1) −V)Ψ(0)

(H(0) − E(0))Ψ(2) = (E(1) −V)Ψ(1) + E(2)Ψ(0). (119)

The solutions of the first equation are products of hydrogenic orbitals.
Let |{nl}γLS〉 be a configuration state function constructed from products of hydro-

genic orbitals. Here, {nl} = {n1l1, n2l2, . . . , nN lN} is the set of N principal and orbital
quantum numbers that define the configuration (14) and γ denotes the complete set of the
coupling tree quantum numbers specifying unambiguously the considered configuration
state. Then

H(0)|{nl}γLS〉 = E(0)|{nl}γLS〉 (120)

with

E(0) = −
N

∑
i=1

1
2n2

i
. (121)

Since E(0) is independent of the orbital quantum numbers, we infer that different config-
urations may lead to the same energy, i.e., E(0) is degenerate. According to first-order
perturbation theory for degenerate states, Ψ(0) is a linear combination of the degenerate
configuration state functions |{nl′}γ′LS〉

Ψ(0) = ∑
l′γ′

cl′γ′ |{nl′}γ′LS〉. (122)

The expansion coefficients are components of an eigenvector of the interaction matrix
〈{nl′}γ′LS|V|{nl}γLS〉, with E(1) as the corresponding eigenvalue. However, only con-
figurations with the same parity interact, and the linear combination is over all CSFs with
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the same set of principal quantum numbers and the same parity. This set of CSFs is re-
ferred to as the complex by Layzer [137]. A relativistic generalization of the non-relativistic
Z-dependent perturbation theory has been derived for many-electron atoms [151], but
discussing the zero-/first-order structure of the non-relativistic wave function is enough
for our purpose.

The first-order correction Ψ(1) is a solution of Equation (119) orthogonal to Ψ(0). It
can be expanded as a linear combination of normalized intermediate configuration state
functions |γvLS〉 belonging toH(0) but outside the complex. Then

Ψ(1) = ∑
v

|γvLS〉〈γvLS|V|Ψ(0)〉
E(0) − Eγv LS

, (123)

where Eγv LS = 〈γvLS|H(0)|γvLS〉. Substituting Equation (122) into (123) and interchanging
the orders of summation, we have

Ψ(1) = ∑
l′γ′

cl′γ′ ∑
v

|γvLS〉〈γvLS|V|{nl′}γ′LS〉
E(0) − Eγv LS

. (124)

The mixing coefficient, cl′γ′ , are thus weight factors in the sum over intermediate con-
figuration state functions |γvLS〉 interacting (i.e., having non-zero matrix elements) with
configuration state functions in the complex.

4.3. Classification of Correlation Effects

The zero-order wave function Ψ(0) is obtained as a linear combination of CSFs in the
complex. It gives a gross description of the system, and it accounts for the major part of the
long-range static electron correlation. The first-order correction Ψ(1) is a linear combination
of CSFs that interacts with the CSFs in the complex. It accounts for additional long-range
electron correlation and the major part of the short-range dynamic correlation.

Assume for simplicity that there is only one configuration state function |{nl}γLS〉
in the complex. Noting that V is a two-body operator, we infer that CSFs interacting with
|{nl}γLS〉 are of two types: those that differ by a single electron (single substitution S)
and those that differ by two electrons (double substitution D). The former can be further
subdivided into

1. Those that differ from |{nl}γLS〉 by one principal quantum number, but retain the
same spin and orbital angular coupling. These configuration states are part of radial
correlation.

2. Those that differ by one principal quantum number and also differ in their coupling.
Often the only change is the coupling of the spins, in which case the configuration
states are part of spin-polarization.

3. Those that differ in the angular momentum of exactly one electron and are accompa-
nied by a change in orbital angular coupling of the configuration state and possibly
also the spin coupling. These represent orbital polarization.

The sums over CSFs that differ in two electrons can also be classified. Let {a, b, c, ..} be
occupied orbitals in |{nl}γLS〉 and {v, v′, ..} be orbitals in a so-called active set. Then, the
double substitution ab→ vv′ (also called “replacement”), generates CSFs in the expansion
for Ψ(1). The function defined by CSFs from all double replacements from ab is called a
pair-correlation function (PCF), and it corrects for the cusp in the wave function associated
with this electron pair. The PCFs from all electron pairs correct for the main part of the
dynamic correlation. There is another and more general classification which distinguishes
orbital replacements from valence and from core orbitals:

1. If ab are orbitals for outer electrons, the replacement represents outer or valence
correlation.

2. If a is a core orbital but b is an outer orbital, the effect represents the polarization of
the core and is referred to as core–valence correlation.
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3. If both orbitals are from the core, the replacement represents core–core correlation.

4.4. The Active Set Approach

Z-dependent perturbation theory is not appropriate for practical calculations, but
it provides a very useful guide for how the initial DF approximation can be improved
in MCDHF or CI calculations in order to capture most of the correlation energy. The
zero-order wave function Ψ(0) accounting for the major part of the static correlation is an
expansion over CSFs with large interactions with the CSF of interest: either those that are
nearly degenerate or those with a large interaction matrix element. These CSFs define the
MR set. As is discussed in the manual §4.2, the selection of the MR is far from trivial and
requires a number of exploratory calculations. In addition, in order to account for dynamic
correlation, the wave function Ψ should include CSFs generated by SD substitutions of
orbitals from each CSF of the MR set, with orbitals in an active set (AS) in a process referred
to as the active set approach.

As an example, we look at the 1s22s22p63s2 1S0 ground state and the 1s22s22p63s3p
3Po

0,1,2 and 1Po
1 excited states in Mg I. Starting with the ground state, the 3s2, 3p2 and 3d2

configurations (in non-relativistic notation) are formed by orbitals with the same principal
quantum numbers, and these configurations are closely degenerate. An MR for the ground
state could consist of the CSFs that can be formed from these three configurations. If we
now turn to the excited states, the 3s3p and 3p3d configurations are formed by orbitals with
the same principal quantum numbers, and these configurations are closely degenerate. An
MR in this case could consist of the CSFs that can be formed from these configurations.
However, it turns out that 3s4p is important, and thus, a more suitable MR should consist of
CSFs also from the latter. The CSFs in the MR and the corresponding expansion coefficients
are shown in Table 4 for the ground state and the two excited J = 1 states, i.e., the
1s22s22p63s3p 3Po

1 , 1Po
1 states in LSJ-notation. One thing to note is that the excited states are

impure in jj-coupling, with heavy mixing between the |3s3p-〉 and |3s3p〉 CSFs. Another
thing to note is that there is more electron correlation in 3s3p 1Po

1 , with non-aligned spins,
than in 3s3p 3Po

1 , with aligned spins (compare Section 4.1), which is reflected in the larger
mixing coefficients for the CSFs in the MR for the latter.

Table 4. CSFs and corresponding expansion coefficients for the MR of the 1s22s22p63s2 1S0 ground
state and the 1s22s22p63s3p 3Po

1 ,1Po
1 excited states in Mg I.

CSFs 3s2 1S0

1s (2) 2s (2) 2p-(2) 2p (4) 3s (2) 0.964240
1s (2) 2s (2) 2p-(2) 2p (4) 3p (2) 0.214715
1s (2) 2s (2) 2p-(2) 2p (4) 3p-(2) 0.152334
1s (2) 2s (2) 2p-(2) 2p (4) 3d (2) −0.023696
1s (2) 2s (2) 2p-(2) 2p (4) 3d-(2) −0.019299

CSFs 3s3p 3Po
1 3s3p 1Po

1

1s (2) 2s (2) 2p-(2) 2p (4) 3s (1) 3p-(1) 0.811480 0.756818
1s (2) 2s (2) 2p-(2) 2p (4) 3s (1) 3p (1) −0.571905 0.532680
1s (2) 2s (2) 2p-(2) 2p (4) 3p (1) 3d-(1) 0.082429 −0.233472
1s (2) 2s (2) 2p-(2) 2p (4) 3p (1) 3d (1) −0.061506 0.191522
1s (2) 2s (2) 2p-(2) 2p (4) 3p-(1) 3d-(1) 0.046401 −0.166818
1s (2) 2s (2) 2p-(2) 2p (4) 3s (1) 4p-(1) 0.032508 0.142870
1s (2) 2s (2) 2p-(2) 2p (4) 3s (1) 4p (1) −0.025260 0.063628

Valence correlation is accounted for by considering CSFs obtained from double sub-
stitutions from the outer orbitals of each of the CSFs in the MR to orbitals in an active set
of orbitals. Core–valence correlation with the 2s22p6 shell is accounted for by considering
CSFs obtained from a single excitation from 2s22p6 and a single substitution from one of
the outer electrons in each of the CSFs in the MR to orbitals in an active set of orbitals.
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Core–core correlation within the 2s22p6 shell is accounted for by considering CSFs obtained
from double excitations from the 2s, 2p orbitals of each of the CSFs in the MR to orbitals
in an active set of orbitals. All the generated CSFs should interact with at least one CSF
in the MR. Included in the general expansions above are also the CSFs obtained by single
replacements, although there is no clear classification in valence, core–valence or core corre-
lation effects. In the active set approach, the active set of orbitals is systematically extended
in a layer-by-layer fashion until some sort of convergence of the computed properties
is achieved.

For energies, higher-order corrections are captured by including CSFs that interact with
the CSFs in the zero- and first-order wave function. In practice, this is the same as including
some CSFs that can be generated by triple and quadruple (TQ) orbital substitutions from
the orbitals of each of the CSFs in the MR to an active set. The number of CSFs generated
in this way grows very rapidly with the size of the active set, and for this reason, one has to
limit the size of the latter. A way to include the most important higher-order correlation
effects is to increase the MR set by adding CSFs for a certain portion p = ∑α⊂MR c2

α of the
wave function composition [136]. The overall accuracy of the wave function increases as
the MR set accounts for a larger portion of the wave function.

4.5. CSF Expansions for Energy Differences

We are often interested in determining energy separations between different levels. In
these cases we may, in the first approximation, define closed inner subshells as inactive
and consider correlation only between the outer valence electrons. The rationale for this
is that the correlation energy in the core, although large in an absolute sense, to a great
extent cancels when computing energy level differences or the energy relative to the ground
state. However, the presence of outer valence electrons polarizes the core. The effect of this
polarization is represented by core–valence correlation that increases the binding of the
valence electrons to the core. In the case of a single electron, this is reflected in a contraction
of the orbital, which has a large effect on other computed properties. Generally, energy
separations are much improved if core–valence correlation is included. For larger atomic
systems it is not always clear which subshells should be inactive and which should be
part of the active core, for which core–valence effects are to be considered. For each new
system, this needs to be systematically investigated. A good starting point for analyzing the
situation is to plot the radial parts of the core and valence orbitals and look at the overlap
between the different orbitals. If the overlap is large, then core–valence effects are likely
to be important. In GRASP, the rwfnplot program is used for plotting, and examples are
given in §7.3 of the manual.

4.6. The Active Set Approach as Implemented in GRASP

In GRASP, lists of CSFs are generated using the active set approach as implemented
in the rcsfgenerate program. The user is required to specify the configurations (non-
relativistic notation) in the MR along with information whether the orbitals in the con-
figurations are inactive (i), i.e., no substitutions are allowed, active (*), i.e., unrestricted
substitutions are allowed, or have a minimal occupation (m). To generate a valence expan-
sion for the ground state in Mg, the specification would be

1s(2,i)2s(2,i)2p(6,i)3s(2,*)

Given an orbital set, the number of substitutions, SD in this case, and the resulting J value, a
set of CSFs is generated. To generate an expansion accounting for valence and core–valence
correlation with 2s22p6, the specification is

1s(2,i)2s(2,i)2p(6,5)3s(2,*)
1s(2,i)2s(2,1)2p(6,i)3s(2,*)
1s(2,i)2s(2,i)2p(6,5)3p(2,*)
1s(2,i)2s(2,1)2p(6,i)3p(2,*)
1s(2,i)2s(2,i)2p(6,5)3d(2,*)
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1s(2,i)2s(2,1)2p(6,i)3d(2,*)

Again, given an orbital set, the number of substitutions (SD in this case), and the
resulting J value, a set of CSFs is generated. A detailed description of the rcsfgenerate
program is given in Sections 4.3 and 4.4, as well as in Sections 5.1–5.10 of the manual.

The rcsfgenerate program gives a number of configurations as determined by the
substitution rules, the active set of orbitals and the specified J values. Given these configu-
rations, a set of CSFs follows by applying the angular couplings described in Section 2.4.
Not all of these CSFs interact with the CSFs formed by the configurations in the MR. To
include only CSFs that interact, one has to run the rcsfinteract program. It should be
remembered that the Z-dependent perturbation theory underlying the active set approach
is applicable mainly for ionized systems. For neutral and near neutral systems, it may be
necessary to include all generated CSFs and not only the ones interacting with the CSFs
formed by the configurations in the MR; see [152] for a discussion. Examples of how to use
the rcsfinteract program are given in the manual §5.5.

5. Examples of Applications

We illustrate in the present section the use of the GRASP suite of programs through
a few specific examples of atomic structure calculations. As explained in Section 2.8, the
correlation models used for the MCDHF orbital optimization may differ from those of the
subsequent CI calculations performed by the rci program. For each considered case, the
details of the computational strategies can be found in the original publications.

5.1. Determination of the Nuclear Quadrupole Moment Q(67Zn)

One of the most accurate methods to determine nuclear quadrupole moments Q is to
combine measured nuclear quadrupole hyperfine interaction constants BΓJ with calculated
reduced electric matrix elements [124]. We illustrate the method by determining improved
nuclear quadrupole moments of zinc, which is the second most abundant essential trace
element in the human body, after iron. For zinc, the standard value cited in the 2016 review
of Stone [127] was Q(67Zn) = 0.150(15) b, which was derived from measurements on the
4s4p 3Po

1,2 states, where magnetic hyperfine interaction constants were used to estimate the
reduced electric matrix elements [153]. The value above can be improved by combining
measurements by Byron et al. and Lurio [154,155] with electronic factors from large-scale
atomic calculations.

Table 5 shows the magnetic and electric hyperfine interaction constants from system-
atic MCDHF and CI calculations by Bieroń et al. [156]. The Dirac–Hartree–Fock (DHF)
wave functions consist, for the J = 1 and J = 2 states, of two and one CSFs, respectively,
and they are the simplest approximation of the atomic system. The larger calculations result
from a single reference model in which configurations are generated by single, double
and triple substitutions from 3p63d104s4p to yield 3p63d9nln′l′n′′l′′ and 3p53d10nln′l′n′′l′′,
in non-relativistic notation, with nl, n′l′, n′′l′′ in systematically larger orbital sets, which
are denoted by the number of orbitals of the same symmetry. These configurations are
augmented by configurations formed from restricted single substitutions from all core
subshells with s-symmetry. We see that the calculated magnetic dipole interaction con-
stants, A, are substantially improved and, for the largest orbital set, they are quite close to
the experimental values. The quantities B/Q show reasonable convergence patterns with
respect to the increasing orbital set, and the extracted Q from the combined calculations
and experiments for the J = 1 and J = 2 states agree very well. The values in Table 5,
along with a number of other calculations, probing other electron correlation effects such
as core–core correlation deep down in the atomic core, allowed Bieroń et al. [156] to give
an updated and improved value of the quadrupole moment along with an uncertainty
estimate Q(67Zn) = 0.122(10) b. The calculation by Bieroń et al. illustrates the power of
combined measurements and calculated electronic quantities to extract nuclear data.
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Table 5. A (MHz), B/Q (MHz/b), and Q (in barn) values as functions of the increasing active set
of orbitals for the 4s4p 3Po

1 and 4s4p 3Po
2 states in 67Zn I. Iπ = 5/2− and µexpt = 0.875479(9) µN .

The Q-values are extracted from the relation Q = Bexpt/(B/Q), where the experimental values are
Bexpt(3Po

1 ) = −18.782(8)1 MHz and Bexpt(3Po
2 ) = 35.806(5)2 MHz.

Active Set
4s4p 3Po

1 4s4p 3Po
2

NCSFs A (MHz) B/Q (MHz/b) Q (barn) NCSFs A (MHz) B/Q (MHz/b) Q (barn)

MCDHF-SrDT-SP
DHF 2 473.40 −100.373 0.1098 1 419.93 192.924 0.1159
VV+CV
5s5p4d4 f 1 592 558.02 −131.036 0.1433 2 122 483.71 254.975 0.1404
6s6p5d5 f 5g 11 932 590.45 −146.084 0.1286 16 961 507.74 280.708 0.1276
7s7p6d6 f 6g6h 48 574 610.80 −150.997 0.1244 71 610 529.87 290.233 0.1234
8s8p7d7 f 7g7h 128 264 613.17 −152.617 0.1231 191 495 532.46 292.535 0.1220
9s9p8d8 f 8g8h 267 998 617.02 −154.391 0.1217 402 586 536.97 296.441 0.1208
Liu et al. [157] 605.9 −150.7 0.1247
Expt. 609.086(2) 1 531.987(5) 2

1 Byron et al. [154]. 2 Lurio [155].

5.2. Determination of Changes in Nuclear Radii

Isotope shift (IS) measurements are valuable sources for information about changes in
the nuclear charge radii and distributions along isotope sequences [158,159]. Adding one
or more neutrons makes the nucleus not only heavier but may also modify its charge distri-
bution, sometimes considerably [160]. During the last decade, optical laser spectroscopy
has emerged as an important alternative to earlier X-ray measurements in muonic atoms
or electron-scattering experiments [161]. Using optical laser spectroscopy, measurements
became possible for quite long sequences of stable and radioactive isotopes.

However, the determination of the electronic part of the IS through ab initio atomic cal-
culations is still a challenge due to the large cancellation between the upper and lower level
mass shifts, with a resulting loss of significant digits for the differences, ∆KNMS and ∆KSMS,
of the level mass shift parameters. For the differences to be accurate, the parameters for the
upper and lower states must be very well converged with respect to the increasing active
set of orbitals. Furthermore, the result is also sensitive to electron correlation deep down in
the atomic core and higher-order correlation effects [162]. The differences of the level mass
shift parameters can be theoretically attained with relatively high precision and reliability
for few-electron ions [163], but it is desirable to have more accurate results for the larger
neutral or near-neutral atoms and ions. To illustrate the usefulness of IS measurements
combined with atomic structure calculations as an interface to nuclear physics, we follow
Li et al. [164] and look at the 2s 2S1/2 − 2p 2Po

1/2 and 2s 2S1/2 − 2p 2Po
3/2 transitions in Nd57+.

Computed mass shift differences and field shift factors from MCDHF and CI calculations
are shown in Table 6. The MCDHF calculation includes CSFs that can be formed from
configurations from single, double, and triple substitutions to an active set consisting of
orbitals with principal quantum numbers up to n = 5, at which level a high degree of
convergence of the computed parameters has been attained. The CI calculation includes the
Breit interaction, which affects mainly the normal mass shift of the 2s 2S1/2 − 2p 2Po

1/2 tran-
sition. Included in Table 6 are results from Kozhedub et al. [165]. Although the individual
contributions from the normal and specific mass shifts are somewhat different, especially
for the 2s 2S1/2 − 2p 2Po

1/2 transition, the total mass shifts are very consistent. The table also
includes experimentally extracted F values by Brandau et al. [166]. The lack of agreement
between theory and experiment is, as discussed in [164], due to neglected effects from
the variation of the electron density over the nuclear volume as well as effects from the
deformation of the nuclei. Through a reformulation of the field shift, the latter effects can
now be reliably computed by the isotope shift program [68]; see §12.2 in the accompanying
manual. Adding these effects, the agreement between theory and experiment is highly
satisfactory, see Table 6 of Ekman et al. [68], demonstrating that differences in nuclear radii
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can indeed be accurately extracted by combining experimental isotope shift with computed
mass shift parameters.

Table 6. Relativistic mass shift ∆KMS (in GHz u) and field shift F (in MHz/fm2) factors for the
2s 2S1/2 − 2p 2Po

1/2 and 2s 2S1/2 − 2p 2Po
3/2 transitions in Nd57+ from Li et al. [164]. For comparison,

individual relativistic normal mass shift ∆KNMS and specific mass shift ∆KSMS coefficients (in GHz u)
are also included. The results in the second row, labeled MCDHF, were obtained in the MCDHF
model, with the largest size of the active set (n = 5). The numbers in square brackets represent
powers of 10.

Model
2s 2S1/2 − 2p 2Po

1/2 2s 2S1/2 − 2p 2Po
3/2

∆KNMS ∆KSMS ∆KMS F ∆KNMS KSMS ∆KMS F

DHF −1083[1] −8227[2] −8336[2] −7903[3] −8721[1] −8768[2] −9640[2] −8215[3]
MCDHF (n = 5) −1342[1] −8196[2] −8331[2] −7929[3] −8589[1] −8761[2] −9620[2] −8203[3]
CI + Breit −1449[1] −8196[2] −8341[2] −7885[3] −8577[1] −8775[2] −9632[2] −8157[3]
Kozhedub et al. [165] −1641.8[1] −8180.90[2] −8345.08(25)[2] −8573.3[1] −8769.29[2] −9626.62(25)[2]
Brandau et al. [166] −7520[3] −7810[3]

5.3. Spectroscopic Data for Astrophysics—Al-like Ions

Large-scale multiconfiguration calculations have been shown to be capable of supply-
ing transition data of spectroscopic accuracy for a wide range of astrophysically important
ions [46]. Spectroscopic accuracy, in this context, means that the calculations are capable
of supplying transition energies with an accuracy high enough to directly aid line iden-
tification in observed astrophysical or experimental spectra or to weed out incorrect line
assignments. Furthermore, the calculations provide transition rates, with uncertainties for
stronger transitions of just a few percent. We demonstrate the capacity of these types of
calculations in the case of Al-like iron, Fe XIV, which is an important ion for diagnosing
the solar corona [167]. In active region spectra, or irradiance spectra of the active Sun,
Fe XIV lines within the n = 3 complex are amongst the most prominent ones in the extreme
ultraviolet (EUV) region of the spectrum. In such cases, Fe XIV lines provide the best
density diagnostics in the EUV. Transitions from the n = 4 levels are instead prominent in
the soft X-rays, where accurate theoretical energies are needed to identify the lines in the
observed spectra.

The calculations by Ekman et al. [167] targeted the 360 lowest states belonging to
the 30 configurations 3s2{3l, 4l, 5l}, 3p2{3d, 4l}, 3s{3p2, 3d2}, 3s{3p3d, 3p4l, 3p5s, 3d4l′},
3p3d2, 3p3 and 3d3 with l = 0, 1, . . . , n − 1 and l′ = 0, 1, 2. The starting point for the
calculations was an MR set including the 16 even parity configurations 3s2{3sd, 4sd, 5sdg},
3s{3p2, 3d2, 3p4p, 3p4 f , 3d4s}, 3p2{3d, 4sd} and 3d3 and the 14 odd parity 3s2{3p, 4p f , 5p f },
3s3p{3d, 4sd, 5s}, 3s3d4p, 3p3, 3p2{4p f } and 3p3d2. Configurations, from which the CSFs
are formed, were then obtained by SD substitutions from occupied subshells of the config-
urations in the MR to orbitals in an increasing active set. No substitutions were allowed
from the 1s subshell, and at most, one substitution was allowed from n = 2 subshells. The
first three layers in the active set contain orbitals up to nl = 5g, 6h and 7i, respectively.
Subsequent calculations included only SD substitutions from the n > 2 valence subshells
up to nl = 8k and 9k active orbitals. The resulting expansions consisted of approximately
2 640 000 and 2 450 000 CSFs distributed over the J = 1/2, 3/2, . . . , 11/2 angular symme-
tries for even and odd parity, respectively. The wave function expansions were in terms of
jj-coupled CSFs. To adhere to the labeling used by the astrophysics community, the wave
function was transformed to a representation in LSJ-coupling. The excitation energies
for the lowest 40 states from the final CI calculation are shown in Table 7 together with
observed energies from the NIST database [168]. As can be seen from the table, the uncer-
tainty of the calculated energies is at the order of 0.02%. Note that levels 38 and 39 have
the same dominant terms in the wave function expansions. To give a single unique label,
one has to revert to the recursive method of Froese Fischer and Gaigalas [123]. Whereas
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many of the lower levels have been identified, only a few levels with n = 4 are known.
Table 8 compares calculated energies for some states with n = 4 with available data from
NIST and assignments by Del Zanna [169]. As can be seen from Table 8, certain energies in
the NIST database may be incorrect. The agreement with Del Zanna is however excellent,
confirming also the tentative assignments.

Table 7. Energies in cm−1 and LS-compositions for the first 40 levels in Fe XIV. ECI Ekman et al. [167],
ENIST NIST Atomic Spectra Database (2013) [168] and ∆E difference between ECI and ENIST . Indices
“a” and “b” are used to differentiate between identical configurations which share the same coupling
and leading LS-percentage composition. The first number in the LS-compositions is the expansion
coefficient for the leading configuration and LSJ term in column 3.

No. Level LS-Composition ECI ENIST ∆E

1 3s2 3p 2P◦1/2 0.97 0 0 0
2 3s2 3p 2P◦3/2 0.97 18 855 18 853 2
3 3s3p2(3

2P) 4P1/2 0.98 225 086 225 114 −28
4 3s3p2(3

2P) 4P3/2 0.99 232 777 232 789 −12
5 3s3p2(3

2P) 4P5/2 0.97 242 372 242 387 −15
6 3s3p2(1

2D) 2D3/2 0.86 + 0.11 3s2 3d 2D 299 402 299 242 160
7 3s3p2(1

2D) 2D5/2 0.85 + 0.11 3s2 3d 2D + 0.02 3s3p2(3
2P) 4P 301 627 301 469 158

8 3s3p2(1
0S) 2S1/2 0.75 + 0.21 3s3p2(3

2P) 2P 364 945 364 693 252
9 3s3p2(3

2P) 2P1/2 0.75 + 0.22 3s3p2(1
0S) 2S 388 711 388 510 201

10 3s3p2(3
2P) 2P3/2 0.95 + 0.02 3p2(1

2D) 1D 3d 2P 396 687 396 512 175
11 3s2 3d 2D3/2 0.86 + 0.11 3s3p2(1

2D) 2D + 0.02 3p2(1
0S) 1S 3d 2D 473 231 473 223 8

12 3s2 3d 2D5/2 0.86 + 0.11 3s3p2(1
2D) 2D + 0.02 3p2(1

0S) 1S 3d 2D 475 215 475 202 13
13 3p3(2

3D) 2D◦3/2 0.64 + 0.27 3s3p 3P 3d 2D◦ + 0.04 3p3(2
1P) 2P◦ 576 599 576 383 216

14 3p3(2
3D) 2D◦5/2 0.69 + 0.29 3s3p 3P 3d 2D◦ 580 450 580 233 217

15 3p3(4
3S) 4S◦3/2 0.92 + 0.03 3p3(2

3D) 2D◦ + 0.02 3p3(2
1P) 2P◦ 589 023 589 002 21

16 3s3p 3P 3d 4F◦3/2 0.96 641 955
17 3p3(2

1P) 2P◦1/2 0.80 + 0.13 3s3p 3P 3d 2P◦ + 0.05 3s3p 1P 3d 2P◦ 642 591 642 310 281
18 3s3p 3P 3d 4F◦5/2 0.98 646 042 645 988 54
19 3p3(2

1P) 2P◦3/2 0.71 + 0.13 3s3p 3P 3d 2P◦ + 0.04 3s3p 1P 3d 2P◦ 646 119 645 409 710
20 3s3p 3P 3d 4F◦7/2 0.98 651 972 651 946 26
21 3s3p 3P 3d 4F◦9/2 1.00 660 304 660 263 41
22 3s3p 3P 3d 4P◦5/2 0.65 + 0.28 3s3p 3P 3d 4D◦ + 0.02 3s3p 3P 3d 2D◦ 690 311 690 304 7
23 3s3p 3P 3d 4D◦3/2 0.60 + 0.38 3s3p 3P 3d 4P◦ 692 653 692 662 −9
24 3s3p 3P 3d 4D◦1/2 0.87 + 0.12 3s3p 3P 3d 4P◦ 694 140 694 168 −28
25 3s3p 3P 3d 4D◦7/2 0.98 703 341 703 393 −52
26 3s3p 3P 3d 4P◦1/2 0.87 + 0.12 3s3p 3P 3d 4D◦ 703 826 703 750 76
27 3s3p 3P 3d 4D◦5/2 0.70 + 0.27 3s3p 3P 3d 4P◦ 704 114 704 114 0
28 3s3p 3P 3d 4P◦3/2 0.60 + 0.39 3s3p 3P 3d 4D◦ 704 202 704 209 −7
29 3s3p 3P 3d 2D◦3/2 0.51 + 0.27 3s3p 1P 3d 2D◦ + 0.17 3p3(2

3D) 2D◦ 717 296 717 195 101
30 3s3p 3P 3d 2D◦5/2 0.48 + 0.25 3s3p 1P 3d 2D◦ + 0.16 3p3(2

3D) 2D◦ 717 937 717 861 76
31 3s3p 3P 3d 2F◦5/2 0.65 + 0.32 3s3p 1P 3d 2F◦ 745 214 744 965 249
32 3s3p 3P 3d 2F◦7/2 0.65 + 0.33 3s3p 1P 3d 2F◦ 760 089 759 814 275
33 3s3p 3P 3d 2P◦3/2 0.77 + 0.14 3p3(2

1P) 2P◦ + 0.06 3s3p 1P 3d 2D◦ 807 347 807 113 234
34 3s3p 3P 3d 2P◦1/2 0.86 + 0.12 3p3(2

1P) 2P◦ 815 394
35 3s3p 1P 3d 2F◦7/2 0.64 + 0.33 3s3p 3P 3d 2F◦ 817 790 817 593 197
36 3s3p 1P 3d 2F◦5/2 0.64 + 0.32 3s3p 3P 3d 2F◦ 820 795 820 601 194
37 3s3p 1P 3d 2P◦1/2 0.90 + 0.04 3p3(2

1P) 2P◦ 839 715 839 492 223
38 3s3p 1P 3d 2P◦3/2a 0.38 + 0.37 3s3p 1P 3d 2D◦ + 0.08 3s3p 3P 3d 2D◦ 840 967 840 775 192
39 3s3p 1P 3d 2P◦3/2b 0.52 + 0.26 3s3p 1P 3d 2D◦ + 0.08 3s3p 3P 3d 2D◦ 843 862 843 656 206
40 3s3p 1P 3d 2D◦5/2 0.67 + 0.17 3s3p 3P 3d 2D◦ + 0.12 3p3(2

3D) 2D◦ 844 618 844 477 141

The calculations by Ekman et al. also provide rates for all E1, M1, and E2 transitions.
In Table 9, some of their rates are compared with results from other calculations and
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values from NIST. There is in general a good agreement between values from the different
calculations. The quantity dT defined by Equation (108) indicates that the uncertainty of
the calculations by Ekman et al. is around a few percent, improving the available data
from NIST.

Table 8. Energies (in cm−1) for a few selected n = 4 levels in Fe XIV. ECI are energies from [167],
ENIST from NIST [168] and Eobs from [169], along with three new tentative (T) values. Values in
parentheses are percentage differences with respect to ECI .

Pos Configuration LS. J π ECI ENIST (%) Eobs(%)

101 3s2 4s 2S 1/2 + 1 427 550 1 435 020 (0.5206) 1 426 965 (0.04) T
125 3s2 4p 2P 1/2 − 1 541 937 1 568 840 (1.715) 1 541 394 (0.03)
128 3s2 4p 2P 3/2 − 1 548 618 1 574 010 (1.613) 1 548 258 (0.02)
136 3s3p 3P 4s 2P 1/2 − 1 690 299 - 1 689 695 (0.0004)
150 3s3p 3P 4p 4P 3/2 + 1 795 164 - 1 795 032 (0.007) T
152 3s3p 3P 4p 4P 5/2 + 1 802 686 - 1 802 292 (0.02) T
181 3s3p 3P 4d 4D 5/2 − 1 930 871 - 1 933 758 (0.15)
184 3s3p 3P 4d 4D 7/2 − 1 935 340 - 1 938 452 (0.16)

Table 9. Multipoles (MT), transition energies ∆E, wavelengths λ and transition probabilities A in s−1

in Fe XIV for selected transitions. ACI Ekman et al. [167], AMCHF Froese Fischer and Tachiev [170],
AMR−MP Santana et al. [171], and ANIST NIST Atomic Spectra Database (2013) [168]. Accuracy
estimates dT have been computed based on transition probabilities in Babushkin and Coulomb
gauges. The numbers in square brackets are powers of 10.

Upper Level Lower Level MT ∆E (cm−1) λ (Å) ACI dT AMCHF AMR−MP ANIST

3s2 3p 2Po
3/2 3s2 3p 2Po

1/2 M1 18 854 5303.740 6.019[1] 6.016[1]
E2 18 854 5303.740 1.474[−2] 0.004 1.466[−2]

3s3p2(3
2P) 4P1/2 3s2 3p 2Po

1/2 E1 225 086 444.274 2.657[7] 0.062 2.620[7] 2.230[7]
3s2 3p 2Po

3/2 E1 206 231 484.891 9.777[6] 0.059 1.013[7] 8.693[6]
M2 206 231 484.891 2.801[−1] 2.892[−1]

3s3p2(3
2P) 4P3/2 3s2 3p 2Po

1/2 E1 232 776 429.596 5.851[5] 0.024 5.187[5] 4.833[5]
M2 232 776 429.596 2.169[0] 2.193[0]

3s2 3p 2Po
3/2 E1 213 922 467.459 6.323[6] 0.083 5.908[6] 5.458[6]

M2 213 922 467.459 6.644[−2] 6.838[−2]
3s3p2(3

2P) 4P1/2 M1 7 690 13 002.904 1.007[1] 1.014[1]
E2 7 690 13 002.904 2.050[−5] 0.001 1.003[−5]

3s3p2(3
2P) 4P5/2 3s2 3p 2Po

3/2 E1 223 517 447.392 2.714[7] 0.061 2.491[7] 2.256[7] 2.5[7] c

M2 223 517 447.392 1.633[0] 1.685[0]
3s2 3p 2Po

1/2 M2 242 372 412.589 1.433[0] 1.423[0]
3s3p2(3

2P) 4P1/2 E2 17 285 5 785.065 6.979[−3] 0.000 3.274[−3]
3s3p2(3

2P) 4P3/2 M1 9 595 10 421.769 1.411[1] 1.411[1]
E2 9 595 10 421.769 4.907[−4] 0.000 4.976[−4]

3s3p2(1
2D) 2D3/2 3s2 3p 2Po

1/2 E1 299 401 333.999 2.426[9] 0.019 2.460[9] 2.3[9] b

3s2 3p 2Po
3/2 E1 280 547 356.446 7.560[7] 0.003 8.669[7] 7.5[7] c

3s3p2(1
2D) 2D5/2 3s2 3p 2Po

3/2 E1 282 772 353.642 1.954[9] 0.027 1.998[9] 1.9[9] b

3s3p2(1
0S) 2S1/2 3s2 3p 2Po

1/2 E1 364 944 274.014 1.782[10] 0.011 1.716[10] 1.8[10] b

3s2 3p 2Po
3/2 E1 346 090 288.942 1.082[9] 0.002 1.631[9] 1.2[9] c

3s3p2(3
2P) 2P1/2 3s2 3p 2Po

1/2 E1 388 711 257.261 1.279[10] 0.012 1.511[10] 1.4[10] b

3s2 3p 2Po
3/2 E1 369 856 270.375 2.090[10] 0.012 2.144[10] 2.1[10] b

3s3p2(3
2P) 2P3/2 3s2 3p 2Po

1/2 E1 396 687 252.088 7.427[9] 0.009 7.902[9] 7.6[9] a

3s2 3p 2Po
3/2 E1 377 832 264.667 3.254[10] 0.012 3.429[10] 3.38[10] a

a estimated uncertainty ≤25%, b estimated uncertainty ≤50%, c estimated uncertainty >50%.
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5.4. Impact of External Magnetic Fields on Hyperfine Spectra: The 4205 Å Line in Eu II

Given a set of isotopic data (the nuclear spin, magnetic dipole and nuclear quadrupole
moments) and a specified magnetic field strength, the hfszeeman95 program [67] allows
the computation of complete hyperfine-Zeeman interaction matrices in a representation
of the unperturbed ASFs, which were pre-calculated with GRASP. From these interaction
matrices, new perturbed eigenstates, labeled by MJ , F, or MF depending on the specified
magnetic field and nuclear parameters (see Equation (109)) can be obtained through stan-
dard perturbation theory or from smaller configuration–interaction calculations, which in
turns allows for determining radiative properties between these new eigenstates [148]. The
perturbed eigenstates and associated radiative properties are conveniently computed with
the mithit tool associated with the hfszeeman95 program.

Figure 2. Relative line strengths of the magnetic-field split hyperfine components within the 4205 Å
fine-structure transition of 151,153Eu+1 in a natural abundance mix under influence of a uniform
external magnetic field of 6 kG. The π (δMF = 0) components and σr (δMF = +1; red-shifted)
components are shown in the upper and lower panels, respectively. The relative line strengths are
presented in log10 scale, and transitions with a relative strength smaller than 10−8 are excluded. This
figure is inspired by Figure 3.12 in the book Polarization in spectral lines by Landi Deg’Innocenti and
Landolfi [172].

As an example of results from such a computation, Figure 2 shows how the 4205 Å fine-
structure transition in 151,153Eu+ splits up into an complex pattern of lines when considering
both isotopes together, including the symmetry breaking perturbations due to the hyper-
fine interaction with the nuclear moments together with the interaction with an external
magnetic field set to 6 kG. In this computation, the atomic structure of the relevant states
of Eu+ was first determined through standard MCDHF and RCI calculations with GRASP,
with special attention to spin-polarization in the electronic core represented via single
substitutions from the inner s-shells. The hfszeeman95 calculation takes all off-diagonal
effects into account, most notably, in this case, the mixing between different hyperfine
states due to the external magnetic field. It is striking how complex a single fine-structure
transition may become if these effects are taken into consideration.

6. Summary and Conclusions

Computers and atomic structure calculations have advanced to a level where large
scale calculations in many cases produce transition energies that directly aid line identifica-
tion in observed experimental or astrophysical spectra. Further methodological progress is
however needed to meet the challenges from the complex Lanthanides, where the number
of CSFs increases extremely rapidly with the increasing active set of orbitals [113]. The
cancellation effects for the mass shift parameters in heavy and super-heavy neutral or
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near-neutral systems also pose problems. There is however good hope that these problems
can be overcome by reduction techniques, grouping CSFs together to account for correlation
in the atomic core without increasing the dimensions of the Hamiltonian matrix beyond
the level that can be handled on large systems [173]. Furthermore, we can expect to see
methods utilizing the fact that angular integration is independent of the principal quantum
numbers, potentially decreasing the computational time for CI calculations based on large
active sets [152].

While computational methodologies and codes improve, so does documentation
and instructions for efficient use. The computer codes now come with detailed manuals
describing different modes of use, guiding new groups of users to produce reliable atomic
data that meet the set-up requirements [43]. We would like to conclude the present paper
that provides the theoretical support of the GRASP2018 manual [72], by mentioning some
present and forthcoming theoretical, methodological, algorithmic and code developments
that illustrate the dynamics of the GRASP community:

(i) Investigating new algorithms and methods to test and improve the numerical
accuracy and stability of the variational method [139,174];

(ii) Designing efficient CSF generators that drastically reduce the computational load
of MCDHF and RCI calculations [152];

(iii) Utilizing fast biorthogonal transformation techniques to handle non-orthogonalities
and allow the CSF spaces to be built from several separately optimized and mutu-
ally non-orthogonal orbital sets [152,173,175];

(iv) Extending the GRASP2018 hyperfine codes [66] to treat the magnetic octupole [176]
and electric hexadecapole hyperfine interactions, as well as the Bohr–Weisskopf
effect [177], which allowed to resolve the nuclear-octupole-moment puzzle in
173Yb [178,179];

(v) Lifting current restrictions on maximum occupation numbers of two for orbitals
j = 9/2 in the CSF list generation to fully exploit the available spin-angular library;

(vi) Searching for original methods that open promising perspectives for performing
rigorous QED calculations within the GRASP framework [180];

(vii) Implementing the model-QED-operator approach of Shabaev et al. [181–184] in
GRASP and testing the results through systematic comparisons with other QED
approaches and observations [58–60,185];

(viii) Coding and implementing other QED approaches [186–189] in the GRASP suite of
programs [190].

Finally, we would like to acknowledge fruitful collaboration [191–197] with the authors
and users of the sibling MDFGME code [36,198], which is based on the same relativistic mul-
ticonfiguration theory, but using different approaches for solving the variational equations
and for evaluation of the spin-angular factors.
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177. Li, J.G.; Ekman, J.; Gaigalas, G.; Bieroń, J.; Jönsson, P.; Godefroid, M.; Froese Fischer, C. New Version of RHFS code. Comput. Phys.

Commun. 2023, in preparation.
178. Xiao, D.; Li, J.; Campbell, W.C.; Dellaert, T.; McMillin, P.; Ransford, A.; Roman, C.; Derevianko, A. Hyperfine structure of 173Yb+:

Toward resolving the 173Yb nuclear-octupole-moment puzzle. Phys. Rev. A 2020, 102, 022810. [CrossRef]
179. de Groote, R.P., Kujanpää, S., Koszorús, Á.; Li, J.G.; Moore, I.D. Magnetic octupole moment of 173Yb using collinear laser

spectroscopy. Phys. Rev. A 2021, 103, 032826. [CrossRef]
180. Grant, I.P.; Quiney, H. GRASP: The future? Atoms 2022, 10, 108. [CrossRef]
181. Shabaev, V.M.; Tupitsyn, I.I.; Yerokhin, V.A. Model operator approach to the Lamb shift calculations in relativistic many-electron

atoms. Phys. Rev. A 2013, 88, 012513. [CrossRef]
182. Shabaev, V.M.; Tupitsyn, I.I.; Yerokhin V.A. QEDMOD: Fortran program for calculating the model Lamb-shift operator. Com-

put. Phys. Commun. 2015, 189, 175. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0010465514004081
(accessed on 31 October 2022). [CrossRef]

183. Shabaev, V.M.; Tupitsyn, I.I.; Yerokhin V.A. QEDMOD: Fortran program for calculating the model Lamb-shift operator. Com-
put. Phys. Commun. 2018, 223, 69. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0010465517303478
(accessed on 31 October 2022). [CrossRef]

184. Malyshev, A.V.; Glazov, D.A.; Shabaev, V.M.; Tupitsyn, I.I.; Yerokhin, V.A.; Zaytsev, V.A. Model-QED operator for superheavy
elements. Phys. Rev. A 2022, 106, 012806. [CrossRef]

185. Zhang, C.Y.; Wang, K.; Si, R.; Godefroid, M.; Jönsson, P.; Xiao, J.; Gu, M.F.; Chen, C.Y. Benchmarking calculations with
spectroscopic accuracy of level energies and wavelengths in W LVII-W LXII tungsten ions. J. Quant. Spectrosc. Rad. Transf. 2021,
269, 107650. [CrossRef]

186. Welton, T.A. Some Observable Effects of the Quantum-Mechanical Fluctuations of the Electromagnetic Field. Phys. Rev. 1948, 74,
1157. [CrossRef]

187. Pyykkö, P.; Zhao, L.-B. Search for Effective Local Model Potentials for Simulation of Quantum Electrodynamic Effects in
Relativistic Calculations. J. Phys. B At. Mol. Phys. 2003, 36, 1469. [CrossRef]

188. Flambaum, V.V.; Ginges, J.S.M. Radiative Potential and Calculations of QED Radiative Corrections to Energy Levels and
Electromagnetic Amplitudes in Many-Electron Atoms. Phys. Rev. A 2005, 72, 1094. [CrossRef]

189. Lowe, J.A.; Chantler, C.T.; Grant, I.P. Self-Energy Screening Approximations in Multi-Electron Atoms. Radiat. Phys. Chem. 2013, 85, 118.
[CrossRef]

190. Piibeleht, M. Numerical Investigations of the Dirac Equation and Bound State Quantum Electrodynamics in Atoms. Ph.D. Thesis,
Massey University, Albany, New Zealand, 2022.
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