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Abstract

We explore a natural extension of the Abelian geometric phase
factor in sequences of incomplete measurements to include high di-
mensional quantum states in the weak measurement scenario. To
achieve the goal, we focus on sequential weak measurements of non-
commuting projectors and combine the idea of weak measurements
and the notion of a non-Abelian geometric phase. In this way, we find
that the non-Abelian geometric phase in the weak measurement sce-
nario can be useful to gain information about the space of states and
the connection between them, favorable to reproducing the overlap
matrix and the Wilson Loop.
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1 Introduction
Quantum information science deals with knowledge from the most funda-
mental level of nature. Over the past decades, the mathematical methods
joined to the improvement of experimental techniques become very efficient
to offer coherent control of quantum systems and their interactions [1, 2].

The intensity of interactions in quantum systems appears to be determi-
nant to define the type and amount of information that can be extracted
from a system at different scales of distance and temperature. Experimental
settings accomplishing small coupling parameters between the system and
device lead to the concept of weak measurements. Within this context, the
weak measurement of quantum ensembles provides useful partial information
or insights regarding the probabilistic nature of quantum theory. This sam-
pling method would be reasonable to retrieve information on the space of
states. To access this structure we use the concept of geometric phase (GP).

Anandan and Pines [3] proposed a natural extension of GP to the pro-
jective Hilbert space by removing the adiabatic condition. This means no
external parameter space is required to describe a cyclic evolution. The
application of non-commutativity of these phases is useful to implement a
universal set of quantum gates to be used for robust all-geometric quantum
computation [4].

This project investigates the connection between weak measurements and
GP in the non-Abelian scenario. It becomes a reasonable scheme because the
GP could be physically manipulated in some experimental settings. For in-
stance, intriguing amplification phenomena have been studied in interferom-
eter setups. Our scheme is deeply based on the Anandan and Pines approach
to reconstructing the non-Abelian holonomies.

This report is organized as follows. Section 2 gives a brief overview of the
fundamental concepts in the literature and a mathematical formalism. The
next section looks at the main findings. A discussion of the results is given
in Section 4. The final considerations are given in Section 5.
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2 Conceptual Preliminaries
Most of this section is devoted to outlining the past-present history of the
weak measurements and GP in the Abelian and non-Abelian schemes.

2.1 Two State-vector Formalism
Aharonov, Bergmann, and Lebowitz introduced the time-symmetric formu-
lation of quantum theory known as two-state vector formalism (TSVF) [5].
Based on the idea of ”reduction of the wave packet”, this scheme uses the
interplay between the past and future of the strong measurement process
with minimum disturbance in between them. A generalized quantum state
at a given time t can be described by

|ψ(t)⟩ = ⟨ck′′(t)| |ak′(t)⟩ , (1)

where the state |ak′⟩ is defined by the results of strong von-Neumann mea-
surements performed in the relative past (pre-selection) at the time t1 < t of
a backward evolving quantum state ⟨ck′′| defined by the results of strong mea-
surements performed on this system in the future at t2 > t (post-selection).
Henceforth, we omitted the time in the notation.

Figure 1: Two-state vector formalism in the weak measurement scheme,
|ψ⟩,|ak′⟩ and ⟨ck′′| are the generalized quantum state, pre-selected and post-
selected states, respectively.

Fig. (1) shows that the key idea is to recover the expressions for prediction
from time-symmetric expressions by separating the final (initial) selection
procedure from the measurements under consideration by the sequence of
strong measurements. For instance, Ref. [6] showed that weakly measuring
some systems can minimize decoherence effects.
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2.2 Weak Measurements
The concept of the weak value was introduced by Aharonov, Albert and
Vaidman [7] in the context of the TVSF. Let an ensemble of particles prepared
in the initial state |ak′⟩ and the final state |ck′′⟩. The system and device
interact during a finite time as described by the Hamiltonian

H(t) = −g(t)QPB, (2)

where g(t) is a time-dependent coupling function, and Q is an operator asso-
ciated with the canonical variable of the measurement device. We focus on
the case where the weakly measured observable PB is a rank-one projection
operator.

At a time in between we switch on the interaction (2) where the initial
state of each measurement apparatus is [1/

√
∆(2π)1/4]exp(−q2/4∆2). Then,

after the post-selection

⟨ck′′ | e−i
´

g(t)qPBdt |ak′⟩ e−q2/4∆2 (3)

with measurement strength

κ = 1
ℏ

ˆ
g(t)dt, (4)

where 2πℏ is Planck’s constant.
Now, if the disturbance (∆) is sufficiently small, we expand the exponen-

tial term

⟨ck′′ | e−iκqPB |ak′⟩ e−q2/4∆2

∼= ⟨ck′′ |ak′⟩
[
1 + iqκ(⟨ck′′ |PB|ak′⟩)

⟨ck′′|ak′⟩

]
e−q2/4∆2

∼= ⟨ck′′ |ak′⟩ e

[
iqκ(⟨ck′′ |PB |ak′ ⟩)

⟨ck′′ |ak′ ⟩

]
e−q2/4∆2

∼= ⟨ck′′ |ak′⟩ e[iqκ(PB
c,a)w]e−q2/4∆2

(5)

for ∆ such that

∆κ ≪ | ⟨ck′′|ak′⟩ |
(| ⟨ck′′|PB|ak′⟩ |1/n) , (6)
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where

(PB
c,a)w = ⟨ck′′ |PB|ak′⟩

⟨ck′′ |ak′⟩
= ⟨ck′′ |b⟩ ⟨b|ak′⟩

⟨ck′′ |ak′⟩
(7)

is the weak value of the operator PB with respect to the pre-selected state
|ak′⟩ and the post-selected state |ck′′⟩.

The resulting wave packet ψ(q) of the measuring apparatus reads

ψ(q) = eiqκRe(PB
c,a)we[−

1
4∆2 (q+2κ∆2Im(PB

c,a)w)2]. (8)
Notice that the weak value has both real and imaginary parts.

The post-selection procedure causes a shift in the position of the pointer
by a factor

δq = −κ∆2Im(PB
c,a)w (9)

and its momentum by
δp = ℏκRe(PB

c,a)w, (10)
where the shift in the canonical variables of the measurement apparatus is
related to the real and imaginary parts of the weak values [8]. From (6),
the uncertainty for p for each measurement apparatus is 1/2∆κ, much bigger
than the measured value. However, for an ensemble of N devices sufficiently
large, then (1/

√
N)∆p ≪ (PB

c,a)w can be ascertained with arbitrary accuracy.
Here, we deal with a special case whereby a projection operator is consid-

ered. This type of operator is useful because of the weak coupling between
the device and system, and also to combine different types of devices.

2.2.1 Conditional Probability

A natural question that arises is how can we get the probabilities by weakly
measuring the quantum ensemble, i.e., in the TSVF.

The weak measurement of a filtering measure P1 would yield the eigen-
value aw with probability

P (aw|c, a) = | ⟨ck′′ |aw⟩ |2| ⟨aw|ak′⟩ |2∑
i | ⟨ck′′ |ai⟩ |2| ⟨ai|ak′⟩ |2

= | ⟨ck′′ |P1|ak′⟩ |2∑
i | ⟨ck′′ |P1|ak′⟩ |2

, (11)

where P1 is the projection operator defined previously. Note that the proba-
bility of getting an eigenvalue aw is a conditional probability that depends on
the pre-selected and post-selected states. This equation is very intuitive to
show that both pre-selected and post-selected states are equally important
to perform weak measurements.
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2.3 Geometric Phase
In this section, we briefly review the broad perspectives of the non-Abelian
geometric phase. When a quantum system evolves under a cyclic evolution
it may acquire an additional geometric entity in contrast to the dynamical
one called geometric phase (GP). The GP appears in several systems, such as
interference experiments with photons, condensed matter systems, and cold
atoms [2].

Berry [9] demonstrated that the GP arises from the geometric structure
of the space of states after a cyclic evolution in the adiabatic regime. In
advance on this subject, Simon [10] connected Berry’s GP with the holonomy
of a closed path. Wilczek and Zee [11] demonstrated that non-Abelian gauge
structures arise in simple quantum systems.

A natural extension of the GP for the non-adiabatic scheme was given by
Anandan and Pines [12]. This generalization of the GP allows to explore the
relation between the Berry potential and the curvature of projective Hilbert
spaces. Here, we highlighted that the holonomy can be interpreted as the
indicator of confining behavior in lattice gauge theory [13–17].

2.3.1 The adiabatic GP

This subsection is based on Berry’s article [9].
During a cyclic quantum evolution, the slow changing of external pa-

rameters gives rise to an adiabatic GP. Let the Hamiltonian H be slowly
changed by varying external parameters R = (r1, r2, ...), such that H(R).
These parameters can be viewed as points of a manifold M , such that
R = (r1, r2, ...) ∈ M → H(R). Assuming that the spectrum of H is non-
degenerate, the time evolution is governed by the Schrödinger equation

H(R(t)) |ψ(t)⟩ = iℏ
d

dt
|ψ(t)⟩ . (12)

The eigenstates |n(R)⟩ of H(R) satisfy

H(R) |n(R)⟩ = En |n(R)⟩ (13)

with eigenergies En(R). In the adiabatic limit, |Ψ(0)⟩ = |n(R(0))⟩, i.e., the
solution of the Schrödinger equation is an eigenfunction of the lowest energy
of H. We can write, at t
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|ψ(t)⟩ = e
−i
ℏ
´ t

0 dt′En(R(t))eiγn(t) |n(R(t)⟩ = eiϕeiγn(t) |n(R(t)⟩ , (14)

where is ϕ the dynamical phase. However, the term γn(t) is non-integrable,
i.e., γn(t) cannot be written as a function of R and may assume different
values for each t.

We can evaluate γn(t) making the requirement that |ψ(t)⟩ must satisfy
the Schrödinger equation. The direct substitution of (14) into (12) leads to

d

dt
γn(t) = i ⟨n(R(t))|∇R|n(R(t)⟩ · d

dt
R(t) (15)

The total phase shift of (14) around the closed path C is given by

|ψ(t)⟩ = eiγn(C)e
−i
ℏ
´ t

0 dt′En(R(t)) |ψ(0)⟩ , (16)

where we define the GP

γn(C) = i

˛
C

⟨n(R)|∇R|n(R)⟩ · dR (17)

as the Berry phase. Note that the closed integral in parameter space is
dependent on the traversed loop.

We may rewrite (17) as,

γn(C) = i

˛
C

An(R) · dR, (18)

where the quantity An(R) is called Berry connection coupled to the slow
degrees of freedom. The Berry connection is a vector potential as in classical
electrodynamics and its integral around C is analog to the magnetic flux [11].

2.3.2 GP and Holonomy

Simon [10] was the first to conciliate the concept of holonomy and the GP.
The main idea concerns the parallel transport along loops in a fiber bundle.
This means that in the geometric view, a loop corresponds to a cyclic path
traced by a tangent vector at R of a manifold M endowed with a linear
combination, the idea of parallel transportation along a closed curve [18].
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In general, when a vector is parallel transported along a loop, the resulting
vector is different from the original one. The difference can be related to the
curvature of the connection between them. This scheme was used to describe
the effects of the two-dimensional electron gas in a uniform magnetic field,
known as the quantum Hall effect [18, 19].

Considering the same loop C(t) and a choice of basis |n(R(0))⟩ of the
previous section. If the vector |n(R(0))⟩ is parallel transported along this
curve, the single-valued GP (17) is equivalent to the holonomy associated
with this connection.

Wilczek and Zee [11] proposed an extension of GP to the non-Abelian
structure, which is a matrix-valued holonomy. Let the Hamiltonian H(R)
depending on the set of external parameters. For an arbitrary set of basis
|ψa(t)⟩ we can set

H(|n(R(t)⟩) |ψa(t)⟩ = 0 (19)

where this choice can be made locally.
In the adiabatic limit, we consider the solutions of the Schrödinger equa-

tion (12) such that |ηa(0)⟩ = |ψa(0)⟩. Naturally, we can decompose a general
state at t

|ηa(t)⟩ = Uab(t) |ψb(t)⟩ , (20)

and where the eigenstate |ηa(t)⟩ is normalized .
The goal is to define the holonomy U(t) using the previous assumption

(20). The normalization condition requires that

⟨ηb|
d

dt
ηa⟩ = ⟨ηb|

d

dt
Uac|ηc⟩ + ⟨ηb|Uac|

d

dt
ηc⟩ = 0, (21)

where the vector potential

⟨ψb|
d

dt
ψa⟩ = ⟨ηb|U−1 d

dt
U |ηa⟩ = Aab, (22)

where Aab is matrix-valued and depends on the geometry of the space of
degenerate levels. We can write the above equation in terms of a path-
ordered integral

U(t) = Pe
´ t

0 A(τ)dτ . (23)
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Note that the ordered integral depends only on the path and not on its
parametrization. In particular, for a closed path the integral is the Wilson
Loop (WL), which is gauge invariant.

If we set a different set of basis

|ψ′(t)⟩ = Ω(t) |ψ(t)⟩ , (24)

where Ω(t) is a function of t.
The A field transform as

A′(t) = d

dt
ΩΩ−1 + ΩAΩ−1, (25)

as a proper gauge potentials.

2.3.3 Non-Adiabatic GP

Anandan and Pines [12] extended the non-adiabatic GP to a cyclic evolution
resulting from a sequence of filtering measurements. Consider a cyclic evolu-
tion of an n-dimensional subspace of the (n+m)-dimensional Hilbert space
H. Let Gm,n be the Grassmann manifold as a basis manifold containing all
the n-dimensional subspaces of H. We call a n-frame a set of n-orthogonal
vectors {|bi⟩} of Vn ∈ Gm,n with associated projection operator

P =
N∑

i=1
|bi⟩ ⟨bi| , (26)

where the operator P is independent of the chosen orthonormal basis and
therefore invariant under the unitary group U(n) between the orthonormal
basis of Vn.

Now, the manifold Gm,n can be connected to the set of rank-n projection
operators P uniquely associated with the subspaces Vn. The set of (n+m)-
frames can be identified with the group U(n+m), and Vn with the equivalence
class of (n + m)-frames each consisting of n vectors in Vn and m vectors in
the orthogonal complement Vm of Vn in H. Naturally, we can also identify
the Grassmann manifold as Gm,n = U(n+m)/U(n) × U(m).

Similarly, we define the Stiefel manifold Sm,n as the set of n-frames which
Sm,n = SU(n + m)/SU(m). At this point, we summarize that U(m + n) is
a U(m)-principal fiber bundle over Sm,n with projection map Φ, while Sm,n
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is U(n)-principal fiber bundle over Gm,n with U(n) × U(m) as the structure
group and projection map χ = ΠΦ.

There is a connection in the bundle Sm,n over Gm,n whose connection one-
form with respect to a field of n-frames {|bi⟩} on Gm,n is Bij = i ⟨Ψ̃i|dΨ̃j⟩.
The orthonormality of {|bi⟩} implies that Bij is a Hermitian matrix, i.e., is
in the Lie algebra of U(n).

Anandan [3, 20] produced extensive works showing that this connection
gives the non-Abelian GP in the cyclic evolution in a closed curve C in Gm,n.
The formalism can be extended to n successive incomplete measurements.
Two parallel bases in subspaces corresponding to P and P ′ ∈ Gn,m are related
by parallel transport along the geodesic C joining P and P ′. For more
technical details, see Ref. [12] .

2.3.4 Formalism

Following Ref.[21], consider a sequence C of discrete points p1, p2, . . . , pm

in Grassmann manifold with arbitrary subspace of dimension K. There is
a natural bijection between the Grassmann manifold and the collection of
projectors of rank K. Thus we may associate C to a sequence C ′ of projectors
P1, P2, . . . , Pm. We construct a sequence of filtering measurements

Γ[C] = P1, P2, . . . , Pm. (27)

Here, we consider an ensemble of particles where the pre- and post-
selected states, Fa = span{|ak′⟩}N

k=1 and Fc = span{|ck′′⟩}N
k=1, which are

non-orthogonal. The set of frames constitutes a Stiefel manifold, which is a
fiber bundle with the Grassmanian as the base manifold and the set of K-
dimensional unitary matrices as a fiber. We define the overlap matrix F(c,a)
[22]

(Fc|Fa) = (Fc,a) = ⟨ck′′|ak′⟩ , (28)

where each matrix element corresponds to the inner product between a pair
of states in the associated subspaces.

As highlighted by [4, 21], in order to associate the non-adiabatic GP to
the product of overlap matrices, we require that the overlap matrices are
unitary up to a multiplicative factor. On the contrary, is only possible to get
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the holonomy by performing unitary operations on the system. The polar de-
composition |(Fc|Fa)|Uc,a of the overlap, where |(Fc|Fa)| =

√
(Fc|Fa)(Fa|Fc)

leads to definition of the relative phase between frames

Uc,a = κ−1
c,a(Fc|Fa), (29)

where κc,ais a number that represents the transition probability in interfero-
metric setups and Uc,a a unitary matrix for a discrete sequence C.

2.4 Spin Coherent States (SCSs)
Arecchi et al.[23] introduced the concept of atomic coherent states for the
description of two-level atoms. They are defined by the angular momentum
operator in the Hilbert space as irreducible representations of some symmetry
Lie group.

Here, we apply the three-spin-1
2 setting formalism to the case of gen-

eral spin j. Consider a quantum device characterized by the unit vector
n = (sinθcosϕ, sinθsinϕ, cosθ) in spherical coordinates. In the weak measure-
ments scenario, the filtering measurements select the maximal angular mo-
mentum quantum numbers, m = ±j. The selection corresponds to the 2-rank
operators Pnα = |j; nα⟩ ⟨j; nα| + |j; −nα⟩ |j; −nα⟩ = ∑

k=± |j; knα⟩ ⟨j; knα|.
The use of SCSs simplifies the subsequent calculations since |j; n⟩ can be
viewed as a product of 2j copies of spin-1

2 state |1
2 ; n⟩ and |−j; n⟩ similarly

as 2j copies of |−1
2 ; n⟩ [4, 21].

The overlap matrix takes the form [21]

(F(θc, ϕc)|F(θb, ϕb)) =
(

R(c, b) S(c, b)
(−1)2jS(c, b)∗ R(c, b)∗

)
, (30)

where

R(c, b) =
[
cos

(
θc − θb

2

)
cos

(
ϕc − ϕb

2

)
+ icos

(
θc + θb

2

)
sin

(
ϕc − ϕb

2

)]2j

,

S(c, b) =
[
sin

(
θc − θb

2

)
cos

(
ϕc − ϕb

2

)
− isin

(
θc + θb

2

)
sin

(
ϕc − ϕb

2

)]2j

.

(31)
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For any j ∈ 1
2N, we can find an irreductible representation of SU(2). If

j is half-odd integer, then there is a projective representation of SO(3). If
j ∈ 1

2N,

(F(θc, ϕc)|F(θb, ϕb)) =
√

|R(c, b)|2 + |S(c, b)|2Uc,b, (32)

where Uc,b is the relative phase associated to the transformation.
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3 Results
Here, we propose two different forms of writing the weak values. The first
consists of the components of the pre- and post-selected states, and the
projection operator within the TSVF. The formalism can be extended to
high-dimensional quantum systems. For instance, it can be applied when
a photon carries many degrees of freedom. The second one corresponds, to
the vectorial form. In this context, we are interested in the direction of the
pointer’s device, i.e., the angles of the pre-and post-selected states as well as
the projection operator of the weak measurement as degrees of freedom.

3.1 Weak Measurements and Values
From now on, we write the pre- and post-selected SCSs, and the projection
operator in terms of vectors in spherical coordinates, |ak′⟩ = |j; k′n⟩, ⟨ck′′ | =
⟨j; k′′m| and Pnα = ∑

k=± |j; knα⟩ ⟨j; knα|, with indices k, k′, k′′ = ± as
defined in Section 3. The overlap between two such states is [24]

⟨j; k′′m|j; k′n⟩ = eijΦ(n,m)
(

1 + k′′k′n · m
2

)j

, (33)

where Φ(n,m) is a real number. Then, the weak values become

(Pnα
k′′,k′)w = ⟨j; k′′m|j; knα⟩ ⟨j; knα|j; k′n⟩ ⟨j; k′n|j; k′′m⟩

| ⟨j; k′′m|j; k′n⟩ |2

=
eijΦ(knα,k′′m)eijΦ(k′n,knα)eijΦ(k′′m,k′n)

(
1+kk′′nα·m

2

)j (1+kk′n·nα

2

)j

(
1+k′k′′m·n

2

)j , (34)

which is defined in terms of the vectors n,m,nα. If the spherical triangles
{n,m,nα} is an Euler triangle, then we get the Abelian GP

(Pnα
k′′,k′)w =

eij∆P (k′′m,knα,k′n)
(

1+kk′′nα·m
2

)j (1+kk′n·nα

2

)j

(
1+k′k′′m·n

2

)j , (35)

where the quantities eij∆P (k′′m,knα,k′n) are exactly the Pancharatnam GP [25].
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3.2 Reconstruction scheme using weak values
The knowledge of a quantum process is an important task in quantum infor-
mation. In this section, we define our approach and show how it can be used
to define the product of overlap matrices. In the following sections, we show
how this can be used to get the non-Abelian and Abelian GPs. This means
that we can recover partial information about the space of states weakly
measuring a quantum system.

Consider the special case in which we perform a weak measurement of the
projection operator of rank-2. The resulting product of the overlap matrices
(29) takes the form

Fc,bFb,aFa,c =
(

⟨j; m|j; nα⟩ ⟨j; m|j; −nα⟩
⟨j; −m|j; nα⟩ ⟨j; −m|j; −nα⟩

)(
⟨j; nα|j; n⟩ ⟨j; nα|j; −n⟩

⟨j; −nα|j; n⟩ ⟨j; −nα|j; −n⟩

)

×
(

⟨j; n|j; m⟩ ⟨j; n|j; −m⟩
⟨j; −n|j; m⟩ ⟨j; −n|j; −m⟩

)
.

(36)

Writing in the vectorial form, we get the coefficients

A = | ⟨j; m|j; n⟩ |2(Pnα
+,+)w + | ⟨j; m|j; −n⟩ |2(Pnα

+,−)w, (37)

B = | ⟨j; −m|j; n⟩ |2(Pnα
−,+)w + | ⟨j; −m|j; −n⟩ |2(Pnα

−,−)w, (38)

C = p(Pnα
+,+)w + q(Pnα

+,−)w, (39)

D = r(Pnα
−,+)w + s(Pnα

−,−)w, (40)

where p, q, r and s are defined in Appendix A and hence, we get p = r∗

and q = s∗; we find

Fc,bFb,aFa,c =
(
A C
D B

)
. (41)
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3.2.1 Holonomy

Our main purpose is to establish the relationship between the weak measure-
ments and the non-Abelian GP, i.e., the holonomy. The notion of holonomy
around a loop provides an interesting geometric view of the space of states
and the connections between the states. The key idea is to show that we
can exploit different combinations of the pre-and post-selected states and
the weak measurement device components in order to get the GP [26–30].

Here, we follow the concept of holonomy, and its trace given by Wilczek-
Zee [31] and the Wilson Loop (WL) [32], respectively. One of the major
limitations to adopting our method for obtaining geometric information is the
applicability to direct holonomies [8]. For j ∈ 1

2N, the holonomy Uc,bUb,aUa,c

is given by (29)

Fc,bFb,aFa,c = [(κc,bUc,b) (κb,aUb,a) (κa,cUa,c)], (42)

We can define the WL as a gauge invariant

Tr[Fc,bFb,aFa,c]
= κc,bκb,aκa,cTr[Uc,bUb,aUa,c]

= κWL. (43)

Here, κ is defined by

κ = 2− 3
2

 ∑
k′′,k′,k

| ⟨j; k′′m|j; knα⟩ |2| ⟨j; knα|j; k′n⟩ |2| ⟨j; k′n|j; k′′m⟩ |2


1
2

,

(44)

where the sum extends over all transition probabilities.
Now, we can plug Eqs. (37) and (38) into (43) yielding

WL = κ−1 (A+B) = κ−1| ⟨j; m|j; n⟩ |2|(Pnα
+,+)w + κ−1 ⟨j; m|j; −n⟩ |2(Pnα

+,−)w

κ−1| ⟨j; −m|j; n⟩ |2|(Pnα
−,+)w + κ−1 ⟨j; −m|j; −n⟩ |2(Pnα

−,−)w,

(45)

where the WL is s gauge invariant defined on a closed contour. This result
shows that we can recover geometric information about the space of states
through the non-Abelian GP [11]. However, as highlighted in Ref. [21] the
above relation holds only for the case in which the holonomy is a unitary
matrix up to a real number, as defined by Eq.(29).
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3.3 Sequence of Measurements
In this section, we deal with longer sequences of projection operators. The
advantage of performing weak measurements of such sequences concerns the
possibility to combine incompatible observables. In Ref. [33], it is shown an
implementation of two sequential weak measurements in the interferometric
scheme. The operators are observables that could be read on the pointer, as
highlighted in Eqs.(9) and (10).

Consider the sequence Σ + iΓ = P1P2...Pn with

Σ = P1P2...Pn + PnPn−1...P1

2 ,

Γ = P1P2...Pn − PnPn−1...P1

2i , (46)

both being Hermitian operators thus corresponding to observables.
Extending the formalism of the previous section, notice that weakly mea-

suring Σ and Γ separately for all combinations of pre- and post-selected
j ∈ 1

2N SCSs, makes it possible to realize the holonomy associated with the
path Pa → Pn → Pn−1 → ...P2 → P1 → Pc. The combination of two incom-
patible observables has been studied in tests of quantum foundations such as
uncertainty bounds, and contextuality [34, 35].
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4 Discussion
One of the main goals of this project was to attempt to find the relation be-
tween the weak measurements of higher rank operators and the non-Abelian
GP.

Wilson [32] proposed an invariant quantity, the WL to quantize gauge
field theory on closed paths. Wilczek and Zee realized that the Wilson Loop
(WL) can be an indicator of non-Abelian holonomies [31]. Based on these
ideas, the WL could be useful to evaluate the non-Abelian GP and also, other
related quantities such as the Chern number, and topological invariants.

Our approach relies on the lattice behavior which relates the connec-
tion between states and the measurements performed on a quantum system.
Thus, after a sequence of non-filtering measurements that correspond to a
finite sequence of loops, Eq.(27), we define the WL to give geometric infor-
mation about the space of states.

In the weak measurement scenario, the post-selection allows us to get
information about the space of states. This information is accessible through
the non-Abelian GP for the j ∈ 1

2N SCSs case, where the transition prob-
abilities are simply numbers and equal in magnitude for each step on the
Grassmann manifold. This suggests some relation to the geometric structure
of the system.

Notice that the filtering operator corresponds to a superposition of the
north and south poles of the Bloch sphere. Thus, it is natural that the solid
angle composed by the vectors {k′′m, knα, k

′n}, for different combinations o
signs k′′, k′, k = ±, can be inferred by a weak measurement of spin in the nα

direction. In this way, the closed paths acquire a specific GP associated with
specific trajectories, i.e., different combinations of the angles imply different
readouts of the device [36].

Note from the denominator of Eq. (34) that the weak values may assume
large values as the post-selected being nearly orthogonal to the pre-selected
state. This property is called weak value amplification (WVA) and can pro-
vide interesting and advantageous experimental effects. This amplification
effect has no classical analog and can be described in terms of quantum in-
terference. For this reason, it is possible to interpret the overlap between the
states in terms of transition amplitudes, as follows.

For instance, Ref. [37] highlighted the use of WVA when the device is
saturated with a high number of particles or in the case in which the detector
cannot differentiate between two signals. For an interesting discussion of this
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topic, see [38], where it is shown that by weakly measuring improbable or
rare events, it is possible to produce a reciprocal improbable outcome. For
instance, the spin of an electron may acquire the value 100 [38]. In Ref. [39],
the authors demonstrated the protection of SCSs from decoherence using the
weak measurements scheme, which can be improved using rotations around
arbitrary axes on the Bloch sphere.

In contrast, the weak values diverge when m → −n. This behavior can
be interpreted as a limit for which a pre-selected state at the point n has
a vanishing probability for it to pass a post-selection of −n. The antipodal
points ±n correspond to orthogonal states in which the GP is undefined [8].

The transition probability quantifies the probability of getting a weak
value given the pre- and post-selected states. On the other hand, the tran-
sition amplitude quantifies the overlap between those states. In Eqs. (39)
and (40), the coefficients p, q, r, and s constitute transition amplitudes, in
contrast to the transition probabilities in Eqs. (37) and (38).

Fig.(2) presents a schematic view of our interpretation

Figure 2: Conceptual representation of measurement back-action. The post-
selected state |c1⟩ is weakly measured by sequential filtering measurements.
After that, the final state is |c2⟩ ⟨c2|a1⟩ ⟨a1|a1⟩.

where the transition corresponds to the connection between the pre- and
post-selected states.

For instance, Aharonov et al. [40] showed that quantum random walks
can be described in terms of probability amplitudes. In this context, the
amplitude represents the decision on whether a particle takes a given path,
depending on the outcome of the measurement. In this sense, it can be inter-
preted as the partial information remaining after the measurement process.
This fact is due to the non-disturbing feature of the weak measurements.
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The post-selection plays an important role in the scheme. The presence of
transition amplitudes can be interpreted as the remaining or partial informa-
tion about the past of the post-selected state. This is an important feature
because it shows the nature of the weak measurement: the post-selected
state carries some information about the interactions at a given time t < t2.
Moreover, due to this fact, it is possible to get information about the space
of states using the weak measurement scheme.

However, as highlighted in Ref. [21] the above relation holds only for
the case in which the holonomy is a unitary matrix up to a real number, as
defined by Eq.(29).

The significance of our findings provides considerable insight into search-
ing for topological and geometric invariants. The deduction of the Wilson
Loop in terms of weak values offers a compelling interpretation of invariants
and the role of overlap between pre-selected and post-selected states. They
can be consider a coming together of topology and geometry. For instance, in
the case of SC the amplification effect becomes important in optical settings.
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5 Conclusion
We have explored the extension of the Abelian GP in a sequence of incomplete
measurements to include more than three states by performing sequential
weak measurements. This report also has investigated the notion of non-
Abelian GP in the weak measurement scenario.

The results show that we can recover information about the space of states
by performing weak measurements. The formalism can be applied to longer
sequences of operators. The advantage of performing a sequence of weak
measurements concerns the possibility to combine incompatible observables.

The present study has only investigated the case in which the holonomy is
a unitary matrix up to a real number. Our approach could be applied to the
j ∈ 1

2N SCSs case, where the transition probabilities are simply numbers and
equal in magnitude for each step on the Grassmann manifold. This suggests
some relation to the geometric structure of the system.

Our studies can be extended to a topological view in order to search
for invariants in quantum materials, such as the Chern number, Bargmann
invariant, or the Pancharatnam phase. Future work will investigate the pos-
sible implementations of interferometric, polarimetric schemes where κ has
a physical interpretation. The motivations are to develop new experimental
techniques and improve the amount of information that can be extracted
from the quantum systems.
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A Appendix

A.1 Product of the overlap matrices
In this section, we evaluate the product of the overlap matrices Here, we
consider a special case of a given rank-2 projector operator.

Fc,bFb,aFa,c =
(

⟨c1|b1⟩ ⟨c1|b2⟩
⟨c2|b1⟩ ⟨c2|b2⟩

)(
⟨b1|a1⟩ ⟨b1|a2⟩
⟨b2|a1⟩ ⟨b2|a2⟩

)(
⟨a1|c1⟩ ⟨a1|c2⟩
⟨a2|c1⟩ ⟨a2|c2⟩

)

=
(
A C
D B

)
, (47)

where each matrix element represents the resulting overlap element. The
formalism can be extended to any number of components of the pre and post-
selected states, and the projection operator within the TSVF. The formalism
can be extended to high-dimensional quantum systems and also to other
degrees of freedom.

If we consider the weak value of a projector operator 2-rank

(Pn
c1,a1)w = ⟨c1|Pn|a1⟩

⟨c1|a1⟩
= ⟨c1|b1⟩ ⟨b1|a1⟩

⟨c1|a1⟩
+ ⟨c1|b2⟩ ⟨b2|a1⟩

⟨c1|a1⟩
, (48)

then we can write the matrix elements A,B,C and D as

A = | ⟨c1|a1⟩ |2(Pn
c1,a1)w + | ⟨c1|a2⟩ |2(Pn

c1,a2)w, (49)

B = | ⟨c2|a1⟩ |2(Pn
c2,a1)w + | ⟨c2|a2⟩ |2(Pn

c2,a2)w, (50)

C = ⟨c1|a1⟩ ⟨a1|c2⟩ (Pn
c1,a1)w + ⟨c1|a2⟩ ⟨a2|c2⟩ (Pn

c1,a2)w, (51)

D = ⟨c2|a1⟩ ⟨a1|c1⟩ (Pn
c2,a1)w + ⟨c2|a2⟩ ⟨a2|c1⟩ (Pn

c2,a2)w. (52)

Now, in order to get the relation between the matrix elements, we write

p = ⟨c1|a1⟩ ⟨a1|c2⟩ ,
q = ⟨c1|a2⟩ ⟨a2|c2⟩ . (53)
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Then, the matrix elements C and D become

C = p(Pn
c1,a1)w + q(Pn

c1,a2)w, (54)

D = p∗(Pn
c2,a1)w + q∗(Pn

c2,a2)w, (55)

where the coefficients C and D are related by the factors p and q .

A.2 Vectorial form of SCSs
Here, we deduce the expression for the overlap between two SCSs states.

Let n = (sin(θ)cos(ϕ), sin(θ)sin(ϕ), cos(θ)) be a unit vector pointing in the
spatial direction corresponding to a polar angle θ and azimuth ϕ, in spherical
coordinates. We choose a normalized vector |n⟩ and for convenience, we
choose |n⟩ to be an eigenvector of Jz. Thus Jz |n⟩ = m |n⟩ and so we may
denote |n⟩ by |m; n⟩ where m = −j,−j + 1, ..., j. Hence, we also introduce
the related expression

U(θ, ϕ) = e−iϕJze−iθJy , (56)

and correspondingly we define,

|θ, ϕ⟩ = R(θ, ϕ) |m; n⟩ . (57)

However, we are interested only in the extreme values of m, i.e., when
m = ±j. The overlap becomes

⟨θ′, ϕ′|θ′′, ϕ′′⟩ = ⟨m; n|eiθ′′Jyei(ϕ′−ϕ′′)Jze−iθ′Jy |m; n⟩

=
j∑

n=−j

⟨m; n|eiθ′′Jy |n; n⟩ ⟨n; n|e−iθ′Jy |m; n⟩ ei(ϕ′−ϕ′′)n, (58)

which can be expressed in terms of the reduced Wigner coefficients of the
spin-j representation [41],

Dj
m,n = ⟨n|e−iθJy |m⟩ . (59)

For the special case in which m = j, this expression leads to the result[42],

⟨θ′, ϕ′|θ′′, ϕ′′⟩ =
[
cos

(
θ′

2

)
cos

(
θ′′

2

)
ei(ϕ′−ϕ′′)/2 + sin

(
θ′

2

)
sin

(
θ′′

2

)
e−i(ϕ′−ϕ′′)/2

]2j

.

(60)
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Now, consider two SCSs states ⟨m| = ⟨(θb, ϕb)| and |n⟩ = |(θa, ϕa)⟩. The
squared modulus of the overlap between them is defined by

| ⟨m|n⟩ |2 =
(

cos
(
θb

2

)
cos

(
θa

2

)
+ cos(ϕb − ϕa)sin

(
θb

2

)
sin

(
θa

2

))2

+
(

sin(ϕb − ϕa)sin
(
θb

2

)
sin

(
θa

2

))2

=

= cos2
(
θa

2

)
cos2

(
θb

2

)
+ sin2

(
θa

2

)
sin2

(
θa

2

)

+2cos(ϕa − ϕb)cos
(
θa

2

)
sin

(
θa

2

)
cos

(
θb

2

)
sin

(
θb

2

)
. (61)

Using the following trigonometric relation

cos
(
θa

2

)
sin

(
θa

2

)
cos

(
θb

2

)
sin

(
θb

2

)
= 1

2sin(θa)1
2sin(θb), (62)

we get,

| ⟨m|n⟩ |2 = 1
2 + 1

2cos(θa)1
2cos(θb) + 1

2cos(ϕa − ϕb)sin(θa)sin(θb)

= eijϕ(n,m) 1
2(1 + n · m). (63)

Expressed in terms of the vectors

| ⟨m|n⟩ |2 = eijϕ(n,m)
(1 + n · m

2

)j/2
, (64)

where ϕ(n,m) is a real phase.
This leads to the result,

⟨m|n⟩ = eijΦ(n,m)
(1 + n · m

2

)j

. (65)
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A.3 Transition Amplitudes and Probabilities
Using the concept of relative phase defined in (29), we can find the transition
amplitude by writing

κc,b =
[
Tr(Fc,bFb,c)

2

] 1
2

=
[
| ⟨c1|b1⟩ |2 + | ⟨c1|b2⟩ |2 + | ⟨c2|b1⟩ |2 + | ⟨c2|b2⟩ |2

] 1
2 , (66)

κb,a =
[
| ⟨b1|a1⟩ |2 + | ⟨b1|a2⟩ |2 + | ⟨b2|a1⟩ |2 + | ⟨b2|a2⟩ |2

] 1
2 , (67)

κa,c =
[
| ⟨a1|c1⟩ |2 + | ⟨a1|c2⟩ |2 + | ⟨a2|c1⟩ |2 + | ⟨a2|c2⟩ |2

] 1
2 . (68)

In the vectorial form, we write,

κc,b =
∑

k′′,k

| ⟨j; k′m|j; knα⟩ |2

2

 1
2

, (69)

κb,a =
∑

k,k′

| ⟨j; knα|j; k′n⟩ |2

2

 1
2

, (70)

κa,c =
∑

k′,k′′

| ⟨j; k′n|j; k′′m⟩ |2

2

 1
2

. (71)

In this way, κ can be interpreted in terms of transition probabilities.
We can define the transition amplitudes as

⟨c1|a1⟩ = ⟨j; m|j; n⟩ , (72)

⟨c1|a2⟩ = ⟨j; m|j; −n⟩ , (73)

⟨c2|a1⟩ = ⟨j; −m|j; n⟩ , (74)
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⟨c2|a2⟩ = ⟨j; −m|j; −n⟩ . (75)

And then we define the product of transition amplitudes

p = ⟨c1|a1⟩ ⟨a1|c2⟩ = ⟨j; m|j; n⟩ ⟨j; n|j; −m⟩ , (76)

q = ⟨c1|a2⟩ ⟨a2|c2⟩ = ⟨j; m|j; −n⟩ ⟨j; −n|j; −m⟩ , (77)

r = ⟨c2|a1⟩ ⟨a1|c1⟩ = ⟨j; −m|j; n⟩ ⟨j; n|j; m⟩ , (78)

s = ⟨c2|a2⟩ ⟨a2|c1⟩ = ⟨j; −m|j; −n⟩ ⟨j; −n|j; m⟩ . (79)

And similarly, for the general case, we can identify that p = r∗ and q = s∗.
Rewriting the matrix elements A, B, C, and D,

A = | ⟨j; m|j; n⟩ |2(Pnα
+,+)w + | ⟨j; m|j; −n⟩ |2(Pnα

+,−)w, (80)

B = | ⟨j; −m|j; n⟩ |2(Pnα
−,+)w + | ⟨j; −m|j; −n⟩ |2(Pnα

−,−)w, (81)

C = p(Pnα
+,+)w + q(Pnα

+,−)w, (82)

D = r(Pnα
−,+)w + s(Pnα

−,−)w, (83)

where A more detailed explanation can be found in Appendix A and
p = r∗ and q = s∗.
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A.4 Reconstruction scheme for SCSs
For the SCSs, the coefficients A,B,C, and D are given by the elements of
the overlap matrices or rotation matrices

A = R(c, a)R(a, c)
(
R(c, b)R(b, a) − S(c, b)S(b, a)∗

R(c, a)

)

+S(c, a)S(a, c)
(
R(c, b)S(b, a) + S(c, b)R(b, a)∗

S(c, a)

)
, (84)

B = S(c, a)∗S(a, c)∗
(

−S(c, b)∗R(b, a) −R(c, b)∗S(b, a)∗

−S(c, a)∗

)

+S(c, a)∗S(a, c)∗
(

−S(c, b)∗R(b, a) −R(c, b)∗S(b, a)∗

R(c, a)∗

)
, (85)

C = R(c, a)S(a, c)
(
R(c, b)R(b, a) − S(c, b)S(b, a)∗

R(c, a)

)

+S(c, a)R(a, c)∗
(
R(c, b)S(b, a) + S(c, b)R(b, a)∗

S(c, a)

)
, (86)

D = −S(c, a)∗R(a, c)
(

−S(c, b)∗R(b, a) −R(c, b)∗S(b, a)∗

−S(c, a)∗

)

−S(c, a)S(a, c)∗
(

−S(c, b)∗S(b, a) +R(c, b)∗R(b, a)∗

R(c, a)∗

)
, (87)

which we can get that A = B∗ and C = −D∗. Using (53), we can define the

D = (−1)2j{p(Pn
c2,a1)w + q(Pn

c2,a2)w}∗. (88)
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