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Abstract

In this review essay, we account for the historical development of
canonical quantization. By a detailed review of The Ultraviolet Catas-
trophe, The Photoelectric Effect, Compton Scattering, Matter Waves and
Bohr’s Atomic Model we learn about Old Quantum Theory. Through
the realizations of old quantum theory we account for the development of
Heisenberg-Born-Jordan Matrixz Mechanics and mention in passing the de-
velopment of Schridinger’s Quantum Wave Mechanics to understand how
Canonical Quantization was developed by P.A.M. Dirac, which we also ac-
count for. Through Canonical Quantization we develop the Schrddinger
and Heisenberg equations of motion from first principles using displace-
ment operators to describe the Double Slit Experiment only using results
contained in the essay. We conclude by stating that the three main ques-
tions posed by this essay,” How exactly did physicists figure out that clas-
sical physics was insufficient?”, ”Why do we use Hermitian operators in
Hilbert space, and how did physicists infer the commutation relations of
quantum mechanics?” and ”"How can the equations of motion be developed
from first principles?” have been answered, albeit in realization that no
universal scheme for quantizing classical theories exist, leading to recom-
mendations for further study.
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1 Introduction

The goal of the first and second courses on quantum theory is to learn how to
do quantum mechanics. We are taught how to solve the Schrodinger equation
in a number of potentials, how to use perturbation theory and, if we continue
with an advanced course, use Dirac notation and present quantum mechanics
with the use of Hermitian operators. Often, introductory courses on quantum
mechanics starts by presenting a couple of early experiments leading to Planck’s
radiation law, a corpuscular description of light or perhaps a stationary state
description of the Hydrogen atom. As a consequence of these results, we are told
that ” Therefore, classical physics is insufficient, and a quantum theory of nature
is needed.”. Proceeding the discussion, sometimes on the very next blackboard,
is the Schrédinger equation in one dimension. We are taught how to obtain the
time-independent Schrodinger equation, and from there the inexorable quantum
train moves on towards greater complexity.



As for many students before me, this led to an enormous confusion. As quantum
theory developed before us, questions started to creep up along the way. How
exactly did physicists figure out that classical physics was insufficient? Why
do we use Hermitian operators in Hilbert space, and how did physicists infer
the commutation relations of quantum mechanics? How can the equations of
motion be developed from first principles? How do we build a theory of quantum
mechanics from scratch?

Learning quantum mechanics can feel like you are being the target of the most
elaborate April fools joke ever devised, constantly waiting for the professors
to eventually crack up and tell you that it was a joke all along. Reluctantly
however, your intuition is slowly but steadily crushed under the weight of the
formalism, leaving you with stars around your head and, more often than not,
smoke coming out of your ears. This essay, in essence, aims to be a treatment
for these symptoms. It is directed towards students of physics who have taken
at least two courses on quantum mechanics, meaning that they should be com-
fortable with Dirac notation and some standard mathematical methods used in
quantum mechanics.

This essay is built up by four parts. Firstly, a detailed and chronological de-
scription of the early experiments of quantum mechanics will be provided. After
this, we will take a closer look on how the formal structure of quantum mechan-
ics was developed, ending in presenting the scheme of canonical quantization
and why the postulates take the form they do. This discussion is continued by
developing some familiar results of quantum mechanics. As a coup de grace, we
will end by providing a self contained theoretical description of the double slit
experiment, meaning that all concepts used have been introduced and accounted
for in the preceding discussion. As is customary, a discussion, conclusion and
summary are provided at the end.

2 The Need for a Quantized theory

It is time to enter the head of an early twentieth century physicist. Only this
way, without our quantum intuition, can we truly understand the development
of quantum mechanics. Our discussion will begin with shedding light on the
early developments of quantum physics and end in the Bohr model of the atom,
where a classical explanation of nature should be understood to be insufficient.

2.1 The Ultraviolet Catastrophe

In 1859, long before the birth of quantum physics, Gustav Kirchhoff was study-
ing the properties of black body radiation.! By creating a small hole piercing
into a box containing heated material, he discovered a universal relationship

LGasiorowics, Stephen; ”Quantum Physics”; john Wiley Sons, Inc., third edition (2003),
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between the energy emitted per unit area and unit time, E(\,T)d\, where X is
the wavelength of the radiation and T the temperature of the radiator, and the
energy density of radiation inside the box, w(A, T)dA\, as
4E(\,T
wir,T) = AT W
c

This seemed to be true for any material being heated, and peaks into the essence
of matter itself. Years later, in 1894, Wilhelm Wien deduced that

wir,1) = 00 2

from the laws of electrodynamics, a derivation that agreed with experiments.
Problematically, even though the form of this expression agreed with measure-
ments, derivations of f(AT) could not be obtained from classical physics. Fa-
mously, J.W.S. Reyleigh proposed a solution based on the equipartition of en-
ergy, as

SrkT
wir, 1) = 5L Q

where k is Boltzmann’s constant. This solution highlights the central problem
that physicists faced during the shift from classical to quantum in the study of
thermodynamics. In integrating this expression over all wavelengths to obtain
the total energy per unit volume, we see that

+oo
/ w(A\, T)d\ = oo, (4)
0

which obviously is not the case. Because solutions to the structure of f(AT)
often faced problems of infinite energy density at wavelengths approaching zero,
this problem is called The Ultraviolet Catastrophe.

This essential problem was to see its solution in the very first year of the next
century in the form of Planck’s law of blackbody radiation,

2rhe? 1
N o 1 (5)

e kT —

w(\,T) =

It is based on the fundamental realization that energy can only be emitted
and absorbed in quanta, and were to have energy equal to £ = th’ where h
is the familiar Planck’s constant, whose value were to be determined later in
the twentieth century. Planck deduced his formula by theoretically examining
the absorption and emission of light inside the Kirchhof box discussed earlier,
where we are to imagine its structure as quantized harmonic oscillators. The
derivation made by Planck is long and not the focus of this paper, but from other
realizations of quantum theory outlined below one can derive his radiation law

in a simpler fashion?. What is important to us is to realize that his insight

2Einstein, Albert; ”On the Quantum Theory of Radiation”; Phys. Zs. 18 121, (1917).



into the quantization of emission and absorbtion of radiation leads to a theory
of physics in line with nature. For example, in integrating over all possible
wavelengths, we obtain

ET\° /+°° 25 |dA
|2 \de
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7Tc(hc) kT/O e —10"

where

+oo $3 +o0 1 +oo e
/0 . ldx = /0 de™” e dx = /0 3" Z(e_x)"dac

n=0

—+oo oo +o00 [oe] o0 +o00
= / z3 Z(eﬂ:)”ﬂdw = / 3 Z e "dr = Z/ e dx  (7)
0 n=1 n=170

n=0 0
o] +o00 y3 oo 1 4 +oo
S 3 () [ e
n=170 n n=1 n 0

dzr

dy

It is clear that
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Hence, we are led to believe that

oo kT\° he 7t 270k*
NT)dA =2rhe? (-~ ) = = —— 5T 11
/0 whT) Wc(hc) KT15  15h3c2 (11)
Of course, this is Stefan-Boltzmann’s law, which had been confirmed experi-
mentally before Plancks law. It is a significant result that the energy density
of radiation only depends on the temperature of the radiator. What is even



more significant, though, is the fact that Planck through his theory, which very
precise measurements have confirmed?, solved the ultraviolet catastrophe, and
did so by shattering our intuition of a universe estranged to discontinuities.

2.2 The Photoelectric Effect

It is important to understand what Planck’s realisation of thermodynamics ac-
tually was. As carefully put above he theorized that the absorption and emission
of light itself came and went in quanta due to the quantized harmonic oscillators
inside the Kirchhoff box, but radiation itself was to follow the familiar classical
laws of electrodynamics. That is to say, the idea of particulate radiation had not
yet come to fruition. Of course, the idea had long been discussed by physicists?,
but no concrete model had been put forward, particularly after Maxwells equa-
tions. That was until Albert Einstein came forward with a model of radiation
explaining The Photoelectric Effect.

In 1887, Heinrich Hertz discovered the Photoelectric effect almost by accident.
His experimental work was dictated towards trying to build a receiver for radio
waves. It consisted of a mechanism creating a spark gap, made in such a way to
induce a current in a secondary circuit coil by means of electromagnetic radia-
tion. In trying to see the spark in the secondary circuit better, he put it inside
a dark box, separated from the primary circuit. To his surprise, the length
of the spark gap in the secondary circuit had been reduced by this operation.
This intrigued him, and after more experiments concerned with changing the
material of the box, blocking different parts of the light spectra, he concluded
that UV-radiation and its more energetic counterparts were responsible for the
increase in the spark gap length. Thus, it became clear that high energy radia-
tion releases electrons from metal surfaces.

Let us now imagine a simple experiment that we could set up in order to explore
the photoelectric effect. We set up a circuit containing a variable power supply
with an ammeter and a voltmeter placed appropriately. Closing the circuit is a
metal plate connected to the cathode that we illuminate with an external light
source, separated from another metal plate that is connected to the anode ab-
sorbing the electrons emitted from the other. This way, we create a retarding
and stopping potential for the electrons. The type of metal used for the two
plates does not change the essential results of the experiment, and can be of
your own choosing. Concerning the specifics of the photoelectric effect, some
peculiar and troublesome phenomena come to light if we were to run our exper-
iment in the lab®:

3Xiaomin, Lu; Qishan, Tang; Wendong ,Kang; ”Research and Verification of Blackbody
Radiation Law”; Insight - Energy Science, (2018).

4J, Miiller; ”Physikens Grunder” (English, ”The foundations of Physics”); Stockholm,
Zacharias Heeggstrom, (1854).

5Greenstein, George; Zajonc, Arthur G.; , ”The Quantum Challenge: Modern Research on
the Foundations of Quantum Mechanics”; Jones and Bartlett Publishers Inc., second edition
(2006), p. 24-37.



1) Electrons are emitted and reach current stability very quickly after the onset
of the experiment, in the order of about 10~ seconds.

2) The current decreases with increasing retarding potential V', and eventu-
ally stops at the stopping potential V.

3) The stopping potential V, increases linearly with the frequency v of radi-
ation, but V) = 0 at a certain threshold frequency vy specific to the metal used.

4) The current increases linearly with light intensity.

Using our classical model of electrodynamics, some of these results are hard
to explain. The idea of a classical photoelectric effect is however not a foreign
one. After the photoelectric effect was discovered, but before the emergence of
quanta, the existence of electrons was known through the experimental work
of J.J. Thompson®. Classical electrodynamics allows radiation to be absorbed
by electrons in order to accelerate them, but the devil is in the details. In
classical electrodynamics, we are to imagine a light wave continuously increas-
ing the energy of the electron until it has left the illumination zone, creating a
delay. Of course, this delay should also be dependent on the intensity of the
radiation, with an illumination of higher energies decreasing the departure time
of the electrons. Of course, a retarding potential in the electron path should
slow them down continuously. Thus, observation 2) and 4) can be adequately
explained in a classical framework. Concerning observation 1) however, classi-
cal electrodynamics demands the delay until current stability is reached to be
much larger than that of experiments. The time to reach current stability is
also not proportional at all to the intensity of radiation. Concerning observation
3), we have clear evidence that frequency increases the energy of electrons over
a certain threshold. This is not explained by our classical model at all. What
is needed here is a model that could explain all of these four phenomena at once.

In his anno mirabilis, Einstein came up with a possible theoretical solution
using a particulate theory of light. Tracing back our thoughts to Planck’s solu-
tion to the ultraviolet catastrophe, Einstein went one step further. Not only did
he imagine the harmonic oscillators in matter to be quantized, he also imagined
the energy of light to be. We shall hesitate in leaping towards calling his par-
ticulate light particles, or photons, for now, for reasons that will be cleared up
later. Einstein’s particulate light follows the same formula for energy quantiza-
tion as Planck’s harmonic oscillators, that is, its energy is given by the equation
E = hv. This means, that as a light quanta of energy F = hv hits an electron
in our experiment above, all of its energy is transferred. Unlike a wave which
linearly transfers energy to the electron, a light quanta should transfer the set

SThompson, J.J.; ”Cathode Rays”; London, Edinburgh and Dublin Philosophical Magazine
and Journal of Science, (1897).



amount hv instantaneously. However, Einstein imagined there to be a work
function W = hyg for the metal being illuminated, expected to be different for
each metal. The work function gives the energy required to release an electron
from the forces holding it inside the metal. If this energy limit is not met,
the electron will not absorb the light quanta at all and stay in place. We can
imagine this process using the equation

E,=hv—W =h(v—1w) (12)

where Ej is the maximum kinetic energy of the electrons, if indeed v > .
Otherwise, we set Ey = 0.

Is this model sufficient to explain all four observations above? Indeed it is.
As already discussed, light quanta can be absorbed much quicker than a light
wave, and hence the small current stabilisation time of observation 1) is no
longer an issue. The condition of v > 14 also explains the threshold frequency,
and through equation (12) the linear relationship thereafter. Setting Fy = eV},
where e is the electron charge, equation (12) also gives us the estranged rela-
tionship between frequency and stopping potential,

Vo= 2w w), (13)

thusly ridding us of the theoretical problems concerning observation 3). As in
the classical framework, electrons will be slowed down continuously in this new
model, encapsulating observation 2). Intensity, being defined as energy per unit
time, corresponds to more light quanta hv instead of a higher amplitude of a
classical wave. Hence, we should expect to see a linearly increasing current with
higher light intensity, even in this model.

Einstein had succeeded. A new theory for the photoelectric effect encapsulating
all observations, those which had been thought understood and those which had
not, gained him the Nobel prize in 1921. Though the search for photons went
on long after his discovery, it had yet again been shown that classical physics
was not sufficient to explain all phenomena of nature.

2.3 Compton Scattering

In the above section I have knowingly abstained from calling light quanta par-
ticles. FEinstein established an explanation for the photoelectric effect using
particulate energy, but a particle has additional properties such as momentum
and a definite position in space. Of course, the theory of quantum particles does
not give the same restraint of position in space as classical particles do. On the
other hand, Compton Scattering, discovered by Arthur H. Compton in 1923-47,
gives light to the question of whether light quanta carries momentum or not, of

"Gasiorowics, Stephen; ”Quantum Physics”; john Wiley Sons, Inc., third edition (2003),
p- 7



which the answer is of course yes. In this section we will go through Compton’s
experimental work and the theory used to explain his findings.

Compton scattering concerns electron-X-ray scattering, which was a know pro-
cess long before Compton. It was known that as electromagnetic radiation
interacts with a free electron at rest, the electron recoils and the radiation
changes the direction of propagation at an angle § relative to the incident angle.
Classically, this is described by the familiar process of Thompson scattering.
J.J. Thompson theorised that as radiation interacts with an electron it will
start to oscillate in unison with the electric field of the radiation and induce
another electromagnetic field, thus changing the final direction. Its intensity I
was calculated to be

I=1+cos?6, (14)

which had been confirmed experimentally.® As we can see, the intensity does
not depend on wavelength. A break from this theory was formed by Compton
who in 1923 published his results born from an experiment set up as follows,
shown in fig. (1).° An X-ray tube emits radiation on a thin block of graphite,
thus scattering the radiation. A set of slits are placed at 6 degrees relative to
the incident X-ray to ensure that the radiation measured indeed is scattered
from this precise angle, with one slit made from lead to ensure lower experimen-
tal noise. Finally the radiation is measured using a Bragg spectrometer giving
the intensity as a function of wavelength in our final data. The results of this
experiment is given in fig. (2). As can bee seen, for the high energy X-rays,
the intensity of the Ka spectral line does not only follow a relationship close to
that of Thompson scattering, but at higher 6 an additional peak of intensity is
seen for wavelengths increasingly further away from the first.

How can this new phenomenon be explained? We can start from the famil-
iar energy-mass equivalence relation,

E =+/(mc?)2 + (pc)? (15)

for a particle with rest mass m and momentum p. The velocity at this momen-
tum is then

dE 2 2
_aB _ pe pe . (16)
dp  E \/(me?)? + (pc)?
For an X-ray, v = ¢ which implies a rest mass of zero, giving us
E = pc. (17)

8Compton, H. Arthur. A Quantum Theory of the Scattering of X-rays, Phys. Rev. 21,483;
22,409 (1923).
9Compton, H. Arthur. The Spectrum of Scattered X-rays, Phys. Rev., vol. 22 No 5 (1923).
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Figure 1: Setup of Compton’s Scattering experiment, where ”crystal” is the thin
block of graphite and ”X-ray tube” is the Bragg spectrometer. (Picture copied
from: Compton, H. Arthur. The Spectrum of Scattered X-rays, Phys. Rev., vol.
22 No 5 (1923))

We can then use Planck’s relation F = hv, giving us the final momentum

relation
B hv

C

p (18)

Consider now the momentum conservation corresponding with this scattering

process,
p=p+P, (19)

where p and p’ are the momentum of radiation before and after scattering,
respectively, and P is the momentum of the electron after scattering. Consider
also the energy conservation of this process,

hv +mec? = ' + \/(mec?)? + (Pc)? (20)
where the same notation is used. We rearrange and square, as
m2ct+ P2 = (hv—hv/ +mec®)? = (hv—hv') 2 +2mc?(hv —hv') +m?ct, (21)

that is,
P?c? = (hv — h')? + 2m.c* (hv — h/'). (22)
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Figure 2: Compton’s results. The results show the spreading of the K« spectral
line at two different slit widths (left to right) as well as for different angles 6
(up to down). (Picture copied from: Compton, H. Arthur. The Spectrum of
Scattered X-rays, Phys. Rev., vol. 22 No 5, p. 409 (1923))

Now going back to momentum conservation, we can use four-momentum invari-
ance as found in relativity to find that

PP=(p—p)?=p*+p”-2p-p, (23)
hun 2 hi'\ 2 hv  hv'
2 _ (Y ) 9= .=
P_(C)+(C) 20 CCOSQ, (24)
rearranged as
P2 = (v — h/')? 4 2(hv)(hv')(1 = cos 6). (25)

We now equate our two relationships obtained from momentum and energy
equivalence and rearange, as

(hv — W) 4 2mec®(hv — h') = (hv — h')? + 2(hv)(h')(1 — cos ) (26)
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v—1v h

R (1 —cos®), (27)

Which we rewrite as b
N —\= 1-— 0). 28
(1 = cos) (28)

This way, Compton had found a new formula for scattering of electromagnetic
radiation. In implementing his formula, we are to view radiation as interacting
with a carbon nuclei as well as an electron surrounding it, which is assumed
to be free due to the high energy of the X-ray. The mass of the entire atom
is large (m. << m¢), and so the shift in wavelength is thus very small, and
very difficult to detect using the experiments of his day. Contrast this to the
electron, where we should observe a shift due to its small mass. This formula
found tremendous agreements with his experiments. His insight lied in using the
particulate nature of light outside of the photoelectric effect, showing that giving
it momentum could describe new experimental findings. His original argument
in the referenced paper is more thorough, using the energy and momentum of
an electromagnetic wave, but this way we have seen the essence of his argument.
Physicists now had experimental backing in assuming that light comes in quanta,
with a particulate energy and a given momentum. I have made an effort in our
journey to this point not to call it by its more familiar name that it now came
to carry; photons. Finally, physicists had reason to suspect that light consisted
of particles, even though the debate of its essence was far from over.

2.4 Matter waves

In the very same year as Compton’s experimental work, Louis De Broglie pon-
dered the ”double nature” in the essence of matter.'® He was particularly
intrigued by the way the study of quantum physics had developed a contradic-
tory language concerning a complementarity between particles and waves. De
Broglie asked himself how it could be that frequency was used for describing
the corpuscular energy of light quanta, £ = hr, a phenomenon classically only
used for modeling waves. On the other hand, stationary states for electrons
in a spherically symmetric potential were known to exist. The theory was one
containing whole numbers as will be discussed in the next section, and this was
only known to be present in interference phenomenon and quantized oscillators.
Was it then possible for electrons, thought as particles through J.J. Thompson
and H.A. Lorentz, to have wave-like properties after all?

De Broglie started with the assumption that a particle indeed has a frequency.
He imagined this particle in its inertial system A, with its phase given by

¢0 = sin 27yt (29)

where vy is its frequency and tg the intrinsic time of the particle. Consider now
an inertial system B, with a velocity v in their common x-axis relative to A.

10De Broglie, Louis; ” The wave nature of the electron”; Nobel Lecture, (1929).

12



Then, by a Lonertz transformation, we find that

v

o = ———. (30)

=) (31)

Thus, we have obtained the frequency that the observer in inertial frame B will
observe,

V= —— (32)

V=" (33)

De Broglie’s goal was to link up this argumentation, concerning the frequency v
and phase velocity V, within a framework of energy and momenta. He started
with imagining the particle in its rest frame A, where we have that E = mgc? and
FE = huvy, where mg is the rest mass of the particle. Equating these expressions,
we find that

hl/o
He then imagined the momentum of the particle observed in B, as
mov (35)

p=—F
V-

This was the final step before executing his coup de grace,
mov oy v  hv h

oz F MeTvTx ()

Thusly, the De Broglie wavelength has been obtained,

A s (37)
We note a couple of things with this simple derivation. The only assumption
made is that of the phase of the particle. The rest of his argumentation is,
and was at his time, unarguably waterproof. We also note how small the De
Broglie wavelength ought to be for everyday, as well as quantum objects. As
an example, this fundamental equation hints at why we humans do not diffract

13



when running into a pole or interfere when choosing one of two doors, for those
of you who have wondered. The key lies in our large momenta and the incredibly
small value of Planck’s constant. Physicists took interest in his findings, and
it was soon proposed that one should be able to test his theory by observing
electron diffraction.’’ We will delay the discussion of the famous double slit
experiment, which in itself is an excellent demonstration of electron diffraction,
see ch. 5.

2.5 Bohr’s Atomic Model

Along with the discovery of the electron by J.J. Thompson and of radiation by
Henri Becquerel, new experimental methods had been developed to pierce into
the structure of the atom, a task once only considered solvable by philosophy.
During the turn of the century it was believed that electrons were embedded
into a hypothesised cloud of unknown positively charged material. This model
is called Thompson’s plum pudding model, and was an attempt to reconcile
the new findings of electrons with the neutral charge of the atom. Soon how-
ever, Thompson’s model fell. By firing alpha-particles towards a thin gold foil,
Ernest Rutherford and his students were able to find that Thompson’s model
of the atom was unable to explain the erratic reflections observed. The alpha-
particles sometimes passed right through the golden foil, while at other times
it flew off in a completely different direction.!? This was not how to expect
a uniform positively charged cloud to interact with massive positively charged
particles, and the electrons were far to light to deflect the alpha particles in this
way. Thus, Rutherford theorised that there should exist a concentrated positive
charge inside the atoms for the alpha particles to scatter against. He further
proposed that the electrons existed in circular or elliptical orbits around this
concentrated positive charge, thus keeping the atom overall neutral. Therefore,
this model came to be called The planetary model of the atom.'?

Rutherford and his colleagues all knew what fundamental problems the plane-
tary model of the atom carried with it. Consider an electron in circular orbit
around a spherically symmetric coulomb potential of the same charge as the
electron,

2 2
muv 2 €

= = —. 38
r mer 4Amregr? (38)
We can use this expression to derive Kepler’s third law, as
2
w?r3 c (39)

dreom’

1 Gasiorowics, Stephen; ”Quantum Physics”; john Wiley Sons, Inc., third edition (2003),
p- 10

12Rutherford, Ernest; ”The Scattering of and Particles by Matter and the Structure of
the Atom”; Philosophical Magazine Series 6, vol. 21 (1911).

13 Gasiorowics, Stephen; ”Quantum Physics”; john Wiley Sons, Inc., third edition (2003),
p. 15
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The total energy of this system is given by

E:mvzi €2 :1 €2 - &2 :71 e2 ' (40)
2 dmegr 2 4megr  4dmegr 2 4megr
Consider now the Larmor formula
2
E 2 2 2
_ ar _ 24 &’z 7 (41)
dt 33| dt?

obtained from classical electrodynamics and known during Rutherford’s exper-
iments, which gives us the energy loss per unit time of an accelerating particle
with charge distribution ¢. In our system, it is given by

P:Zii(vj)?
3dmeg 3\ r

2 €2 1, 5

N g47reoci3(w )

2 e 1550
- §4ﬂeor4§(w ) (42)

2

2 e 1 ( e )2
" 3dmegrt 3 \dmwegm
2

2( e )3 1
3\dmey/ m2c3rd’

2

However, if we decide to calculate the energy loss per unit time from eq. (40),

we obtain
dE 1 ez 1dr

— = 43
dt 24mey r2 dt (43)
We combine these two expressions as
dr 4 e? \2
32 = ()" 44
" dt  m2c3 \4reg (44)

In integrating both sides with respect to time, we are left with

2

o (e )215 (45)

m2c3 \4dmeg

leading us to the final expression,

2.3

t = m; (4;60)27’3. (46)

From the assumption of energy loss through the Larmor equation, which was
well known in the early twentieth century, this expression gives us the time ¢
for a charge in circular orbit of radius r around a spherically symmetric poten-
tial to collapse. Plugging in fitting numbers for an electron, with r being in

15



the order of 107'° meters, a back of the envelope calculation gives us a value
of 10710 seconds. This is of course disastrous for the planetary model of the
atom, and a confusing theoretical result. Indeed, the planetary model did ex-
plain the scattering data of Rutherford’s experiments, and it was an immediate
consequence of it when considering classical electrodynamics. Classical electro-
dynamics predicted the atom to collapse extremely quickly, and it was clear that
the planetary model could not be the final, correct model.

The classical model also predicted that the frequency of radiation emitted from
a particle in periodic motion is equal to that motion. It was expected that
a continuous flow of radiation with increasing frequency would be measured,
before the signal dies at the moment of collapse. Experiments carried out by
Anders Angstréom and collegues on the spectra of hydrogen was summerized by
Johann Balmer in 1885, as

izR(%—%) (47)

where R is Rydbergs constant and n; and ns are integers. This formula, called
the Rydberg formula, showed good agreement with Angstréms experiments, and
stood in direct conflict with classical electrodynamics.

The conflict between theory and experiment hinted at new physics. In 1913,
Niels Bohr formulated three postulates, built upon a quantum mechanical ac-
count, to try and swing away at the problems outlined above:

1) Electrons exist in discrete stationary states of discrete energy around a
spherically symmetric potential. In changing an electron from one stationary
state to another, a discrete amount of energy must be emitted or absorbed,
equal to the difference in energy between the two states.

2) The frequency of the radiation emitted or absorbed during a transition
between two states of energy E; and Esy, Eq > Fs, is given by

hy = E1 - E2 (48)

3) Electrons in a spherically symmetric potential have discrete angular mo-
menta, given by
L, =nh (49)

where n € N is the occupied stationary state.

Through these postulates, Bohr had quantized the atom. Instead of orbits with
a continuum of allowed energies and angular momenta, we now have a system
of a set amount of discrete allowed values. Bohr had come up with the first two
postulates in consultation with equation (47) and Planck’s formula. Concerning
his third postulate, the stationary states correspond to a set of allowed circular
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orbits in the planetary model of the atom. He related the kinetic energy of the
electron by the frequency of motion, as

mev? 1
5 = inhu (50)
so that
MeVT = N (51)
2m
or
L, = nh. (52)

Now, going back to the system of an electron in a stationary state around a
spherically symmetric potential, we should again have
Ze? Mmev?

—_— = (53)

4dreqr? r
where we have added Z corresponding to the strength of the potential. In nature,
this relates to the number of protons in the nucleus, where we have assumed
the nuclear mass to be infinite and compressed to a point. Let us consider this
system in light of Bohr’s postulates. Combining this with eq. (51), we obtain

2rZe? 1
= — 54
v 4meg hn (54)
which, when reinserted into eq. (51) gives
1 [ Ze?\~1h2n?
r=ra() - (55)
472 \4req Me
Thus, the total energy of the system is given by
2 2 7204 1
pomett e 6772167 (56)
2 dmegr 8h2eg n?

where we have simply inserted v and r and simplified. Using Planck’s relation-

ship,
_he

E=hv 3 (57)
we see that ) Z2etm, 1
3T T Shae 2 (58)
which by our second postulate leads directly to eq. (47), where
2 4
R= Zghe%gbc (59)

Thus, Bohr’s postulates has lead us to Rydbergs formula, and a theoretical value
for the Rudberg constant which showed good agreement with experiments. He
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had done so by assuming that electrons occupy stationary states, a break from
orbits in classical electrodynamics.

With this powerful result in hand, it was time for Bohr to await experimen-
tal results showing a clear connection between electron transitions between his
postulated stationary states and the wavelengths put forth in the Rydberg for-
mula. He did not have to wait long, as experiments performed by James Franck
and Gustav Hertz which were published just one year later in 1914 showed
strong agreement with his prediction.'*1®. In Franck’s and Hertz’ experiment,
a cathode and an anode, both negatively charged, were placed in plane parallel
relative to each other inside of a glass tube only containing mercury gas (see fig.
3). at a distance of z = d from the cathode placed at z = 0, a positively charged
grid was placed creating a uniform electric field E = % between cathode and
grid. Between the grid and the anode, we call the oppositely directed electric
field Eretard. Now, as electrons were ejected from the source S in the schematic,
they were accelerated towards the grid, and on their way, they collided with mer-
cury atoms inside the tube. As they reached the grid, the electrons start moving
through EretaTd, slowing them down. Franck and Hertz wanted to measure the
current I created by electrons reaching the anode and find its relation to the
amount of voltage applied between the cathode and the grid, U. Their result is
just as astonishing as it is classic, and is shown below (fig. 4).

Cothode (z=0) | -—=======

’ — L' verriobiel

Grid g~ p-—=======

Aok —-' I

Figure 3: A Schematic of the Frank-Hertz experiment. (Picture Copied from:
Robson, Robert E.; White Ronald D.; Hildebrandt, Malte; ”One hundred years
of the Franck-Hertz experiment”; Eur. Phys. J. D 68: 188, (2014).)

Ll (fiwal)

14 Frank, James; Hertz, Gustav; ”Uber Zusammenstéfe zwischen Elektronen und Molekiilen
des Quecksilberdampfes und die Ionisierungsspannung desselben” (english: 7On the colli-
stons between electrons and molecules of mercury vapor and the ionization potential of the
same”); Verhandlungen der Deutschen Physikalischen Gesellschaft (1914); Translated version
in: Boorse, A. Henry; Motz, Lloyd; ”The World of the Atom”; Basic Books Inc, Publishers
(1966).

15Robson, Robert E.; White, Ronald D.; Hildebrandt, Malte; ”One hundred years of the
Franck-Hertz experiment”; Eur. Phys. J. D 68: 188, (2014).
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Figure 4: Results from the Frank-Hertz experiment, where the y-axis is the
current 4 and the x-axis is the voltage U. (Picture Copied from: Robson,
Robert E.; White Ronald D.; Hildebrandt, Malte; ”One hundred years of the
Franck-Hertz experiment”; Eur. Phys. J. D 68: 188, (2014).)

In classical electrodynamics, it would be expected that the relationship
between I4 and U would be linear. This was not observed, instead Franck
and Hertz obtained distinct peaks of current at voltage differences of about
AU = 4.9 V. First interpreted as an ionization potential for mercury atoms,
subsequent experiments made them theorize that they had found electron excita-
tion levels of energy F = e AU = 4.9 eV. Furthermore, during their experiments
it was noticed that excited atoms returning to their ground state emitted radi-

ation of wavelength A = 253.6 nm. Using Planck’s radiation formula F = %,
they noticed that
EX 4. 253.
po BA 496V X 2386mm o0 s gy (60)

Cc C

extraordinarily close to the real value of h = 6.62607015 x 10734 Js.

So what happened? As electrons accelerated towards the grid, inelastic and
elastic collisions with gaseous mercury atoms took place, de-accelerating the
electrons. In a saw toothed fashion, as electrons slowly accelerated in the elec-
tric field, they transferred this kinetic energy to instantaneously excite the mer-
cury atoms. Of course, due to the excitation level spacing of AF = 4.9 eV and
the mean free path only allowing the electrons to be accelerated to a maximum
kinetic energy, if this energy is sufficiently high, close to a multiple of 4.9 eV, the
electrons are fast enough to peer through Eretard, closing the circuit. If their
energy recently has been transferred, the electrons wouldn’t have been able to.
Alas, Bohr had strong experimental evidence to support his stationary state
model of the atom.
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3 Canonical Quantization: Its History and Pos-
tulates

It is perhaps surprising that there exist no proof of quantum theory'®, meaning
that there is no clear and coherent way to move from a classical to a quantum
formalism purely using mathematical reasoning or the like. We must look to
nature and use a fair amount of guess-work as to how a quantum theory of
nature might look like. In fact, this should not be surprising at all. The history
of physics moves in the "wrong” direction, with the correspondence principle
demanding quantum theory to collapse into classical physics when quantum
numbers are large, and not some other way around. Our intuition is in the
realm of classical physics, and that of nature seems to be in line with quantum
theory. Nonetheless, there are reasons for the educated guesses physicists made
for quantizing theories in the past, of course. In this chapter, we will discuss the
postulates of quantization and their origins to later discuss their implications.

Let us summarize what we found above through the early experiments of quan-
tum mechanics. In essence, we have found that quantizing certain parts of
classical theories shows promising results in explaining natural phenomena. It
is clear that classical physics is unable to give an account of these processes.
The story told, though hold together by a red thread, however lacks any formal
structure!”. As Old Quantum Theory developed, it was clear that the theories
obtained were essentially different, sometimes contradictory fragments of an in-
complete theory, demanding answers on such matters as the self-contradiction of
wave-particle duality and the existence of quantized and unquantized dynamics
existing simultaneously in one model. A first step came in the summer of 1925
when Werner Heisenberg realized that non-commuting operators might explain
the scattered data of old quantum theory. Together with Max Born and Pascual
Jordan, this method was further developed and ended in a joint paper'® follow-
ing two other influential papers, one written by Heisenberg'® and one written
by Born and Jordan?’. Heisenberg’s approach was not to solve the question
of electron dynamics in a spherically symmetric potential, a sought after goal

16Nakahara, Mikio. ”Geometry, Topology and Physics”, second edition, p. 9. Taylor and
Francis group (2003).

17Von Neumann, John; ”Mathematical Foundations of Quantum Mechanics”; Princeton
University Press, (1955), p. 3-17.

18Born, Max; Heisenberg, Werner; Jordan, Pascual; ”Zur Quantenmechanik I1”; Zeitschrift
fiir Physik 35 (1926). English translation: ”On Quantum Mechanics II”; Translated version
in: van der Waerden, B. L. (editor); ”Sources of Quantum Mechanics”; Dover Publications,
(1968).

19Heisenberg, Werner; ” Uber quantentheoretische Umdeutung kinematischer und mecha-
nischer Beziehungen”; Zeitschrift fiir Physik 33 (1925). English translation: ”Quantum-
Theoretical Re-interpretation of Kinematic and Mechanical Relations”; Translated version
in: van der Waerden, B. L. (editor); "Sources of Quantum Mechanics”; Dover Publications,
(1968).

20Born, Max; Jordan, Pascual; ”Zur Quantenmechanik”; Zeitschrift fiir Physik 34 (1925).
English translation: ”On Quantum Mechanics”; Translated version in: van der Waerden, B.
L. (editor); ”Sources of Quantum Mechanics”; Dover Publications, (1968).
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in old quantum theory, but only focus on observable quantities, in this case
hydrogen spectral lines?'. Guided by the correspondence principle, Heisenberg
first recalled that?2

o0
X(t) _ Z e2ﬂ%7Lt Xn (61)
n=-—oo
is the Fourier description of a classical particle in circular motion while interact-
ing weakly with an electromagnetic field, which also happens to be a description
of its emitted frequency, where X (¢) is the particle position, and 7' its period,

under the condition
X, = X", (62)

to keep X (¢) real at all times. For large orbits n and m, where n — m is very
small, then, we should expect that
E,—FE, n—-m

f=mo T s (63)

where T is assumed to be the period of both orbits n and m and f is the
frequency of emitted radiation. Of course, if n and m are small or if n —m
is large, this approximation would not be sufficient. As the frequencies from a
quantum description is approximately the same as that of a classical description
under these conditions, Heisenberg assumed that there should be something that
could be described by oscillation in the quantum description. He introduced
the new quantity X,.,, where for n and m large and n — m small, X, is the
coefficient X,,_,,, and only this coefficient in equation (61). This way, he could
develop equations of motion for one term in the Fourier description dependent
on the difference of frequency, obtaining radiation of one frequency as is required
from the experimental data on spectral lines. Of course, he demanded that this
description is to hold below the classical limit. Realising that X,,_,, has the
opposite frequency of X,, ,, the new condition to keep these objects real in a
Fourier description was

Xom = X (64)

Heisenberg further realised that two of these Fourier coefficients representing
position X,,,, one the one hand and momentum P,,, on the other could be
added together as

(XP)pm = ZancPkm, (65)
k=0

where (X P),, oscillates with the same frequency as X,,,,, and P,,,.

21Fedaka, William A. ; Prentis, Jeffrey J.; ”The 1925 Born and Jordan paper “On quantum
mechanics””;American Journal of Physics 77, 128 (2009).

22Mehra, Jagdish; Rechenberg, Helmut; ”The historical development of quantum theory:
Vol. 3, The formulation of matrix mechanics and its modifications 1925-1926”; Springer-
Vlg, cop. (1982).
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It is particularly interesting to note that Heisenberg, when developing this
scheme, was not familiar with matrix theory. Born pointed out to Heisenberg
that equation (65) is indeed the law of matrix multiplication and that Heisen-
berg’s condition that X,,, = X, is nothing more than the demand of only
considering Hermitian matrices. Heisenberg and Born, together with Jordan,
then developed the theory of Matriz Mechanics, stating that we should find a

set of Hermitian matrices

2mif(nm)t

XBpm=e€¢" T Xnm, (66)
P(t)pm = €T Py, (67)

where X (t)nm, and P(t),., can be interpreted as corresponding to one term in
(61), where f(nm) is the frequency difference n — m. In their system, diag-
onal elements represented stationary states, as X (t)n, = Xy, while n # m
represented transition amplitudes between states. Particularly, we note that

% 2
X(O)nm X ()n = [ X ()m] (68)
giving the probability of a transition.

The Heisenberg-Born-Jordan formulation gave some familiar results of quan-
tum mechanics. For example, they introduced the Heisenberg equation of mo-
tion and defined the commutator between two Hermitian matrices. Concerning
the commutator, Heisenberg, Born and Jordan set out to remove any artificial
dependence on integers such as n and m in fundamental relations of quantum
mechanics, as was the case in old quantum theory we saw above. The idea was
to set up relations not explicitly dependent on n or m, and from them be able
to find their relations. We shall see that the commutation relations they found,

[XnaXm] = [Pnapm] =0, (69)

h
[Xn, Pn] = iﬂénm, (70)

are very intimately connected with Poisson brackets of classical Hamiltonian
mechanics, and so we should not elucidate their points any further, other than
commenting that they first appeared in their papers.

It is worth to remember that when the Heisenberg-Born-Jordan papers were
published, the physics community had hardly been exposed to matrices, let
alone Hermitian matrices. This abstract formulation initially got the cold shoul-
der, as physicists were mostly still interested in finding a new quantum theory
of wave mechanics, somewhat familiar to classical wave mechanics. This would
come in 1926 by a series of papers published by Erwin Schridinger?3. Inspired
by the results of De Broglie, Schrédinger wanted to find a three dimensional

23Galler, Anna; Canfield, Jeremy; Freericks, James K.; ”Schrédinger’s original quantum-
mechanical solution for hydrogen”; arXiv:2007.14798, (2020).
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wave equation explaining the dynamics of electrons, which would naturally ex-
ist if electrons were represented by waves. His results culminated in the famous
equation that bears his name,

P .
whose time-independent form familiarly can be used to find stationary states,
() = E6(). (72)

We will spend some time below developing this famous equation through first
principles, but what is of importance here is to realise that two theories of quan-
tum mechanics, from entirely different starting points, was proposed very close
to each other in time, one based on matrix mechanics and one on wave me-
chanics, both capable of reproducing in a systematic way some famous results
of quantum mechanics, for example the stationary states of the hydrogen atom.
They even gave the same predictions in some aspects not present in old quantum
theory. However, as was first shown by Schrédinger considering function spaces
of discrete sequences of matrix theory and wave functions, and later by Paul A.
M. Dirac and Jordan by introducing the Dirac-delta distribution, functions on
the mathematical spaces of these two theories are equivalent?*, which indeed
proves that they will always give equivalent results of measurements. Hence, it
was possible to use the languages of both formulations in a joint fashion.

Parallel to the development of this formalism, Paul A. M. Dirac introduced the
”"Method for classical analogy” in his 1926 doctoral thesis, today more known as
The Method of Canonical Quantization. The correspondence principle had been
a valuable guiding light for developing matrix and quantum wave mechanics,
but it was Dirac who noticed the close relationship between the Poisson bracket
of canonical variables in Hamiltonian mechanics and the commutator relations
presented above. Through his method, Dirac had developed the first scheme
of quantization that in a standardized way could give the quantum counterpart
of classical systems, giving physicists somewhere to start when building new
quantum systems. The method of canonical quantization is very well detailed
in his seminal work of 19302°, a work that we will use heavily in the further.

Without further ado, let us introduce the postulates of canonical quantization,
seeing them as the results of the preceding discussion. When considering an iso-
lated system in classical Hamiltonian mechanics, canonical quantization gives
us four rules for quantizing the given system:

Postulate 3.1: Any quantum system has a corresponding Hilbert space 7€, where

24Von Neumann, John; ”Mathematical Foundations of Quantum Mechanics”; Princeton
University Press, (1955), p. 17-33.

25Dirac, Paul A. M.; ”The Principles of Quantum Mechanics”; Oxford University Press,
Third edition (1947) (first edition published (1930)).
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the state of a quantum system is described by a state vector |¢) € J, |¢b) ~ c|),
ceC\{0}.2¢

Postulate 3.2: We replace a classical quantity A, represented by a function, with
a Hermitian operator A acting on |yp) € . Measurements of the physical quan-
tity A result in one of the eigenvalues a,, of A, according to A [thn) = an |¥n) .

Postulate 3.3: The Poisson bracket in classical Hamiltonian mechanics should
be replaced by the commutator,

ih{A,B} = [A,B] = AB — BA (73)
with the fundamental commutation relations

[Gi, Dj] = thdy;. (75)

Postulate 3.4: After many measurements of the physical quantity A of a set
of equivalent states |¢) € H at time t, the expectation value is given by

~ (WA®) [9)
A= (76)

Postulate 3.5: A state |) = 3", ¢y [thn) and its displaced state [Ypd) =", ¢, |nd)
are related as |[d) = D [¢)), where D is a unitary operator.

Some comments on these postulates are in order. It is clear from postulate
3.1 that we define quantum states |¢)) € . Thus, the Hilbert space defines
all the possible states a quantum system can possess, while |¢)) € JZ represents
the state that the quantum system is in at a particular moment in time. A
classical analogue to this system would be to regard J# as the phase space,
while [¢)) € S is a point in that phase space. Correspondingly, specifying a
point in Hilbert space allows us to solve the equations of motion uniquely, i.e
the Schrédinger equation.

Why are quantum states defined on a complex Hilbert space? A complex Hilbert
space is, as may be familiar, a complex inner product space such that the norm

|l2l] = V/(z]2) (77)

turns the space into a complete metric space. Looking at our postulates, we
note that they naturally do include complex inner product spaces, for example

26Nakahara, Mikio. ”Geometry, Topology and Physics”, second edition, Taylor and Francis
group (2003), p. 10.
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in defining A|¢p)) = ay |1)) or (A)y, which is of course absolutely necessary.
Even more pressing is the fact that Hermitian operators always have orthogonal
eigenvectors, an undefined concept without an inner product. The demand of
completeness might be rather more tricky, but an elegant example could help us
understand this demand. Consider the vector space of all polynomials with the
naturally chosen orthonormal basis (20,2, 22,...). We could easily check that
in general a finite number of elements in this space has the properties of being

a complete vector space. Now, consider the Taylor series

o0 n

Z % =e”. (78)

n=0

Evidently, any finite linear combination of polynomials is itself a polynomial,
but this no longer holds true for infinite series of polynomials. This Taylor
series is an example of a Cauchy sequence, and a complete metric space has
the property that all Cauchy sequences with points from a space is itself an
element of that space. Because e” is not a polynomial, the vector space of all
polynomials is not a complete metric space. Consider now the general solution
to the time in-dependent Schrédinger equation,

) = enlthn) - (79)

n=1

This is indeed also a Cauchy sequence. Given that these infinite series often
appear in quantum mechanics, and the fact that linearity of the Schrodinger
equation implies that any linear combination of solutions is also itself a solu-
tion, we need infinite series in quantum mechanics to be Cauchy sequences in
order for our postulates to be properly defined. Hence, |¢) € J7.

The equivalence relation in 3.1 should be understood as the assumption where
superposing a state upon itself should result in the same state.?” Suppose that
we superpose a state upon itself, as

i) + ez |i) = (er 4 c2) [¢) = es|9) (80)

where ¢1,c0 € C. As ¢3 is any complex number, by our assumption it has to
correspond to the original state |1), if ¢z # 0. If the condition ¢3 = 0 is met,
we can physically say that some kind of interference phenomenon has occurred,
removing the state entirely. It is thus necessary to only consider the punctured
complex plane.

One could represent a classical system within a Hilbert space. A classical state
corresponds to systems where all Hermitian operators commute with each other
and where the state is an eigenstate of all Hermitian operators. Put more clearly,

2"Dirac, Paul A. M.; ”The Principles of Quantum Mechanics”; Oxford University Press,
Third edition (1947) (first edition published (1930)), p. 17.
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we can know everything there is to know about a classical system. When mov-
ing from a system described by classical Hamiltonian mechanics to a system de-
scribed by quantum mechanics, though, we need to make use of postulate 3.2.
The reason for introducing this postulates goes back to Heisenberg’s, Born’s
and Jordan’s realization that in order to describe hydrogen spectral lines, a
two-indexed mathematical object that is invariant under Hermitian conjugation
is required: Hermitian operators. Their action on a particular quantum state
within a Hilbert space also guarantees real eigenvalues, which we interpret as
the results of a measurement. The question of how to find these Hermitian
operators is in essence the project of quantum mechanics. To find a suitable
Hermitian operator, we need to study quantum systems by making standardized
measurements that are contextually suitable to measure a particular observable,
obtain these observables and interpret them as eigenvalues of a particular oper-
ator and work ourselves backward to find an operator that predicts them.

We know that the Poisson bracket is essential in Hamiltonian mechanics as
a means to derive the equations of motion. Now that we have changed from the
formalism of continuous functions to Hermitian operators, we need a new Pois-
son bracket to integrate this into the new theory. In essence, this was Dirac’s
realization as stated above, which built on top of the Heisenberg-Born-Jordan
formulation and gave us a clear scheme towards quantizing classical theories.
As is well known, the Poisson bracket in Hamiltonian mechanics is defined as

0A 0B 0A OB
B =3 (5o~ 50 (®1)

where A(q,p) and B(q,p) (and later C(q,p) and D(q,p)) are functions defined
on the phase space of a Hamiltonian. As can easily be shown, the Poisson
bracket enjoys the following properties,?®

{A,B} = —{B, A}, (82)
{A,c} =0, ceR, (83)
{A+B,C}={A,C}+{B,(C}, (84)
{A,B+C}={A,B}+{A,C}, (85)
{AB,C} ={A,C}B+ A{B,C}, (86)
{A,BC} ={A,B}C + B{A,C}, (87)
)

{A{B,C}}+{B,{C,A}} +{C,{A,B}} =0. (88

When determining the relationship between the commutator and the Poisson
bracket, which is given as equation (73) in postulate 3.3, Dirac realized that
both follow these properties, with the extra condition that AB # BA for the

28Dirac, Paul A. M.; ”The Principles of Quantum Mechanics”; Oxford University Press,
Third edition (1947) (first edition published (1930)), p. 84-89.
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quantum mechanical relations. Assuming this condition on the Poisson bracket
properties above, Dirac realized that

{AB,CD}

={A,CD}B + A{B,CD}

= ({A,C}D + C{A,D})B+ A({B,C}D + C{B, D})
={A,C}DB + C{A,D}B + A{B,C}D + AC{B, D}

(89)

and
{AB,CD}
= {AB,C}D + C{AB, D}
= ({A,C}B+ A{B,C})D + C({A,D}B + A{B, D})
={A,C}BD + A{B,C}D + C{A,D}B + CA{B, D},

(90)

where we have used property (86) and (87) in two different orders. Equating
these results, we obtain

{A,C}DB+ AC{B,D} ={A,C}BD + CA{B, D}, (1)

{A,CHBD — DB) = (AC — CA){B, D}.
The kicker is to realize that this expression holds for A and C independently of
B and D. Thus, we must have that

BD — DB = ih{B, D} (92)
AC — CA =ih{A,C}, (93)

where A should be independent of the Hermitian operators, and needs to com-
mute with BD — DB and AC — CA. To ensure that the bracket remains real
as in classical mechanics, we have inserted a factor 7.2 This requires i € R.
Seeing that the left hand side of this equation is indeed equal to the commu-
tator postulated in the Heisenberg-Born-Jordan formulation if the functions on
phase space are turned into Hermitian operators, we are led towards guessing
the relationship

[A,B] = AB — BA = ih{A, B} (94)

between the commutator and the Poisson bracket, where h is to be seen as a
universal constant with the dimensions of action. Of course, this constant is
h = %, where h is Planck’s constant. This, in essence, is how Dirac was led to
introduce equation (73).

Through this postulate of canonical quantization, we see that it is indeed similar

29Dirac, Paul A. M.; ”The Principles of Quantum Mechanics”; Oxford University Press,
Third edition (1947) (first edition published (1930)), p. 28.
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to the Poisson bracket of classical mechanics. What we can do at this stage is
to guess what the quantum Poisson bracket might look like for quantum sys-
tems, based on analogies of classical mechanics. With the classical fundamental
commutation relations

pi, ps] = (65,451 =0 (95)

(95, p5] = 6ij (96)

at hand, where ¢; and p; are the canonical coordinates and momenta in phase
space, respectively, we now make the educated guess that

(i, pj] = [di-4;] =0 (97)

(9i,D;] = ihdij, (98)

for our fundamental commutation relations of our bracket in quantum mechan-
ics. In this case, it seems to correspond with nature, and we have successfully
found one such relation. Thus, we have found a procedure to find quantum
phenomena which has a classical analogue and are described in terms of canon-
ical coordinates and momenta. Famously, it should be stated that the quantum
commutation relations transforms into the classical Poisson bracket if we let
h — 0. This is the second way to formulate the correspondence principle,
giving the same results as considering systems with large quantum numbers. It
should however be noted that this does not work for every quantum system, as
not all quantum systems has a classical analogue. In these cases, for example

concerning spin states, canonical coordinates and momenta doesn’t exist, even
though we can still give meaning to the commutation relations above.

Postulate 3.4 needs a shorter introduction. This is because it relates to how
to interpret experimental results given the formalism that we have already es-

tablished. For discussing postulate 3.4, let us assume that ||[¢)) || (W) =1
for simplicity. Let us start with a physical quantity A which has a set of discrete
eigenvalues, as

A(t)In) = anln),  (nln) =1. (99)

Considering an arbitrary state

V)= Wnln), v = (nle) (100)
we find that
(A) = (| A®) Zw o (m| A(t) Zanlwn : (101)

The |1/Jn|2 factor is called the probability. This is realized by the fact that a
measurement of A in the state |n) always yields a,, and thus the probability
that the outcome of a measurement is indeed a.,, or the probability of the state
|1)) being in |n), is given by
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[al” = |(nly)|”. (102)

This argument is similar for physical quantities on a continuous spectrum. Then,
we have that

) = / da(a) |a) (103)

where the completeness relation is given by

/ dala) (a] = 1.9 (104)

From this, it is easy to see that

/da’ a") (a'|a) = /da’ (d'|a) |a")y = |a) (105)

must be normalized as <a' ’a> = §(a’ — a), where we have made use of the
Dirac-delta function. It is then clear that we should have

ww:/mwwmwwwww:/mwm? (106
It then directly follows that
<wa:/MMmm?

By a similar argument as above, the probability of measuring the physical quan-
tity A with the outcome of (a, a+da) is ‘w(a) |2da. Then, the probability density
is given by

(107)

p(a) = [(aly)|". (108)

Also, it is clear from our assumption of (¥|¢) =1 that

bwwzzﬁwmw:Zmﬁaﬁwmf (109)

directly follows. That is, the sum of all probability amplitudes for a given sys-
tem is equal to 1.

Some technical comments on these postulates are in order. Firstly, the reader
might be used to seeing the equations of motion as a postulate in some texts.
We will see shortly that this is not necessary, as we can develop them from
first principles using the above postulates, particularly postulate 3.5. As this
development is central for our discussion, and also quite long, we have devoted

30Remember that (alyy) = fdatb(a) (ala) = (a). Then, |¢p) = fda(aw;) la) =
[dala)(aly) = [dala)(al =1.

29



an entire chapter to developing them. Secondly, it is often taken as a postulate
that quantum states may be expanded as

often refereed to as the expansion postulate.®! This is redundant as we have

already postulated that state vectors exists in Hilbert space and that operators
acting on state vectors are Hermitian. Of course, we are allowed to write any
state vector as a linear combination of any set of orthogonal basis vectors in
its Hilbert space, and the eigenstates of linear Hermitian operators always form
such a basis. The ”expansion postulate” is only a mathematical fact about
linear Hermitian operators, already included by the postulate stating that we
should use them representing physical quantities.

4 The Schodinger and Heisenberg equations of
motion

Missing from the discussion now under our belt is the question of dynamics. It
has been clear, for example from postulate 3.4, that quantum states or operators
evolve over time, but the question of how has not been elucidated. In this
section, we will enlight the nature of displacement operators, as well as develop
the dynamical equations of quantum mechanics.

4.1 Displacement Operators

Let us create a scheme for the displacement of quantum states or Hermitian
operators®?. This could for example be a displacement dz in space from the
original position x to x + dx, but as of now we will treat displacement operators
in general. We shall take it as given that the superposition between states remain
invariant under displacement if the system remains undisturbed, as is stated in
postulate 3.5. Otherwise, the displaced state would not keep its essential form
corresponding to the un-displaced state. That is, if we have the un-displaced

state
W) = cnlthn), (111)

we demand that the displaced state is obtained in a way such that states corre-
spond with the same linear equation between them, as

) = [ihnd) . (112)

31Jaffe, R. L.; "SUPPLEMENTARY NOTES ON DIRAC NOTATION, QUANTUM
STATES, ETC. ”; Physics 8.05, (2007).

32Dirac, Paul A. M.; ”The Principles of Quantum Mechanics”; Oxford University Press,
Third edition (1947) (first edition published (1930)), p. 99-103.
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Thus, whenever the first equation holds, so does the other. Therefore, we have
created a relationship between the states such that the displaced states are
linear functions of the un-displaced states, leading us to deduce the existence of
a linear operator of the form

[d) = D [y), (113)

depending only on the displacement performed. Let us investigate this linear
operator further under our assumptions. Introducing a state |¢) with the same
constraints as above, it is clear that

(pdlpd) = k= (9ly), k€ R (114)

where we have used the invariance under displacement of states. It is therefore
true that o
(¢dlypd) = (¢| DD [¢p) = (¢|¢) (115)
or o
D'D=1. (116)

As a second realisation, we know that for any Hermitian operator A, we have
that

Alp) = an [4), (117)

which is given by postulate 3.2. Then, for the corresponding displaced state,
|1vd), we must have that R
Aqlpd) = an [¢d) (118)

where Ay is the displaced operator. Thus, we should have that

Aqlipd) = anD |¢) = Day [)) = DA|p) = DAD™' D) = DAD™" [¢pd)
(119)
from which we can deduce that

Ay =DAD™! (120)
by realising that this relationship is true for any quantum state |i)d).

Let us return to the infinitesimal displacements mentioned above. That is,
we wish to show the behaviour of a quantum state |¢d) as dx — 0, under our
position displacement example above. Under the assumption of physical conti-
nuity of quantum states under its dynamics, we should then expect |¢d) to tend
to |¢), allowing us to expect that the limit

fgd) ) . D-1
lim —— = lim
ox—0 ox sz—0 0T

|¥) (121)

exists. Thusly, through this limit, we have defined a new linear operator for an
infinitesimal position displacement of quantum states. Let us define it as the
displacement operator,
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d A D-1
— ) =d, = li . 122
() = d-= Jim, = (122)
We take notice of the fact that the application of a phase factor e, § R on
D does not change the expectation value of any dynamical operator, as can be
seen from equation (116) and postulate 3.4. Of course, this is the essence of
normalization, and we wish for this phase factor to tend to unity as dxz — O.
We use this fact and see that
De? —1 D—1+i0 .

. . B .0
slmlglo ox 5111210 dx = dz+i 512210 ox (123)

where the remaining limit is a real number. Thusly, we realise that d, can be
added by an arbitrary imaginary number by this normalization condition.

Using this new linear operator, it is true that for small dx,

D =1+ dxd,. (124)

Using the fact that DD = 1, we see that
(1 + 533021) (1 + 59[;6235) =1+ oa(dl +d,) =1 (125)

Where we have discarded 622, because of its insignificance in size. Thus, we see
that . .
Sx(dl +d,) = 0. (126)

This statement is only true for arbitrary dx for anti-Hermitian operators, and
therefore we can conclude that d, is an anti-Hermitian operator. Now, using
the fact that Ay = DAD™!, we obtain

Ag=(1+ 6xdy)A(1 — dzdy) = A+ 6x(d A — Ad,) (127)

where we have again discarded éx2. Thusly, under the same argumentation of
infinitesimal displacement of quantum states, we can show that for displaced
operators,

Ag— A A lbA—Ady)—A . . ..
im ¢ = lim + dw(d, dz) =d, A — Ad,, (128)
dx—0 ox dx—0 ox

Which is the generalized quantum condition for displacement operators. We can
use these results to describe a system given by the Cartesian spatial coordinates,
(z,y, z) and their respective canonical momenta conjugates (ps, py, p»). Suppose
we introduce the position operators & and &4 = & + dx, corresponding to the
original and displaced states of a quantum system. Then, using equation (126),

we have that R .
Tqg=3+4 0 =1+ 0x(de@ — Tdy), (129)
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leading us to
dpd — 2dy = 1, (130)

as the specific quantum condition relationship between the distance displace-
ment operator and the position operator. Comparing this result with the fun-
damental commutation relations in postulate 3.3, we see that if we write this
equation as

&(—ihdy) — (—ihdy)& = ih, (131)
—ihd, satisfies the same commutation relations as p, in (G, Do) = k. Tt follows
that all other position and momentum operators commute with the distance
displacement operator under the fundamental commutation relations. Consid-
ering their difference, p, — (—zhcfm) = P + ihczm, it is clear that it commutes
with all operators introduced. For example,

[pe + ihdy, &] = [pr, 2] + ih|dy, &] = —ih +ih =0 (132)

Where all else is more trivial. It follows that p, + zhciz is a number, cf. the
discussion above. p, is necessarily real by assumption, and the factor of ¢ in
—zhd ensures that the anti-Hermitian operator d turns real. Hence, p, + zhd
is a real number, say p, + zhdw = k. Before, we found out that dw can be added
by an arbitrary imaginary number. Thusly, through ifi(d, + i) = ihd, — hay,
where «, is the limit limg,_,q %, we can assume that —ha, = k, to obtain

Pu 4 ihd, =0 (133)
leading us to the fundamental relation
Po = —ihd,. (134)
Which, of course, has similar relationships as
by = —ihd, (135)
p. = —ihd. (136)

from arguments that transfer trivially from above. This is the momentum oper-
ator in position representation, which are used diligently in quantum mechanics.
We can now write the momentum operator as

0
Polih) = —ih— i) (137)

where we take the partial derivative because of possible time dependence of the
quantum state. This result, that you have undoubtedly seen before, comes from
the arguments above concerning displacement operators. With this result we
end this discussion, and it is time to develop additional familiar relationships.

4.2 The Dynamics of States

The example of displacement above was that of displacement in position. How-
ever, an example just as valid is that of displacement in time33. Considering

33Dirac, Paul A. M.; ”The Principles of Quantum Mechanics”; Oxford University Press,
Third edition (1947) (first edition published (1930)), p. 108-111.
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the assumption of invariance of superposition of states under displacement as
above, as stated in postulate 3.5, we now specify the invariant equations

¥(to)) = cn [thn(to)) , (138)

|w(t)> = Z Cn ‘wn(t» ) (139)

n
where the quantum state is displaced from time ty to time ¢. It is then clear
that we can define a linear operator

[(t)) = T(t,to) [1(to)) (140)

where we now have specified the dependence of displacement. Under the same
argumentation as above, we can deduce its unitarity and its affect on displace-
ment of operators, o
T =1 (141)
A, =TAT (142)
In introducing infinitesimal displacements in time, instead of the above example
of x — 0 we introduce ¢t — ty and enlight the existence of

g 190) — [$(0)) _ d

t—to t—to = di [v(to)) (143)

which is just the derivative of |¢ty) with respect to to. As an operator, it is
given by

d o T-1
i |(to)) = tlg?o . |(to)) - (144)

By the same arguments as for the position displacement operator, this new op-
erator is anti-Hermitian and invariant under addition of an arbitrary imaginary
number. Multiplying the above equation with ¢/, and setting

"1 i) (145)

where H (to) is the Hamiltonian, we obtain the new expression

% lo(to)) = H(to) |16(to)) (146)

or, for a general time ¢,

() = H ) [0(0) (147)

This is the Schrodinger equation of motion, or just the Schrédinger equation.
Thus, we have an equation describing the dynamics of undisturbed states be-
tween two time intervals. We will keep building upon the Schrédinger equation,
particularly on the question of why the Hamiltonian is introduced in this way,
but first we need to discuss the Heisenberg equation of motion.
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4.3 The Dynamics of Operators

As we have found the equation of which quantum states propagates through
time, it is time for a very simple observation proceeding our continued discus-
sion®*. We have already seen that operators such as D and T can displace a
quantum state, for example as

[¥(to)) — T(to, t) [¥(to)) = [v(t)). (148)

However, we saw that for these linear operators, it is true that

(o) (1)) = (3| TT |9 = (o(to)|¥(t0)) , (149)

leaving the inner product of quantum states unchanged under displacement
operators. Using this fact, we infer how a system <q’)(t0)| A ”(/J(to)> must change
as

(6(to)| A|v(to)) — (b(to)| TTAT [1h(t0)) = (B(to)| A¢ |¥(t0)) (150)

The simple observation, however, is the physical fact we obtain from the asso-
ciative law of multiplication, as

({p(to)| THA(T [¥(t0))) = (@(to)| (TTAT) [1h(t0)) = (B(to)| A¢ |1(t0)) . (151)

The key insight is this: either we treat the displacement operators as acting on
our quantum states, leaving the Hermitian operator A independent of time as
is shown on the left hand side of this equation, or we let the displacement oper-
ators act on our Hermitian operator fl, leaving the quantum states independent
of time. This is of course the Schridinger picture and the Heisenberg picture,
respectively. The Schrodinger equation fixes the dynamics of states under the
Schrédinger picture, and we now wish to find the dynamical equation of opera-
tors under the Heisenberg picture.

Firstly, some comments on the Schrodinger equation are in order. We have
that

m% () = H(t) [v(t)) (152)

for quantum states of general time parameter t. However, as

[(t)) = T'[e(t0)) (153)

we can write the Schrodinger equation as

T ) = HOT [0(10)) (154)

This is true for quantum states in general, and thus we have that

34Dirac, Paul A. M.; ”The Principles of Quantum Mechanics”; Oxford University Press,
Third edition (1947) (first edition published (1930)), p. 111-118.
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ar - . -
ih— = H(t)T. 155
s = (1) (155)
Now, consider Hermitian operators in the Heisenberg picture which changes as

A, =TTAT, (156)
or o o

TA, = AT. (157)
Differentiating with respect to ¢ gives us

— A4+ T =A—. (158)

Using equation (155), we can rewrite this as

ATA, + BT% _ AW, (159)
or equivalently
=T YAHMNT - T 'H(t)T A, (160)
=T YATT*H)T — T H(t)T A,
= A H(t), — H(t), A,

Using postulate 3.3, we can directly deduce that
@i,
dt

and we have obtained our desired result. This is the Heisenberg equation of
motion.

= [Ay, H(t):), (161)

Let us compare the Heisenberg equation of motion thus obtained by the Hamil-

ton equations of motion,

dA
= = A ] (162)

where A(g, p) is any physical quantity defined on the phase space of the canon-
ical coordinates, H is the classical Hamiltonian and the bracket is the Poisson
bracket. It is of course strikingly similar to the Heisenberg equation of motion.
From classical analogy, we then assume that the Hamiltonian found in quantum
theory should define the total energy of the system, just as it does in classical
mechanics. This assumption is further strengthened by the fact that

. .. D-1 ‘
P = =i i, = = i, (163
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and

- T-1
H(tg) = ih lim = thdy, (164)
t—to t — tO
due to Noether’s theorem3®. It states that every continuous symmetry in a

closed system corresponds to a conservation law of nature. For example, if a
system inherits translation invariance in space we find that linear momentum is
conserved in that system, and if a system inherits translation invariance in time
we find that energy is conserved in that system. Indeed, our linear translation
operators above enjoys such continuous symmetries in space and time, a fact we
will not prove but state nonetheless. Hence, it is reasonable to assume that A (t)
is given by the total energy of the system, in harmony with Noether’s theorem.

4.4 Discussion of the Equations of Motion

It is now time to finalize the discussion on the Schrédinger equation,

() = (1) [0(0)). (165)

Using postulate 3.4, we introduce a representation which we assume without
loss of generality to be a complete set of commuting operators « acting on our
quantum state |1/)(t)>, giving us

(al(t)) = alt). (166)

Thus, making this bra act on the Schrédinger equation, we obtain

0 -
ih () = H(t)ba(t) (167)

This is the Schréodinger wave equation, which you have seen during your first
courses on quantum mechanics. As is commonly done, we write the quantum
state in position representation, as

(al(®)) = vu(t) = (. ?). (168)

Using our discussion of the Hamiltonian as the total energy of a system, we
again see by classical analogy that

2
p
H(t)=—+VI(t). 169
=2 +v (169)
It is our goal to translate this classical Hamiltonian to that of a quantum frame-
work. We know from ch. 4.1 that the momentum operator in position repre-

sentation is given as

h= *ma%' (170)

35Rubens, de Melo Marinho Jr; ”Noether’s theorem in classical mechanics revisited”;
arXiv:physics/0608264, (2006).
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Inserting this into our Hamiltonian, we obtain

H(t) = —j—m% + V() (171)

which we insert into the Schrodinger wave equation as

h? 92

2m 9z

0
e t) = Uat) + V(o). (172)
This equation gives us the dynamics of the wave function on the x-axis, which
translates trivially to other axes and combinations of them. We will use this
equation in analysing one of the most famous experimental results of quantum
mechanics.

5 To Marvel at Progress: A self Contained Guide
to the Double Slit Experiment

As any enthusiast of physics can tell you, the double slit experiment condensates
some of the more peculiar aspects of the nature of quanta. Nevertheless, it is
often presented as a thought experiment or in a manner not up to date with
current experiments. To combat this problem, let us represent the experimen-
tal work of A. Tonomura et al.,*® who in 1989 performed a realization of this
famous thought experiment.

The experimental setup looks something like this. Electrons from a source pass
through a set of electrostatic lenses in order to create an electron beam, see fig.
(5). Directly in front of the beam is a positively charged wire placed perpen-
dicularly, and on either side of the wire are two grounded plates. At the end
of the beam path is a detector screen, producing a cascade of photons once an
electron is detected. This way, we can see that the classic thought experiment
has been recreated. The positively charged wire together with the grounded
plates creates two potential "tunnels”, or slits, for an electron to go through,
and the task at hand is to fire electrons, one by one, towards the detector. Fig.
(6) shows the results from five experiments, each with a difference in the total
number of electrons fired. The first experiment gives us a seemingly random
pattern. In the experiments with the longest time exposure, however, an inter-
ference pattern emerges.

36Tonomura, A.; Endo, J.; Matsuda, T.; et al.; ”Demonstration of single-electron buildup
of an interference pattern”; American Journal of Physics 57, 117 (1989).
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Interference
fringes

Figure 5: A. Tonomura et al. experimental setup. (Picture copied from: Tono-
mura, A.; Endo, J.; Matsuda, T.; et al.; ”"Demonstration of single-electron
buildup of an interference pattern”; American Journal of Physics 57, 117 (1989).)
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Figure 6: Results from A. Tonomura et al. experiments showing electron in-
terference buildup. (Picture copied from: Tonomura, A.; Endo, J.; Matsuda,
T.; et al.; ”Demonstration of single-electron buildup of an interference pattern”;
American Journal of Physics 57, 117 (1989).)

This result can be thought as a strange one. The electron is a particle,
and how could it produce an interference pattern, characteristic of waves? Fa-
mously, we can try to obtain more information about how the electrons behave
by trying to measure its path and answer the question, ”which slit did the elec-
trons pass through?”. We make a potential blockade in the left slit such that
electrons only could pass through the right slit. A. Tonomura et al. did not
perform this experiment, but there exist no disagreement among physicists as
to what would happen. We would see that the interference pattern would have
completely disappeared and been replaced by one strong band, directly in front
the right slit. This new experiment could be performed with the same number
of electrons, the same number of times, with the same amount of detections.
The implication seems clear: during the experiment of A. Tonomura et al., the
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electrons could not have been passing through the right slit at all, as blocking
the left slit completely changed the outcome of the experiment. They must all
have been passing through the left potential slit. Secure in our conviction, we
now make a potential blockade in the right slit to only let electrons pass the left
slit. Shockingly, we see how we now have created a strong band directly above
the left slit. When performing our experiment, it seems as though the electron
is affected by whether there exists one or two slits to pass through, regardless of
our convictions of which of these slits it passes through. We can try and claim
that the electrons somehow affected each other on the way to the detector in
the experiment of A. Tonomura et. al., but after more experiments we see that
it makes no difference at all how far the electrons are from each other, neither
in space, time or both. Logically, there seems to be only one solution: One
electron passes through both slits at once.

Another famous way of performing this thought experiment that we might try
after the above observations is to place a detector measuring passing electrons
in front of the right or the left slit, instead of blocking it. This way, we allow the
electrons to pass through either slit, as both remain open. The results are just
as staggering. Even when both slits are open we do not obtain an interference
pattern but instead two strong bands of detection. Remove the detector, and
the interference pattern is back again. Not only have we found that electrons
seem to be affected by the possibility of whether one or two slits remain open,
but it seems as though the process of measuring it on its path to the final de-
tector has changed the outcome of the experiment. Try to find what path the
electron is going, and the interference pattern always dissapears.

How can we explain this phenomena with the quantum physics developed in

this essay? Starting with the Schrédinger equation (172) in one spatial dimen-
37

sion”’, we have that
L Pla,t) + Vi, )y(z,t) = n o Y(x,1) (173)
2m, Ox? * “ Tt T WG YA Y

In the first part of Tonomura et al. experiment, the electrons are traveling
through free space. In fact, the potential created by the positively charged wire
is only used for the purpose of recreating the double slit experiment, and if
diffraction caused by this fact is treated later, we do not have to consider any
potential in the Schrédinger equation. Therefore, we set V(z,t) = 0,
h? 02 0
—— —U(x,t) = ih—¢(z,t). 174
o, 52 V(@ 1) = ihg ¥z, ) (174)
It is reasonable to assume that the solution of this equation is in the form of a
traveling wave, due to its similarity with the wave equation. We therefore guess
that
37Greenstein, George; Zajonc, Arthur G.; ”The Quantum Challenge: Modern Research on

the Foundations of Quantum Mechanics”; Jonas and Bartlett Publishers Inc., second edition
(2006), p. 13-18.
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Y(x,t) = Aelkr—wt) (175)

where A is the real amplitude and k and w are constants. We directly see that

h2 62 k2h2
*Tmeﬁlb(%t) =+ o, P(w,1) (176)
ih%w(m,t) = Jwhi)(z,t), (177)
and therefore
k2h2
2me 1[1(557 t) - Wh%/’(fﬂa t) (178)

Then, ¥(z,t) = Ae'**=+Y will be a solution to the Schrédinger equation under
the constraint

2mew
h

which is of course familiar, and it seems as though we are correct in considering
the wave function of having the behavior of a traveling wave. Let us rephrase
this equation with more intuitive quantities, wavelength A and period P. We
begin to consider the wave function at ¢t = 0, as ¥(x,0) = Ae™*® where at =0
we must have ¢(0,0) = A. One wavelength is then of course the quantity = = A
that returns A. From Eulers identity, we find that

k=

(179)

2™ =1 (180)
which equals one revolution. Hence, we must have that kA = 27, which gives us

27

k
A

(181)

Similarly, from the fact that ¥(0,t) = Ae~™! we use the same argumentation
to obtain

w= "% (182)

Thus, we can rewrite our initial guess as

Wi, t) = Ae2mi(5—F). (183)

Now that we have a correct and intuitive solution to the Schrodinger equation
in free space, we can start to discuss interference phenomena. As a plane wave
approaches the double slit in the experiment of A. Tonomura et al., we should
expect diffraction at each slit. The entire system should then be described as
as the sum of these two diffracted waves,

Yz, t) = r(zr,t) + Yr(zr, 1) (184)
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where L and R represents the wave passing through the Left and Right slit,
respectively, and

V(e t) = Apermi(F-#) (185)
Vr(an,t) = Ape?™ (S —#). (186)
We can factor out the time parameter, as it is the same for both waves, as

Y(x,t) = (ALe%iIAL + AReQ”igaR)e_%ilg = a(zp, zR)e 2P, (187)

Now we use the born rule to obtain the probability of finding the particle at a
point on the screen during a measurement. We find that

2
(2, 1)
= T/)*(fat)?/f(ffat)
— omit (188)
=ao"(xp,zr)e " Palxy,xg)e” TP
* 2
— o*(zp, zr)a(zr, 7r) = |a(zr, zx))|
After which we then see that
’oc(a:L,a:R)‘z
_ (ALeQﬂ'iz)\L +AR627riT’f) <AL6271'2’T’>{4 +AR627rizf>
27i 27 (189)
= A2 + A% + ApAg(e” X @Lmar) 4 X (@—on))
2
= A% + A% +2A1 AR cos {;\T(a@ - xR)} ,
Where we have used the fact that
—i0 i0
cosf = %. (190)
Hence, the final result is
2 2 2 2
|(z,t)|” = A7 + A + 2AL AR cos T(szxR) . (191)

This result can be interpreted as the frequency of which electrons hit the po-
sition x;, — rr on the screen. As can be see from the last term, A; and Ag
”interact” with each other and oscillate through the cosine factor. This is the
so called interference term, and should be present when modeling all kinds of
interference experiments. As it happens this equation predicts the structure
observed in fig. (6), and we have hence found a quantum mechanical account
for the double slit interference phenomena. If we were to block electrons from
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traveling through the left slit, we should follow the argumentation above using
Y(x,t) = Yr(xpg,t) instead of P(x,t) = Yr(xr,t) + Yr(xg,t), and similarly
for blocking the right slit. No doubt, we then obtain A% or A%, respectively,
which correctly models the pattern obtained during this type of experiment. In
explaining the last version of our experiment, where we make use of detectors
instead of potential barriers, what we obtain is A% and A%. Even though both
wave function from diffraction are present, observation does not conclude in an
interference pattern, and we should therefore not expect any interference terms
in our theory. As stringently put by Gasiorowicz, there exists a simple rule: ”If
the paths are not determined, add the wave function and square; if the paths are
determined, square the wave function and add.”3®. That is,

!@[J(ac,t)‘2 = |¢L(xL,t) + ¢R($R7t)|2 = A2 4 A% +2A A cos [2;(9@ — xR)}
(192)

(@, t)|° = [¢r(@n, ) + [vr(zr, )" = A3 + A% (193)

for the undetermined electron path and the determined electron path, respec-
tively. With this rule at hand, we have been able to theoretically explain all

aspects of the double slit experiment brought up here from the theory of quan-
tum physics built in this essay.

| 2

6 Discussion

So, How ezactly did physicists figure out that classical physics was insufficient?
Why do we use Hermitian operators in Hilbert space, and how did physicists in-
fer the commutation relations of quantum mechanics? How can the equations of
motion be derived from first principles? It is clear that these questions all have
been answered in this essay. Through the use of quanta, we saw how physicists
of the early twentieth century could explain a large set of experimental data.
In particular, we note how physicists never actually believed in the planetary
model of the atom, as is often claimed, and that it was directly realised that
classical electrodynamics could not explain what was observed. To solve this
problem, Bohr introduced his theory of stationary states, which neither Bohr
himself nor physicists at the time understood through the classical motion of
particles.

Before introducing the postulates of canonical quantization we saw how Heisen-
berg, Born and Jordan developed matrix mechanics almost simultaneously as
Schrédinger developed quantum wave mechanics. Dirac further discovered that
the commutator presented by Born and Jordan was closely linked to the Poisson
bracket in Hamiltonian mechanics, leading him to develop canonical quantiza-
tion. Through this history, we understood why we make use of Hermitian opera-

38 Gasiorowics, Stephen; ”Quantum Physics”; john Wiley Sons, Inc., third edition (2003),
p. 30
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tors in Hilbert space and why the commutator is so central for quantization. Us-
ing this new found understanding we developed the Heisenberg and Schrodinger
equations of motion through first principles, and used the Schrédinger equation
to account for the results of the double slit experiment of electrons.

It is of great importance to realize what it is that we have done, and not done,
in this essay. This work, excluding the discussion of the double slit experi-
ment, concerns the history of quantum mechanics from 1900 to around 1926-27,
and therefore the development of first quantization as opposed to the second
quantization. First quantization only considers semi-classical models, most no-
tably through quantizing particles within a classically described potential, as is
done when for example obtaining the stationary states of the hydrogen atom in
early courses of quantum mechanics. As was first developed by Dirac, second
quantization involves the quantization of the potential itself by the use of field
operators. It is evident from the chronological presentation provided in this
paper that a natural continuation of it would be the development of canonical
quantization of quantum field theories, specifically quantum electrodynamics.
There, we would see how a Lorentz invariant field description of quanta gives
rise to quantized particles containing a natural language for describing their
respective interactions.

As hinted above, it would be hearty to claim that we have actually built quantum
mechanics from scratch. As detailed in the Groenewold Van Hove theorem®’
an invertible linear map

)

M : f(q.p) > Qf (194)

of a function f(g,p) on phase space to a Hermitian operator Q ¢ such that

Qirar = %[va Qg); (195)

where g(gq, p) is another function on phase space, does not exist in general®. In
switching the equal sign to a mapping arrow, equation (195) would be a con-
densed way of stating postulate 3.3, meaning that we not even in principle can
describe all functions on phase space with Hermitian operators, and vise versa.
An above example was spin quantum numbers, which is indeed not described
by canonical coordinates. To describe spin, we need to add an additional postu-
late above describing spin statistics*'. Hence, the above postulates of canonical
quantization cannot account for spin statistics, and we could further build on
quantum mechanics.

What is easy to overlook is the fact stated outright in chapter 3: there ex-
ists mo proof of quantum theory. To actually build quantum mechanics from

39Todorov, Ivan; ”’Quantization is a mystery’”; arXiv:1206.3116, (2012).

40By “invertible linear map” it is meant that there exists a linear operator D such that
Df(q,p) = Qy, and that D1 exists.

41Tn non-relativistic quantum mechanics, which was considered above.
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scratch, we must move beyond canonical quantization using other quantization
methods such as Deformation or Geometric quantization. It must be said, how-
ever, that even through these methods there is no universally valid scheme to
quantize classical theories satisfactorily. For the interested reader, consider as
an example the quantization of gravity. General relativity can be quantized if
represented as an effective field theory, but it is hopelessly unrenormalizable at
the high energy limit*2. In fact, this is one of the core reasons for why learning
about the development of canonical quantization matters; quantization is an
unfinished project, and in order to understand what must be done in the future
we must understand the ideas that has been used in the past. Also, and in some
ways because, there is no magical recipe for developing a satisfactory quantum
theory, a vast set of experiments and models under our belt today has been left
out here in the interest of time. Nature is messy; without studying all fringe
cases and their experimental context, one cannot claim to have built quantum
mechanics from scratch, only parts of it.

What we have done, however, is realizing how we can obtain one such schematic
method for quantization, and indeed see how it can account for experimental
results. Chapter 4 stopped at a peculiar place, namely where you probably
started at your very first course of quantum mechanics. Hopefully, this essay
has given you the tools to understand the large jump that we spoke of in the
introduction, helping you grasp the though process behind some of the earlier
results of quantum mechanics.

7 Conclusions and Summary

During chapter two, we accounted for some famous early experiments of old
quantum theory. In chapter 3 we saw how quantum mechanics was developed
through matrix and wave quantum mechanics as a direct consequence of old
quantum theory, leading to canonical quantization and the modern formalism
we use today. We developed the Heisenberg and Schrodinger equations through
the use of displacement operators from first principles to describe the double slit
experiment in a self contained manner, as presented in chapter 4. We discussed
the limitations of canonical quantization, realizing that there is no universal
scheme for quantization, but concluded that the questions posed in the intro-
duction of this essay has indeed been answered.
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