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1 Introduction

Recent studies of scattering amplitudes revealed a variety of symmetries of and connections
between different quantum field theories that are hidden in traditional Lagrangian formula-
tions. The most famous example concerns the double-copy structure of (super-)gravity: the
loop integrands of supergravity amplitudes can often be assembled from suitably chosen
squares of gauge-theory building blocks. This phenomenon relies on the Bern-Carrasco-
Johansson (BCJ) duality between color and kinematics in gauge theories [1–3], see [4] for
a comprehensive review. In many cases, the gravitational double copy can be naturally
understood from string theory, e.g. from the famous Kawai-Lewellen-Tye (KLT) relations
at tree level [5], and from chiral splitting [6, 7] at the level of loop integrands.

The field-theoretic double-copy structure applies to a growing list of theories including
Born-Infeld, special Galileons [8, 9] and even open-string theories [10–12]. In particular,
amplitudes of Einstein-Yang-Mills (EYM) theories can be obtained from the double copy
of (super-)Yang-Mills with the so-called YM+φ3 theory [13]. EYM refers to Einstein
gravity, extended by a dilaton & B-field1 and minimally coupled to Yang-Mills, including
supersymmetric extensions with up to 16 supercharges. The non-supersymmetric ingredient
YM+φ3 of its double copy augments pure Yang-Mills by a minimal coupling to bi-adjoint

1The couplings of the dilaton & B-field contribute to the one-loop EYM amplitudes in this work and are
natural from the viewpoints of the double copy, supersymmetric extensions and string-theory realizations.

– 1 –



J
H
E
P
0
2
(
2
0
2
3
)
1
2
2

scalars with a cubic self interaction. Similar double-copy descriptions have been found for
variants of EYM with spontaneous symmetry breaking [14, 15].

The double-copy structure of EYM implies relations between EYM amplitudes and
those of (super-)Yang-Mills. At tree level, such EYM amplitude relations have been
analyzed from a multitude of perspectives including open strings interacting with closed
strings [16, 17], the Cachazo-He-Yuan (CHY) formalism2 [24–28], heterotic strings [29],
gauge invariance [30, 31] and the color-kinematics duality of YM+φ3 [32]. Similar double-
copy structures and resulting tree-amplitude relations apply to conformal supergravity
coupled to gauge theories [12, 33].

There is considerably less literature on loop-level amplitudes of EYM: specific four-
point one-loop amplitudes with half-maximal supersymmetry and external gluons have
been determined in [13] whereas rational one-loop EYM amplitudes can be found in [34] at
leading order in the gravitational coupling κ and in [35] at general orders. Moreover, all-loop
results for one-graviton-n-gluon amplitudes have been obtained in [32]. At leading order in
κ, relations between gauge-invariant building blocks of one-loop EYM with higher numbers
of gravitons and (super-)Yang Mills amplitudes have been pioneered in [36]. The relations
among “partial integrands” in the reference take a universal form for EYM theories with
four to sixteen supercharges, but they only capture the contributions from gauge multiplets
in the loop.

In this work, we describe a method to extend the one-loop EYM amplitude relations
of [36] to arbitrary combinations of gauge and gravity multiplets in the loop and the
external legs, i.e. to all orders in κ. Our results again reduce loop integrands of EYM to
dimension-agnostic partial integrands of super-Yang-Mills without any coupling to gravity.
In particular, the relations we will derive take a universal form for any non-zero number of
supercharges — they are expressible in terms of the gauge-invariant partial integrands of [36]
that carry the variable amount of supersymmetry in the double copy. The universality
of the relations stems from the non-supersymmetric YM+φ3 constituent that appears in
the double-copy construction of EYM theories with any number of supercharges. The
dependence of our relations on color factors can be straightforwardly adapted to gauge
groups U(N) and SU(N).

The amplitude relations in this work are derived from forward limits of tree-level
building blocks, where divergences in intermediate expressions are bypassed via ambitwistor-
string methods [37–40].3 This way of implementing forward limits has been applied to
explicitly construct loop integrands of gauge theories [43–45] and one-loop matrix elements
of higher-mass-dimension operators in the low-energy effective action of superstrings [46].
However, the ambitwistor methods at work lead to an unconventional form of the Feynman
propagators in the loop integrand: the inverse propagators of the partial integrands are
linearized in the loop momentum `, i.e. given by 2` · K + K2 instead of (` + K)2 for
(combinations of) external momenta K [36–39].

2Representations of EYM tree amplitudes in the CHY formalism [18–20] were given in [8, 21, 22], also
see [23] for an underpinning via ambitwistor strings.

3As detailed for instance in [41] and references therein, the significance of forward limits for one-loop
amplitudes can be anticipated from the Feynman tree theorem [42].
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We provide the detailed form of the loop integrands in four-point EYM amplitudes
with sixteen and eight supercharges in terms of traditional quadratic propagators (`+K)−2.
In particular, we address various configurations of external gauge and gravity multiplets
as well as different orders in κ, i.e. all admissible contributions from gauge and/or gravity
multiplets in the loop. The conversion between linearized and quadratic propagators in
the loop is performed via elementary partial-fraction manipulations in the examples of
this work, see [46–52] for more general recent discussions of this conversion. However, the
supersymmetry-agnostic amplitude relations of this work still feature linearized propagators
in intermediate steps. We leave it as an open problem to preserve the universal form of the
relations for EYM loop integrands while manifesting the quadratic propagators (`+K)−2

of the super-Yang-Mills building blocks.

Outline. This paper is organized as follows: in section 2, we review the EYM double
copy including the CHY methods relevant to this work and state the main formulae for our
construction of one-loop EYM amplitudes. Their central building blocks are so-called half
integrands of YM+φ3 theory; we spell out the detailed form of their color decomposition in
terms of tree-level data for any number of external states in section 3. Based on the four-
point examples of YM+φ3 half integrands in section 4, we proceed to constructing four-point
one-loop EYM amplitudes at all orders in the coupling: maximally supersymmetric loop
integrands in D ≤ 10 spacetime dimensions in section 5 and half-maximally supersymmetric
ones in D ≤ 6 in section 6. In both cases, we expose all supersymmetry cancellations and
convert the output of the CHY double copy to quadratic Feynman propagators. Moreover,
the chiral fermions in six-dimensional EYM theories with 8 supercharges give rise to gauge-
and diffeomorphism anomalies whose integrated results can be found in section 6.5.

This work is supplemented by three appendices, starting with a review of the general
form of CHY integrands for EYM tree amplitudes in appendix A. Moreover, we have
gathered background information on kinematic factors with half-maximal supersymmetry
and rational Feynman integrals in the six-dimensional anomalies in appendices B and C,
respectively. Finally, some of our results are available in machine-readable form in the
supplementary material attached to this paper.

2 Review and basics

In this section, we review the basics of the EYM double copy, the CHY formulation of its
tree-level amplitudes and the construction of one-loop amplitudes from forward limits of
trees in the ambitwistor framework.

2.1 Einstein-Yang-Mills as a double copy

The oldest incarnation of the double-copy structure of perturbative gravity is the KLT
formula for its n-point tree-level amplitudes [5]

M tree
n,GR =

∑
ρ,τ∈Sn−3

Atree
YM(1, ρ, n−1, n)S(ρ|τ)1Ā

tree
YM(1, τ, n, n−1) . (2.1)
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On the right hand side, ρ = ρ(2, 3, . . . , n−2) and τ are permutations of n−3 legs in
the color-ordered gauge-theory amplitudes Atree

YM(1, 2, . . . , n) referring to the coefficient of
Tr(ta1ta2 . . . tan) in the color decomposition. The entries of the (n−3)!× (n−3)! KLT matrix
S(ρ|τ)1 [53, 54] are degree-(n−3) polynomials in Mandelstam invariants

sij = ki · kj = 1
2(ki+kj)2 , sij...p = 1

2(ki+kj+ . . .+kp)2 , (2.2)

(such as S(2|2)1 = −s12 at four points), where all the external momenta ki are lightlike
throughout this work. The (n−3)! permutations of Atree

YM, Ā
tree
YM form a basis of color-ordered

amplitudes via BCJ relations [1] and are therefore sufficient to generate a permutation
invariant gravity amplitude via (2.1).

The KLT formula calculates the tree-level amplitudes in a variety of further theories
with double-copy structure including EYM [13], Born-Infeld and special Galileons [8, 9] as
well as even open-string theories [10–12]. In general, (2.1) yields the tree amplitudesM tree

n,B⊗C
in the double-copy theory B ⊗ C such as general relativity (GR) from the color-ordered
amplitudes Atree

B , Ātree
C in theories B and C, say Yang-Mills (YM). Since (2.1) features the

outer products of the polarizations of theories B and C, the spins of the external legs add
up under double copy. The color degrees of freedom common to theories B and C in turn
are stripped off.

In the case of B ⊗ C = EYM, the constituent theories are B = YM and an ex-
tended gauge theory C = YM + φ3 [13] whose Lagrangian (µ, ν = 0, 1, . . . , D−1 in D

spacetime dimensions)

LYM+φ3 = −1
4F

a
µνF

aµν + 1
2(Dµφ

A)a(DµφA)a − g2

4 f
abef ecdφaAφbBφcAφdB

+ λg

3! f
abcf̂ABCφaAφbBφcC (2.3)

with coupling constants g, λ involves gluons Aµ = Aaµt
a coupled to bi-adjoint scalars

Φ = φaAta ⊗ TA with two species of gauge-group generators ta, TA and respective structure
constants fabc, f̂ABC . Our conventions for the non-linear gluon field-strengths F aµν and
gauge-covariant derivatives Dµ are

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν

(Dµφ
A)a = ∂µφ

aA + gfabcAbµφ
cA . (2.4)

In adapting the KLT formula (2.1) to EYM, the color-ordering of the YM + φ3 amplitudes
is performed w.r.t. the generators ta common to the scalars and the gauge bosons (rather
than the TA exclusive to scalars). In other words, the color-dressed n-point amplitudes4

M tree
n,YM+φ3 =

∑
ρ∈Sn−1

Tr(t1tρ(2)tρ(3) . . . tρ(n))Atree
YM+φ3(1, ρ(2, 3, . . . , n)) (2.5)

4For gauge-group generators ta and TA, we will often abbreviate the adjoint indices ai → i and Ai → i

referring to the color degrees of freedom of the ith external leg and write ti and T i in the place of tai and
TAi , respectively.
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decompose into color-ordered amplitudes AYM+φ3 entering (2.1) that still depend on the
TA of the external scalars. In case of scalars in the first legs 1, 2, . . . , r, further color
decomposition w.r.t. TA gives rise to doubly-partial amplitudes mtree

YM+φ3 ,

Atree
YM+φ3(1, ρ) =

∑
γ∈Sr−1

Tr(T 1T γ(2)T γ(3) . . . T γ(r))mtree
YM+φ3(1, ρ|1, γ) + multitrace . (2.6)

The multitrace terms receive contributions from the contractions φaAφbBφcCφdDδACδBD
in (2.3) and gluon propagators. They realize all cyclically inequivalent partitions of the r
scalars into up to b r2c traces, e.g. three permutations of Tr(T 1T 2)Tr(T 3T 4) at four points.
In the double copy to EYM, the TA are re-interpreted as the gauge-group generators of the
YM states. For r external gluons in the first legs 1, 2, . . . , r and n−r external gravitons,
the color-decomposition (2.6) as well as the KLT formula (2.1) carry over to

M tree
n,r,EYM =

∑
γ∈Sr−1

Tr(T 1T γ(2) . . . T γ(r))Atree
EYM(1, γ(2, . . . , r)) + multitrace

(2.7)
Atree

EYM(1, γ(2, . . . , r)) =
∑

ρ,τ∈Sn−3

Atree
YM(1, ρ, n−1, n)S(ρ|τ)1m

tree
YM+φ3(1, τ, n, n−1|1, γ) .

(2.8)

The results of this work concern the explicit form of the analogous one-loop amplitudes.
More specifically, we present a general method to determine n-point loop integrands of
EYM from one-loop building blocks of (super-)Yang-Mills and spell out the detailed form
of four-point examples. Our relations between loop integrands apply to supersymmetric
EYM theories in any number of spacetime dimensions D compatible with the variable
amount of supersymmetry, and the four-point examples in sections 5 and 6 preserve 8 or
16 supercharges.

The double copy for supersymmetric EYM has all the supersymmetries on the YM side
while taking YM + φ3 as a purely bosonic theory with color structure ta for each gluon and
ta ⊗ TA for each scalar. Furthermore, in the double copy to EYM, the coupling constants g
and λ from the constituent theories are mapped onto the gauge coupling g and gravitational
coupling κ of EYM theory according to

(g2, λ)→
(
κ

4 , 4 g

κ

)
. (2.9)

In four-point one-loop amplitudes of EYM, for instance, (2.9) leads to the powers of κ and g
listed in table 1. In the examples of sections 5 and 6, we will determine the contributions at
the orders of gmκ4−m (0 ≤ m ≤ 4) for different numbers of external gluons and gravitons.

2.2 The Einstein-Yang-Mills double copy in the CHY formalism

There are several equivalent formulations of the double-copy structure of tree-level amplitudes
including the KLT formula (2.1), the BCJ double copy based on cubic-vertex diagrams [1–3]
and the CHY formalism [18–20]. The backbone of the CHY formulae for n-point tree-level
amplitudes are moduli-space integrals over punctures σ1, σ2, . . . , σn on the Riemann sphere

– 5 –
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YM+φ3 YM EYM

g4λ4 g4 g4

g4λ3 g4 1
4κg

3

g4λ2 g4 1
16κ

2g2

g4λ g4 1
64κ

3g

g4 g4 1
256κ

4

Table 1. In four-point one-loop amplitudes of YM⊗ (YM + φ3) = EYM, the couplings g and λ on
the left-hand side of the double copy are mapped to the following powers of the couplings κ and g
in EYM via (2.9).

C∪{∞} which are completely localized by the scattering equations. The latter are imposed
by the delta functions in the measure

dµtree
n = dσ1 dσ2 . . . dσn

vol SL2(C)

n∏
i=1

′δ

(
n∑
j=1
j 6=i

sij
σij

)
, σij = σi − σj . (2.10)

The inverse vol SL2(C) and the prime along with the product instruct to drop any three
dσi dσj dσk and the associated delta functions, and the respective punctures can be fixed to
(σi, σj , σk)→ (0, 1,∞) after inserting the Jacobian |σijσikσjk|2. The CHY reformulation of
the KLT double copy then reads

M tree
n,B⊗C =

∫
dµtree

n Itree
B ({1, 2, . . . , n}) Itree

C ({1, 2, . . . , n}) , (2.11)

where the integral is over the moduli spaceM0,n of n marked points on the Riemann sphere.
The so-called half integrands Itree

B , Itree
C are functions of the σj that both transform with

weight two under Möbius transformations σj → aσj+b
cσj+d with ( a bc d ) ∈ SL2(C). Moreover, the

half integrands Itree
B , Itree

C depend on momenta and polarization or color degrees of freedom
of the particles enclosed in {. . .}.

2.2.1 Basic half integrands for color and kinematics

The CHY formulae for bi-adjoint scalars, YM and gravity are based on two types of
half integrands:

• Color degrees of freedom are encoded in

Itree
φ3 ({1, 2, . . . , n}) =

∑
ρ∈Sn−1

Tr(t1tρ(2)tρ(3) . . . tρ(n))PT(1, ρ(2, 3, . . . , n)) (2.12)

with Parke-Taylor factor

PT(1, 2, . . . , n) = 1
σ12σ23 . . . σn−1,nσn1

. (2.13)

– 6 –
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Upon color ordering w.r.t. two species of gauge-group generators, Parke-Taylor
integrals

mφ3(1, 2, . . . , n|ρ(1, 2, . . . , n)) =
∫

dµtree
n PT(1, 2, . . . , n)PT(ρ(1, 2, . . . , n)) (2.14)

yield the doubly-partial amplitudes of biadjoint scalars. We will frequently apply
this formula to determine Parke-Taylor integrals from the straightforward Feynman-
diagram computation of mφ3 , for instance using the Berends-Giele recursion of [55].

• The dependence on polarization vectors εj (subject to transversality εj · kj = 0) in
YM and gravity is carried by the reduced Pfaffian

Itree
YM ({1, 2, . . . , n}) = Pf ′Ψn({1, 2, . . . , n}) = (−1)i+j

σij
Pf
[
Ψn({1, 2, . . . , n})

]ij
ij
, (2.15)

where ij
ij instruct to remove the ith and jth rows and columns from the 2n × 2n

matrix Ψn,

Ψn({1, 2, . . . , n}) =
(
A −Ct

C B

)
Bij =

{ εi·εj
σij

: i 6= j

0 : i = j
(2.16)

Aij =
{ sij

σij
: i 6= j

0 : i = j
Cij =

{ εi·kj
σij

: i 6= j

−
∑n
m 6=i

εi·km
σim

: i = j
.

The reduced Pfaffian is linear in all of ε1, ε2, . . . , εn and, on the support of the scattering
equations in (2.10), independent on the choice of i, j ∈ {1, 2, . . . , n} in (2.15) and
invariant under linearized gauge transformations εm → km.

2.2.2 Integrands of EYM from half integrands of YM+φ3

The CHY formula (2.11) for EYM tree-level amplitudes with r gauge bosons and n−r
gravitons reads [8, 21]

M tree
n,EYM =

∫
dµtree

n Pf ′Ψn({1, 2, . . . , n}) Itree
YM+φ3({1, 2, . . . , r}; {r+1, . . . , n}) , (2.17)

and supersymmetric EYM amplitudes can be obtained by replacing the Pfaffian (2.15) by
its fermionic completion.5 The non-supersymmetric half integrand Itree

YM+φ3 refers to YM+φ3

theory with Lagrangian (2.3). It depends on the gauge-group generators T j of the external
scalars j = 1, 2, . . . , r in the first set of labels and the polarizations εj of the external gauge
bosons j = r+1, . . . , n in the second set. By analogy with the color decomposition (2.6),

5For ten-dimensional SYM, the supersymmetrization of the Pfaffian may be imported from the open
pure-spinor superstring [56], based on the correlation functions of massless vertex operators in [10, 57, 58].
Alternatively, the simplified spin-field correlation functions of [45] yield an analogue of the Pfaffian (2.16)
with two and four fermions and arbitrary numbers of bosons among the external states, also see [59] for
two fermions.
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it will be convenient to separately analyze color-ordered half integrands J tree
YM+φ3 for single

and double traces,

J tree
YM+φ3(1, 2, . . . , r; {r+1, . . . , n}) = Itree

YM+φ3
∣∣
Tr(T 1T 2...T r) (2.18)

J tree
YM+φ3(1, 2, . . . , p|p+1, . . . , r; {r+1, . . . , n}) = Itree

YM+φ3
∣∣
Tr(T 1...T p)Tr(T p+1...T r) ,

where vertical bars are used to separate multiple traces (e.g. J tree
YM+φ3(. . . | . . . | . . . ; {r+1, . . . , n})

for triple traces). The curly-bracket notation {. . .} refers to permutation-invariant functions
of the data of the enclosed particles, e.g. J tree

YM+φ3(. . . ; {i, j, . . .}) = J tree
YM+φ3(. . . ; {j, i, . . .}).

By contrast, the J tree
YM+φ3 in (2.18) are only cyclically invariant in each of the slots associated

with trace structures, e.g.

J tree
YM+φ3(. . . |i1, i2, . . . , ip| . . . ; {. . .}) = J tree

YM+φ3(. . . |i2, i3, . . . , ip, i1| . . . ; {. . .}) . (2.19)

The single-trace instances of the half integrands are given by [21]

J tree
YM+φ3(1, 2, . . . , r; {r+1, . . . , n}) = PT(1, 2, . . . , r)Pf Ψn({r+1, . . . , n}) , r ≥ 2 (2.20)

and combine the Parke-Taylor factor (2.13) from Itree
φ3 with the Pfaffian from Itree

YM . The
2(n−r)× 2(n−r) matrix Ψn({r+1, . . . , n}) slightly generalizes the definition (2.16) of the
matrix Ψn({1, . . . , n}): the sum over m in any Cii = −∑n

m=1 εi · km/σim entering (2.20)
runs over all of {1, 2, . . . , n} instead of the shorter list {r+1, . . . , n} of gluon labels. Note
that (2.20) only applies to r ≥ 2 scalars. For n gluons, the results of appendix A lead to
the half integrand

J tree
YM+φ3(∅; {1, 2, . . . , n}) = Pf ′Ψn({1, 2, . . . , n}) = Itree

YM ({1, 2, . . . , n}) , (2.21)

and tree amplitudes with a single external scalar (r = 1) vanish. For single-trace amplitudes
of r = n scalars in turn, we recover the result of the pure φ3 theory in (2.12),

J tree
YM+φ3(1, 2, . . . , n; ∅) = J tree

φ3 (1, 2, . . . , n) = PT(1, 2, . . . , n) . (2.22)

In the double-trace situation, the simplest cases with zero and one gluon are [8, 21]

J tree
YM+φ3(1, 2, . . . , p|p+1, . . . n; ∅) = s12...pPT(1, 2, . . . , p)PT(p+1, . . . , n) (2.23)

J tree
YM+φ3(1, 2, . . . , p|p+1, . . . n−1; {n}) = PT(1, 2, . . . , p)PT(p+1, . . . , n−1) (2.24)

×
[ p−1∑
i=1

p∑
j=i+1

(sj,nεn · ki − si,nεn · kj)σij
σi,nσn,j

+ s12...p

n−1∑
j=1

εn · kj
σj,n

]
,

and more general half integrands of YM + φ3 can be found in appendix A.

2.2.3 Kleiss-Kuijf relations

We note for future reference that partial-fraction relations between Parke-Taylor factors
imply so-called Kleiss-Kuijf relations [60] for J tree

YM+φ3 : within each trace, different cyclic
orderings are related by

J tree
YM+φ3(. . . |i,P,j,Q| . . . ;{r+1, . . . ,n}) = (−1)|Q|

∑
R∈P�Q̃

J tree
YM+φ3(. . . |i,R,j| . . . ;{r+1, . . . ,n}) .

(2.25)
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The shuffle product � is defined recursively by

Pa�Qb = (P�Qb)a+ (Pa�Q)b (2.26)

for any two words P = (p1, p2, . . . , p|P |) and Q = (q1, q2, . . . , q|Q|) concatenated with words
a and b of length one and P�∅ = ∅�P = P in case of the empty word ∅. The length of the
word Q is denoted by |Q|, and we use a tilde-notation for the reversal Q̃ = (q|Q|, . . . , q2, q1).
Intuitively, the shuffle product P�Q collects all possibilities to interleave the letters in P
and Q while preserving the order among the pi and qj .

2.3 One-loop CHY formulae and forward limits

The CHY formulae for tree-level amplitudes were underpinned by ambitwistor-string
theories in the Ramond-Neveu-Schwarz [61, 62] and pure-spinor formulations [63, 64].
The ambitwistor-string prescription for one-loop amplitudes is centered on moduli-space
integrals over punctured genus-one surfaces or tori, and all integrations are again localized
by scattering equations involving a D-dimensional loop momentum `. In particular, the
manipulations of [37, 39] localize the integrand at the cusp τ → i∞, where the torus with
modular parameter τ degenerates to a nodal Riemann sphere. This limit reduces the
genus-one scattering equations for the punctures to (i = 1, 2, . . . , n)

` · ki
σi

+
n∑
j=1
j 6=i

ki · kj
σij

= 0 (2.27)

which are the forward limits k± → ±` of the genus-zero scattering equations in (2.10)
with two additional legs +,−. Accordingly, D-dimensional n-point one-loop amplitudes in
theories B ⊗ C with double-copy structure are given by [37, 39]

M1-loop
n,B⊗C =

∫ dD`
`2

lim
k±→±`

∫
dµtree

n+2 I
1-loop
B ({1, 2, . . . , n}; `) I1-loop

C ({1, 2, . . . , n}; `) (2.28)

in terms of forward limits of (n+2)-point CHY integrals at tree level. For theories with
an ambitwistor-string description, the half integrands I1-loop

B , I1-loop
C can be obtained from

correlation functions on a torus in its degeneration limit to a nodal Riemann sphere. For
instance, the maximally supersymmetric four-point correlators known from type-I and
type-II superstrings [65] give rise to

I1-loop
YM,max = I1-loop

YM,max({1, 2, 3, 4}; `) = t8(1, 2, 3, 4)
∑
ρ∈S4

PT(+, ρ(1, 2, 3, 4),−) , (2.29)

where the external polarizations conspire to the permutation-symmetric t8-tensor contracting
the linearized field strengths fµνj (not to be confused with structure constants)

t8(1, 2, 3, 4) = tr(f1f2f3f4)− 1
4tr(f1f2)tr(f3f4) + cyc(2, 3, 4)

= s12s23A
tree
YM(1, 2, 3, 4) (2.30)

fµνi = kµi ε
ν
i − kνi ε

µ
i .
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Similar to (2.29), the half integrands I1-loop
YM ({1, 2, . . . , n}; `) of gauge theories with 0 to 16

supercharges can be expressed in terms of (n+2)-point Parke-Taylor factors (2.13) involving
the double points (σ+, σ−)→ (0,∞) of the nodal Riemann sphere. This can for instance be
seen from the conformal-field-theory origin of these correlators6 [62] and the manipulations
of Ramond-Neveu-Schwarz spin sums in [43] based on [66].

Alternatively, (2.29) as well as generalizations to higher multiplicity and reduced
supersymmetry [39, 43, 59] can be obtained from forward limits of genus-zero half integrands.
For one-loop amplitudes in pure YM, the forward limit of the Pfaffian of (2.16) was shown
to match the appropriate correlation functions on the torus [39] and to yield combinations
of Parke-Taylor factors that reproduce known amplitude representations [44]. Apart from
aligning the momenta k± → ±`, the forward limit in pairs of external gluons +,− amounts
to the replacement (see section 3.1.1 for the analogous color replacement rules for scalars)∑

+,−
εµ+ε

ν
− = ∆µν , ηµν∆µν = D−2 (2.31)

VµWν∆µν = V ·W , V,W ∈ {ki, εi : i = 1, 2, . . . , n} .

Similarly, by combining forward limits (2.31) in gluon polarizations with those in fermions
and scalars yields n-point correlators with supersymmetric multiplets in the loop such
as (2.29) [45].

The key idea in this work is to extend the construction of one-loop half integrands from
forward limits of tree-level ones to the YM+φ3 theory. As will be detailed in section 3.1,
forward limits of the tree-level half integrands of YM+φ3 in the gluons and scalars yield
the non-supersymmetric half integrands

I1-loop
YM+φ3({1, . . . , r}; {r+1, . . . , n}; `) = lim

k±→±`

∑
+,−

[
Itree

YM+φ3({1, 2, . . . , r,+,−}; {r+1, . . . , n})

+ Itree
YM+φ3({1, 2, . . . , r}; {r+1, . . . , n,+,−})

]
(2.32)

in one-loop amplitudes of EYM with r external gluons and n−r external gravitons:

M1-loop
n,EYM,α =

∫ dD`
`2

lim
k±→±`

∫
dµtree

n+2 I
1-loop
YM,α ({1, . . . , n}; `) I1-loop

YM+φ3({1, . . . , r}; {r+1, . . . , n}; `)
(2.33)

The amount of supersymmetry will be indicated by the parameter α on the left-hand side
and in the subscript of the YM half integrand on the right-hand side (e.g. α =max or
1
2 -max). In the same way as Itree

YM+φ3 are available in Parke-Taylor form [24, 27, 28, 68],7
the forward limits in (2.32) can be brought into the n!-term form

I1-loop
YM+φ3(`) =

∑
ρ∈Sn

N+|ρ(12...n)|−(`)PT(+, ρ(1, 2, . . . , n),−) , (2.34)

6One can again import simplified correlators from the chiral-splitting formulation [6, 7] of superstrings to
the ambitwistor setup such as the four-point expression (2.29) from [65] and the multiparticle correlators
of [66] for external bosons and of [67] for the entire gauge multiplet.

7It follows from the work of Aomoto in the mathematics literature [69] that an arbitrary half integrand
in the tree-level formula (2.11) with SL2(C)-weight two in all of σ1, σ2, . . . , σn can be decomposed in terms
of Parke-Taylor factors.
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where N+|ρ(12...n)|−(`) are local combinations of the color degrees of freedom, momenta
and polarizations of the YM+φ3 states. Together with the Parke-Taylor representations of
I1-loop

YM,α [43–45], all the dµtree
n+2-integrals in (2.33) can be straightforwardly performed in terms

of doubly-partial amplitudes of biadjoint φ3 via (2.14). In this procedure, the forward limit
k± → ±` of the integrals over σj should be performed after summing the permutations to
avoid divergences. More specifically, forward-limit divergences occur in non-supersymmetric
theories and can be addressed in the ambitwistor framework using the methods of [44].8
The supersymmetric examples in sections 5 and 6 will be unaffected by subtleties related to
forward-limit divergences, and the discussion of half integrands of YM+φ3 in sections 3
and 4 are completely supersymmetry-agnostic.

2.4 Linearized versus quadratic propagators

Given that doubly-partial amplitudes (2.14) at tree level are functions of ki · kj with all the
k2
j set to zero, the forward limit in (2.28) and (2.33) can only involve the loop momentum

via ki · ` and not via `2. Hence, the square of ` only enters the loop integrand of M1-loop
n,B⊗C

as a global prefactor `−2 outside the dµtree
n+2-integral, see [37, 39] for its origin. This can

be reconciled with the Feynman propagators (`+K)−2 (with combinations K of external
momenta) expected for loop diagrams in massless field theories by the following rewriting
of an n-gon integral,

∫ 2n−1 dD`
`2`21`

2
12 . . . `

2
12...n−1

=
n−1∑
i=0

∫ 2n−1 dD`
`212...i

n∏
j 6=i

1
`212...j − `212...i

(2.35)

=
n−1∑
i=0

∫ dD`
`2

i−1∏
j=0

1
sj+1,j+2,...,i,−`

n−1∏
j=i+1

1
si+1,i+2,...,j,`

,

where our notation for composite momenta and `-dependent Mandelstam invariants is

k12...p =
p∑
j=1

kj , `12...p = `+ k12...p , s12...p,±` = s12...p ± ` · k12...p . (2.36)

The first step of (2.35) is based on partial-fraction manipulations, and we have shifted the
loop momentum by external momenta in passing to the second line such that the only
quadratic propagator is `−2 rather than (`+K)−2. The transition to linearized propagators
in (2.35) can be straightforwardly extended to massive corners. As visualized in figure 1,
each of the n terms in the partial-fraction decomposition (2.35) of the n-gon can be thought
of as the (n+2)-point tree-level diagram obtained from cutting one of the n-gon propagators.

With the n possibilities to cut a given n-gon and its (n−1)! cyclically inequivalent
orderings, the linearized n-gon propagators can be associated with n! tree-level diagrams of
half-ladder topology. These are the master diagrams in the sense of the BCJ color-kinematics
duality [1, 2], i.e. their kinematic numerators w.r.t. linearized propagators generate all
the lower-gon numerators by kinematic Jacobi identities. The n! Parke-Taylor coefficients

8In general non-supersymmetric one-loop CHY formulae, the regularization of forward-limit divergences
can be traced back to the dropout of singular solutions of the scattering equations [38, 40].
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Figure 1. Terms in the partial-fraction representation of n-point loop integrals in (2.35) can be
interpreted as (n+2)-point tree-level diagrams.

N+|ρ(12...n)|−(`) in (2.34) with ρ ∈ Sn are the master numerators associated with the ladder
diagram in figure 1 and its permutations in 1, 2, . . . , n. The kinematic Jacobi identities that
determine the remaining cubic-diagram numerators (of (n−1)-gons, (n−2)-gons etc.) can
be traced back to properties of the dµtree

n+2-integrals over Parke-Taylor factors in (2.33).
However, the forward limit of individual doubly-partial amplitudes (2.14) will usually

not recombine to quadratic propagators. It requires the sum over n terms in (2.35) to
recover the n-gon integral with Feynman propagators (`+k12...p)−2 by reversing the shifts of
loop momentum and the partial-fraction manipulations. It will be an important cross-check
for the I1-loop

YM+φ3 to be derived from forward limits (2.32) that their dµtree
n+2-integrals against

I1-loop
YM,α admit a recombination to quadratic propagators. We will do so at the level of
color-ordered EYM amplitudes where, in analogy with the tree-level notation (2.18),

J1-loop
YM+φ3(1, 2, . . . , j|j+1, . . . , p| . . . ; {r+1, . . . , n}; `) (2.37)

= I1-loop
YM+φ3({1, 2, . . . , r}; {r+1, . . . , n}; `)

∣∣
Tr(T 1T 2...T j)Tr(T j+1...T p)... .

We can express the loop integrand of color-ordered EYM amplitudes in terms of so-called
partial integrands in YM theory

a1-loop
YM,α (+, ρ(1, . . . , n),−) = lim

k±→±`

∫
dµtree

n+2PT(+, ρ(1, . . . , n),−)I1-loop
YM,α ({1, . . . , n}; `)

(2.38)

which were introduced in [36] as gauge-invariant building blocks of loop integrands in
linearized-propagator representations. The idea is to calculate the dµtree

n+2-integral separately
for each Parke-Taylor factor in the decomposition (2.34) of the YM+φ3 half integrand (2.37)
and to thereby obtain the decomposition

A1-loop
EYM,α(1,2, . . . , j|j+1, . . . ,p| . . . ;{r+1, . . . ,n}) (2.39)

=
∫ dD`

`2
lim

k±→±`

∫
dµtree

n+2J
1-loop
YM+φ3(1, . . . , j|j+1, . . . ,p| . . . ;{r+1, . . . ,n};`)I1-loop

YM,α ({1, . . . ,n};`)

=
∫ dD`

`2

∑
ρ∈Sn

N+|ρ(12...n)|−(`)
∣∣
Tr(T 1T 2...T j)Tr(T j+1...T p)...a

1-loop
YM,α (+,ρ(1,2, . . . ,n),−) .

The partial integrands a1-loop
YM,α with maximal and half-maximal supersymmetry are available

from forward limits of doubly-partial amplitudes [36, 43] and will be reviewed in sections 5.1
and 6.1, respectively. While the a1-loop

YM,α are still given in terms of linearized propagators, the
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single- and multi-trace amplitudes A1-loop
EYM,α admit quadratic-propagator representations. By

combining the contributions of all the n! permutations ρ in (2.39), we will find the expected
quadratic-propagator expressions for EYM loop-integrands at n = 4 for different amounts
α of supersymmetry, and separately at each order in the couplings g and κ (see table 1).

3 YM+φ3 half integrands at one loop: all-multiplicity results

The first step in the construction of one-loop amplitudes in EYM theories is to obtain the
non-supersymmetric half integrands I1-loop

YM+φ3 in their CHY representation (2.33). In this
section we investigate the color decomposition of these one-loop half integrands in YM+φ3

theory, with single- and multi-trace coefficients J1-loop
YM+φ3 entering the color-ordered EYM

amplitudes in (2.39). In particular, we explain how to choose the forward limits of tree-level
half integrands in (2.32) that contribute to a given color-ordered one-loop half integrand
J1-loop

YM+φ3 . Four-point examples can be found in the next section 4.

3.1 First look at one-loop YM+φ3 half integrands from forward limits

In YM+φ3 theory, various forward limits of tree-level half integrands in both scalars and
gluons contribute to the same color-ordered one-loop half integrand. The basic premise for
the choice of these contributions is to include all forward limits of (n+2)-point tree-level
half integrands that have the external states, color structure and powers of the couplings
λ, g compatible with the desired n-point one-loop half integrand.

3.1.1 Color management in forward limits

In EYM theories with gauge groups SU(N) and U(N), forward limits in color degrees of
freedom may change the number of traces. At the level of the double-copy constituents
YM+φ3, this concerns the trace structure of the generators TA specific to the bi-adjoint
scalars which changes upon forward limits in the scalars. The sum∑

+,− over adjoint degrees
of freedom T+ = TA+ and T− = TA− of scalar legs + and − in (2.32) is implemented
through the completeness relations∑

+,−
(T+)ij(T−)kl = δliδ

j
k : U(N) (3.1)

∑
+,−

(T+)ij(T−)kl = δliδ
j
k −

1
N
δji δ

l
k : SU(N) ,

with fundamental indices i, j, k, l = 1, 2, . . . , N . Depending on the relative positions of legs
+ and −, the forward limits of traces follow from one of∑

+,−
Tr(P,+, Q,−) = Tr(P )Tr(Q) + c1Tr(PQ)
∑
+,−

Tr(P,+,−) = c2Tr(P ) (3.2)
∑
+,−

Tr(+,−) =Nc2∑
+,−

Tr(P,+)Tr(Q,−) = Tr(PQ) + c1Tr(P )Tr(Q) .
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factor U(N) SU(N)

c1 0 − 1
N

c2 N N2−1
N

Table 2. The color factors c1 and c2 subject to c2 − c1 = N arise in the forward limits of traces
over generators of the gauge groups U(N) and SU(N), see (3.2).

We employ the shorthand notation

Tr(i1, i2, . . . , in) = Tr(TAi1TAi2 . . . TAin ) (3.3)

and use capital letters from the second half of the alphabet for words P = (i1, i2, . . . , i|P |)
of length |P | as in section 2.2.3. Moreover, the factors c1 and c2 subject to c2 − c1 = N

differ for gauge groups U(N), SU(N) and are listed in table 2. The first and last line
of (3.2) illustrate that the number of traces may be raised or lowered under forward limits
in color factors.

3.1.2 Coupling dependence in forward limits

Even though we defined the half integrands J tree
YM+φ3 to exclude the couplings in the YM+φ3

Lagrangian (2.3), one can straightforwardly associate powers of g and λ to each trace-
and external-state configuration of J tree

YM+φ3 : single-trace integrands of n external scalars
generate diagrams with n−2 cubic vertices ∼ φ3, so they are associated with the powers
(gλ)n−2. Cubic vertices involving one or three gluons in turn involve a factor of g rather
than gλ. As exemplified in figure 2, this reduces the power-counting of λ by one whenever
an external scalar is replace by an external gluon and by two for each additional trace.
Hence, we associate

m-trace J tree
YM+φ3 @ r ≥ 2 scalars & n−r gluons ↔ gn−2λr−2m , (3.4)

for instance gn−2λr−2 to single-trace examples and gn−2λr−4 to double-trace examples with
r ≥ 2 scalars and n−r gluons.

By the color-factor identities (3.2), forward limits in a scalar can introduce or eliminate
one trace. As a result, the tree-level power counting of (3.4) yields a bandwidth of three
different powers of λ in each J1-loop

YM+φ3 with m ≥ 2 traces, where the lowest power λr−2m also
arises from forward limits in a pair of gluons,

m-trace J1-loop
YM+φ3 @ r ≥ 2 scalars & n−r gluons with m ≥ 2 (3.5)

↔
{
gnλr−2m+4 & gnλr−2m+2 & gnλr−2m : scalar forward limit

gnλr−2m : gluon forward limit .

For single-trace half integrands at one loop, the option with the highest power of λ in (3.5)
is absent since there is no underlying forward limit with fewer traces. Hence, one arrives at
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Figure 2. Trading an external scalar for a gluon effectively removes a power of λ (left panel).
Similarly, increasing the number of traces effectively removes two powers of λ (right panel).

only two dependences on the couplings for single traces, where the lower power λr−2 also
arises from forward limits in gluons.

single-trace J1-loop
YM+φ3 @ r ≥ 2 scalars & n−r gluons (3.6)

↔
{
gnλr & gnλr−2 : scalar forward limit

gnλr−2 : gluon forward limit .

Upon double copy through the CHY-representation (2.39) of EYM amplitudes, the dictio-
nary (2.9) for the couplings leads to the following power-counting on g and κ,

single-trace A1-loop
EYM,α @ r≥ 2 gluons & n−r gravitons (3.7)

↔
{
grκn−r & gr−2κn+2−r : gluon forward limit

gr−2κn+2−r : graviton forward limit

m-trace A1-loop
EYM,α @ r≥ 2 gluons & n−r gravitons with m≥ 2

↔
{
gr−2m+4κn+2m−4−r & gr−2m+2κn+2m−2−r & gr−2mκn+2m−r : gluon forward limit

gr−2mκn+2m−r : graviton forward limit .

3.2 Explicit single-trace YM+φ3 half integrands at one loop

We shall now spell out the detailed decomposition of single-trace YM+φ3 half integrands
at one loop into forward limits of their color-ordered tree-level counterparts J tree

YM+φ3 . This
will be done separately for the two orders in the coupling noted in (3.6), i.e. for both half
integrands on the right-hand side of

J1-loop
YM+φ3(1, 2, . . . , r; {r+1, . . . , n}; `) = J1-loop

YM+φ3(1, 2, . . . , r; {r+1, . . . , n}; `)
∣∣
gnλr

(3.8)

+ J1-loop
YM+φ3(1, 2, . . . , r; {r+1, . . . , n}; `)

∣∣
gnλr−2 .

3.2.1 No external gluons

In order to simplify the bookkeeping, we shall focus on the case with r = n scalars first.
The contribution ∼ λn to (3.8) can then be obtained by adding up all the forward limits
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that yield the single-trace Tr(1, 2, . . . , n) on the right-hand side of (3.2). As we shall see,
both U(N) and SU(N) gauge groups give rise to the same λn contributions

J1-loop
YM+φ3(1,2, . . . ,n;∅;`)

∣∣
gnλn

=N
[
J tree

YM+φ3(1,2, . . . ,n,+,−;∅)+J tree
YM+φ3(1,2, . . . ,n,−,+;∅)

+cyc(1,2, . . . ,n)
]
. (3.9)

With the Parke-Taylor form (2.22) of the single-trace half integrands of the pure φ3-theory,
this reproduces the color factors in the ambitwistor-string formulae for planar one-loop
super-Yang-Mills amplitudes [37, 39]. Still, it is instructive to see how it arises from the
forward-limit computations and a careful tracking of all single traces at the λn order in (3.2):
intermediate steps towards (3.9) give

J1-loop
YM+φ3(1, 2, . . . , n; ∅; `)

∣∣
gnλn

= c2
[
J tree

YM+φ3(1, 2, . . . , n,+,−; ∅) + J tree
YM+φ3(1, 2, . . . , n,−,+; ∅)

]
+ c1

n−1∑
j=1

J tree
YM+φ3(1, 2, . . . , j,+, j+1, . . . , n,−; ∅) + cyc(1, 2, . . . , n) , (3.10)

where the special case J tree
YM+φ3(1, 2, . . . , n,−,+; ∅) + cyc(1, 2, . . . , n,−) = 0 of the Kleiss-

Kuijf relations (2.25) identifies the coefficient of c1 to be minus the coefficient of c2. By
virtue of the relation c2−c1 = N universal to SU(N) and U(N), one arrives at the simplified
expression (3.9).

At the subleading order of λn−2 in turn, the N -dependence varies between U(N) and
SU(N) through the color factor c2 in table 2 (with Nc2 = N2 for U(N) and Nc2 = N2 − 1
for SU(N)),

J1-loop
YM+φ3(1, 2, . . . , n; ∅; `)

∣∣
gnλn−2

= Nc2J
tree
YM+φ3(1, . . . , n|+,−; ∅) + J tree

YM+φ3(1, . . . , n; {+,−})

+
n−1∑
j=1

[
J tree

YM+φ3(1, 2, . . . , j,+|−, j+1, . . . , n; ∅) + cyc(1, 2, . . . , n)
]
. (3.11)

The forward limit in the gluon legs {+,−} is understood to incorporate the sum over D−2
physical polarization vectors ε+, ε− as in (2.31).

In the expression (3.11) for the λn−2-order, the gluonic forward limits J tree
YM+φ3(. . . ; {+,−})

and the scalar forward limits J tree
YM+φ3(1, . . . , j,+|−, j+1, . . . , n; ∅) capture different terms

in the partial-fraction decomposition of various Feynman integrals. For instance, the n-gon
diagram in figure 3 with one gluon propagator and otherwise scalar propagators yields one
tree diagram corresponding to a gluonic forward limit and n−1 tree diagrams corresponding
to scalar forward limits under partial-fraction decomposition. As a result, the recombination
of the loop integrand of (2.39) to quadratic propagators relies on having the correct relative
normalization of the terms J tree

YM+φ3(. . . ; {+,−}) and J tree
YM+φ3(1, . . . , j,+|−, j+1, . . . , n; ∅)

at the same order of g, λ in (3.11). Since this recombination has to occur for any value
of N , its first term with coefficient Nc2 will separately yield quadratic propagators after
performing the dµtree

n+2 integral in (2.39).
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Figure 3. In the partial-fraction decomposition of an n-gon diagram with one gluon propagator
and otherwise scalar propagators, the associated tree-level diagrams describe one gluonic forward
limit with internal scalars and n−1 scalar forward limits with one internal gluon line.

One can also confirm from one-loop Feynman-diagram computations that the only
admissible dependence of color-ordered EYM amplitudes on the group-theory data can
occur via Kronecker-deltas in the fundamental indices δii = N and in the adjoint ones
δaa = Nc2. This can be manifested in the forward-limit approach of this work by applying
Kleiss-Kuijf relations, both at the single-trace and at the multitrace level.

3.2.2 Adjoining external gluons

The single-trace expressions (3.9) and (3.11) can be straightforwardly generalized to external
gluons. The two contributions in (3.8) at different orders in the couplings then read (for
r ≥ 2 scalars)

J1-loop
YM+φ3(1, 2, . . . , r; {r+1, . . . , n}; `)

∣∣
gnλr

= N
[
J tree

YM+φ3(1, 2, . . . , r,+,−; {r+1, . . . , n})
+ J tree

YM+φ3(1, 2, . . . , r,−,+; {r+1, . . . , n}) + cyc(1, 2, . . . , r)
]

(3.12)

as well as

J1-loop
YM+φ3(1, 2, . . . , r; {r+1, . . . , n}; `)

∣∣
gnλr−2

= Nc2J
tree
YM+φ3(1, 2, . . . , r|+,−; {r+1, . . . , n})

+ J tree
YM+φ3(1, 2, . . . , r; {r+1, . . . , n,+,−}) (3.13)

+
r−1∑
j=1

[
J tree

YM+φ3(1, 2, . . . , j,+|−, j+1, . . . , r; {r+1, . . . , n}) + cyc(1, 2, . . . , r)
]
.

In particular, the simplification of the leading order in λ literally follows the discussion
around (3.10) since the tree-level half integrands (2.20) with external gluons obey the same
Kleiss-Kuijf relations as in the case without gluons.

While YM + φ3 amplitudes and half integrands with a single scalar vanish, the purely
gluonic cases can be obtained by truncating (3.13) to its first two lines,

J1-loop
YM+φ3(∅;{1,2, . . . ,n};`) = J1-loop

YM+φ3(∅;{1,2, . . . ,n};`)
∣∣
gn

(3.14)

=Nc2J
tree
YM+φ3(+,−;{1,2, . . . ,n})+J tree

YM+φ3(∅;{1,2, . . . ,n,+,−}) ,
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see (2.20) and (2.21) for the respective tree-level building blocks. The first and second
term on the right-hand side of (3.14) describe diagrams with scalars and gluons in the loop,
respectively.

3.3 Explicit multi-trace YM+φ3 half integrands at one loop

The single-trace results of the previous section will now be generalized to multiple traces.
By (3.5), there are three possible dependences on the couplings

J1-loop
YM+φ3(Tr1|Tr2| . . . |Trm;P ; `)

= J1-loop
YM+φ3(Tr1|Tr2| . . . |Trm;P ; `)

∣∣
gnλr−2m+4 + J1-loop

YM+φ3(Tr1|Tr2| . . . |Trm;P ; `)
∣∣
gnλr−2m+2

+ J1-loop
YM+φ3(Tr1|Tr2| . . . |Trm;P ; `)

∣∣
gnλr−2m (3.15)

for a total of n−r gluons in P = {r+1, . . . , n} and r scalars in the union of the cyclically
ordered sets Tr1,Tr2, . . . ,Trm with m ≥ 2. In the same way as the combinatorial structure
of the single-trace formulae (3.9) and (3.11) does not change upon addition of gluons
in (3.12) and (3.13), also the multitrace results can be presented in a unified way for any
choice of P .

3.3.1 Double trace
In the double-trace example, i.e. (3.15) at m = 2, the three different orders in couplings
contribute with

J1-loop
YM+φ3(1, 2, . . . , s|s+1, . . . , r;P ; `)

∣∣
gnλr

=
∑

Q∈cyc(1,2,...,s)
R∈cyc(s+1,...,r)

[
J tree

YM+φ3(Q,+, R,−;P ) + (+↔ −)
]

(3.16)

J1-loop
YM+φ3(1, 2, . . . , s|s+1, . . . , r;P ; `)

∣∣
gnλr−2

= N

{ ∑
Q∈cyc(1,2,...,s)

J tree
YM+φ3(Q,+,−|s+1, . . . , r;P )

+
∑

R∈cyc(s+1,...,r)
J tree

YM+φ3(1, 2, . . . , s|R,+,−;P ) + (+↔ −)
}

(3.17)

J1-loop
YM+φ3(1, 2, . . . , s|s+1, . . . , r;P ; `)

∣∣
gnλr−4

= Nc2J
tree
YM+φ3(1, 2, . . . , s|s+1, . . . , r|+,−;P )

+ J tree
YM+φ3(1, 2, . . . , s|s+1, . . . , r;P ∪ {+,−})

+
s−1∑
j=1

[
J tree

YM+φ3(1, 2, . . . , j,+|−, j+1, . . . , s|s+1, . . . , r;P ) + cyc(1, 2, . . . , s)
]

+
r−s−1∑
j=1

[
J tree

YM+φ3(1, . . . , s|s+1, . . . , s+j,+|−, s+j+1, . . . , r;P ) + cyc(s+1, . . . , r)
]
.

(3.18)
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While the orders of gnλr and gnλr−4 follow from straightforward application of (3.2), the
result (3.17) for the intermediate order of gnλr−2 is based on additional simplifications: the
color identities (3.2) in the first place lead to

J1-loop
YM+φ3(1, 2, . . . , s|s+1, . . . , r;P ; `)

∣∣
gnλr−2

= c2

{ ∑
Q∈cyc(1,2,...,s)

J tree
YM+φ3(Q,+,−|s+1, . . . , n;P )

+
∑

R∈cyc(s+1,...,r)
J tree

YM+φ3(1, 2, . . . , s|R,+,−;P ) + (+↔ −)
}

+ c1

s−1∑
j=1

J tree
YM+φ3(1, 2, . . . , j,+, j+1, . . . , s,−|s+1, . . . , r;P ) (3.19)

+ c1

r−s−1∑
j=1

J tree
YM+φ3(1, 2, . . . , s|s+1, . . . , s+j,+, s+j+1, . . . , r,−;P )

+ c1
∑

Q∈cyc(1,2,...,s)
R∈cyc(s+1,...,r)

[
J tree

YM+φ3(Q,+|R,−;P ) + J tree
YM+φ3(Q,−|R,+;P )

]
,

but the last line cancels by J tree
YM+φ3(1, 2, . . . ,m,+| . . . ;P ) + cyc(1, 2, . . . ,m) = 0, i.e. by

Kleiss-Kuijf relations. Moreover, the same type of Kleiss-Kuijf relations implies that the
coefficients of c1 in the third and fourth line of (3.19) conspire to minus the coefficient of
c2 in the first two lines. Based on c2 − c1 = N , one can then confirm the global prefactor
in (3.17); the same recombination was already noted in the single-trace context of (3.10).

As mentioned before, one can anticipate from one-loop Feynman diagrams that the
only N -dependence in (3.16) to (3.18) has to occur via one of δii = N and δaa = Nc2.

3.3.2 Any number of traces

The multitrace generalizations of the double-trace results (3.16) to (3.18) are given as
follows for r scalars in Tr1, . . . ,Trm with m ≥ 2 and n−r gluons in P = {r+1, . . . , n}

J1-loop
YM+φ3(Tr1|Tr2| . . . |Trm;P ; `)

∣∣
gnλr−2m+4

=
m∑

1≤i<j

∑
Q∈cyc(Tri)
R∈cyc(Trj)

J tree
YM+φ3(Q,+, R,−|Tr1| . . . |T̂ri| . . . |T̂rj | . . . |Trm;P ) + (+↔ −)

(3.20)
J1-loop

YM+φ3(Tr1|Tr2| . . . |Trm;P ; `)
∣∣
gnλr−2m+2

= N
m∑
j=1

∑
Q∈cyc(Trj)

J tree
YM+φ3(Q,+,−|Tr1| . . . |T̂rj | . . . |Trm;P ) + (+↔ −) (3.21)

J1-loop
YM+φ3(Tr1|Tr2| . . . |Trm;P ; `)

∣∣
gnλr−2m

= Nc2J
tree
YM+φ3(Tr1|Tr2| . . . |Trm|+,−;P ) + J tree

YM+φ3(Tr1|Tr2| . . . |Trm;P ∪ {+,−})

+
m∑
j=1

{ ∑
Trj=QR
|Q|,|R|6=0

J tree
YM+φ3(Q,+|R,−|Tr1| . . . |T̂rj | . . . |Trm;P ) + cyc(Trj)

}
. (3.22)
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The notation T̂rj instructs to omit the respective trace, and the sum in the last line is over
all possibilities to split Trj = (c1, c2, . . . , cr) into non-empty words Q = (c1, . . . , c|Q|) and
R = (c|Q|+1, . . . , cr) with |Q| = 1, 2, . . . , r−1. The prefactor N of (3.21) again follows from
Kleiss-Kuijf relations;9 together with the first term in (3.22), the complete color dependence
lines up with the factors δii = N or δaa = Nc2 expected from Feynman diagrams.

3.4 Parke-Taylor form of the tree-level building blocks

The forward-limit representations of J1-loop
YM+φ3 in sections 3.2 and 3.3 are particularly con-

venient if the dµtree
n+2 integration over the punctures in one-loop CHY formula (2.33) can

be performed via (2.14) in terms of doubly-partial amplitudes. This is the case when all
the contributing J tree

YM+φ3 are organized in terms of (n+2)-point Parke-Taylor factors as we
assumed in (2.34) and in passing to the last line of (2.39).

In order to make use of the Parke-Taylor decompositions of tree-level half integrands in
the literature [24, 27, 28] or the Mathematica package [68], we relegate the forward limit
k±→± ` to the last step of the computation, i.e. after performing the dµtree

n+2-integral in
terms of doubly-partial amplitudes. This has been implicitly assumed in introducing the
partial integrands a1-loop

YM,α in (2.39).

3.4.1 Examples at leading order in λ with external gluons

The simplest non-trivial examples of Parke-Taylor decompositions (2.34) arise for the
λr-order of the single-trace half integrands (3.12) with external gluons. Their tree-level
constituents are given in (2.20) and in the one-gluon case for instance reduce to [16, 24]

J tree
YM+φ3(1, 2, . . . , r,+,−; {p}) =

r∑
j=0

εp ·(k−+k1+ . . .+kj)PT(−, 1, 2, . . . , j, p, j+1, . . . , r,+) .

(3.23)
The resulting one-loop half integrand in (3.12) then becomes

J1-loop
YM+φ3(1,2, . . . , r;{p};`)

∣∣
gnλr

=N

{
εp·`

[
PT(−,1, . . . , r,+,p)−PT(+,1, . . . , r,−,p)

]
(3.24)

+
r−1∑
j=1

εp·k12...j
[
PT(−,1,2, . . . , j,p,j+1, . . . , r,+)+PT(+,1,2, . . . , j,p,j+1, . . . , r,−)

]}

and thereby reproduces the expression for aEYM(+, 1, 2, . . . , r,−; p) in [36], averaged over
(+↔ −), also see the appendix of the reference for the two-gluon case. The generalizations
of (3.23) to higher numbers of gluons can be found in [24, 27, 28, 68] and give the gnλr-order
of J1-loop

YM+φ3(1, . . . , r; {r+1, . . . , n}; `) for arbitrary n, r via (3.12).

9More specifically, the cancellation of the last line of (3.19) straightforwardly generalizes to insertions
of + and − into any pair of Tri,Trj with 1 ≤ i < j ≤ m. Similarly, the conspiration of c1, c2 in the first
four lines of (3.19) to c2 − c1 = N occurs for the terms where +,− are inserted into the same Trj with
j = 1, 2, . . . ,m. All of these manipulations are again based on the Kleiss-Kuijf relations (2.25) that hold for
any number of traces or gluon insertions.
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3.4.2 Examples at subleading order in λ with external scalars

The one-loop EYM amplitude relations in [36] are limited to gauge multiplets in the loop
and lowest orders in the gravitational coupling. Already the amplitude relations for the
subleading orders (3.13) of single-trace J1-loop

YM+φ3 in the double copy are a new result of this
work. In absence of external gluons, the relevant Parke-Taylor decompositions include [24]

J tree
YM+φ3(1,2, . . . , j,+|−, j+1, . . . ,n;∅) =

j∑
i=1

n∑
k=j+1

(−1)i+ksik (3.25)

×
∑

Q∈(1,2,...,i−1)
�(j,j−1,...,i+1)

∑
R∈(k+1,k+2,...n)
�(k−1,...,j+1)

J tree
YM+φ3(Q,i,k,R,−,+;∅)

J tree
YM+φ3(1,2, . . . ,n|+,−;∅) =

n−1∑
j=1

(−1)j−1sj,`
∑

Q∈(j−1,...,2,1)
�(j+1,j+2,...,n−1)

J tree
YM+φ3(j,Q,n,+,−;∅) ,

where the double traces signal that the EYM amplitudes obtained from double copy via (2.39)
feature gravity multiplets in the loop. Note that the right-hand sides of (3.25) admit a
variety of alternative Parke-Taylor representations10 related by scattering equations. As
usual in worldsheet approaches to field-theory amplitudes, modifying the moduli-space
integrand via scattering equations or total derivatives might reorganize the cubic-diagram
expansion of the loop integrand and amount to generalized gauge transformations in the
lingo of the literature on the color-kinematics duality.

The forward limit in a pair of gluons simplifies the Parke-Taylor decomposition of [24] to

J tree
YM+φ3(1, 2, . . . , r; {+,−})

= −
r−2∑
j=2

[
s12...jPT(1, 2, . . . , j,+, j+1, . . . , r,−) + cyc(1, 2, . . . , r)

]
+ 4−D

2

r−1∑
j=1

(−1)j−1sj,`
∑

Q∈(j−1,...,2,1)
�(j+1,j+2,...,r−1)

[
PT(j,Q, r,−,+)− PT(j,Q, r,+,−)

]
. (3.26)

This expression is obtained after bringing the Mandelstam invariants sij with 1 ≤ i < j ≤ r
into an r

2(r−3)-element basis and exposes that the `-dependent terms in the second line
cancel in D = 4 spacetime dimensions. We have verified (3.26) up to and including r = 6
external scalars, and its validity for higher r is conjectural.

In fact, the second line of (3.26) can be identified with a multiple of the scalar forward
limit J tree

YM+φ3(1, 2, . . . , r|+,−; ∅) in (3.25): the latter is symmetric under (+↔ −) including
`→ −`,11 so the two Parke-Taylor factors in the square bracket of (3.26) yield the same

10More specifically, the right-hand sides of (3.25) are attained by rewriting the products
PT(i1, i2, . . . , ip)PT(j1, j2, . . . , jq) entering the expression (2.23) for Jtree

YM+φ3 (i1, i2, . . . , ip|j1, j2, . . . , jq; ∅)
in terms of (p+q)-point Parke-Taylor factors. In doing so through the identities in section 7 of [24],
the cyclic symmetry in i1, i2, . . . , ip and j1, j2, . . . , jq is no longer manifest. Our expression for
Jtree

YM+φ3 (1, 2, . . . , j,+|−, j+1, . . . , n; ∅) in (3.25) is tailored to avoid sj,` involving loop momenta.
11Following our earlier comment, this symmetry is manifest from the left-hand side of (3.25), but it

requires a substantial amount of scattering equations to verify the symmetry on the right-hand side of (3.25).
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J tree
YM+φ3 upon summation over j and Q, i.e.

J tree
YM+φ3(1,2, . . . , r;{+,−}) =−

r−2∑
j=2

[
s12...jPT(1,2, . . . , j,+, j+1, . . . , r,−)+cyc(1,2, . . . , r)

]
+(D−4)J tree

YM+φ3(1,2, . . . , r|+,−;∅) . (3.27)

On these grounds, the λr−2-order of one-loop half integrands (3.13) simplifies to

J1-loop
YM+φ3(1, 2, . . . , n; ∅; `)

∣∣
gnλn−2

= (Nc2 +D − 4)J tree
YM+φ3(1, 2, . . . , n|+,−; ∅)

−
n−2∑
j=2

[
s12...jPT(1, 2, . . . , j,+, j+1, . . . , n,−) + cyc(1, 2, . . . , n)

]
(3.28)

+
n−1∑
j=1

[
J tree

YM+φ3(1, 2, . . . , j,+|−, j+1, . . . , n; ∅) + cyc(1, 2, . . . , n)
]

with the J tree
YM+φ3 on the right-hand side given by (3.25).

Based on (3.25) to (3.28), the λn−2-order of one-loop half integrands (3.13) without
gluon insertions is available in Parke-Taylor form. Generalizations to additional gluons,
traces or to different power counting in g, λ can be obtained by inserting the tree-level
results of [24, 27, 28, 68] into (3.16) to (3.18) and (3.20) to (3.22).

4 YM+φ3 half integrands at one loop: four-point examples

We shall now specialize the general approach of the previous section to four external legs
and spell out all color-ordered one-loop half integrands in YM+φ3 theory, separately at
each order in the couplings g and λ. Each subsection is dedicated to a different combination
of external scalars and gluons.

4.1 No external gluons

We begin with the one-loop four-scalar amplitude in YM+φ3 theory. In this case, we have
a single- and a double trace sector.

4.1.1 Single-trace sector

There are two different orders in the couplings contributing to the single-trace sector by (3.8)

J1-loop
YM+φ3(1, 2, 3, 4; ∅; `) = J1-loop

YM+φ3(1, 2, 3, 4; ∅; `)
∣∣
g4λ4 + J1-loop

YM+φ3(1, 2, 3, 4; ∅; `)
∣∣
g4λ2 . (4.1)

At order g4λ4 the color-ordered half integrand comprises cyclic combinations of PT(+, . . . ,−)
in (3.9) known as one-loop Parke-Taylor factors [37],

J1-loop
YM+φ3(1, 2, 3, 4; ∅; `)

∣∣
g4λ4 = N

[
PT(+, 1, 2, 3, 4,−) + PT(−, 1, 2, 3, 4,+) + cyc(1, 2, 3, 4)

]
.

(4.2)
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Figure 4. The half integrand in (4.3) receives contributions from forward limits in both scalars
(drawn in the left panel) and gluons (drawn in the right panel).

According to (3.11), the half integrand at the subleading order g4λ2 receives contributions
from forward limits in both scalars and gluons,

J1-loop
YM+φ3(1, 2, 3, 4; ∅; `)

∣∣
g4λ2 = Nc2J

tree
YM+φ3(1, 2, 3, 4|+,−; ∅) + J tree

YM+φ3(1, 2, 3, 4; {+,−})

+
[
J tree

YM+φ3(1, 2, 3,+|−, 4; ∅) + J tree
YM+φ3(1, 2,+|−, 3, 4; ∅)

+ J tree
YM+φ3(1,+|−, 2, 3, 4; ∅) + cyc(1, 2, 3, 4)

]
. (4.3)

By the discussion below (3.10), the relative normalization between the forward lim-
its in scalars and gluons is fixed by requiring a quadratic-propagator representation
of A1-loop

EYM,α(1, 2, 3, 4) resulting from (2.39). More specifically, changing the prefactor of
J tree

YM+φ3(1, 2, 3, 4; {+,−}) on the right-hand side of (4.3) would spoil the recombination of
linearized propagators to quadratic ones in four-gluon one-loop EYM amplitudes (for any
amount of supersymmetry α). The two classes of tree-level diagrams associated with the
forward limit in a gluon or scalar are drawn in figure 4 (cf. figure 3).

The tree-level building blocks on the right-hand side of (4.3) are given by the following
specializations of (3.25)12

J tree
YM+φ3(1, 2, 3, 4|+,−; ∅) = s1,`PT(4, 3, 2, 1,−,+) + s3,`PT(4, 1, 2, 3,−,+) (4.4)

− s2,`
[
PT(4, 1, 3, 2,−,+) + PT(4, 3, 1, 2,−,+)

]
J tree

YM+φ3(1, 2, 3,+|−, 4; ∅) = −s14PT(3, 2, 1, 4,−,+)− s34PT(1, 2, 3, 4,−,+) (4.5)
+ s24

[
PT(1, 3, 2, 4,−,+) + PT(3, 1, 2, 4,−,+)

]
J tree

YM+φ3(1, 2,+|−, 3, 4; ∅) = s13PT(2, 1, 3, 4,−,+)− s14PT(2, 1, 4, 3,−,+) (4.6)
− s23PT(1, 2, 3, 4,−,+) + s24PT(1, 2, 4, 3,−,+)

12Note that (4.4) to (4.6) are forward limits of the six-point tree-level identities (74) and (75) of [24]
whose right-hand sides obscure the cyclic symmetries of the double-trace structures. Cyclic permutations in
the underlying tree-level expressions lead to alternative representations of (4.4) to (4.6) which may also alter
the power-counting of loop momenta, see for instance the factor of s4,` in the following equivalent of (4.5):

Jtree
YM+φ3 (1, 2, 3,+|−, 4; ∅) = −s24PT(+, 3, 2, 4,−, 1)− s4,`PT(2, 3,+, 4,−, 1)

+ s34
[
PT(2,+, 3, 4,−, 1) + PT(+, 2, 3, 4,−, 1)

]
.
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and of (3.26),

J tree
YM+φ3(1, 2, 3, 4; {+,−}) = −s12

[
PT(1, 2,+, 3, 4,−) + PT(1, 2,−, 3, 4,+)

]
− s23

[
PT(2, 3,+, 4, 1,−) + PT(2, 3,−, 4, 1,+)

]
+ 4−D

2
{
s1,`PT(1, 2, 3, 4,−,+) + s3,`PT(3, 2, 1, 4,−,+) (4.7)

− s2,`
[
PT(2, 1, 3, 4,−,+) + PT(2, 3, 1, 4,−,+)

]
− (+↔ −)

}
.

Following the general discussion around (3.27), the last two lines of (4.7) are proportional
to (4.4) on the support of scattering equations. Hence, the half integrand (4.3) can be
simplified to

J1-loop
YM+φ3(1,2,3,4;∅;`)

∣∣
g4λ2 = (Nc2+D−4)J tree

YM+φ3(1,2,3,4|+,−;∅) (4.8)

+
[
J tree

YM+φ3(1,2,3,+|−,4;∅)+J tree
YM+φ3(1,2,+|−,3,4;∅)

+J tree
YM+φ3(1,+|−,2,3,4;∅)−s12PT(1,2,+,3,4,−)+cyc(1,2,3,4)

]
,

in lines with (3.28). Finally, with the expressions in (4.5) and (4.6), the last two lines
of (4.8) conspire to a permutation sum of Parke-Taylor factors,

J1-loop
YM+φ3(1, 2, 3, 4; ∅; `)

∣∣
g4λ2 = (Nc2 +D − 4)J tree

YM+φ3(1, 2, 3, 4|+,−; ∅)

+ 2s13
∑
ρ∈S4

PT(+, ρ(1, 2, 3, 4),−) . (4.9)

4.1.2 Double-trace sector

The double-trace sector of the one-loop half integrand with four external scalars is compatible
with three different powers λ4, λ2, λ0, see (3.15),

J1-loop
YM+φ3(1, 2|3, 4; ∅; `) = J1-loop

YM+φ3(1, 2|3, 4; ∅; `)
∣∣
g4λ4 (4.10)

+ J1-loop
YM+φ3(1, 2|3, 4; ∅; `)

∣∣
g4λ2 + J1-loop

YM+φ3(1, 2|3, 4; ∅; `)
∣∣
g4 .

At leading order g4λ4 in the couplings, (3.16) specializes to

J1-loop
φ3 (1, 2|3, 4; ∅; `)

∣∣
g4λ4 = 2

[
PT(1, 2,+, 3, 4,−) + PT(2, 1,+, 3, 4,−) (4.11)

+ PT(1, 2,+, 4, 3,−) + PT(2, 1,+, 4, 3,−)
]
.

Also the subleading order g4λ2 entirely stems from tree-level half integrands with six scalars
(this time distributed over two traces). More specifically, (3.17) with P = ∅ as well as s = 2
and r = 4 yields

J1-loop
YM+φ3(1, 2|3, 4; ∅; `)

∣∣
g4λ2 = 2N

[
J tree

YM+φ3(1, 2,+,−|3, 4; ∅) + J tree
YM+φ3(2, 1,+,−|3, 4; ∅)

+ J tree
YM+φ3(1, 2|3, 4,+,−; ∅) + J tree

YM+φ3(1, 2|4, 3,+,−; ∅)
]
,

(4.12)
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Figure 5. The one-loop half integrand in (4.12) has contributions from forward limits of tree-level
half integrands associated to diagrams with six scalars and a double trace.

+ −

1 2 3 4

+ −

1 2 3 4

Figure 6. The half integrand in (4.14) has contributions from forward limits in both scalars and
gluons. Typical diagrams from J tree

YM+φ3(+, 1|3, 4|2,−; ∅) and J tree
YM+φ3(1, 2|3, 4; {+,−}) are depicted

in the left and right panel, respectively.

where all terms on the right-hand side are permutations of

J tree
YM+φ3(1, 2,+,−|3, 4; ∅) = s24

[
PT(1,+, 2, 4, 3,−) + PT(+, 1, 2, 4, 3,−)

]
(4.13)

− s14PT(+, 2, 1, 4, 3,−)− s4,`PT(1, 2,+, 4, 3,−) .

A typical diagram contributing to the forward limit in (4.12) is depicted in figure 5.
At the lowest order in λ, we also have contributions with gluons in the forward limit

from the second line of (3.18),

J1-loop
YM+φ3(1, 2|3, 4; ∅; `)

∣∣
g4 = Nc2J

tree
YM+φ3(1, 2|3, 4|+,−; ∅) + J tree

YM+φ3(1, 2|3, 4; {+,−})

+ J tree
YM+φ3(+, 1|3, 4|2,−; ∅) + J tree

YM+φ3(+, 2|3, 4|1,−; ∅) (4.14)
+ J tree

YM+φ3(+, 3|1, 2|4,−; ∅) + J tree
YM+φ3(+, 4|1, 2|3,−; ∅) ,

see figure 6 for typical diagrams that contribute. It would be interesting to investigate
multitrace generalizations of (4.8), e.g. whether the expression for J tree

YM+φ3(1, 2|3, 4; {+,−})
simplifies after peeling off (D−4)J tree

YM+φ3(1, 2|3, 4|+,−; ∅).

4.2 One external gluon

For one-loop half integrands of YM + φ3 with three external scalars and one external
gluon p, (3.8) admits two different powers of the coupling λ from the forward limit of trees,

J1-loop
YM+φ3(1, 2, 3; {p}; `) = J1-loop

YM+φ3(1, 2, 3; {p}; `)
∣∣
g4λ3 + J1-loop

YM+φ3(1, 2, 3; {p}; `)
∣∣
g4λ

. (4.15)

Following the lines of [36], at order g4λ3 we use (3.12) to obtain

J1-loop
YM+φ3(1, 2, 3; {p}; `)

∣∣
g4λ3 = N

[
J tree

YM+φ3(+, 1, 2, 3,−; {p}) + J tree
YM+φ3(−, 1, 2, 3,+; {p})

]
+ cyc(1, 2, 3) , (4.16)

where the Parke-Taylor decomposition (3.24) for the J tree
YM+φ3 on the right-hand side yields

J tree
YM+φ3(+, 1, 2, 3,−; {p}) = −(εp · `)PT(+, 1, 2, 3,−, p) + (εp · k1)PT(+, 1, p, 2, 3,−)

+ (εp · k12)PT(+, 1, 2, p, 3,−) . (4.17)
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1 2 p 3

Figure 7. The forward limits contributing to the integrand in (4.16) are performed in scalars as
illustrated in this figure.

+ −

1 p 2 3

+ −

1 2 p 3

Figure 8. The half integrand in (4.18) receives contributions from forward limits in both scalars
(left panel) and gluons (right panel).

A typical diagram at the order of g4λ3 is depicted in figure 7.
The half integrand at the order of g4λ receives contributions from forward limits in both

scalars and gluons (see figure 8 for typical diagrams in both cases), and (3.13) specializes to

J1-loop
YM+φ3(1, 2, 3; {p}; `)

∣∣
g4λ

= J tree
YM+φ3(1, 2, 3; {p,+,−}) +Nc2 J

tree
YM+φ3(1, 2, 3|+,−; {p})

+
[
J tree

YM+φ3(1, 2,+|−, 3; {p}) + J tree
YM+φ3(1,+|−, 2, 3; {p}) + cyc(1, 2, 3)

]
. (4.18)

The tree-level half integrands on the right-hand side have both been brought into Parke-
Taylor form in sections 5 and 8 of [24].

4.3 Two external gluons

Also for two external scalars and two external gluons p, q, one-loop half integrands of
YM + φ3 exhibit two different powers of the coupling λ from the forward limit of trees,

J1-loop
YM+φ3(1, 2; {p, q}; `) = J1-loop

YM+φ3(1, 2; {p, q}; `)
∣∣
g4λ2 + J1-loop

YM+φ3(1, 2; {p, q}; `)
∣∣
g4 . (4.19)

As in the previous case, at the leading order in λ we use (3.12) to obtain

J1-loop
YM+φ3(1, 2; {p, q}; `)

∣∣
g4λ2 = 2N

[
J tree

YM+φ3(1, 2,+,−; {p, q}) + J tree
YM+φ3(2, 1,+,−; {p, q})

]
,

(4.20)

see figure 9 for typical diagrams that contribute. The J tree
YM+φ3 on the right-hand side are of

the following form,

J tree
YM+φ3(2, 1,+,−; {p, q}) = PT(1, 2, p, q,−,+)

(
(εp · `12)(εq · `)− 1

2(εp · εq)(sp,` − spq)
)

+ PT(1, p, 2, q,−,+)
(
(εp · `1)(εq · `)− 1

2(εp · εq)(s1p + sp,`)
)

+ PT(1, p, q, 2,−,+)
(
(εp · `1)(εq · `1p)− 1

2(εp · εq)(s1p + sp,`)
)

+ PT(p, 1, 2, q,−,+)
(
(εp · `)(εq · `)− 1

2(εp · εq)sp,`
)

+ PT(p, 1, q, 2,−,+)
(
(εp · `)(εq · `1p)− 1

2(εp · εq)sp,`
)

+ PT(p, q, 1, 2,−,+)
(
(εp · `)(εq · `p)− 1

2(εp · εq)sp,`
)

+ (p↔ q) , (4.21)
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1 p q 2

Figure 9. The forward limits contributing to the integrand in (4.20) are performed in scalars of
tree-level half integrands with two gluons and four scalars.

+ −

1 p q 2

+ −

p 1 2 q

Figure 10. Forward limits in gluons and scalars that contribute to the half integrand (4.22) are
illustrated in the left and right panel, respectively.

+ −

p q r t

+ −

p q r t

Figure 11. The four-gluon one-loop half integrand has a contribution with a scalar loop (left panel)
and a gluon loop (right panel).

which is equivalent to the n = 2 instance of (28) in [36].
At the subleading order in λ, (3.13) specializes to

J1-loop
YM+φ3(1, 2; {p, q}; `)

∣∣
g4 = J tree

YM+φ3(1, 2; {p, q,+,−}) +Nc2J
tree
YM+φ3(1, 2|+,−; {p, q})

+ J tree
YM+φ3(1,+|2,−; {p, q}) + J tree

YM+φ3(2,+|1,−; {p, q}) ,
(4.22)

and typical diagrams associated with the gluonic and scalar forward limit are depicted in
figure 10.

4.4 Four external gluons

In case of four external gluons p, q, r, t, half integrands of YM+φ3 only receive contributions
at the order of g4 according to (3.14). This time, scalars and gluons in the loop occur at
the same powers in the couplings,

J1-loop
YM+φ3({p, q, r, t}; `) = Nc2 J

tree
YM+φ3(+,−; {p, q, r, t}) + J tree

YM (∅; {p, q, r, t,+,−}) ,
(4.23)

but with an extra factor of Nc2 in case of the scalars in the loop. The master numerators
in the Parke-Taylor decomposition of Nc2 J

tree
YM+φ3(+,−; {p, q, r, t}) can be found in the

supplementary material attached to this paper. The master numerators associated with
J tree

YM (∅; {p, q, r, t,+,−}) in turn are described in section 3 of [44]. The associated master
diagrams are depicted in figure 11.
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5 Four-point EYM amplitudes at one loop with maximal supersymmetry

In this and the following section, we apply the method of this work to obtain expressions for
one-loop integrands of four-point amplitudes in EYM theories that expose the simplifications
due to supersymmetry. The calculations are driven by the results of section 4 for the
four-point one-loop half integrands of YM+φ3 which apply to EYM with any number of
supercharges. We perform separate calculations for the color-ordered EYM amplitudes (2.39)
at different orders in the couplings g and κ which are related to the orders of the couplings
g and λ of YM+φ3 via (2.9), see table 1.

Following the last line of (2.39), we first obtain the loop integrands of EYM in terms of
one-loop half integrands of YM+φ3 on the nodal Riemann sphere and partial integrands
a(. . .) in YM theory. While the partial integrands are defined in terms of linearized propaga-
tors, we combine different terms in the permutation sum of (2.39) to attain the conventional
form of Feynman integrals with quadratic propagators. The maximal supersymmetry of
the partial integrands in this section leads to extra simplifications in comparison to the
half-maximally supersymmetric case in section 6.

The recombination of the loop integrands in (2.39) to quadratic propagators is a first
consistency check of our method and the expressions for the half integrands J1-loop

YM+φ3 in the
previous section. Moreover, we have verified all EYM amplitudes with external gravitons to
respect linearized diffeomorphism invariance. This is non-trivial for the polarization vectors
from J1-loop

YM+φ3 that we denote by ε̄i (in contradistinction to the polarizations εi of the YM
half integrands). All the explicit results for four-point EYM amplitudes in this section are
checked to vanish under the linearized gauge transformation ε̄p → p that double copies to
linearized diffeomorphisms.

The results of this section exemplify that the no-triangle property [70] of maximally
supersymmetric YM and supergravity does not apply to EYM with 16 supercharges. In spite
of their maximal supersymmetry, the one-loop integrands of EYM amplitudes in (5.7), (5.9)
and later equations feature triangle and bubble diagrams.13 The loop integrands presented
in this section can also be found in the supplementary material attached to this paper.

5.1 Partial integrands with maximal supersymmetry

Maximally supersymmetric EYM theory has 16 supercharges and can be defined in spacetime
dimensions D ≤ 10. Its four-dimensional incarnation is said to have N = 4 supersymmetry.
In the CHY construction of EYM one-loop amplitudes, all the supersymmetries arise from
the YM half integrand which takes the simple form (2.29) at four points. The simplicity of
the underlying correlation function on a torus was first revealed in [65], and the associated

13We refrain from re-interpreting diagrams by introducing spurious propagators 1 = (`+K)2

(`+K)2 (as one may
need to manifest the color-kinematics duality in the results of this section). For instance, the triangle with
propagators 1

`2`2
1`

2
12

= `2
123

`2`2
1`

2
12`

2
123

is not counted as a box with the inverse propagator `2
123 in the numerator.
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partial integrands in terms of linearized propagators are given by [36]14

a1-loop
YM,max(1, 2, 3, 4,−,+) = t8(1, 2, 3, 4)

s1,`s12,`s123,`

a1-loop
YM,max(1, 2, 3,−, 4,+) = t8(1, 2, 3, 4)

s1,`s12,`s4,`
+ t8(1, 2, 3, 4)
s1,`s12,`s3,`

+ t8(1, 2, 3, 4)
s1,`s14,`s3,`

+ t8(1, 2, 3, 4)
s4,`s14,`s3,`

a1-loop
YM,max(1, 2,−, 3, 4,+) = t8(1, 2, 3, 4)

s1,`s12,`s124,`
+ t8(1, 2, 3, 4)
s1,`s14,`s124,`

+ t8(1, 2, 3, 4)
s4,`s14,`s124,`

+ t8(1, 2, 3, 4)
s4,`s34,`s134,`

+ t8(1, 2, 3, 4)
s1,`s14,`s134,`

+ t8(1, 2, 3, 4)
s4,`s14,`s134,`

. (5.1)

The t8-tensor defined in (2.30) prescribes a dimension-agnostic contraction of D-dimensional
polarization vectors and momenta. Given that also the YM+φ3 ingredients of the previous
sections are dimension agnostic, the results of this section apply to any dimensional reduction
of ten-dimensional EYM with maximal supersymmetry to D ≤ 10.

5.2 No external gravitons

The amplitude with four external gluons has a single- and a double-trace sector.

5.2.1 Single-trace sector

By the two contributions (4.1) to the YM+φ3 half integrand, there are two different
combinations of couplings in the single-trace sector,

A1-loop
EYM,max(1, 2, 3, 4; ∅) = A1-loop

EYM,max(1, 2, 3, 4; ∅)
∣∣
g4 +A1-loop

EYM,max(1, 2, 3, 4; ∅)
∣∣
κ2g2 . (5.2)

The first term describing a four-gluon amplitude with the maximally supersymmetric gauge
multiplet in the loop coincides with the one-loop amplitude in SYM [65] (g4 does not
leave any room for gravitational exchange). The YM+φ3 half integrand is the one-loop
Parke-Taylor factor given in (4.2). In combination with the partial integrands (5.1), we find

A1-loop
EYM,max(1,2,3,4;∅)

∣∣
g4 =A1-loop

YM,max(1,2,3,4)

=N

∫
dD`
`2

lim
k±→±`

∫
dµtree

6 I1-loop
YM,max({1,2,3,4};`)

×
[
PT(+,1,2,3,4,−)+PT(−,1,2,3,4,+)+cyc(1,2,3,4)

]
=N t8(1,2,3,4)

∫
dD`
`2

((
1

s1,`s12,`s123,`
+ 1
s1,`s14,`s143,`

)
+cyc(1,2,3,4)

)
= 8N t8(1,2,3,4)

∫
dD`
`2

(
1

`21`
2
12`

2
123

+ 1
`21`

2
14`

2
143

)
= 16N t8(1,2,3,4)

∫
dD`

`2`21`
2
12`

2
123

, (5.3)

where we used (2.35) to obtain the quadratic propagators `−2
12...p = (`+k12...p)−2. The

last step is based on the reflection property k2 ↔ k4 of the scalar box with propagators
`−2`−2

1 `−2
12 `
−2
123.

14Actually, only the first line of (5.1) is independent under the Kleiss-Kuijf relations while the second and the
last two lines can be obtained from −a1-loop

YM,max((4�1, 2, 3),−,+) and a1-loop
YM,max((1, 2�4, 3),−,+), respectively.
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Figure 12. At order κ2g2 the four-gluon EYM amplitude at one loop has a single- and a double-trace
sector. The single-trace sector in (5.4) is exclusively furnished by the box diagrams in the left
panel with one propagator of the gravity multiplet (double wavy line). The tree diagrams in its
partial-fraction decomposition correspond to forward limits in different particles, see figure 4 for their
YM+φ3 analogue. The double-trace sector in (5.7) of the maximally supersymmetric four-gluon
amplitude is built from the triangle diagrams in the right panel. All graphs in this figure and later
ones do not represent Feynman diagrams but instead illustrate the propagator structure of the
maximally supersymmetric loop integrands.

At order κ2g2, the relevant half integrand is given by (4.9) and leads to the following
single-trace contribution to the four-gluon amplitude in EYM theory:

A1-loop
EYM,max(1, 2, 3, 4; ∅)

∣∣
κ2g2 (5.4)

= 1
16

∫ dD`
`2

lim
k±→±`

∫
dµtree

6 I1-loop
YM,max({1, 2, 3, 4}; `)J1-loop

YM+φ3(1, 2, 3, 4; ∅; `)
∣∣
g4λ2

= s13 t8(1, 2, 3, 4)
∫ dD`

`2

[ 1
`21`

2
12`

2
123

+ perm(2, 3, 4)
]

= 2s13 t8(1, 2, 3, 4)
∫ dD`

`2

[ 1
`21`

2
12`

2
123

+ cyc(2, 3, 4)
]

As illustrated in figure 12, the result stems from box graphs with a graviton propagator,
and the Mandelstam invariant s13 can be attributed to its two gravitational vertices ∼ κ2.
Note that the κ2g2 order does not share the prefactor of N in the g4 order in (5.3), and the
first line ∼ (Nc2+D−4) of the half integrand (4.9) does not contribute in the maximally
supersymmetric case.

By the permutation-symmetric combination of boxes in (5.4) and s13 + cyc(1, 2, 3) = 0,
our result obeys Kleiss-Kuijf relations A1-loop

EYM,max(1, 2, 3, 4; ∅)
∣∣
κ2g2 + cyc(1, 2, 3) = 0. This

ensures that the accompanying color factors combine to permutations of contracted structure
constants f̂A1A2B f̂BA3A4 as expected from the left panel of figure 12.

5.2.2 Double-trace sector

Based on the half integrand (4.10) of YM+φ3, the double-trace sector of the four-gluon
amplitude can come with three different powers of the couplings

A1-loop
EYM,max(1, 2|3, 4; ∅) = A1-loop

YM,max(1, 2|3, 4; ∅)
∣∣
g4 (5.5)

+A1-loop
EYM,max(1, 2|3, 4; ∅)

∣∣
κ2g2 +A1-loop

EYM,max(1, 2|3, 4; ∅)
∣∣
κ4 .
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At order g4, we recover the double-trace amplitude of SYM which is determined by the half
integrand in (4.11)

A1-loop
YM,max(1, 2|3, 4; ∅)

∣∣
g4 = 32 t8(1, 2, 3, 4)

∫ dD`
`2

( 1
`21`

2
12`

2
123

+ cyc(2, 3, 4)
)
. (5.6)

Since this is proportional to a permutation sum of the single-trace amplitude (5.3), we can
verify the relation of [70] between planar and non-planar one-loop gauge-theory amplitudes
which only holds for the κ→ 0 limit of EYM amplitudes.

At the order of κ2g2 in the double-trace sector, the net effect of the gravitational
vertices is to cancel one of the propagators of the box diagrams: the YM+φ3 half integrand
constructed in (4.12) leads to triangle diagrams

A1-loop
EYM,max(1, 2|3, 4; ∅)

∣∣
κ2g2

= 1
16

∫ dD`
`2

lim
k±→±`

∫
dµtree

6 I1-loop
YM,max({1, 2, 3, 4}; `)J1-loop

YM+φ3(1, 2|3, 4; ∅; `)
∣∣
g4λ2

= −N2 t8(1, 2, 3, 4)
∫ dD`

`2

[( 1
`21`

2
12

+ (1↔ 2)
)

+ (1, 2↔ 3, 4)
]

(5.7)

= −2N t8(1, 2, 3, 4)
∫ dD`
`2`21`

2
12
.

These triangular contributions are illustrated diagrammatically in the right panel of figure 12.
The recombination in terms of quadratic propagators is based on the identity

4
∫ dD`

`2
f(`)
`2P `

2
PQ

=
∫ dD`

`2

[
f(`)

sP,`sPQ,`
+ f(`− kP )
sQ,`sQR,`

+ f(`− kP − kQ)
sR,`sRP,`

]
(5.8)

for multiparticle momenta subject to kP + kQ + kR = 0 which can be derived from partial-
fraction identities and shifts of the loop momenta similar to those employed to obtain (2.35).
In passing to the last line of (5.7), we have used elementary properties of the scalar triangle
integrals which allow to identify the four terms in the square bracket of the third line.

The triangles in (5.7) are the first example where one-loop EYM amplitudes with
16 supercharges violate the no-triangle property of maximally supersymmetric YM and
supergravity [70]. As we will see in (5.9) and below, generic one-loop integrands of maximally
supersymmetric EYM additionally involve bubble diagrams which go even further beyond
the no-triangle property.

At order κ4 we use the YM+φ3 half integrand constructed in (4.14) to obtain:

A1-loop
EYM,max(1,2|3,4;∅)

∣∣
κ4

= 1
256

∫ dD`
`2

lim
k±→±`

∫
dµtree

6 I1-loop
YM,max({1,2,3,4};`)J1-loop

YM+φ3(1,2|3,4;∅;`)
∣∣
g4 (5.9)

= t8(1,2,3,4)
256

∫ dD`
`2

{[
8s2

14
`21`

2
12`

2
123

+ 4s12
`21`

2
12

+ 4s12
`23`

2
34

+ (D−3+Nc2)
2`212

+(3↔ 4)
]

+(1↔ 2)
}

= t8(1,2,3,4)
16

∫ dD`
`2

{
s2

14
`21`

2
12`

2
123

+ s2
13

`21`
2
12`

2
124

+ 2s12
`21`

2
12

+ (D−3+Nc2)
8`212

}
.
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Figure 13. The expression (5.9) for the κ4 order of the four-gluon EYM amplitude at one loop
mixes box integrals with triangles and bubbles.

In addition to the partial-fraction manipulations (2.35) and (5.8) we use the identity

2
∫ dD`

`2
1
`2P

=
∫ dD`

`2

[
1
sP,`

+ 1
sQ,`

]
(5.10)

for multiparticle momenta kP + kQ = 0 to obtain the quadratic propagators of the bubble
integral in (5.9). Again, we have used relabelling symmetries of the boxes, triangles and
bubbles in passing to the last line of (5.9). The contributions to the one-loop amplitude
with four external gluons at the κ4 order are depicted diagrammatically in figure 13.

5.3 One external graviton

The structure of the YM+φ3 half integrand in (4.15) admits two contributions to the EYM
four-point amplitude with one external graviton and three gluons,

A1-loop
EYM,max(1, 2, 3; {p}) = A1-loop

EYM,max(1, 2, 3; {p})
∣∣
κg3 +A1-loop

EYM,max(1, 2, 3; {p})
∣∣
κ3g

. (5.11)

At order κg3, the YM+φ3 half integrand in (4.16) leads to

A1-loop
EYM,max(1, 2, 3; {p})

∣∣
κg3 (5.12)

= 1
4

∫ dD`
`2

lim
k±→±`

∫
dµtree

6 I1-loop
YM,max({1, 2, 3, p}; `)J1-loop

YM+φ3(1, 2, 3; {p}; `)
∣∣
g4λ3

= 4N t8(1, 2, 3, p)
∫ dD`

`2

[ (ε̄p · `)
`21`

2
12`

2
123

+ cyc(1, 2, 3)
]
.

As already derived in [36], maximal supersymmetry leads to a cyclic orbit of box integrals
as depicted in figure 14. The recombination to quadratic propagators is done by supple-
menting (2.35) with a shift `→ `− k12...i of the loop momentum in the numerator in the
ith term of the second line. Linearized gauge invariance of (5.12) can be shown via shifts of
loop momenta in the cyclic orbit of

δε̄p→p

( 2(ε̄p · `)
`2`21`

2
12`

2
123

)
= `2 − `2123
`2`21`

2
12`

2
123

= 1
`21`

2
12`

2
123
− 1
`2`21`

2
12
. (5.13)
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Figure 14. The box graphs in the three-gluon amplitude at order κg3 given by (5.12).
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Figure 15. The box graphs in the three-gluon amplitude at order κ3g given by (5.14).

For the order κ3g we use the half integrand (4.18) to get,

A1-loop
EYM,max(1, 2, 3; {p})

∣∣
κ3g

(5.14)

= 1
64

∫ dD`
`2

lim
k±→±`

∫
dµtree

6 I1-loop
YM,max({1, 2, 3, p}; `)J1-loop

YM+φ3(1, 2, 3; {p}; `)
∣∣
g4λ

= 1
4 t8(1, 2, 3, p)

(
k1 · f̄p · k2

) ∫ dD`
`2

[ 1
`21`

2
12`

2
123

+ cyc(1, 2, 3)
]
,

where we introduce the linearized field strength in (2.30) to manifest gauge invariance of

k1 · f̄p · k2 = s1p(ε̄p · k2)− s2p(ε̄p · k1) . (5.15)

The configurations of vertices ∼ κ3g in the box diagrams of (5.14) are depicted in fig-
ure 15. Moreover, the kinematic factor (5.15) manifests the permutation antisymmetry of
A1-loop

EYM,max(1, 2, 3; {p})
∣∣
κ3g

in 1, 2, 3, consistent with the color structure f̂A1A2A3 expected by
the figure.

5.4 Two external gravitons

With two external gravitons, the YM+φ3 half integrand (4.19) introduces the following
coupling dependence:

A1-loop
EYM,max(1, 2; {p, q}) = A1-loop

EYM,max(1, 2; {p, q})
∣∣
κ2g2 +A1-loop

EYM,max(1, 2; {p, q})
∣∣
κ4 (5.16)
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Figure 16. The κ2g2 order of the two-gluon-two-graviton amplitude in (5.17) is given by the
depicted boxes and triangles.

Using the YM+φ3 half integrand (4.20) we obtain the following combination of boxes and
triangles at order κ2g2, see figure 16 for an illustration of both contributions.

A1-loop
EYM,max(1, 2; {p, q})

∣∣
κ2g2 (5.17)

= 1
8

∫ dD`
`2

lim
k±→±`

∫
dµtree

6 I1-loop
YM,max({1, 2, p, q}; `)J1-loop

YM+φ3(1, 2; {p, q}; `)
∣∣
g4λ2

= 2N t8(1, 2, p, q)
∫ dD`

`2

{[((ε̄p · `)(ε̄q · `)
`2p`

2
p1`

2
p12

+ (ε̄p · (`+ k1))(ε̄q · `)
2 `21`21p`21p2

− (ε̄p · ε̄q)
4 `21`212

)
+ (p↔ q)

]
+ (1↔ 2)

}
.

For the order κ4 contribution we use (4.22) to get

A1-loop
EYM,max(1, 2; {p, q})

∣∣
κ4 (5.18)

=
∫ dD`

`2
lim

k±→±`

∫
dµtree

6 I1-loop
YM,max({1, 2, p, q}; `)J1-loop

YM+φ3(1, 2; {p, q}; `)
∣∣
g4

= 1
256 t8(1, 2, p, q)

∫ dD`
`2

{[[
(Nc2+D−3)

(
1
2

(ε̄p · ε̄q)
`2pq

− 2(ε̄p · `)(ε̄q · `p)
`2p`

2
pq

)

+ 4s12(ε̄p · ε̄q)
`21`

2
12

+ 4s12(ε̄p · ε̄q) + 4(ε̄p · q)(ε̄q · p)
`2p`

2
pq

− 8s12
2(ε̄p · `1)(ε̄q · `) + (ε̄p · `1)(ε̄q · k1) + (ε̄p · k2)(ε̄q · `)

`21`
2
12`

2
12p

+ 8s1q
(ε̄p · ε̄q)s1q + (ε̄p · `)(ε̄q · p) + (ε̄p · k2)(ε̄q · k1)− (ε̄p · q)(ε̄q · `)− (ε̄p · k1)(ε̄q · k2)

`21`
2
12`

2
12p

− 4s12
2(ε̄p · `1)(ε̄q · `) + (ε̄p · `1)(ε̄q · k1) + (ε̄p · k2)(ε̄q · `)

`21`
2
1p`

2
1p2

+ 4s1q
(ε̄p · `)(ε̄q · p) + (ε̄p · q)(ε̄q · `) + (ε̄p · k1)(ε̄q · p)

`21`
2
1p`

2
1p2

]
+ (1↔ 2)

]
+ (p↔ q)

}
.

The contributing diagrams are illustrated in figure 17. For both of (5.17) and (5.18), we
have verified gauge invariance in both ε̄p and ε̄q.
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Figure 17. At the κ4 order of the two-gluon and two-graviton amplitude of EYM, various boxes,
triangles and bubbles contribute to the integrand (5.18).

5.5 Four external gravitons

Finally, the entire one-loop four-graviton amplitude is proportional to κ4, but it can be
organized into contributions from gauge and gravity multiplets in the loop,

A1-loop
EYM,max({p, q, r, t}) = A1-loop

EYM,max({p, q, r, t})
∣∣
κ4 (5.19)

= A1-loop
EYM,max({p, q, r, t})

∣∣
graviton loop +A1-loop

EYM,max({p, q, r, t})
∣∣
gluon loop ,

see (4.23) for the analogous organization of the YM+φ3 half integrand. The contri-
bution to (5.19) from a gluon loop follows from inserting the Parke-Taylor form of
J tree

YM+φ3(+,−; {p, q, r, t}) in the supplementary material attached to this paper into (2.39):

A1-loop
EYM,max({p,q,r, t})

∣∣
gluon loop (5.20)

= 1
256

∫ dD`
`2

lim
k±→±`

∫
dµtree

6 I1-loop
YM,max({p,q,r, t};`)Nc2J

tree
YM+φ3(+,−;{p,q,r, t}) =
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Figure 18. The contribution (5.19) of a gauge-multiplet loop to the four-graviton amplitude
contains box, triangle and bubble graphs.

= Nc2
64 t8(p,q,r, t)

∫ dD`
`2

{1
2

((ε̄p ·ε̄q)(ε̄r ·ε̄t)
`2pq

+ (ε̄p ·ε̄r)(ε̄q ·ε̄t)
`2pr

+ (ε̄p ·ε̄t)(ε̄q ·ε̄r)
`2pt

)

+
([

2(ε̄p ·`)(ε̄q ·`p)(ε̄r ·`pq)(ε̄t ·`)
`2p`

2
pq`

2
pqr

−(ε̄p ·ε̄q)
((ε̄r ·`)(ε̄t ·`r)

`2r`
2
tr

+ (ε̄r ·`t)(ε̄t ·`)
`2t `

2
tr

)]

+perm(p,q,r, t)
)}

.

The different diagrams with a gluon loop are depicted in figure 18, and their interplay gives
rise to a gauge-invariant amplitude under ε̄p → p.

One can similarly obtain the contributions from a graviton in the loop via

A1-loop
EYM,max({p, q, r, t})

∣∣
graviton loop (5.21)

= 1
256

∫ dD`
`2

lim
k±→±`

∫
dµtree

6 I1-loop
YM,max({p, q, r, t}; `) J tree

YM+φ3(∅; {p, q, r, t,+,−}) ,

where the master-numerator decomposition of J tree
YM+φ3(∅; {p, q, r, t,+,−}) — the forward

limit of a six-point Pfaffian (2.15) — can be found in section 3 of [44].

6 Four-point one-loop EYM amplitudes with half-maximal
supersymmetry

In this section, we investigate four-point one-loop amplitudes in EYM theory with half-
maximal supersymmetry, i.e. 8 supercharges instead of 16. This kind of half-maximal
supersymmetry can be realized in spacetime dimensions D ≤ 6 and is referred to as N = 2
supersymmetry in four dimensions. Our procedure to construct the loop integrands of EYM
is very similar to the one presented for the maximally supersymmetric case in section 5:
we start by introducing half integrands I1-loop

YM, 1
2−max tailored to a chiral hypermultiplet in

the loop15 and spell out the associated half-maximally supersymmetric partial integrands
of YM. Based on the CHY formula (2.39), one-loop amplitudes of EYM are constructed
from the double copy of these YM partial integrands with the YM+φ3 building blocks of

15Maximally supersymmetric gauge multiplets can be decomposed into a vector multiplet of half-maximal
supersymmetry (one vector and two Weyl fermions in six dimensions) and two hypermultiplets (two scalars
and a single Weyl fermion in six dimensions). Accordingly, one can extract the contribution of a vector
multiplet in the loop from the linear combinations (6.4).
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sections 3 and 4. In all cases, we convert the linearized propagators in the loop integrand
of (2.39) to conventional quadratic ones.

All supercharges in our EYM results are from the half-maximally supersymmetric
YM theory which is double-copied with the universal, non-supersymmetric YM+φ3 theory.
By double copy of the hypermultiplets of YM with the scalars and gluons of YM+φ3,
the internal states for the EYM results in this section are hypermultiplets in the adjoint
representation of U(N) and gravitino supermultiplets. In six dimensions, the gravitino
multiplet has 8 bosonic and 8 fermionic on-shell degrees of freedom from the double copy
of a hypermultiplet with the 4 physical polarizations of a D = 6 gluon. The contributions
to the EYM loop integrand from adjoint vector multiplets and graviton multiplets with 8
supercharges each can be reconstructed from combining the results of this section with the
maximally supersymmetric loop integrands of section 5.

Massless gravitino multiplets generically conflict with local supersymmetry unless they
are embedded into a larger gravity multiplet or rendered massive via compactification, see
for instance [71] or section 2.6 of [4]. Hence, one can view the expressions of this section
for gravitino multiplets in the loop as formal building blocks that compactly encode the
difference between supergravity multiplets with 16 or 8 supercharges in the loop.

The half-maximally supersymmetric EYM amplitudes in this section are once more
expressed in terms of dimension-agnostic gluon polarization vectors. Hence, the loop
integrands in this section apply to both the maximal dimension D = 6 for 8 supercharges
and dimensional reductions thereof. We also track parity-odd contributions from the chiral
fermions in the loop in terms of the six-dimensional Levi-Civita tensor. The running of
chiral fermions in fact leads to gauge and diffeomorphism anomalies in some of the four-point
amplitudes. We perform the loop integrals for these six-dimensional anomalies and obtain
rational functions of the momenta as expected.

The reduction from 16 to 8 supercharges leads to longer expressions for the EYM loop
integrands in this section as compared to those in section 5. Hence, we only present a subset
of the possible four-point amplitudes with external gluons or gravitons in the main text
and relegate some cases (or certain orders in g, κ) to the supplementary material attached
to this paper.

6.1 Partial integrands with half-maximal supersymmetry

The four-point one-loop half integrand of YM with half-maximal supersymmetry will again
be used in Parke-Taylor form [43]

I1-loop
YM, 1

2−max({1̂,2,3,4};`)

= 1
2
∑
ρ∈S4

PT(+,ρ(1,2,3,4),−) (6.1)

×
{
`µ`νC

µν
1|2,3,4+`µ

[
sgnρ23s23C

µ
1|23,4+sgnρ24s24C

µ
1|24,3+sgnρ34s34C

µ
1|34,2

]}
,
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where the coefficients depend on the permutation ρ in the Parke-Taylor ordering via

sgnρij =
{

+1 : i is on the right of j in ρ(1, 2, 3, 4)
−1 : i is on the left of j in ρ(1, 2, 3, 4) . (6.2)

The vectorial and tensorial kinematic factors Cµ1|23,4 and Cµν1|2,3,4 introduced in [72, 73] are
multilinear in D-dimensional gluon polarization vectors, see appendix B for a brief review.
In contrast to the scalar t8(1, 2, 3, 4) that we encountered in the maximally supersymmetric
case, they are not permutation invariant and obey

Cµν1|2,3,4 = Cµν1|3,2,4 = Cµν1|2,4,3 , Cµ1|23,4 = −Cµ1|32,4 (6.3)

as well as more complicated identities under exchange of leg 1 in front of the vertical bar [73]
and contractions with external momenta, see for instance (6.13). Moreover, they exhibit
simple poles in sij from their expansion in terms of polarization vectors and momenta in
the supplementary material attached to this paper.

The analogous half integrand associated with a half-maximally supersymmetric vector
multiplet in the loop (instead of a hypermultiplet) is a linear combination of (6.1) with the
maximally supersymmetric one (2.29) [39, 43]

I1-loop
YM, 1

2−max({1̂, 2, 3, 4}; `)
∣∣
vector = I1-loop

YM,max({1, 2, 3, 4}; `)− 2I1-loop
YM, 1

2−max({1̂, 2, 3, 4}; `) .
(6.4)

Their relative coefficients follow from the fact that the maximally supersymmetric gauge
multiplet with 8 + 8 on-shell degrees of freedom decomposes into one vector multiplet and
two hypermultiplets associated with 8 supercharges.

6.1.1 Singling out an anomaly leg

While the vector Cµ1|23,4 is gauge invariant with respect to εµj → kµj ∀ j = 1, 2, 3, 4, the
parity-odd part of the tensor Cµν1|2,3,4 has an anomalous gauge variation in the first leg,

δε1→k1C
µν
1|2,3,4 = 2iηµνε6(k2, ε2, k3, ε3, k4, ε4) , δεj→kjC

µν
1|2,3,4 = 0 for j = 2, 3, 4 , (6.5)

where ε6 is the six-dimensional Levi-Civita tensor contracting the six vectors in the brackets.
By the asymmetric gauge variation (6.5) of the tensor, the half integrand (6.1) is gauge

invariant in external legs 2, 3, 4 but anomalous in the first leg [43, 45]

δε1→k1I
1-loop
YM, 1

2−max({1̂, 2, 3, 4}; `) = i`2ε6(k2, ε2, k3, ε3, k4, ε4)
∑
ρ∈S4

PT(+, ρ(1, 2, 3, 4),−) .

(6.6)

The hat above leg 1 in the notation on the left-hand side of (6.1) keeps track of the external
leg that carries the anomaly. While generic kinematic half integrand I1-loop

YM,α in (2.39) are

– 38 –



J
H
E
P
0
2
(
2
0
2
3
)
1
2
2

supposed to be permutation symmetric, the anomaly introduces a mild asymmetry [43, 45]16

I1-loop
YM, 1

2−max({1̂, 2, 3, 4}; `)− I1-loop
YM, 1

2−max({2̂, 1, 3, 4}; `) (6.7)

= −i`2ε6(ε1, ε2, k3, ε3, k4, ε4)
∑
ρ∈S4

PT(+, ρ(1, 2, 3, 4),−)

while maintaining permutation invariance in the unhatted legs 2, 3, 4 in (6.1). As we will see
in section 6.5, the factor of `2 in the asymmetry (6.7) and the anomalous gauge variation
δε1→k1 of (6.1) implies that all the Feynman integrals obtained from integration over the
σj evaluate to rational functions of the momenta, i.e. no logarithms in the Mandelstam
invariants.

6.1.2 Partial integrands

A Kleiss-Kuijf basis of partial integrands (2.38) for an internal hypermultiplet resulting
from (6.1) can be assembled from permutations in {2, 3, 4} of

a1-loop
YM, 1

2−max(1̂, 2, 3, 4,−,+) =
`µC

µ
1|23,4

s1,`s4,`
−
`µC

µ
1|34,2

s1,`s12,`
(6.8)

−
`µ`νC

µν
1|2,3,4 − (`µCµ1|24,3s24 + `µC

µ
1|23,4s23 + `µC

µ
1|34,2s34)

2s1,`s4,`s12,`

a1-loop
YM, 1

2−max(4, 1̂, 2, 3,−,+) = −
`µC

µ
1|23,4

s4,`s14,`
(6.9)

−
`µ`νC

µν
1|2,3,4 + `µC

µ
1|24,3s24 − `µCµ1|23,4s23 + `µC

µ
1|34,2s34

2s4,`s3,`s14,`

a1-loop
YM, 1

2−max(3, 4, 1̂, 2,−,+) = −
`µC

µ
1|34,2

s2,`s34,`
(6.10)

−
`µ`νC

µν
1|2,3,4 + `µC

µ
1|24,3s24 + `µC

µ
1|23,4s23 − `µCµ1|34,2s34

2s2,`s3,`s34,`

a1-loop
YM, 1

2−max(2, 3, 4, 1̂,−,+) =
`µC

µ
1|34,2

s1,`s2,`
−
`µC

µ
1|23,4

s1,`s23,`
(6.11)

−
`µ`νC

µν
1|2,3,4 − (`µCµ1|24,3s24 + `µC

µ
1|23,4s23 + `µC

µ
1|34,2s34)

2s1,`s2,`s23,`
.

Vector multiplets in the loop can be accommodated by taking linear combinations with the
maximally supersymmetric partial integrands in (5.1) according to (6.4). In (6.8) to (6.11)
and similar equations below, the hat indicates the leg that carries the anomaly i.e. singles
out the variant of the underlying half integrand (6.1).

16The asymmetry of the half integrand can be traced back to the assignment of superghost pictures to
the vertex operators of the RNS ambitwistor string [62] that determine I1-loop

YM,α through their genus-one
correlators. More precisely, the prescription for the parity-odd part of genus-one amplitudes in the reference
requires one of the vertex operators to appear in the superghost picture −1. In contrast to the remaining
vertex operators in the zero picture, the gauge variation in the −1 picture yields a derivative in moduli
space and ultimately leads to the factor of `2 in (6.7).
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6.1.3 The anomalous kinematic factor P1|2|3,4

As we will see below in (6.16) and (6.17), we will also encounter scalar kinematic factors
P1|a|b,c = P1|a|c,b introduced in [72, 73],

s12P1|2|3,4 = 1
4
[
tr(f1f3)tr(f2f4) + tr(f1f4)tr(f2f3)− tr(f1f2)tr(f3f4)

]
− tr(f1f3f2f4)

+ i
[
(ε1 · k2)ε6(k2, ε2, k3, ε3, k4, ε4) + (1↔ 2)

]
− is12ε6(ε1, ε2, k3, ε3, k4, ε4) ,

(6.12)

where the traces refer to the Lorentz indices of the linearized field strengths, e.g. tr(f1f2) =
(f1)µν(f2)νµ. They are symmetric in the last two legs, P1|2|3,4 = P1|2|4,3, and related to the
vectors and tensors in (6.1) via identities like

(k1)µCµ1|23,4 = P1|3|2,4 − P1|2|3,4

(k1)µCµν1|2,3,4 = −kν2P1|2|3,4 − kν3P1|3|2,4 − kν4P1|4|2,3 (6.13)

ηµνC
µν
1|2,3,4 = 2(P1|2|3,4 + P1|3|2,4 + P1|4|2,3) .

Similar to (6.5), the parity-odd terms in (6.12) exhibit an anomalous gauge variation in the
first leg,

δε1→k1P1|2|3,4 = 2iε6(k2, ε2, k3, ε3, k4, ε4), δεj→kjP1|2|3,4 = 0 for j = 2, 3, 4 . (6.14)

The anomalies of the six-dimensional loop integrands due to (6.5) and (6.14) are discussed
in more detail in section 6.5.1.

Note that spinor-helicity components of Cµ1|23,4, C
µν
1|2,3,4 and P1|2|3,4 upon dimensional

reduction to D = 4 vanish outside the MHV sector as required by supersymmetry, see
section 5.1 of [73] for the non-zero MHV expressions.

6.2 No external gravitons

We shall now determine the loop integrand of the four-gluon amplitude from the half-
maximally supersymmetric ingredients (6.1) and (6.8) to (6.11). As before, separate
calculations are performed for the single- and double-trace sector.

6.2.1 Single-trace sector

As in the maximally supersymmetric case, the two contributions (4.1) to the YM+φ3 half
integrand give two different dependences on the couplings in the single-trace sector,

A1-loop
EYM, 1

2−max(1̂, 2, 3, 4; ∅) = A1-loop
EYM, 1

2−max(1̂, 2, 3, 4; ∅)
∣∣
g4 +A1-loop

EYM, 1
2−max(1̂, 2, 3, 4; ∅)

∣∣
κ2g2 ,

(6.15)

where the hat above the first leg tracks the anomalous leg in the underlying half inte-
grand (6.1). Using the half integrand in (4.2) and the half-maximally supersymmetric
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partial integrands in (6.8) to (6.11), we obtain the single-trace sector of a half-maximally
supersymmetric four-gluon amplitude in EYM theory at order g4:

A1-loop
EYM, 1

2−max(1̂, 2, 3, 4; ∅)
∣∣
g4 (6.16)

=
∫ dD`

`2
lim

k±→±`

∫
dµtree

6 I1-loop
YM, 1

2−max({1̂, 2, 3, 4}; `)J1-loop
YM+φ3(1, 2, 3, 4; ∅; `)

∣∣
g4λ4

= 4N
∫ dD`

`2

{`µCµ1|23,4
`21`

2
14
−
`µC

µ
1|23,4

`24`
2
41

+
`µC

µ
1|34,2

`22`
2
21
−
`µC

µ
1|34,2

`21`
2
12
−
P1|2|3,4
`24`

2
43
−
P1|4|2,3
`22`

2
23

+
`µ`νC

µν
1|2,3,4 − `µ(Cµ1|34,2s34 + Cµ1|24,3s24 + Cµ1|23,4s23)

`21`
2
12`

2
123

+
`µ`νC

µν
1|2,3,4 + `µ(Cµ1|34,2s34 + Cµ1|24,3s24 + Cµ1|23,4s23)

`21`
2
14`

2
143

}
.

This expression matches the representation of the four-gluon amplitude in half-maximally
supersymmetric YM obtained in [73] after symmetrizing the loop integrand in the reference
w.r.t. 2↔ 4. The scalar kinematic factors P1|a|b,c have been introduced in section 6.1.3.

Similarly, we use the YM+φ3 half integrand (4.9) at subleading order in λ to get:17

A1-loop
EYM, 1

2−max(1̂, 2, 3, 4; ∅)
∣∣
κ2g2 (6.17)

= 1
16

∫ dD`
`2

lim
k±→±`

∫
dµtree

6 I1-loop
YM, 1

2−max({1̂, 2, 3, 4}; `)J1-loop
YM+φ3(1, 2, 3, 4; ∅; `)

∣∣
g4λ2

= 1
2s13

∫ dD`
`2

{
−t8(1, 2, 3, 4)

( 1
`22`

2
23

+ 1
`23`

2
32

)

+
`µ`νC

µν
1|2,3,4 − `µ(s23C

µ
1|23,4 + s24C

µ
1|24,3 + s34C

µ
1|34,2)

`21`
2
12`

2
123

+
`µ`νC

µν
1|2,3,4 − `µ(s23C

µ
1|23,4 + s24C

µ
1|24,3 − s34C

µ
1|34,2)

`21`
2
12`

2
124

+
`µ`νC

µν
1|2,3,4 − `µ(−s23C

µ
1|23,4 + s24C

µ
1|24,3 + s34C

µ
1|34,2)

`21`
2
13`

2
132

+
`µ`νC

µν
1|2,3,4 − `µ(−s23C

µ
1|23,4 − s24C

µ
1|24,3 + s34C

µ
1|34,2)

`21`
2
13`

2
134

+
`µ`νC

µν
1|2,3,4 − `µ(s23C

µ
1|23,4 − s24C

µ
1|24,3 − s34C

µ
1|34,2)

`21`
2
14`

2
142

+
`µ`νC

µν
1|2,3,4 + `µ(s23C

µ
1|23,4 + s24C

µ
1|24,3 + s34C

µ
1|34,2)

`21`
2
14`

2
143

− P1|4|2,3

( 1
`23`

2
32

+ 1
`22`

2
23

)
− P1|2|3,4

( 1
`23`

2
34

+ 1
`24`

2
43

)
− P1|3|2,4

( 1
`24`

2
42

+ 1
`22`

2
24

)}
.

17We have discarded a tadpole diagram proportional to Atree
YM(1, 2, 3, 4)

∫ dD`
`2 in deriving the result (6.17)

which integrates to zero in dimensional regularization.

– 41 –



J
H
E
P
0
2
(
2
0
2
3
)
1
2
2

Since the loop integral over the expression in the curly brackets is permutation invariant
w.r.t. 2, 3, 4, the color-ordered amplitude (6.17) obeys Kleiss-Kuijf relations just like its
maximally supersymmetric counterpart in (5.4).

6.2.2 Double-trace sector

The double-trace sector of the half-maximally supersymmetric four-gluon amplitude, based
on the half integrand (4.10) of YM+φ3, introduces three different powers of the couplings:

A1-loop
EYM, 1

2−max(1̂, 2|3, 4; ∅) = A1-loop
YM, 1

2−max(1̂, 2|3, 4; ∅)
∣∣
g4 (6.18)

+A1-loop
EYM, 1

2−max(1̂, 2|3, 4; ∅)
∣∣
κ2g2 +A1-loop

EYM, 1
2−max(1̂, 2|3, 4; ∅)

∣∣
κ4 .

For the order g4 of the double-trace sector we get

A1-loop
EYM, 1

2−max(1̂, 2|3, 4; ∅)
∣∣
g4 (6.19)

=
∫ dD`

`2
lim

k±→±`

∫
dµtree

6 I1-loop
YM, 1

2−max({1̂, 2, 3, 4}; `)J1-loop
YM+φ3(1, 2|3, 4; {∅}; `)

∣∣
g4λ4

= 8
∫ dD`

`2

{`µ`νCµν1|2,3,4 − `µ(Cµ1|24,3s24 + Cµ1|34,2s34 + Cµ1|23,4s23)
`21`

2
12`

2
123

+
`µ`νC

µν
1|2,3,4 − `µ(Cµ1|24,3s24 − Cµ1|34,2s34 + Cµ1|23,4s23)

`21`
2
12`

2
124

+
`µ`νC

µν
1|2,3,4 − `µ(Cµ1|24,3s24 + Cµ1|34,2s34 − Cµ1|23,4s23)

`21`
2
13`

2
132

+
`µ`νC

µν
1|2,3,4 + `µ(Cµ1|24,3s24 − Cµ1|34,2s34 + Cµ1|23,4s23)

`21`
2
13`

2
134

+
`µ`νC

µν
1|2,3,4 + `µ(Cµ1|24,3s24 + Cµ1|34,2s34 − Cµ1|23,4s23)

`21`
2
14`

2
142

+
`µ`νC

µν
1|2,3,4 + `µ(Cµ1|24,3s24 + Cµ1|34,2s34 + Cµ1|23,4s23)

`21`
2
14`

2
143

− P1|4|2,3

( 1
`22`

2
23

+ 1
`23`

2
32

)
− P1|2|3,4

( 1
`23`

2
34

+ 1
`24`

2
43

)
− P1|3|2,4

( 1
`22`

2
24

+ 1
`24`

2
42

)}
.

This is again proportional to a permutation sum of the single-trace amplitude (6.16), so the
results of this section respect the supersymmetry-agnostic relations of [70] between planar
and non-planar one-loop amplitudes at zeroth order in κ.

Similarly, for the order of κ2g2 in the double-trace sector, we obtain

A1-loop
EYM, 1

2−max(1̂, 2|3, 4; ∅)
∣∣
κ2g2 (6.20)

= 1
16

∫ dD`
`2

lim
k±→±`

∫
dµtree

6 I1-loop
YM, 1

2−max({1̂, 2, 3, 4}; `)J1-loop
YM+φ3(1, 2|3, 4; ∅; `)

∣∣
g4λ2 =
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= N

4

∫ dD`
`2

{
2s3,``µC

µ
1|34,2

[ 1
`21`

2
12

+ 1
`22`

2
21

]

+
`µ(s34C

µ
1|34,2 − s23C

µ
1|23,4 − s24C

µ
1|24,3)− `µ`νCµν1|2,3,4

`23`
2
34

+
`µ(−s34C

µ
1|34,2 − s23C

µ
1|23,4 − s24C

µ
1|24,3)− `µ`νCµν1|2,3,4

`24`
2
43

+
`µ(s23C

µ
1|23,4 + s24C

µ
1|24,3 − s34C

µ
1|34,2)− `µ`νCµν1|2,3,4

`21`
2
12

+
`µ(s23C

µ
1|23,4 + s24C

µ
1|24,3 − s34C

µ
1|34,2)− `µ`νCµν1|2,3,4

`22`
2
21

}
.

The κ4 order of the double-trace sector (6.18) is more lengthy and therefore relegated to
the supplementary material attached to this paper.

6.3 One external graviton

For all results with external gravitons and half-maximal supersymmetry, we chose to have
a graviton carry the anomaly of I1-loop

YM, 1
2−max and therefore write p̂ in the place of p. The

analogous expressions with a gluon in the anomaly leg can be found in the supplementary
material attached to this paper.

The amplitude with one external graviton is based on the half integrand in (4.15) and
therefore contains two different combinations of couplings,

A1-loop
EYM, 1

2−max(1, 2, 3; {p̂}) = A1-loop
EYM, 1

2−max(1, 2, 3; {p̂})
∣∣
κg3 +A1-loop

EYM, 1
2−max(1, 2, 3; {p̂})

∣∣
κ3g

.

(6.21)

At order κg3 we find

A1-loop
EYM, 1

2−max(1, 2, 3; {p̂})
∣∣
κg3 (6.22)

= 1
4

∫ dD`
`2

lim
k±→±`

∫
dµtree

6 I1-loop
YM, 1

2−max({1, 2, 3, p̂}; `)J1-loop
YM+φ3(1, 2, 3; {p}; `)

∣∣
g4λ3

= 2N
∫ dD`

`2

{[
−

(ε̄p · `)`µCµp|12,3
`2p`

2
p3

−
(ε̄p · `3)`µCµp|12,3

`23`
2
3p

−
(ε̄p · `)Pp|3|1,2

`21`
2
12

+
(ε̄p · `)`µ`νCµνp|1,2,3 − (ε̄p · `)(s23`µC

µ
p|23,1+s13`µC

µ
p|13,2+s12`µC

µ
p|12,3)

`2p`
2
p1`

2
p12

]
+ cyc(1, 2, 3)

}
,

which we confirmed to be invariant under linearized gauge transformations ε̄p → p in
the YM+φ3 half integrand. The analogous integrand at order κ3g can be found in the
supplementary material attached to this paper. At both orders κg3 and κ3g, the anomalous
variations εj → kj on the supersymmetric side can be found in section 6.5.2.

6.4 Two external gravitons

The amplitude with two external gravitons, based on the half integrand (4.19) of YM+φ3,
can come with two different powers of the couplings:

A1-loop
EYM, 1

2−max(1, 2; {p̂, q}) = A1-loop
EYM, 1

2−max(1, 2; {p̂, q})
∣∣
κ2g2 +A1-loop

EYM, 1
2−max(1, 2; {p̂, q})

∣∣
κ4

(6.23)
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The half-maximally supersymmetric amplitude at order κ2g2 is found to be

A1-loop
EYM, 1

2−max(1, 2; {p̂, q})
∣∣
κ2g2 (6.24)

= 1
8

∫ dD`
`2

lim
k±→±`

∫
dµtree

6 I1-loop
YM, 1

2−max({1, 2, p̂, q}; `)J1-loop
YM+φ3(1, 2; {p, q}; `)

∣∣
g4λ2

= N

2

∫ dD`
`2

{(ε̄p · `)(ε̄q · k2)`µCµp|q2,1
`2p`

2
p1

+
(ε̄p · `1)(ε̄q · k2)`µCµp|q2,1

`21`
2
p1

+
(ε̄p · ε̄q)

[
spq`µ(Cµp|q2,1 + Cµp|12,q) + sp2`µ(Cµp|q2,1 − C

µ
p|q1,2)− `µ`νCµνp|q,1,2

]
2`21`212

+
(ε̄p · `)(ε̄q · `p)

[
`µ`νC

µν
p|q,1,2 − (sp2`µCµp|q1,2 + spq`µC

µ
p|12,q + sp1`µC

µ
p|q2,1)

]
`2p`

2
pq`

2
pq1

+
(ε̄p · `)(ε̄q · (`− k2))

[
`µ`νC

µν
p|q,1,2 − (sp1`µCµp|q2,1 − sp2`µC

µ
p|q1,2 + spq`µC

µ
p|12,q)

]
`2p`

2
p1`

2
p1q

+
(ε̄p · `)(ε̄q · `)

[
`µ`νC

µν
p|q,1,2 + (sp1`µCµp|q2,1 + sp2`µC

µ
p|q1,2 − spq`µC

µ
p|12,q)

]
`2p`

2
p1`

2
p12

−
(ε̄p · `)(ε̄q · (`−p))Pp|q|1,2

`21`
2
12

−
(ε̄p · `)(ε̄q · `)Pp|2|q,1

`2q`
2
q1

−
(ε̄p · `)(ε̄q · `1)Pp|1|q,2

`21`
2
1q

+ (1↔ 2)
}
.

Our result for the integrand at order κ4 as well as the one for the four-graviton amplitude
can be found in the supplementary material attached to this paper.

6.5 Gauge anomalies in six dimensions

In this section, we integrate the anomalous gauge variations of the six-dimensional versions
of the amplitudes in this section. These anomalies result from the variations (6.5) and (6.14)
of the tensor Cµν1|2,3,4 and scalar P1|2|3,4 which yield rational functions of the momenta upon
loop integration.

6.5.1 Amplitudes with no external gravitons

First, we consider the variation ε1 → k1 of the four-gluon amplitude at order g4. In the
single-trace sector, the anomaly due to the expression (6.16) is given by

δε1→k1A
1-loop
EYM, 1

2−max(1̂, 2, 3, 4; ∅)
∣∣
g4 (6.25)

= 8iNε6(k2, ε2, k3, ε3, k4, ε4)
∫

dD`
{

ηµν`
µ`ν

`2`21`
2
12`

2
123

+ ηµν`
µ`ν

`2`21`
2
14`

2
143
− 1
`2`24`

2
43
− 1
`2`22`

2
23

}
= 8iNε6(k2, ε2, k3, ε3, k4, ε4)

∫
dD`

{
ηµν`

µ`ν

`2`21`
2
12`

2
123
− 1
`21`

2
12`

2
123

+ (2↔ 4)
}
,

where a naive contraction ηµν`
µ`ν → `2 would give rise to a vanishing loop integrand.

However, all the integrals with measure dD` in this work are understood in dimensional
regularization where D = 2m − 2ε is displaced from integer values 2m ∈ N by some
infinitesimal parameter ε. In an expansion around six dimensions (with m = 3), the inverse
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propagators `212... are (6−2ε)-dimensional contractions while the anomalous contributions in
the numerator are lacking the formal (−2ε)-dimensional components of `,

ηµν`
µ`ν = `2 − `2(−2ε) . (6.26)

In this way, the integrand of (6.25) is found to be non-vanishing and proportional to `2(−2ε),

δε1→k1A
1-loop
EYM, 1

2−max(1̂, 2, 3, 4; ∅)
∣∣
g4 (6.27)

= −8iNε6(k2, ε2, k3, ε3, k4, ε4)
∫

d6−2ε`

{ `2(−2ε)
`2`21`

2
12`

2
123

+ (2↔ 4)
}
,

The key formulae for the evaluation of `2(−2ε) integrals in D = 6−2ε dimensions are reviewed
in appendix C. Specifically, the identity (C.5) for the integral in (6.27) yields

δε1→k1A
1-loop
EYM, 1

2−max(1̂, 2, 3, 4; ∅)
∣∣
g4 = 8

3 π
3N ε6(k2, ε2, k3, ε3, k4, ε4) , (6.28)

consistent with the anomaly of the four-gluon amplitude in [73]. Here and below, we discard
the O(ε) contributions that vanish in D = 6.

Based on the permutation sum of the computations in (6.25) to (6.28), the double-trace
sector (6.19) of the one-loop four-gluon amplitude is given by

δε1→k1A
1-loop
EYM, 1

2−max(1̂, 2|3, 4; ∅)
∣∣
g4 = 16π3 ε6(k2, ε2, k3, ε3, k4, ε4) . (6.29)

At the order κ2g2 of the single-trace amplitude in (6.17), the same mechanism leads to

δε1→k1A
1-loop
EYM, 1

2−max(1̂, 2, 3, 4; ∅)
∣∣
κ2g2 = π3 s13 ε6(k2, ε2, k3, ε3, k4, ε4) . (6.30)

For the anomaly at the κ2g2 order of the double-trace sector in turn, the variation of (6.20)
introduces

δε1→k1A
1-loop
EYM, 1

2−max(1̂, 2|3, 4; ∅)
∣∣
κ2g2 (6.31)

= − iN2 ε6(k2, ε2, k3, ε3, k4, ε4)
∫ d6−2ε`

`2
ηµν`

µ`ν
{ 1
`23`

2
34

+ 1
`24`

2
43

+ 1
`21`

2
12

+ 1
`22`

2
21

}
.

With the rewriting (6.26) of the six-dimensional ηµν`µ`ν , we obtain one-mass bubble integrals
that vanish in dimensional regularization such as∫ d6−2ε`

`23`
2
34

= 0 . (6.32)

The (−2ε)-dimensional parts of ηµν`µ`ν in (6.31) introduce rational versions (C.6) of scalar
triangles which yield the anomaly

δε1→k1A
1-loop
EYM, 1

2−max(1̂, 2|3, 4; ∅)
∣∣
κ2g2 (6.33)

= iN

2 ε6(k2, ε2, k3, ε3, k4, ε4)
∫

d6−2ε
{( `2(−2ε)

`2`23`
2
34

+ (3↔ 4)
)

+ (1, 2↔ 3, 4)
}

= π3

6 N s12 ε6(k2, ε2, k3, ε3, k4, ε4) .

– 45 –



J
H
E
P
0
2
(
2
0
2
3
)
1
2
2

Finally, the expression for the order κ4 of the double-trace sector in the supplementary
material attached to this paper and the integrals in appendix C give rise to the follow-
ing anomaly

δε1→k1A
1-loop
EYM, 1

2−max(1̂, 2|3, 4; ∅)
∣∣
κ4 = π3

256ε6(k2, ε2, k3, ε3, k4, ε4) (6.34)

×
(2(Nc2+D−3)

15 s2
12 −

16
3 s14s13

)
.

6.5.2 Amplitudes with one external graviton

For the amplitude with one external graviton at order κg3 that was given in (6.22), the
sum of the anomalous variations from the tensor and scalar building blocks conspire to

δεp→pA
1-loop
EYM, 1

2−max(1, 2, 3; {p̂})
∣∣
κg3 (6.35)

= −2iN ε6(k1, ε1, k2, ε2, k3, ε3)
∫

d6−2ε` (ε̄p · `)
{ `2(−2ε)
`2`2p`

2
p1`

2
p12

+ cyc(1, 2, 3)
}
.

By the expression (C.8) for the vector integral, the anomaly is proportional to the cyclic
sum over ε̄p · (k1+2k2+3k3) which vanishes by ε̄p · p = 0,

δεp→pA
1-loop
EYM, 1

2−max(1, 2, 3; {p̂})
∣∣
κg3 = 0 . (6.36)

The same conclusion can be reached for a gluon in the anomalous leg,

δε1→k1A
1-loop
EYM, 1

2−max(1̂, 2, 3; {p})
∣∣
κg3 = 0 . (6.37)

The integrand for the amplitude with one external graviton at order κ3g can be found in the
supplementary material attached to this paper. In six dimensions a gauge transformation in
the leg p in the half-maximally supersymmetric half integrand together with (C.5) results
in the anomaly

δεp→pA
1-loop
EYM, 1

2−max(1, 2, 3; {p̂})
∣∣
κ3g

(6.38)

= i

8 ε6(k1, ε1, k2, ε2, k3, ε3)
∫ d6−2ε`

`2

×
[
(k1 · f̄p · k3)

`2(−2ε)
`2p`

2
p1`

2
p13
− (k1 · f̄p · k2)

`2(−2ε)
`2p`

2
p1`

2
p12

+ cyc(1, 2, 3)
]

= π3

8 (k1 · f̄p · k2)ε6(k1, ε1, k2, ε2, k3, ε3) ,

(see (2.30) for the linearized field strength f̄p) and similarly

δε1→k1A
1-loop
EYM, 1

2−max(1̂, 2, 3; {p})
∣∣
κ3g

= π3

8 (k1 · f̄p · k2)ε6(k2, ε2, k3, ε3, p, εp) . (6.39)
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6.5.3 Amplitudes with two external gravitons

For the amplitude with two external gravitons at order κ2g2 in half-maximal supersymmetry
the anomaly in six dimensions is:

δεp→pA
1-loop
4,EYM, 1

2−max(1,2;{p̂, q})
∣∣
κ2g2 (6.40)

= iNε6(kq, εq,k1, ε1,k2, ε2)
∫ d6−2ε`

`2
`2(−2ε)

{(ε̄p ·ε̄q)
2`21`212

+ (ε̄p ·ε̄q)
2`22`221

− (ε̄p ·`)(ε̄q ·(`+p+k1))
`2p`

2
p1`

2
p1q

− (ε̄p ·`)(ε̄q ·(`+p))
`2p`

2
pq`

2
pq1

− (ε̄p ·`)(ε̄q ·(`+p))
`2p`

2
pq`

2
pq2

− (ε̄p ·`)(ε̄q ·`)
`2p`

2
p1`

2
p12
− (ε̄p ·`)(ε̄q ·(`−k1))

`2p`
2
p2`

2
p2q

− (ε̄p ·`)(ε̄q ·`)
`2p`

2
p2`

2
p21

}
=−N24 π

3ε6(kq, εq,k1, ε1,k2, ε2)(f̄p)µν(f̄q)µν .

The integrals were calculated as indicated in appendix C, and we have rewritten the kinematic
factor in terms of linearized field strengths via (f̄p)µν(f̄q)µν = 2(ε̄p · ε̄q)spq − 2(ε̄p · q)(ε̄q · p).

7 Conclusion

We have introduced a method to determine one-loop integrands of EYM theories with any
number of external gauge and gravity multiplets to all orders in the couplings κ and g.
Our construction is based on the double copy of (possibly supersymmetric) gauge theories
with YM+φ3 theory, implemented via one-loop CHY formulae involving forward limits
of tree-level integrands on the Riemann sphere. More specifically, the forward limits of
YM+φ3 building blocks yield new relations between loop integrands of EYM and those of
YM theories, see (2.32) and (2.39) for the main formulae. These relations take a universal
form for any number of supersymmetries and spacetime dimensions.

We have worked out the composition rules for tree-level building blocks in color-ordered
EYM loop integrands with any number of traces. At four points, we have applied our
method to determine one-loop EYM amplitudes with 8 and 16 supercharges and exposed
their supersymmetry cancellations. In particular, the linearized Feynman propagators
resulting from the CHY integrals are recombined to conventional quadratic ones. Moreover,
we have evaluated the rational expressions for six-dimensional gauge and diffeomorphism
anomalies in the half-maximally supersymmetric case due to chiral hypermultiplets in
the loop.

This methods and results of this work suggest a variety of follow-up research directions:

• higher multiplicity: with the availability of supersymmetric YM loop integrands at
n ≥ 5 points [36, 43, 45, 74, 75], there is no obstruction to constructing higher-point
one-loop EYM amplitudes from our method. It is conceivable that the half integrands
of YM+φ3 in section 3 admit further all-multiplicity simplifications as exemplified
in (3.28) for n external scalars at subleading order in the coupling λ.

• higher loops: based on ambitwistor-string methods, the integrands of two-loop am-
plitudes in gauge theories and (super-)gravity can be derived from double-forward
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limits of tree-level building blocks [76–78]. It would be interesting to perform the
same double-forward limits in the half-integrands of YM+φ3 and deduce two-loop
EYM amplitudes from the setup in the references.

• more general supergravities: the double-copy structure of EYM theories generalizes
to magical, general homogeneous or gauged N = 2 supergravities [79, 80]. The
non-supersymmetric double-copy constituents in the references augment YM+φ3 by
fundamental fermions and mass terms that preserve the color-kinematics duality. It
would be a rewarding line of follow-up research to investigate worldsheet descriptions
of the double copies and one-loop integrands of these N = 2 supergravities.

• comparison with conventional string theories: it would give a valuable crosscheck
of our results to match the one-loop EYM amplitudes in this work with the point-
particle limit α′ → 0 of genus-one amplitudes of heterotic and type-I superstrings. In
particular, the EYM amplitude relations in this work call for comparison with the
α′ → 0 limit of the relations for mixed open- and closed-string type-I amplitudes at
genus one in [81].

• uplift to higher-mass-dimension operators: it would be rewarding to incorporate
α′-corrections into our forward-limit approach to EYM one-loop amplitudes as done
for loop integrands of pure SYM and supergravity in [46]. Adapting the methods of
the reference to genus-one correlators mixing gauge and gravity multiplets should
yield one-loop matrix elements of higher-mass-dimension operators18 D2kFmRn and
the non-analytic contributions to the α′-expansion of the respective genus-one string
amplitudes.
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A YM+φ3 half integrands at tree-level

In (2.18), (2.20), (2.23) and (2.24) we gave some specific examples for the half integrands
of YM+φ3 in the CHY representation (2.17) of EYM tree-level amplitudes. These can be
deduced from a general expression for multiple traces given in [8] that we review here. We
denote the cyclically ordered set of scalars in the ith trace as Tri. The color-decomposed

18The shorthand D2kFmRn refers to effective operators involving m powers of the non-abelian gluon field
strength F , n powers of the Riemann tensor R and 2k gauge- and diffeomorphism-covariant derivatives.
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YM+φ3 half integrand with r gluons {p1, p2, . . . , pr} and scalars in m traces Tr1,Tr2, · · ·Trm
is given by

J tree
YM+φ3(Tr1| . . . |Trm;{p1, . . . ,pr}) = PT(Tr1) . . .PT(Trm)Pf′Π(Tr1, . . . ,Trm,{p1, . . . ,pr}) .

(A.1)
The antisymmetric 2(r+m)× 2(r+m)-matrix Π(Tr1, . . . ,Trm, {p1, . . . , pr}) is constructed
from the (2r × 2r)-matrix Ψ({p1, . . . , pr}) in the YM half integrand (2.16) by adding rows
and columns for each of the traces:

Π :=

b∈{p1, . . . , pr} j∈{1, . . . ,m} b∈{p1, . . . , pr} j′∈{1, . . . ,m}





Aab Πa,j (−C)Tab Πa,j′ a ∈ {p1, . . . , pr}

Πi,b Πi,j Π̃i,b Πi,j′ i ∈ {1, . . . ,m}

Cab Π̃a,j Bab Π̃a,j′ a ∈ {p1, . . . , pr}

Πi′,b Πi′,j Π̃i′,b Πi′,j′ i′ ∈ {1, . . . ,m}

(A.2)
The submatrices are defined as

Πi,b =
∑
c∈Tri

kc ·kb
σc,b

, Π̃i,b =
∑
c∈Tri

kc ·εb
σc,b

, Πi′,b =
∑
c∈Tri

σckc ·kb
σc,b

, Π̃i′,b =
∑
c∈Tri

σckc ·εb
σc,b

Πi,j =
∑

c∈Tri,d∈Trj

kc ·kd
σc,d

, Πi′,j =
∑

c∈Tri,d∈Trj

σckc ·kd
σc,d

, Πi′,j′ =
∑

c∈Tri,d∈Trj

σckc ·kdσd
σc,d

.

(A.3)

The modified Pfaffian Pf ′ of Π can be evaluated in several equivalent ways

Pf ′Π := Pf
[
Π
]ij′
ij′

= (−1)a
σa

Pf
[
Π
]j′a
j′a

= (−1)a
σa

Pf
[
Π
]ia
ia

= (−1)a+b

σa,b
Pf
[
Π
]ab
ab
, (A.4)

where [. . .]abab once more instructs to remove the ath and bth rows and columns. Note that in
the absence of scalars, the matrix Π reduces to the matrix Ψ in (2.16) and thus the YM+φ3

half integrand reduces to a YM half integrand. Similarly, (A.2) smoothly reduces to the
2m× 2m matrix

( Πi,j Πi,j′
Πi′,j Πi′,j′

)
with i, j, i′, j′ ∈ {1, 2, . . . ,m} in absence of gluons.

B Building blocks of the half-maximally supersymmetric integrand

The tensor Cµν1|2,3,4 and the vectors Cµ1|ab,c are the central building blocks of the half-maximally
supersymmetric integrands in section 6. Together with a closely related scalar C1|abc, they
are defined in terms of more elementary tensors t [72, 73]

C1|234 = t1,234 + t12,34 + t123,4 − t124,3 − t14,23 − t142,3 + t143,2

Cµ1|23,4 = tµ1,23,4 + tµ12,3,4 − t
µ
13,2,4 + kµ3 t123,4 − kµ2 t132,4 + kµ4 [t14,23 − t214,3 + t314,2] (B.1)

Cµν1|2,3,4 = tµν1,2,3,4 + 2
[
k

(µ
2 t

ν)
12,3,4 + (2↔ 3, 4)

]
− 2

[
k

(µ
2 k

ν)
3 t213,4 + (2, 3|2, 3, 4)

]
,
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which in turn are defined in terms of Berends-Giele currents e and f as

tA,B = −1
2(fA)µνfµνB

tµA,B,C = [eµAtB,C + (A↔ B,C)] + i

4ε
µ
6 (eA, fB, fC) (B.2)

tµνA,B,C,D = 2
[
e
(µ
A e

ν)
B tC,D + (A,B|A,B,C,D)

]
+ i

2
[
e
(µ
B ε

ν)
6 (eA, fC , fD) + (B ↔ C,D)

]
.

These currents are labelled by words P = (p1, p2, . . . , p|P |) and recursively defined by

eµP = 1
2sP

∑
XY=P

[eµY (kY · eY ) + (eY )νfµνX − (X ↔ Y )]

fµνP = kµP e
ν
P − kνP e

µ
P −

∑
XY=P

(eµXe
ν
Y − eµY e

ν
X) , (B.3)

starting with the single-particle cases eµj = εµj and fµνj = kµj ε
ν
j − kνj ε

µ
j . Vector indices are

symmetrized according to the normalization convention 2k(µ
2 k

ν)
3 = kµ2 k

ν
3 + kν2k

µ
3 , and the

sums over deconcatenations P = XY exclude the empty words X = ∅ and Y = ∅.
The propagators s−1

P in the recursion (B.3) for eµP expose simple poles tµ12,3,4 ∼ s−1
12 ,

and one might naively expect a pole structure of (s12s123)−1 and (s23s123)−1 for t123,4. The
propagators s−1

123 diverge in the momentum phase-space of four massless particles and are
in fact absent from t123,4 based on the Minahaning procedure [72, 73, 82].19 Similarly, the
poles s−1

12 and s−1
34 of (f12)µν and fµν34 do not occur simultaneously in t12,34. On these grounds,

all of C1|234, C
µ
1|23,4 and Cµν1|2,3,4 only have simple poles in sij .

More details on the symmetries and relations of these building blocks can be found
in [43, 73].

C Feynman integrals in six-dimensional anomalies

In this appendix, we review the expressions for the Feynman integrals in the anomalous
gauge variations of half-maximally supersymmetric EYM amplitudes presented in section 6.5.
As a common feature of the Feynman integrals in such anomalies, their loop integrand is
proportional to `2(−2ε), the formal (−2ε)-dimensional part of the (6−2ε)-dimensional square
`2. These factors of `2(−2ε) arise along with the propagators of box and triangle integrals via∫

d6−2ε`

{
f(`)`µ`νηµν
`2`21`

2
12`

2
123
− f(`−k1)

`2`22`
2
23

}
= −

∫
d6−2ε`

f(`)`2(−2ε)
`2`21`

2
12`

2
123

(C.1)

∫
d6−2ε`

{
f(`)`µ`νηµν
`2`21`

2
12

− f(`−k1)
`2`22

}
= −

∫
d6−2ε`

f(`)`2(−2ε)
`2`21`

2
12

, (C.2)

where f(`) is a polynomial in the loop momentum. Such integrals can be related to the
poles in dimensionally regulated integrals in higher dimensions with the relation [83–85]∫ d2m−2ε`

iπm−ε
(−`2(−2ε))r F (`(2m), `

2
(−2ε)) = Γ(r − ε)

Γ(−ε)

∫ d2m+2r−2ε`

iπm+r−ε F (`(2m), `
2
(−2ε)) , (C.3)

19Following J. Minahan’s prescription to relax momentum conservation in intermediate steps [82], factors of
s123 are temporarily taken to be non-zero and cancel between numerators and denominators of t123,4 [72, 73].
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valid for m, r ∈ N and arbitrary functions F (`(2m), `
2
(−2ε)) of the 2m- and the (−2ε)-

dimensional components of the loop momentum. Specifically, we use this relation with
r = 1 and m = 3,∫

d6−2ε` `2(−2ε)F (`(6), `
2
(−2ε)) = ε

π

∫
d8−2ε` F (`(6), `

2
(−2ε)) , (C.4)

where the resulting scalar boxes, triangles and bubbles in 8−2ε dimensions can be obtained
with standard methods [85], for instance

∫
d6−2ε`

`2(−2ε)
`2`21`

2
12`

2
123

= ε

π

∫
d8−2ε`

1
`2`21`

2
12`

2
123

= iπ3

6 +O(ε) (C.5)

∫
d6−2ε`

`2(−2ε)
`2`21`

2
12

= ε

π

∫
d8−2ε`

1
`2`21`

2
12

= − iπ
3s12
12 +O(ε) (C.6)

∫
d6−2ε`

`2(−2ε)
`2`212

= ε

π

∫
d8−2ε`

1
`2`212

= iπ3s2
12

15 +O(ε) , (C.7)

where the O(ε) terms on the right-hand sides are not tracked in the six-dimensional
anomalies of section 6.5. Additionally, the anomalies in half-maximally supersymmetric
EYM amplitudes with external gravitons feature vector and tensor integrals with `2(−2ε)
insertions. We employ Passarino-Veltman reduction [86], in particular its implementation in
the Mathematica package FeynCalc [87], to obtain these vector and tensor integrals from
scalar ones. Upon inserting the expressions (C.5) to (C.7) for scalar integrals, we arrived at

∫
d6−2ε`

`2(−2ε)`
µ
(6)

`2`21`
2
12`

2
123

= ε

π

∫
d8−2ε`

`µ(6)
`2`21`

2
12`

2
123

= iπ3

24 [kµ2 + 2kµ3 + 3kµ4 ] +O(ε) (C.8)

∫
d6−2ε`

`2(−2ε)`
µ
(6)`

ν
(6)

`2`21`
2
12`

2
123

= ε

π

∫
d8−2ε`

`µ(6)`
ν
(6)

`2`21`
2
12`

2
123

(C.9)

= iπ3

120
[
2kµ2 kν2 + 3(kµ2 kν3 + kν2k

µ
3 ) + 4(kµ2 kν4 + kν2k

µ
4 )

+ 6kµ3 kν3 + 8(kµ3 kν4 + kν3k
µ
4 ) + 12kµ4 kν4 + ηµνs13

]
+O(ε) .
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