
Astronomy
&Astrophysics

A&A 669, A49 (2023)
https://doi.org/10.1051/0004-6361/202244555
© The Authors 2023

Properties of self-excited pulsations in 3D simulations
of AGB stars and red supergiants

A. Ahmad , B. Freytag , and S. Höfner

Theoretical Astrophysics, Division for Astronomy and Space Physics, Department of Physics and Astronomy, Uppsala University,
Box 516, 751 20 Uppsala, Sweden
e-mail: arief.ahmad@physics.uu.se

Received 20 July 2022 / Accepted 1 November 2022

ABSTRACT

Context. The characteristic variability of cool giants and supergiants is attributed to a combination of stellar pulsation and large-scale
convective flows. Full 3D radiation-hydrodynamical modelling is an essential tool for understanding the nature of these dynamical
processes. The parameter space in our 3D model grid of red giants has expanded in recent years. These models can provide many
insights on the nature and properties of the pulsations, including the interplay between convection and pulsations.
Aims. We treat 3D dynamical models of asymptotic giant branch (AGB) stars and red supergiants (with current masses 1 M⊙ ≤ M⋆ ≤
12 M⊙) similar to observational data. We aim to explore the relation between stellar parameters and the properties of the self-excited
pulsations.
Methods. Output from global ‘star-in-a-box’ models computed with the CO5BOLD radiation-hydrodynamics code were analysed, par-
ticularly in regards to the pulsation properties, to find possible correlations with input and emergent stellar parameters. The fast Fourier
transform was applied to spherically averaged mass flows to identify possible radial pulsation periods beneath the photosphere of the
modelled stars. Stellar parameters were investigated for correlations with the extracted pulsation periods.
Results. We find that the pulsation periods varied with the stellar parameters in good agreement with the current expectations. The
pulsation periods follow Ritter’s period-mean density relation well and our AGB models agree with period-luminosity relations derived
from observations. A mass estimate formula was derived from the 3D models, relating the stellar mass to the fundamental mode pul-
sation period and the stellar radius.
Conclusions. While the non-linearity of the interplay between the self-excited pulsations and the self-consistent convection compli-
cates analyses, the resulting correlations are in good agreement with respect to current theoretical and observational understandings.
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1. Introduction

Mira variables are located far into the low-temperature side of
the Hertzsprung–Russell (H-R) diagram. In this region, Mira
(Omicron Ceti) was the first star to have its pulsation period
identified and, together with other Mira variables, was amongst
the first periodic red variable stars to have been determined
(see Hoffleit 1997, for historical remarks). Mira-type stars are
extremely evolved stars at the tip of the asymptotic giant branch
(AGB). Low-to-intermediate mass stars (with initial masses in
the range 0.8 M⊙ < M⋆ < 8 M⊙) encounters the AGB phase
during their stellar evolution. Variability is common among cool
giant stars. Studies (see, for example, Kiss et al. 1999; Cioni et al.
2001; Soszyński et al. 2009) have revealed that the differences,
in terms of luminosity amplitude and period regularity, are great.

The pulsation periods of AGB stars range from 80 to
1000 days. The regularity of the variation of the stellar lumi-
nosity over time allows the subdivision of the pulsating variable
types within the AGB: Miras, semi-regular (SR), semi-regular
variables with regular periodicity (SRa), and semi-regular vari-
ables with irregular periodicity, which can be subdivided
depending on the presence (SRb), or lack of (SRc), any tran-
sient periods being observed (Becker 1998). Red supergiants
(RSGs) are often classified as SRb and SRc stars, showing
visual variability with an ambiguous period or amplitude. The

pulsating AGB and RSG stars are collectively called long period
variables (LPVs); however, Miras are distinguished by high
amplitude luminosity variations (∆m > 2.5 mag), with a long
and singular dominant period, in the low-order radial pulsa-
tion mode. Stars belonging to the SR, SRa, SRb, and SRc
classes show smaller amplitude variations with multiple pulsa-
tion periods. Consequently, these properties have allowed the
AGB stars to be identified through observation, in particular
by the period-luminosity (P-L) relations. Miras follow a well-
constrained linear P-L relation (Whitelock et al. 2008, 2009)
corresponding to the fundamental mode branch, whereas the
semi-regular variables have P-L sequences parallel to that of
Miras and the positions of the sequences are thought to be depen-
dent on which pulsation mode is dominant (Wood et al. 1999;
Soszyński et al. 2013; Wood 2015).

Pulsations are not limited to stars that are highly evolved,
but are common throughout the H-R diagram. Solar-like pulsa-
tions in the range of micro-magnitudes are due to stochastically
excited oscillations, whereas Cepheids and RR Lyraes have
higher pulsation amplitudes generated by the κmechanism (Joshi
& Joshi 2015). However, AGB stars differentiate themselves
from such well-known types of pulsating stars in two impor-
tant respects. First, their visual amplitudes are high. Second,
a degree of variability is inherent in the pulsations. Consider-
ing these two properties together with their stellar parameters
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suggests the excitation mechanism of the pulsations is differ-
ent than stochastic excitation or the κ mechanism (see relevant
review chapter in Catelan & Smith 2015). Modelling considera-
tions for the excitation mechanism are complicated, since many
processes interact with each other. The cool red giants have
extremely deep convection zones with large convective cells,
often introducing surface inhomogeneities. The large convective
cells actively being cycled in the interior, through a series of up-
and downdrafts, mean there is a complex interplay between con-
vection and pulsations, therefore non-linear models are needed
for the high-amplitude pulsations.

Using 1D linear pulsation models, Trabucchi et al. (2019)
were able to reproduce observed periods of overtone modes in
evolved giants, but their predictions for the fundamental mode
periods do not agree with observed relations. In recent work with
non-linear models, however, Trabucchi et al. (2021) obtained
fundamental mode periods more closely in agreement with
observations. This indicates that convection and pulsations are
not accurately described in a linear fashion; the interplay needs
to be treated non-linearly. Still, the produced models are 1D in
nature and the description of convection is parameterised accord-
ing to the mixing-length theory; which, despite its usefulness,
is insufficient to reconstruct accurate stellar interior tempera-
tures and pressure structures (see reviews by Houdek & Dupret
2015; Kupka & Muthsam 2017, for a thorough discussion). The
fine-tuning of the mixing-length parameter to reproduce such
structures compliant with the laws of physics risks oversim-
plifying the physical processes active in stellar interiors. The
need to use 3D modelling is exemplified by the fact that con-
vection, turbulence and the excited oscillations are intrinsically
3D in nature. Utilisation of 1D models can complement 3D
models in furthering our understanding of pulsations in evolved
red giants; they can explore a wider range of stellar parameters
and dynamics, being appreciably less computationally expensive
than complete 3D models. A further summary on the use of 1D
models of convection and pulsations is available in the introduc-
tion section of Freytag et al. (2017). In conclusion, it is hard to
overstate the need for global 3D models in modelling pulsations
of evolved red giants. CO5BOLD is a radiation-hydrodynamics
code that numerically simulates global stellar convection. In
simulations of cool red giants, self-excited pulsations exist as
standing pressure waves. The developed surface convection cells
are consistent or comparable with surface inhomogeneities seen
from observations (Freytag & Höfner 2008; Freytag et al. 2017;
Kravchenko et al. 2018; Paladini et al. 2018; Chiavassa et al.
2020).

In this work, pulsation properties of global 3D models of
AGB and RSG stars produced with the CO5BOLD code were
extracted and correlations against stellar parameters were inves-
tigated. In essence, the results of the simulations were treated
as observed data to identify any significant physical trends. The
paper is presented in the following manner. The setup of the
3D models, the model properties and how the pulsation prop-
erties were extracted are presented in Sect. 2. Section 3 outlines
our main results, with relevant discussions presented in Sect. 4.
Section 5 contains our final remarks.

2. Methods

In this section, we first give a short overview of the basic prop-
erties of the CO5BOLD models that we analyse in this paper.
Then we discuss the methods used for extracting pulsation
properties. In Sects. 2.2 and 2.3, the model st26gm07n001 is

referenced as the representative standard model, since this model
produced reliable pulsations qualitatively similar with most of
our models. This model is a M⋆ = 1 M⊙ mass AGB model
with solar abundances, having the time averaged stellar param-
eters radius, luminosity, and effective temperature, respectively:
R⋆ = 360 R⊙, L⋆ = 7000 L⊙, and Teff = 2700 K.

2.1. Setup of 3D models

For our simulations, we used the CO5BOLD code (Freytag et al.
2012; Freytag 2013, 2017), that numerically integrates the cou-
pled non-linear equations of hydrodynamics and radiation trans-
port. Compressible hydrodynamics equations allow the mod-
elling of travelling pressure waves, standing acoustic modes,
and transsonic convective flows in the stellar interior, as well as
shocks in the atmosphere. A short-characteristics scheme solves
the equations of non-local radiative energy transport, appropriate
for the optically thin atmosphere and the optically thick interior.
The gas opacities are tabulated and are the result of a merger
between tables generated from stellar-atmosphere codes such as
PHOENIX (Hauschildt et al. 1997) or COMA (see Aringer 2000;
Aringer et al. 2016) for the outer layers and OPAL data for the
stellar interior (Iglesias et al. 1992). No radiation pressure on gas
is included, so far.

The tabulated equation of state accounts for the ionisation
of H and He, the formation of H2 molecules, and a represen-
tative neutral metal. Tables that take the frequency dependence
of opacities into account are necessary to model the tempera-
ture structure of the outer atmospheric layers correctly. That is
crucial, for example, for the formation of dust grains (Höfner &
Freytag 2019). However, most of the models analysed here only
use grey (Rosseland mean) opacity tables. These are sufficient
for the study of stellar pulsations, and save significant computer
time. As the radiation-transport with grey opacities already dom-
inates the overall run time of a simulation, it slows down with
frequency-dependent tables by a factor of about two (because
of the further reduced radiative time step) times the number of
opacity bins employed – typically five or three for global models
(see Chiavassa et al. 2011; Höfner & Freytag 2019, respectively).

All models use a 3D cubical computational box and a Carte-
sian grid, with a grid dimension ranging from 1713 to 7653 cells
(see Table A.1). For most models the computational box com-
prises the star and has equidistant grid axes in all directions. For
a few models, this domain was augmented with an outer box,
where the distance between the grid points gradually increases
with the distance from the stellar centre. That allows the tracking
of dust clouds (see Höfner & Freytag 2019, 2022) but is irrele-
vant for the properties of the pulsating star. The gravitational
potential is a prescribed formula assuming that most of the mass
is located in a compact, not resolvable stellar core. It follows an
1/r law in the outer layers and is smoothed in a core region with
radius r0 (typically 20–25 % of the stellar radius). While several
formulas have been tried, the most often used is of the form

ϕ(r) = −G ∗ M ∗ (r4 + r4
0)−1/4. (1)

Inside a sphere with radius r0, energy is injected at a constant rate
according to the desired luminosity. A drag force is applied that
reduces the local velocity in each grid cell in the core region by a
small amount per time step, independently of the size of the flow
structures. This is in contrast to the action of an artificial vis-
cosity, that is sensitive to velocity gradients. There are options,
for instance, to make the drag force stronger in the very centre
than in the outer layers of the core. The drag force, acting only
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in the small core region, damps the dipole flow globally. It also
damps smaller-scale convective flows in this core region, where
the gravitational potential is smoothed, anyway, and we cannot
expect a good representation of the conditions by our simula-
tions. Due to the small amplitude of radial pulsations in the core
region, we expect only a small effect of the damping on this type
of oscillations. In effect, the drag force leads to a smooth decline
of the velocities from the boundary of the core region towards
the very centre, with a rate depending on the detailed settings.

The initial models for the first global simulations were
produced by integrating 1D hydrostatic stratifications and dis-
tributing the data onto a 3D sphere. This led to long transition
phases, in which convective structures developed first in the sur-
face layers (see Fig. 1 in Chiavassa et al. 2011) and only later
extended further down. Such a procedure works well when initial
1D and final 3D stratification are similar, for example, when the
stratification is close to radiative equilibrium or nearly adiabatic
and the dynamical pressure due to convection and pulsations is
negligible. However, in other cases it is preferred to start from an
existing well relaxed model. Straight-forward transformations,
for instance, the interpolation to a different grid or the expan-
sion to a larger computational box are done via external scripts.
In addition, some control parameters such as stellar mass or
core radius can be changed gradually over the first few pulsation
cycles during a simulation. During this phase, the density and
the internal energy can be adjusted in all grid cells in each time
step. That allows the smooth transition from one set of stellar
parameters to another, shortening a long transition phase except
for the scaling time interval itself. We monitor, for instance,
the emerging luminosity, the total energy, entropy, pressure, and
temperature in the core region, and the radius of the star over
time to ensure our models are relaxed. The initial transition phase
is omitted from further analyses.

Our dataset shown in Table A.1 comprises models with cur-
rent stellar masses of 1 and 1.5 solar masses, representing AGB
stars, as well as models between 5 and 12 solar masses, that we
take as representative for RSG stars. Earliest CO5BOLD models
are omitted, because often the time sequences are rather short
for a reliable determination of the pulsation properties, and the
simulations were replaced by newer ones with higher numerical
resolution spanning longer time intervals. However, we note that
the models analysed here are computed with different versions
of CO5BOLD, with unequal grid sizes, and other differences in
the numerical setup to maximise the available range of stellar
parameters.

2.2. Definition of the stellar radius

In contrast to other stellar parameters, which are more or less
explicitly set in the simulations, the stellar radius, R⋆, is a result-
ing property of the models. It is important to have a reliable and
consistent method for determining the stellar radius of the model.
Not only would the pulsation extraction process be affected by an
inexact radius, but it would also risk misrepresenting the stellar
parameters. To define the stellar radius, one method we used was
the same as Freytag et al. (2017), who relied on the average of
the luminosity and temperature profile of the star, and solved for
the radius following the Stefan-Boltzmann law 4πσR2T (R)4 = L.
Although this definition works well in most cases, it can be unre-
liable when spherical averages are applied in the presence of
significant opacity fluctuations arising due to variations in the
surface density and temperature. For example, in models with
similar stellar parameters that only differ in whether they are
based on grey or non-grey radiative transfer, the radii derived
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Fig. 1. Entropy profile of the standard model st26gm07n001. Left
panel: temporal mean value of the entropy as a function of the radial
coordinates, with the shaded area being the corresponding standard
deviation and the zoomed-in axes shows the first local entropy mini-
mum after the first instance of a spherically averaged temperature of
8000 K away from the centre of the star. Right panel: count values of
where the entropy minimum was located over a simulation (in bins of
size 2 R⊙).

from the latter are calculated to be greater. This is primarily due
to fluctuations in the density that naturally occur in such simula-
tions. The fluctuations may introduce sudden opaque structures
that can be misinterpreted as the outer boundary of the photo-
sphere which cause the gradient of the temperature profile in the
surrounding atmosphere to be less well-defined. Hence defini-
tions that rely on the explicit detection of temperature changes
in the atmosphere, including averaging of the temperatures, can
lead to inaccurate values of the radius.

Six further values for the radius have been used in this
study. Four were defined by setting the requirement of the Rosse-
land mean opacity (τRoss) to equal 2/3, 1, or 10, or at the first
instance of a spherically averaged temperature of Tavg = 8000 K
going outwards from the centre of the star. Whilst using τRoss =
2/3 or 1 has practical and physical applications in relation to
the photospheric radius of a star, the choice of τRoss = 10 was
arbitrary in order to probe regions where it is substantially opti-
cally thick, therefore representing an estimate of the inner radius
of the star. A similar motivation was behind defining a radius
at Tavg = 8000 K. The temperature of 8000 K was chosen since
it consistently captures the region where the inner temperature
profile experienced the steepest decline going outwards from the
centre of the star. This distinct region signified a transition region
which accordingly may be taken as the radius of the star.

A new definition is devised in the work presented here, where
the radius was determined by the point of the first local min-
imum of the entropy after a spherically averaged temperature
of Tavg = 8000 K from the centre was reached. The entropy
minimum marks the thin transition region between a convec-
tively unstable stellar interior and a convectively stable stellar
photosphere, and characterises the radius of the star in linear
stability analyses and mixing-length theory (see Abbett et al.
1997; Trampedach et al. 2014; Magic et al. 2015). For the stan-
dard model, the spherically averaged entropy variation across
the star is shown in the left panel of Fig. 1, where a local
minimum can be clearly seen. The location of the entropy min-
imum depends on the pulsation phase. On the right panel of
Fig. 1, the radial coordinate of the entropy minimum was plot-
ted as a histogram and illustrates the contraction and expansion
phases of the radius, therefore the minimum and maximum radial
coordinates respectively, due to pulsations.
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Fig. 2. Diagnostics of the spherically averaged radial velocity for the standard model st26gm07n001. Top left: radial velocity as a function of time
and radial coordinates, where the solid and dashed lines mark the radius and 80% of the radius, respectively. Bottom left: average and standard
deviation of the radial velocity (in blue and shaded in grey, respectively) within the layer of 80−100% of the radius. Top right: FFT power spectrum
(values are clipped to the maximum power calculated in between the 80−100% of the radius) as a function of the frequency and radial coordinates.
Bottom right: averaged and normalised FFT power spectrum across the aforementioned layer. Here the shaded region is the extent over which
the weighted averaging (see text) to get a characteristic pulsation frequency was done, while the solid and dashed black vertical lines indicate the
computed characteristic frequency and its spread, respectively.

We set an additional definition for the radius for the purpose
of capturing the transition region between standing and travel-
ling waves. As will be shown in Sect. 3.5.1, this transition region
is helpful in verifying which option for the stellar radius defini-
tion is best. Capturing the transition region involved determining
the extent to which the pulsations are in phase throughout the
layers near (just below, in, and just above) the stellar radius.
This determination can be broken down into five steps: (1) the
phase of the averaged radial velocity, ϕmean, over a thin height
across the radius (following the entropy minimum definition)
was computed; (2) the phase of the radial velocity of the layers
30% below and above the radius was computed and the phase
difference, ∆ϕ, relative to ϕmean was calculated; (3) the stan-
dard deviation of ∆ϕ across the region was multiplied by 2 and
used as a threshold; (4) new lower and upper boundaries of the
radius were determined from the intersection between ∆ϕ and the
threshold; (5) averaging was done between the lower and upper
boundaries to represent the new radius, determined by the phase.

In total, we consider seven definitions for the stellar radius;
each definition can provide different insights into the models and
has its own advantages and disadvantages. As described in detail
in Sect. 3.5, using the entropy minimum definition provides the
best radius definition in the context of analysing the pulsation
properties.

2.3. Pulsation period extraction process

As outlined in Freytag et al. (2017), to solely analyse radial
motions, the radial mass flux and mass density were averaged
over spherical shells (spherically averaged quantities are denoted
with <.>Ω, withΩ being the solid angle of a sphere). The ratio of
the averaged radial mass flux, <ρvradial>Ω(r, t) and mass density,
<ρ>Ω(r, t), is taken as the radial velocity, thus becoming a func-
tion of radial distance and time <vradial>(r, t). The corresponding
spherically averaged radial velocity for our standard model as
functions of time and radial coordinate are as shown in the rele-
vant panels of Figs. 2 and 3. There are three regions of interest
in the top left panel of Fig. 2: (1) the deep inner core shows
irregular radial velocity structures, which arise from fluctuations
in the convective flow; (2) around the photospheric layer, peri-
odic variations of inward and outward flows of the radial velocity
suggest regular periodic movements of matter due to pulsations;
(3) above and beyond the outer atmosphere, where travelling
shock waves dominate. The spherically averaged radial velocity
under-represents the actual radial velocity amplitudes. Observed
motions, derived from high-resolution spectroscopy line profiles,
around the photosphere of Mira variables reach about 10 km s−1

outwards, and about 15 km s−1 inwards (see Hinkle 1978; Hinkle
et al. 1984). The radial velocity calculated at each coordinate
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box determined from a snapshot at time t = 14.2 [yr], presented to show the number of points (N) having the radial velocity at a certain distance
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point for a single snapshot in the computational box, as pre-
sented in the right panel of Fig. 3, shows close agreement to the
amplitude of the observed motions.

The fast Fourier transform (FFT) was applied to the radial
velocity, to transform the signal into the frequency domain.
Before the FFT, three pre-processing steps were applied to the
input signal, which led to the most consistent results for the
resulting FFT: (1) subtraction of the temporal average of the
signal from the signal itself; (2) tapering with the Tukey win-
dow, which decreases the amplitude gradually at the start and
end of the signal (thereby helps with dealing with possible dis-
continuities between the beginning and end of the signal); and
(3) zero-padding to increase the length of the input signal by a
factor of 10, (adding zeros at end of the signal produces higher
resolution as there are more frequency points in the FFT). All the
models presented in this work have sufficiently small sampling
interval in the temporal domain to ensure a high FFT sampling
rate thus fulfilling the Nyquist criterion safely.

The power spectrum at each spatial coordinate is shown in
Fig. 2 and the region with the highest intensity can be taken as
the first order estimation of the pulsation frequency. To improve
on this estimation, a thin region below R⋆ was selected, and the
power spectrum was averaged over the layers in this region. The
chosen region had to be selected strategically: too high above
R⋆, the shocks would dominate the power spectrum and the fre-
quency extracted would not be the pulsation frequency; on the
other hand, too low below R⋆, convective flows may dominate
the power spectrum since the pulsation amplitude decreases sig-
nificantly, therefore obscuring the dominant pulsation frequency.
With these effects in mind and after a calibration study, the
optimum region to perform the FFT analysis was calculated to
be in a layer between 80−100% of the radius of the star. The
final height-averaged and normalised power spectrum is shown
in its corresponding panel in Fig. 2, where dominant peaks are
observable.

The ideal power spectrum would be primarily dominated by
a single peak but, due to fluctuations to the pulsation amplitude
and possible phase changes, multiple peaks may surround a dom-
inant peak. The peaks within a region surrounding the main peak
should be considered as part of the pulsation mode. To account
for the smaller peaks, lower and upper bounds of the region
to consider were set to 40% below and above the frequency of

the strongest peak, respectively. Weighted averaging within the
width was done to derive the mean frequency of the power spec-
trum. The weighted mean of the frequency within the interval
was computed as

fmean =

∑I
i=0 P( fi) fi∑I
i=0 P( fi)

, (2)

where I is the number of all the frequency points within the
width (which varies with the time resolution of each model)
and P is the corresponding power of the FFT power spectrum
at the specific frequency point fi. The corresponding weighted
root-mean-square (RMS) is then

fRMS =

∑I
i=0 P( fi)( fi − fmean)2∑I

i=0 P( fi)

1/2

. (3)

The characteristic pulsation frequency and spread were deter-
mined from the values fmean and fmean ± fRMS, respectively, and
fit into the FFT power spectrum as shown in the vertical lines
in the bottom right panel of Fig. 2. Due to occasions where
a considerable number of smaller peaks were present outside
the relative width, an adaptive width was utilised. The adaptive
width extends the initial width only if the outer peaks contributed
to a change in the final fmean by at least 2%. This adaptive width
did not extend indefinitely as it was also restricted within a range
of extension. This is to avoid accounting for higher harmon-
ics due the pulsations or possible overtone modes (where both
would occur around twice the initial fmean). Thus the adaptive
width determination was useful to ensure all or most of the power
due to the pulsations was contained within the width used in the
weighted averaging. Finally, to convert into the time-domain, the
derived pulsation period is simply Ppuls = 1/ fmean, and its spread
σpuls = Ppuls( fRMS/ fmean). Since there were no nodes between the
centre and surface of the star in the radial velocity profiles (evi-
denced in Figs. 2 and 3) and no appreciable power was present
below the frequency of fmean in the FFT space, we take Ppuls to
be the pulsation period of the fundamental mode.
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3. Results

Given the self-excited nature of the pulsations in the models
arising from pressure sound waves due to convection through-
out the star (see Freytag et al. 2017, for additional background),
the pulsation properties and correlations against various stellar
parameters were investigated in this work.

3.1. Extracted pulsation periods and their spreads

The pulsation periods derived using either the relative or adap-
tive width method are compared in Fig. 4. Clearly, there is little
scatter in the derived periods. There is a bigger scatter in the
spread, where the adaptive method more consistently results in
higher spreads in the pulsation period. This can be expected
when the non-linearity of the interplay between pulsations and
convection becomes considerable, as there are more peaks sur-
rounding the dominant signal. With more appreciable peaks and
the broader width being used in the weighted averaging proce-
dure, larger values on the spread of the pulsation periods are
expected when using the adaptive width; which is also suggestive
of strong interaction between the pulsations and convection. The
overall trend, therefore, of higher divergence from the one-to-
one ratio at higher values in the σpuls plot is reasonable. While
it is important to keep the σAda

puls − σ
Rel
puls plot in mind, given the

good correlation between the two methods of calculating the
Ppuls, unless otherwise stated, the results presented from now on
are using the pulsation properties derived with the relative width
method.

3.2. Representative examples

This subsection details the information presented in
Figs. 5 and 6, where each column corresponds to a model
with a different mass (1.5 M⊙, 1 M⊙, and 8 M⊙). In Fig. 5, the
bolometric luminosity variation and the averaged radial velocity
in the layer between 80−100% of R⋆ are presented in the first
and third rows, respectively, to indicate the amplitude of the
pulsations in the models. The bolometric luminosity profiles
of the three models show semi-regular variability (of the type
SRa). The amplitudes of the 1.5 M⊙ and 1 M⊙ AGB models
are low compared to those of typical Miras (see Feast et al.
1982; Whitelock et al. 2000). Disregarding any extinction (cir-
cumstellar or interstellar), the two AGB models show apparent
bolometric amplitudes of around ∆mbol = 0.14 mag, in contrast
to most of the Mira-like pulsations observed in Whitelock

et al. (2000), which had inferred amplitudes of higher than
∆mbol = 0.5 mag (after bolometric corrections were applied).

The spherically averaged radial velocity and the correspond-
ing averaged power spectrum after performing the FFT proce-
dure outlined in Sect. 2.3 are shown in the second row of Fig. 5
and Fig. 6, respectively. The fourth row in Fig. 5 shows the recov-
ered radial velocity signal in the time-domain, from an inverse
FFT after masking was done in the frequency space to isolate
only the pulsation frequency. The range of the masking was:
fmean ± fRMS, which is shown in the bottom row of Fig. 6 (the
frequencies within the dashed vertical lines). In contrast, the fre-
quency range that was outside the masked region just described
was used to recover the signal that was independent of the pri-
mary frequency of the pulsations. This signal is shown in the
bottom row of Fig. 5.

In the fourth row of Fig. 5, the pulsations for the 1.5 M⊙ AGB
are stable, despite a sudden decrease in the pulsation amplitude
just before the 10 year mark. For the less massive 1 M⊙ AGB with
lower surface gravity, in the middle column, the pulsations are
still evident, albeit more irregular. There are fluctuations, phase
and amplitude shifts in its pulsations, and this is also reflected
in its corresponding FFT power spectrum in Fig. 6 – showing
many high amplitude neighbouring peaks around a main signal.
For the RSG model in the last column, a strong decrease in the
pulsation amplitude can be observed in the middle of the simu-
lation. The amplitude stayed low for about two pulsation cycles,
then recovering its previous amplitude.

The masking to remove the pulsations enables the observa-
tion of the radial component of turbulence and convection within
the star, shown in the bottom row of Fig. 5. By comparing the rel-
ative intensity of the convective signals, the depths of the zone
with significant convective energy flux are shown to be differ-
ent between the models. The density contrast in the core and
atmosphere are different, and, as explained in Sect. 2.1, the inner
boundary conditions for different models might vary. Therefore,
it is difficult to disentangle and compare any properties of the
convective flows in models of different masses. All the represen-
tative models show strong overlapping regions where the pulsa-
tion and convective signals are strong, indicating that the inter-
play between pulsations and convection is definitely possible.

Finally, we note that the FFT power spectrum of the 8 M⊙
model shows a detectable signal just below twice the main pul-
sation frequency. We verified the signal to be due to an overtone
mode in the pulsations. Showing a clear node around 80% of
R⋆ in the power spectrum, the model has the strongest imprint
of an overtone in this work. A similar but ambiguous signal
is present in the power spectrum of the 1.5 M⊙ model. How-
ever, we attribute this signal to be due to the first harmonic of
the main pulsation frequency due to the non-sinusoidal nature
of the radius variations. Shock waves in the atmosphere con-
tribute to this signal above the radius R⋆. We speculate that,
below the radius R⋆, interference by convection produces a
noticeable signal around twice the pulsation frequency. The rel-
atively large pulsation amplitude makes this feasible. Overall,
after investigating the models on an individual basis, strong sig-
nals suggesting any overtones are rare. With exception to the
8 M⊙ model, we favour the interpretation of the second harmonic
being the contributor to any detectable signals about twice the
pulsation frequency, which were observed in a few of the models.

3.3. Pulsation properties and correlations

The extracted pulsation periods of the stars are plotted against
their fundamental stellar parameters in Fig. 7. The plots
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Fig. 7. Derived pulsation periods plotted against selected stellar param-
eters of the models. Five panels show the pulsation period against (top
to bottom reading left to right): surface gravity; stellar radius; averaged
effective temperature; stellar luminosity and stellar mass. The last panel
illustrates how the models in this work fit into the H-R diagram.

represent an overview of the current models that we have anal-
ysed and the range of stellar parameters we were able to cover so
far. Two important trends should be pointed out: (1) increasing
pulsation period with radius and; (2) decreasing pulsation period
with higher surface gravity. The trends are primarily linked to
how the stellar parameters affect the dynamical timescale of the
pulsations, and will be presented in further detail alongside other
considerations in the following sections.

3.3.1. Ritter’s period-mean density relation

Ritter (1879) first established the relationship between the pul-
sation period and the mean-density of a pulsating homogeneous
sphere experiencing adiabatic radial pulsations. The final rela-
tion is Ppuls ∝ ρ̄

−0.5
⋆ and in application to stars, the contraction

and expansion of the star would be accompanied by a periodic
increase and decrease in effective temperature and luminosity.
However, the idea of pulsating stars did not gain much attention
until Shapley (1914) suggested radial pulsations, instead of bina-
rity, could explain the variability in Cepheids. Eddington (1918,
1919) then provided further proof and a theoretical framework
for such pulsating stars and came to the same conclusions as
Ritter (1879); for radial pulsators where the restoring force is

the pressure, the pulsation period of a radial mode can be esti-
mated by the time it takes for a sound wave to travel back and
forth from the centre to the surface of the star – defined as the
sound-crossing time. In the top panel of Fig. 8, we find a good
agreement between our models and Ritter’s period-mean den-
sity relation. One can derive the pulsation constant, Q, from the
period mean-density relation, provided in Fox & Wood (1982):

Ppuls = Q
(
ρ̄⋆
ρ̄⊙

)−1/2

−→ Q = Ppuls

(
M⋆
M⊙

)1/2 (
R⋆
R⊙

)−3/2

. (4)

Applying a linear regression on the Ppuls − ρ̄⋆ plot in Fig. 8, but
with ρ̄⋆/ρ̄⊙ on the x-axis (using ρ̄⊙ = 1.3963 g cm−3), provides
the coefficients:

log(Ppuls) = −0.5625(±0.0331) log (ρ̄⋆/ρ̄⊙)
+ − 1.6275(±0.2487). (5)

Therefore, a slightly steeper gradient was obtained against the
value derived by Ritter’s relation, as can be seen on the top
panel of Fig. 8. The intercept of the derived relation gives the
fundamental radial pulsation period of the Sun as 0.0236 ±
0.0182 days, which within its uncertainty agrees with the lit-
erature value of 0.033 days (Handler 2013). If a fixed slope of
−0.5 was used instead, the corresponding intercept would be
0.0695± 0.0111 days, thus significantly overestimating the value
of the fundamental radial pulsation period of the Sun. On this
premise, the steeper gradient derived is justifiable for the mod-
els presented here. However, it is noted that our models follow
the Ppuls − ρ̄

−0.5
⋆ relation well, which is noteworthy given that

the models do not fit the underlying assumptions of Ritter’s
relation; derived for a homogeneous and spherically symmetric
atmosphere experiencing adiabatic pulsations.

Given the dependence of the pulsation constant on the stel-
lar parameters of Q ∝ R−1

⋆ (M⋆/R⋆)0.5 for a given period, it is
useful to derive the relationship between Q and the stellar mass-
to-radius ratio, fMR = (M⋆/M⊙)/(R⋆/R⊙), as in the bottom panel
of Fig. 8. Under the assumption that this relationship is linear and
finding the relevant parameters of its relationship through a lin-
ear regression, the mass of a pulsating star can be inferred with
(by virtue of substituting the relationship into Eq. (4)):

M⋆ =
(
10−aPpulsRb−1.5

⋆

)1/(b−0.5)
, (6)

where Ppuls being in days and the M⋆ and R⋆ in solar units.
The parameters a and b derived from the linear regression on
Q and fMR are presented in Table 1, where different values of
the parameters were calculated depending on the different type
of models being considered in the regression: AGB stars, RSGs
or all together. The reasoning behind this is apparent from the
bottom panel of Fig. 8, which indicates two separated regions
for the AGB stars and RSGs. In addition, despite showing some
degree of linear dependence, the R-squared (R2) values of the
linear regressions on Q and fMR are relatively poor as seen in
Table 1.

However, any practical application of Eqs. (5) and (6) to
observed data may be limited. We note that the stellar radius
value in the relations represents the entropy minimum radius
(see Sect. 2.2), which may differ considerably from radius values
derived from observations, depending on the optical depth of the
visible outer layers.
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Fig. 8. Examining the effect of the stellar mean-density on the pulsa-
tion periods. Top panel: extracted fundamental pulsation periods against
the mean density. Over-plotted is Ritter’s period-mean density rela-
tion (dashed line) fitted to the model points and the dash-dotted line
is the unconstrained regressed line based on the model points. Bottom
panel: pulsation constant, Q, against the stellar mass-to-radius ratio,
fMR, where the dotted line is the result of a linear regression applied
to all the models in this plot.

Table 1. Parameters as derived from linear regressions between Q and
fMR.

a b R2

AGB −1.5719 ± 0.1389 −0.1768 ± 0.0586 0.57
RSG −2.1250 ± 0.1730 −0.4737 ± 0.0885 0.75
All −1.5041 ± 0.0404 −0.1503 ± 0.0175 0.50

Notes. The parameters a and b are to be substituted into Eq. (6) in order
to estimate the mass of a star, and R2 is the coefficient of determination
from the regressions.

3.3.2. P-L relation

The P-L relation of AGB stars is an area that has been extensively
studied and has been constrained by observations. Two indepen-
dent P-L relations are compared with the 3D models for AGB
stars, shown in Fig. 9. The first P-L relation was derived from
observed carbon-rich Mira variables in the Large Magellanic
Cloud (LMC), where a bolometric correction was applied in the
K-band to derive the absolute bolometric luminosity (Whitelock
et al. 2009). Andriantsaralaza et al. (2022) used improved con-
straints on the distances to oxygen-rich Mira variables in the
Milky Way by making use of observations from Very Long Base-
line Interferometry and masers of the AGB stars. They applied
the radiative code DUSTY (Ivezic et al. 1999) to derive the bolo-
metric luminosity of the sources. In Fig. 9, the 3D models are in
relatively good agreement with both P-L relations, and within
the parameter spread and scatter of the observed carbon and
oxygen-rich Miras used to derive the respective P-L relations.
There is evidence of the universality (that is one can use results
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Fig. 9. Extracted fundamental pulsation periods against the bolometric
luminosity. The solid line is the P-L relation derived from the observed
Carbon-rich Miras (plus-signs) in the LMC Whitelock et al. (2009);
whereas the dash-dotted line is the P-L relation derived from Oxygen-
rich Miras (x-marks) in the Milky Way (Andriantsaralaza et al. 2022).
The filled in grey region is the uncertainties in the empirical P-L rela-
tions (which overlap one another). Other symbols in the legend indicate
the model stellar mass in M⊙ of our AGB models.

from LMC sources in a different galactic environment) of a P-
L relation for Miras (see Alvarez et al. 1997; Whitelock et al.
2008; Andriantsaralaza et al. 2022). Nevertheless, one should
be cautious in considering such universality, with counter argu-
ments against it (e.g. Barthès et al. 1999; Urago et al. 2020). The
existence of some universality is suggested in Fig. 9. However,
compared to the observations and their uncertainties, it is sensi-
ble to just conclude that our 3D models of AGB stars are within
a realistic scatter of real AGB stars.

The RSGs follow a different P-L relation, at the very least
having different zero points in the K-band, though the slope
may be in agreement with Miras (e.g. Feast et al. 1980; Wood
et al. 1983; Jurcevic et al. 2000; Pierce et al. 2000; Kiss et al.
2006; Yang & Jiang 2012; Soraisam et al. 2018). Existence of
super AGB stars with Mbol = −8 (Poelarends et al. 2008) also
makes the limit between AGB stars and RSGs non-trivial. If the
RSG models were to be included in Fig. 9, they would mostly
populate the same x-axis range, but with −6 ≥ Mbol ≥ −8. Pre-
vious studies suggest the existence of a universal P-L relation
for RSGs; however, the uncertainties involved still allow for a
wide range of parameter values for the slope and intercept in
this P-L relation (see Fig. 7 in Soraisam et al. 2018). It is also
risky to convert observations in the K-band into bolometric val-
ues for RSGs, as the colour correction formulations are more
complicated and uncertain as the spectral evolution of the RSGs
needs to be accounted for (see Beasor & Davies 2018; Soraisam
et al. 2018) and the distance estimates need to be good to obtain
accurate corrections for extinction. Therefore, the comparison
between the bolometric P-L relation for RSGs for our models
against observations was not attempted here.

3.4. Interaction between convection and pulsation

3.4.1. Interpretation of the spread in the pulsation period

Fluctuations in observed periods and luminosity at a given phase
of a pulsation in cool red giants have been detected; several stud-
ies suggest that convection plays an important role in the fluctua-
tions, or that the mechanism behind the fluctuations is stochastic
in nature (Eddington & Plakidis 1929; Percy & Colivas 1999;
Kiss et al. 2006; Percy & Abachi 2013; Cunha et al. 2020).
Furthermore, fluctuations can be expected when pulsations
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interact with the giant convective cells (Schwarzschild 1975;
Antia et al. 1984). If this interaction manifests itself in the spread
of the pulsation period, σpuls, the values of σpuls derived from
the models (see Sect. 2.3) help to parameterise the fluctuations.
Presented in Fig. 10, there is a good correlation between Ppuls
and σpuls. This correlation is to be expected since a longer
Ppuls is associated with stars of lower surface gravity. Freytag
et al. (2017) conclude the size of surface convection cells to be
increasing with decreasing surface gravity in the AGB models.
Therefore, larger surface convection cells and a more extended
atmosphere, both consequently due to a lower surface gravity,
could directly cause a larger spread in the pulsation period.

As a result of the positive correlation between Ppuls and
σpuls, the relations between σpuls and the fundamental stellar
parameters follow closely with how Ppuls depends on the stellar
parameters as in Fig. 7. However, one important consideration is
how σpuls would depend on the number of pulsations observed
in the simulation, Npuls. For the period determination process
to be reliable, a sufficiently high number of pulsations need
to be considered so that the σpuls value converges to a final
value. As seen in Fig. 5, the 1 M⊙ model had multiple strong
peaks in its FFT spectrum, resulting in a larger σpuls. Values of
σpuls do not necessarily decrease with more observed pulsation
cycles in the simulations. Primarily this indicates the fluctuations
are consistent throughout the simulations. The relative differ-
ence in the σpuls, whether using a relative or adaptive width
to do the weighted averaging in the period determination pro-
cess, was calculated with ∆σnorm

puls = (σAda
puls − σ

Rel
puls)/σ

Rel
puls and was

also plotted against Ppuls and Npuls. Where ∆σpuls is large in the
bottom row of Fig. 10, it provides further indication of the inter-
play between convection and pulsations, as the adaptive width
method captures signals surrounding the pulsation signal which
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Fig. 11. Standard deviation in the four periods calculated when the
sequence was split into quarters against the spread of the period in the
whole sequence. The ratio of the averaged period across the split quar-
ters and the full sequence is coloured in. A similar plot was obtained
when the full sequence was split into halves.

are missed by the relative width method. For the 1 M⊙ AGB stars,
convection can lead to substantial signals being present in the
FFT power spectrum, in part due to the AGB stars having low
surface gravity. On the other hand, RSGs with high ∆σpuls are
indicative of lower pulsation amplitude. Signals due the inter-
ference of convection on the pulsations become relatively more
appreciable hence would lead to higher σpuls using the adaptive
width method. In this way, Fig. 10 captures an important point
that in our models, it is clear that convection and pulsations do
interact continuously.

3.4.2. Regularity or irregularity of the pulsations

For models with low values of σpuls in Fig. 10 it does not mean
that there is no variability in the pulsations being observed.
Examining instances of the regions where the pulsation ampli-
tude significantly decreases in Fig. 5, what follows such events
can be a slight phase shift in the pulsations and variation in the
amplitude. Thus this may contribute to non-zero values of σpuls.
Another way to identify the variability explicitly was to slice the
simulation of models into parts, and repeat the pulsation period
extraction procedure on the split parts. This was done on models
with at least 3000 time steps. The resulting derived periods are
represented in Fig. 11, where a good agreement exists between
the scatter of the period in the split sequences against the spread
of the period in the full sequence.

It is notable that apart from a few extreme cases, the aver-
aged pulsation period across the split sequences agree with the
period derived from the full sequence to about 5%. In addition,
it was verified that almost all of the pulsation periods from the
split sequences are within the main spread in the period of the
full sequence, and when outside, their respective period spreads
overlap with each other. The lack of outliers primarily indicates
that the pulsation extraction process is reliable, considering the
degree of irregularity in the dynamics of the pulsating star. It
also shows good regularity of the pulsations despite the variabil-
ity. Where there are large values in the spread of the period in any
of the split sequences, it suggests an event that affects the pulsa-
tions. An example of this is the sudden decreases in the pulsation
amplitudes observed in the representative models seen in Fig. 5.
However, this again highlights the interaction between convec-
tion and pulsations, where in certain intervals of the simulation,
fluctuations and changes in the period were detected.
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Fig. 12. Box plots investigating the choice of stellar radius. Top panel:
box plot of the ratio of the pulsation period and sound-crossing time.
Bottom panel: box plot of the ratio of the stellar radius and the radius
below which the layers are largely in phase. The sound-crossing times
and stellar radii are from the six radii definitions tested in the models
presented in this work as outlined in Sect. 2.2. Each box plot represents
the distribution by drawing the box from first to third quartiles (Q1 and
Q3, respectively) with a horizontal line drawn in between to denote the
median, and the height of the box is the interquartile range (IQR). The
bottom and top whiskers are bounded by bars denoting the minimum
and maximum values, defined as the lowest and highest values within
the range min ≥ 1.5IQR − Q1 and max ≤ 1.5IQR + Q3, respectively.
Outliers are identified as values being outside of the whisker bounds,
denoted by the rhombus symbols in the plot.

3.5. Stellar radius parameter

3.5.1. Entropy minimum as the radius definition

In the analyses presented in this work, choosing a consistent defi-
nition for the radius was extremely important, as several physical
parameters and properties were derived from it. The multiple
chosen definitions of the radius were introduced in Sect. 2.2.
Barring the radius estimated from the phase of the pulsation, a
sound-crossing timescale was computed for each radius defini-
tion. This sound-crossing time was defined as the time it takes
for a sound wave to travel back and forth from the centre to the
defined radius of the star. We assume the sound-crossing time to
be a good first-order estimation of the pulsation period, and first
verified that the two timescales correlate linearly to each other.
We can equivalently expect the free-fall timescale (over a sub-
stantial part of the radius of the star) to be in reasonable agree-
ment with both the sound-crossing and pulsation timescales; by
considering the virial theorem (Christensen-Dalsgaard 1993).

The discrepancies in the pulsation periods derived from
using the different radius definitions (since the location of the
thin layer being considered is different in the weighted averaging,
see Sect. 2) were verified to be minimal. The ratio between the
pulsation period and the computed sound-crossing times from
the different definitions are presented in the top panel of Fig. 12
in the form of box plots. While we expect the sound-crossing
times to be a good approximation for the pulsation periods, we
note the median values of the box plots in the top panel of Fig. 12
are surprisingly close to 1 – and not with a systematic offset from
1 as initially expected. Ideally, the box plots should have a thin

interquartile range with minimal outliers. The entropy minimum
definition best matches this case. Using the average temperature
of 8000 K and Rosseland optical depths of 10 underestimate the
extent of the radius, whereas using Rosseland optical depths of
2/3 and 1 overestimate the radius and the respective box plots
have relatively large interquartile ranges. The radius definition
used in Freytag et al. (2017) fared well in this test; however, there
were outliers which can be attributed to the spatial fluctuations
in density and opacity in the stellar atmosphere, which can be
mistaken as the boundary for the stellar radius.

To further investigate these statements, box plots of the ratio
between the radius derived from the different radius definitions
and the averaged radius where the pulsations are in phase are
presented in the bottom panel of Fig. 12. We find qualitative
agreement and draw the same conclusions with the box plots
in the top panel of Fig. 12. Additionally, linear regressions were
applied on the relationships being analysed in Fig. 12; the ideal
case for the linear regression would simply be (for Y = a + bX)
a = 0 and b = 1, with R2 = 1. The entropy minimum definition
best matched this case in both relationships. These results reaf-
firm that the radius, as defined by the entropy minimum, was
the most consistent and reliable method to calculate the radius
in the models. Currently there is no equivalent definition avail-
able from an observational stand point. In terms of pulsations,
however, we were interested in capturing the outer boundary con-
taining most of the dynamical action. The radius as determined
by the entropy minimum definition appears to be the best option
in our models.

3.5.2. Radius amplitude due to pulsations

The standard deviation of the radius variation in the entropy
minimum definition of the radius, displayed in the right panel
of Fig. 1, was calculated and taken as the pulsation ampli-
tude, ∆Rpuls. The corresponding ratio ∆Rpuls/R⋆, hereby called
the relative amplitude, is plotted against various parameters in
Fig. 13. In general, the relative amplitude follows the trends set
out by previous analyses and seems to react strongly to the sur-
face gravity. Against Ppuls, the relative amplitude increases with
longer pulsation periods (associated with low surface gravity).
Following this, the relative amplitude increases with decreas-
ing values of surface gravity, mean-density, and mass-to-radius
ratio, specifically for each mass class of the models. It is also
worth pointing out that despite low relative amplitudes, the
RSGs still produce shocks and strong outward flows in the outer
atmosphere.

The relative amplitude increases almost linearly with the
quantity vsurfPpuls/R⋆, where vsurf is the surface velocity, calcu-
lated as the standard deviation value (over time) of the spheri-
cally averaged velocity at the radius. This quantifies how well the
model represents a perfectly spherically symmetric model with
strong radial pulsations. In the bottom right panel of Fig. 13, the
three AGB stars that deviate from the linear relation are of low
surface gravity with very extended atmospheres. The pulsations,
together with the low surface gravity and extended atmosphere,
enhance the likelihood for the atmosphere to deviate further
away from spherical symmetry.

4. Discussion

4.1. Pulsation constant parameter

Values of Q may help to characterise different pulsation modes
(for example, radial or non-radial, or, fundamental or overtone
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Fig. 13. Effect of the pulsations on the stellar radius. The panels show
the relative amplitude due to pulsations against (from top to bottom read-
ing left to right): surface gravity; effective temperature; mean density;
mass-to-radius ratio; pulsation period and the surface velocity multi-
plied by the pulsation period over the stellar radius.

modes) existing in a star. Given its dependence on the stellar
parameters shown in Eq. (4) and for a given period, different
values of Q indirectly differentiate the stellar interior, especially
with regards to the temperature stratification in the star. As sug-
gested in Kiss et al. (2006) however it could be useful to use
Q to verify or compare stellar parameters as a check between
theoretical models and observations.

Works to derive theoretical values of Q have been produced
through usage of 1D models. Xiong & Deng (2007) derived the
values of Q analytically from pulsations prescribed by non-local
time-dependent convection in 1D for AGB stars (M⋆ ≤ 3 M⊙).
From their models, the Q values ranged between 0.06 and 0.1
days, with an average of 0.08 and a 1σ scatter of 0.077 ± 0.01
days. In comparison, the 1σ scatters for our models of AGB
stars, RSGs and as a whole were respectively calculated to be:
QAGB = 0.0724 ± 0.0049, QRSG = 0.0644 ± 0.0105 and Qall =
0.0699 ± 0.008 days. Xiong & Deng (2007) had a considerable
amount of scatter in the values of Q (see Fig. 1 of Takeuti et al.
2013), but there was a tight correlation between the Q values in
the fundamental and overtone modes of their models. Takeuti
et al. (2013) makes use of the tight correlation to constrain
masses of AGB stars with observed radii, thus presenting a new

method to derive masses of observed AGB stars. For this method
to be reliable, however, it requires a relatively certain measure of
the observed radii and that the theoretical AGB models pulsate
in more than one mode (in the fundamental and at least one over-
tone mode). The lack of overtones in our AGB models means it
is not currently possible to apply a similar method and compare
with the estimates for the masses of the AGB stars in Takeuti
et al. (2013).

Cruzalèbes et al. (2013) derive values of Q for a number of
late-type giants. They used observations from the VLTI/AMBER
facility (in the K-band) and the MARCS stellar atmosphere mod-
els (Gustafsson et al. 2008) to derive new values of angular
diameters with higher certainty than in previous studies. The
initial input stellar parameters for the MARCS models were effec-
tive temperature, surface gravity and stellar mass adopted from
the spectral type of the stars in their sample. Due to the mul-
tiple options of using different spectral types to infer the input
stellar parameters, they confirmed that the derived angular diam-
eters were not significantly affected by the choice of input stellar
parameters. Finally, the stellar mass of the targets in their sam-
ple was estimated by correlating the temperature and luminosity
acquired from the MARCSmodels to evolutionary tracks in the H-
R diagram. From their sample, there were only 4 Mira variables
in the fundamental pulsation mode which could be compared
to the AGB stars in the present work, which are over-plotted in
Fig. 14.

For RSGs, Fadeyev (2012) uses the solution of radiation-
hydrodynamics and turbulent time-dependent convection equa-
tions to study non-linear oscillations in RSGs with the zero age
main sequence (ZAMS) masses in the range of 8 M⊙ ≤ MZAMS ≤

20⊙. From their set of models, the relation of their correspond-
ing plot of Q to the stellar mass-to-radius ratio provides the
relation log Q = −2.288 − 0.778 log fMR. We derive the same
relation in from our RSG models in this work (M⋆ ≥ 5 M⊙)
being log Q = −(2.238±0.177)− (0.527±0.094) log fMR, where
the log Q − log fMR relation is reflected in the bottom row of
Fig. 8. Fadeyev (2012) further extended the use of their derived
Q to estimate the stellar masses of 7 galactic RSGs with avail-
able periods. They made use of the radii determined from MARCS
models in Levesque et al. (2005) and Josselin & Plez (2007) and
acquired the corresponding stellar masses using their values of
Q. From their derived stellar parameters, the corresponding Q
values (for RSGs with pulsation periods higher than 100 days)
were calculated in order to be compared to our models, and are
over-plotted accordingly in Fig. 14.

While there is some overlap, Fig. 14 overall shows there is
discrepancy between the estimates of Q of observed stars pro-
vided by Cruzalèbes et al. (2013) and Fadeyev (2012), and the
models in this present work. Different theoretical models being
compared, alongside observational uncertainties involved, con-
tribute to the discrepancies. Furthermore, factoring in the high
uncertainties in the radius estimations inferred from observa-
tions, as well as further differences in the definition of the
radius of a star (see Sects. 3.5.1 and 4.4), the discrepancies
between our work here and the values derived from observations
in Cruzalèbes et al. (2013) and Fadeyev (2012) are to an extent
unavoidable. Both of the works used the Rosseland radius defi-
nition (τRoss = 1) in the MARCS models to define the radii being
used. However, any radii calculated via the MARCSmodels should
be taken with a level of caution, as MARCS assumes static atmo-
spheres, whereas the stars being compared here are dynamical
in nature, evident from the pulsations. Hence it is challenging
to compare the works here, especially as the parameters were
indeed derived from different methods, which involves their own
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Fig. 14. Logarithm of the pulsation constant, Q, against the logarithm
of pulsation period. To compare against the models, 4 Mira variables
(rhombuses) and 7 RSGs (pentagons) are included from Cruzalèbes
et al. (2013) and Fadeyev (2012), respectively. Uncertainty bars have
been excluded for the models to preserve the clarity of the plots.

uncertainties; however, Fig. 14 represents an exploratory attempt
to find comparisons in literature and observations, and show that
the pulsation constants of our models are within the general
range derived from available observations.

4.2. Difference in models

Section 2.1 introduced the general setup of the models, further
developed from previous works in 3D simulations of pulsating
AGB stars (see Freytag & Höfner 2008; Freytag et al. 2017). As
part of the work presented here, pulsations extracted from differ-
ent generations of the CO5BOLD code were investigated. Higher
resolution models introduced additional finer convective struc-
tures (Freytag et al. 2017) and slightly more efficient convection
in the models, but the period of the pulsations was consistent
with lower resolution models. Temporally, longer running simu-
lations help to investigate the fluctuations in the pulsations more
reliably – and smaller sampling time steps do not reveal anything
new.

The inclusion of radiative pressure in the stellar interior
becomes more important with higher stellar mass and inner
temperatures (see Sect. 2.1 and Goldberg et al. 2022). After
examining the radiation-to-gas pressure ratio in the interior, the
missing radiative pressure is expected to affect the deep stel-
lar interior of RSGs, and could enhance convectively unstable
regions in the core of the RSG models. In Figs. 8 and 14, there is
a 6M⊙ RSG model that seemingly identifies as an outlier when
compared to other RSGs. This model (st36g00n04) was one
of the first attempts to produce a representative model of Alpha
Orionis (Betelgeuse). The model has realistic temperature and
surface gravity but smaller mass and radius than the inferred stel-
lar parameters of Betelgeuse. Temperature and gravity are at the
upper end of our model set (see Fig. 7.), while the numerical
resolution is comparatively low. This leads to relatively ineffi-
cient convection not carrying energy up from the core region,
where radiative energy transport dominates, but only in the outer
layers of the star. The entropy profile formally indicates convec-
tive stability of the inner region, while overshooting convective
velocities still can reach very deep down. In this case, we believe
that the inclusion of radiation pressure would deepen the con-
vection zone. The relatively shallow convection zone might have

consequences for the excitation of the pulsations. But it should
have only a minor impact on the pulsation period, because for
the period the outer layers, where the sound speed is low, are of
dominating influence. Thus, st36g00n04 serves as an extreme
case to highlight possible limitations in our current set of RSG
models. However, it was verified that this model, too, is pulsat-
ing in the fundamental mode. Hence, its results still appear valid
and useful to maximise the range in our parameter space in the
analyses presented in this work.

The current generation of models have only explored a rela-
tively tight region of parameter space in the mass-to-radius ratio,
fMR (see Sect. 3.3.1), in each mass class, indicated in the bottom
panel of Fig. 8. The reasoning for this is different for the AGB
and RSG models. For AGB models, the choice of stellar param-
eters was partially guided by DARWIN models that produce
stellar winds driven by radiation pressure on dust (see Eriksson
et al. 2014; Bladh et al. 2019a,b). As the escape velocity from a
star scales with vesc ∝ (M⋆/R⋆)0.5, a lower fMR was preferred to
generate stellar winds easily. This is since matter can be lifted
up to distances from the star, where low temperatures permit
dust condensation. In global RSG models, consideration towards
the size of the convection cells at the surface and the ability to
resolve them becomes important; where the size of granules, or
convection cells, is proportional to the pressure scale height (see
for instance Freytag et al. 1997, and references therein). Larger
pressure scale heights are then preferred since this would allow
surface features to be resolvable. In relation to the ratio of the
radius and pressure scale height at the photosphere: R⋆/H, with
H ∝ 1/g ∝ R2

⋆/M⋆, the ratio becomes R⋆/H ∝ M⋆/R⋆. There-
fore, the preference of larger pressure scale heights has limited
the ranges of the fMR in simulations of the RSGs. In general how-
ever, going towards higher ratios of fMR requires higher spatial
resolution, which is more computationally expensive.

4.3. Convection and pulsation interaction

Section 3.4 highlighted the evidence of the interaction between
convection and pulsations in the models. This interaction has
several effects on the atmosphere, importantly creating inhomo-
geneities on the surface of the photospheric layer.

The surface inhomogeneities due to convection may interact
with the pulsations and atmospheric shock waves. This interac-
tion produces a network of shock waves in the upper atmosphere
(Freytag et al. 2017). In this sense, the pulsations and shock
waves can carry forwards any spatial inhomogeneities on the sur-
face, creating patchy and irregular outflows. Thus it is thought
the size of surface convective cells and how the pulsations inter-
act with convection are significant factors for the production
of irregular and patchy outflows. The interaction also causes
variability in the pulsation period and amplitude.

While the study of the interaction was not presented here,
it is evident decoupling the pulsations and convection is diffi-
cult. The reason for the difficulty in investigating the non-linear
interplay between convection and pulsations is that there is no
explicit parameterisation for how the convection affects the pul-
sation, and vice versa, in the CO5BOLD code. Convective signals
still remain substantial despite applying spherical averages to
obtain the radial velocity: observed in the first and third rows
of Fig. 5. In fact, the pulsations heavily modulate the convection
energy flux (the sum of the enthalpy and kinetic energy fluxes)
at every pulsation cycle. Reacting against this, the stratification
in the stellar interior and atmosphere may experience perturba-
tions in the form of pressure fluctuations. The mass, momentum
and energy fluxes are affected, and the degree of this disturbance
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can influence the global behaviour of the pulsations. We interpret
sudden amplitude change in the pulsations, as observed for the
1.5 M⊙ and 8 M⊙ models in the top row Fig. 2, to be due to inter-
ference by convection. Given the high Mach numbers (velocities
exceeding 1 km s−1) of the convective flows and modulation due
to pulsations, quantifying the interaction between convection and
pulsations remains challenging.

Figures 10 and 11 investigate the relationship between fluc-
tuations in the pulsation period and stellar parameters. The
investigations represent a phenomenological way to study the
effect of convection on the pulsation period. For models that
experience regular, high amplitude pulsations (interpreted as
models with low σpuls), convection still causes some variability
in the period following events where pulsation amplitudes sud-
denly decrease. Capturing the variations and asymmetries due to
the non-linear interaction between convection and pulsations is
important in reproducing more realistic dynamical models and
the mass loss mechanism (see Liljegren et al. 2016).

4.4. Stellar radius definition

Works determining the radius of AGB stars and RSGs from
observations fundamentally rely on how the radius, that is the
boundary of the star, is first defined. Historically there have
been competing ideas on which definitions work best, espe-
cially for stars with cool extended envelopes (Haniff et al. 1995).
Furthermore, the extent of the surface of cool red giants car-
ries high uncertainty due to time-variability, non-sphericity, and
extensions of the surface of the star arising from the dynamical
atmosphere (Arroyo-Torres et al. 2015). Therefore, it becomes
non-trivial to decide how to define the radius from observa-
tions and how to compare with the radii obtained in theoretical
models.

It is difficult to compare the radii of AGB stars and RSGs
obtained from the CO5BOLD simulations against radii estimated
from observations. Fundamentally, this comes down to the radius
definition being used as suggested in Sect. 3.5.1. From the obser-
vational view, the dynamical nature of the atmosphere and the
molecular and dust formation shells surrounding cool evolved
stars (e.g. Wittkowski et al. 2007; Khouri et al. 2016; Ohnaka
et al. 2017; Höfner & Olofsson 2018) evidently present them-
selves as uncertainties to the true radius of the star. Analogous
to the different conditions which currently exist to describe the
radius of the star in the CO5BOLD models, radii from the obser-
vational stand point also have various definitions, being mostly
dependent on the wavelength observed and what is possible tech-
nologically. The distance measurement to target sources is also
a major uncertainty in the observed radii of cool red giants (see
Baschek et al. 1991; Haniff et al. 1995; Chiavassa et al. 2020).
Despite the complications, it is however reassuring that for the
AGB models, Fig. 9 shows that the over-plotted P-L relations are
in good agreement with the scatter of the observed Miras, indi-
cating that the stellar parameters in, or acquired from, the models
are in the region of those of real stars.

Section 3.5 investigated which definition for the radius
yielded the most reliable radius of the modelled star. It is
important to state that our primary concern was to decide on
a definition that would capture the shell where most of the
dynamic action (contained within the star), particularly pulsa-
tions, took place. The entropy minimum definition, marking
the region where the atmosphere becomes convectively stable,
appeared to be the best definition in Fig 12. Several different stel-
lar parameters, such as the effective temperature, mean-density

and mass-to-radius ratio, can be derived from the radius defini-
tions, hence finding the most reliable definition is crucial. Using
the entropy minimum definition also yielded the closest agree-
ment to the Ppuls − ρ̄

−0.5
⋆ relation as in Fig. 8. This reassures that

the radius definition we adopted is the best option amongst the
other definitions presented in this work. The closest equivalent
observational definition of the radius to this would be the very
inner boundary of the photometric radius of the observed star.
This requires either a combination of high precision interferom-
etry and distance estimates to the star itself, or precise radiative
transfer modelling of the luminosity and temperature of the star
to obtain estimates for the photometric radius of the star.

5. Summary and conclusions

Global 3D radiation-hydrodynamics models of AGB and RSG
stars are an essential tool for studying their pulsation proper-
ties and the excitation mechanism. The 3D models computed
with the CO5BOLD code were used to calculate the fundamen-
tal pulsation frequency and other critical pulsation properties. A
total of 75 models was analysed in this work, comprising sev-
eral generations of models. The convection and pulsations are
both emergent properties of the radiation-hydrodynamics simu-
lations. This means that no parametric treatment of convective
energy transport is necessary, in contrast to classical 1D pul-
sation models. Despite the non-linear nature of the interplay
between convection and pulsations, in all of the models radial
pulsations can clearly be observed and the pulsation periods in
the fundamental mode were extracted. A good correlation was
found for the Ppuls − ρ̄

−0.5
⋆ relation in the models, confirming that

the pulsations are in the fundamental radial mode. This agrees
with current theory that for LPVs, the variability is attributed to
low-order large-amplitude pulsations, existing as standing waves.

In their dependence on fundamental stellar parameters, the
pulsation periods agree with expectation, such as a lower surface
gravity resulting in longer periods. The AGB models agree well
with available observations in the P-L relation, indicating that
the stellar parameters and the pulsation properties are realistic.

Applying regression models led to the mass estimate formula
in Eq. (6), as a function of the fundamental pulsation period and
stellar radius. The radius value to be used in Eq. (6) must be
consistent with the radius used when the formula was derived.
We found that identifying the innermost local entropy minimum
in the atmosphere provided the best measure for the stellar radius
in the context of pulsation analysis. The purpose of identifying
the best radius definition was to explicitly capture the boundary
of dynamics in the stellar interior, thus where the pulsations play
a dominant role.

It is clear from the simulations that convection actively
affects the pulsation and that their interplay causes period vari-
ability. There is evidence that a reverse effect exists, in the sense
that the pulsations also impact the convection. The deep convec-
tive regions and large convection cells characteristic of evolved
red giants make it important to understand the interplay with
pulsation, and ultimately how the interplay affects the massive
stellar winds and the mass loss process. Further and more in-
depth studies on the interaction of convection and pulsations in
the 3D models remain on the agenda for future work. It proves to
be a difficult topic to investigate, since the effect of one cannot
be isolated, or decoupled, from the other.
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Appendix A: Model parameters and results

Table A.1. Parameters and pulsation properties of models used in this work.

Model M⋆ L⋆ n3
x xbox nt tavg R⋆,smin Teff,smin log gsmin Ppuls σpuls

M⊙ L⊙ R⊙ yr R⊙ K (cgs) yr yr
st26gm07n001 1.0 6953 2813 1381 3502 27.74 358 2783 -0.675 1.383 0.183
st26gm07n002 1.0 6978 2813 1381 3601 28.52 380 2706 -0.725 1.581 0.216
st27gm06n001 1.0 4982 2813 1381 3602 28.53 324 2693 -0.588 1.230 0.105
st28gm05n001 1.0 4990 2813 1381 3202 25.36 291 2846 -0.494 0.986 0.119
st28gm05n002 1.0 4978 2813 1381 3201 25.35 300 2799 -0.521 1.050 0.102
st28gm05n003 1.0 4997 3173 1263 3393 26.87 283 2882 -0.472 0.943 0.084
st28gm05n004 1.0 4961 3173 1263 2993 23.70 279 2901 -0.456 0.932 0.082
st28gm05n005 1.0 4964 3173 1263 4795 37.98 279 2897 -0.459 0.918 0.071
st28gm05n006 1.5 4956 3173 1263 2099 16.62 270 2946 -0.253 0.657 0.053
st28gm05n008 1.0 4914 3173 1263 2394 18.96 303 2775 -0.529 1.060 0.098
st28gm05n009 1.5 7452 3173 1263 4103 32.50 332 2943 -0.431 0.907 0.064
st28gm05n011 1.5 7439 3173 1263 3804 30.13 327 2966 -0.417 0.885 0.081
st28gm05n012 1.5 7424 3173 1263 4604 36.47 326 2969 -0.415 0.883 0.047
st28gm05n014 1.5 7419 3173 1263 4494 35.59 322 2983 -0.406 0.926 0.100
st28gm05n016 1.5 7474 3173 1263 5194 41.14 325 2978 -0.414 0.900 0.076
st28gm05n017 1.5 7447 3173 1263 5394 42.72 322 2986 -0.408 0.899 0.061
st28gm05n018 1.5 7472 3173 1263 3804 30.13 324 2981 -0.412 0.924 0.060
st28gm05n019 1.5 7434 3173 1263 5394 42.72 325 2974 -0.414 0.927 0.045
st28gm05n020 1.5 7664 3173 1263 3734 29.57 328 2979 -0.424 0.961 0.081
st28gm05n021 1.5 7424 3173 1263 5395 42.73 324 2977 -0.411 0.912 0.049
st28gm05n022 1.0 5039 3173 1263 5395 42.73 314 2746 -0.558 1.157 0.115
st28gm05n023 1.5 6957 3173 1263 3995 31.64 313 2978 -0.383 0.848 0.049
st28gm05n024 1.5 6646 3973 1581 1491 11.80 311 2956 -0.376 0.855 0.078
st28gm05n025 1.5 6946 3173 1263 6533 51.75 315 2970 -0.387 0.866 0.034
st28gm05n028 1.5 6907 3173 1263 5264 41.69 308 2999 -0.368 0.815 0.045
st28gm05n029 1.5 6901 4773 1263 3393 26.87 289 3093 -0.315 0.761 0.042
st28gm05n032 1.5 6936 6373 1263 6295 24.93 280 3149 -0.286 0.701 0.052
st28gm05n033 1.5 6702 5593 3454 6994 27.70 304 2993 -0.358 0.812 0.049
st28gm05n034 1.5 6840 6373 1263 7619 30.18 279 3141 -0.285 0.709 0.038
st28gm06n031 1.0 7016 2813 1381 3191 25.27 362 2774 -0.684 1.407 0.256
st28gm06n032 1.0 7021 4013 1970 3393 26.87 341 2861 -0.631 1.391 0.190
st28gm06n033 1.0 7033 2813 1381 3392 26.86 365 2766 -0.691 1.322 0.220
st28gm06n037 1.5 10000 3173 1558 3694 29.26 389 2926 -0.569 1.164 0.127
st28gm06n038 1.0 7049 4013 1970 3401 26.94 363 2774 -0.687 1.459 0.218
st28gm06n039 1.0 7027 4013 1970 3406 26.98 351 2821 -0.656 1.275 0.271
st28gm06n043 1.0 7039 3173 1558 5405 42.81 346 2842 -0.644 1.262 0.206
st28gm06n045 1.0 7035 4993 3365 3392 26.86 365 2767 -0.690 1.526 0.237
st28gm06n046 1.0 7022 4993 3365 3401 26.94 363 2772 -0.686 1.550 0.260
st28gm06n050 1.0 7049 5993 4858 6894 54.61 351 2823 -0.656 1.396 0.205
st28gm06n051 1.0 6933 6373 1558 7618 48.27 328 2907 -0.598 1.256 0.241
st28gm06n052 1.0 7030 6793 6386 3352 26.55 355 2806 -0.665 1.493 0.243
st28gm06n053 1.5 10016 3173 1558 5639 35.73 393 2912 -0.578 1.146 0.125
st28gm06n13 1.0 6932 2813 1381 3783 29.96 352 2806 -0.659 1.321 0.271
st28gm06n24 1.0 6944 2813 1381 3001 23.77 341 2853 -0.632 1.363 0.186
st28gm06n25 1.0 6890 4013 1970 3001 23.77 340 2851 -0.630 1.544 0.259
st28gm06n26 1.0 6955 2813 1381 3201 25.35 342 2848 -0.635 1.330 0.250
st28gm06n27 1.0 6950 2813 1381 3201 25.35 341 2854 -0.631 1.254 0.188
st28gm06n28 1.0 6969 2813 1381 3201 25.35 340 2860 -0.629 1.191 0.183
st28gm07n002 1.0 9986 3173 2222 5984 47.40 452 2714 -0.875 1.852 0.552
st28gm07n004 1.0 9958 3973 2782 7379 58.45 445 2734 -0.861 1.705 0.388
st29gm04n001 1.0 4982 2813 1381 3201 25.35 285 2871 -0.478 0.929 0.103
st29gm06n001 1.0 6948 2813 1381 3201 25.35 328 2911 -0.597 1.171 0.236
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Table A.1. continued.

Model M⋆ L⋆ n3
x xbox nt tavg R⋆,smin Teff,smin log gsmin Ppuls σpuls

M⊙ L⊙ R⊙ yr R⊙ K (cgs) yr yr
st34gm02n001 8.0 41017 6373 1929 6673 16.91 615 3311 -0.241 0.873 0.087
st34gm02n002 8.0 41675 7653 1626 9140 23.17 602 3359 -0.223 0.859 0.088
st34gm02n003 8.0 40794 7653 1626 11402 28.90 600 3349 -0.219 0.896 0.108
st34gm03n001 5.0 28710 6373 1929 7252 22.98 500 3358 -0.266 0.869 0.111
st34gm03n002 6.0 41195 6373 1929 5761 18.25 611 3326 -0.360 1.064 0.129
st35gm03n020 12.0 89138 6373 2093 6982 22.12 759 3620 -0.246 0.945 0.077
st35gm03n09 12.0 83405 2353 2027 489 7.73 836 3391 -0.342 1.056 0.146
st35gm03n10 12.0 74135 2353 2027 398 6.31 768 3436 -0.263 0.780 0.108
st35gm03n11 12.0 72676 2553 1751 940 14.89 752 3456 -0.243 0.807 0.114
st35gm03n18 12.0 89067 2353 2027 900 14.24 818 3487 -0.321 0.940 0.132
st35gm03n19 12.0 88938 4013 2027 600 4.75 772 3587 -0.267 1.014 0.115
st35gm04n045 5.0 41336 6373 1929 6600 20.91 597 3368 -0.419 1.412 0.160
st35gm04n046 5.0 40856 6373 1929 7391 23.42 600 3350 -0.423 1.327 0.185
st35gm04n047 5.0 40923 6373 1929 8391 26.59 622 3291 -0.455 1.426 0.166
st35gm04n048 5.0 40914 6373 1929 8390 26.58 623 3288 -0.456 1.433 0.253
st35gm04n049 5.0 40853 6373 1929 9397 29.77 602 3344 -0.426 1.398 0.169
st35gm04n050 5.0 45416 6373 1929 9591 30.39 611 3408 -0.439 1.385 0.181
st35gm04n051 5.0 40738 6373 1929 9393 29.76 597 3355 -0.419 1.364 0.260
st35gm04n26 5.0 41490 1713 1626 977 15.46 657 3212 -0.502 1.396 0.146
st35gm04n34 5.0 41815 3153 1626 205 3.23 615 3328 -0.445 1.099 0.257
st35gm04n36 5.0 41523 2353 1626 901 14.26 620 3309 -0.451 1.530 0.186
st35gm04n37 5.0 41227 3153 1626 643 5.09 597 3366 -0.419 1.159 0.172
st36g00n04 6.0 24216 2553 1000 1983 6.28 388 3652 0.017 0.422 0.043

Notes. The table presents the model name, which is made up of the approximate effective temperature and surface gravity, and of a running
number; the current stellar mass M⋆, used for the external potential; the average emitted luminosity L⋆, approximately identical to the inserted
luminosity in the core; the model dimensions n3

x; the edge length of the cubical computational box xbox; the temporal dimension nt and the total
time tavg, used for the averaging of the rest of the quantities in this table and for the further analysis; the average approximate stellar radius R⋆ from
the entropy minimum definition, used to derive the following quantities; the average approximate effective temperature Teff; the logarithm of the
average approximate surface gravity log g; the pulsation period Ppuls; and the spread in the pulsation period σpuls.
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