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This thesis considers topology optimization methods for wave propagation problems. These
methods make no a priori assumptions on topological properties such as the number of
bodies involved in the design. The performed studies address problems from two different
areas, acoustic wave propagation and microwave tomography. The final study discusses
implementation aspects concerning the efficient solution of large scale material distribution
problems.

Acoustic horns may be viewed as impedance transformers between the feeding waveguide
and the surrounding air. Modifying the shape of an acoustic horn changes the quality of the
impedance match as well as the angular distribution of the radiated waves in the far field (the
directivity). This thesis presents strategies to optimize acoustic devices with respect to efficiency
and directivity simultaneously. The resulting devices exhibit desired far field properties and high
efficiency throughout wide frequency ranges.

In microwave tomography, microwaves illuminate an object, and measurements of
the scattered electrical field are used to depict the object's conductive and dielectric
properties. Microwave tomography has unique features for medical applications. However,
the reconstruction problem is difficult due to strongly diffracting waves in combination with
large dielectric contrasts. This thesis demonstrates a new method to perform the reconstruction
using techniques originally developed for topology optimization of linearly elastic structures.
Numerical experiments illustrate the method and produce good estimates of dielectric properties
corresponding to biological objects.

Material distribution problems are typically cast as large (for high resolutions) nonlinear
programming problems over coefficients in partial differential equations. Here, the
computational power of a modern graphics processing unit (GPU) efficiently solves a pixel
based material distribution problem with over 4 million unknowns using a gradient based
optimality criteria method.
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1. Introduction

The dream of any designer or engineer is to design and create the optimal
system. To fulfill this dream, a first step would be to define what is meant by
optimal. Optimality can refer to having the smallest energy loss, the highest
expected rate of return, the most esthetically appealing design, or whatever
the designer sets its mind to. This thesis examines problems where the per-
formance can be measured. That is, the performance can be evaluated as a
mathematical function, henceforth denoted the objective function. A design is
said to be optimal if the value of the objective function is as low or high (de-
pending on the objective) as possible. Moreover, it is assumed that the physics
governing the problem can be described mathematically by a state equation.

For industrial designs, it is required that the final structure stays within a
certain area, the design region, and it is also common that there are additional
constraints limiting the choices of the designer. For example, when designing
a bridge, it is desired that the structure costs as little as possible (objective)
under the condition that the bridge can carry at least a prespecified load (con-
straint). In general, design processes are iterative. First an initial design is sug-
gested and evaluated. After the evaluation, the design is modified and tuned,
then the design is reevaluated. This process is repeated over and over until no
further improvements are possible.

As computers have become increasingly powerful, computer simulations
have become cost-and-time-efficient complements to traditional experiments.
In design processes, computer simulations typically evaluate the performance
for a given configuration. An alternative to manual tuning of the design,
and a good use of computational resources, is to perform numerical design
optimization. In these simulations, the geometry is parameterized, and the
optimal design is sought in the parameter space. That is, the algorithm
systematically evaluates the performance (the objective function) for different
parameter combinations. Often the geometry is parameterized from a given
reference configuration or ground structure. The choice of parameterization
plays an essential role for the outcome. After all, the computer program can
only exploit the chosen parameterization, and thus the resulting computed
optimal designs may vary dramatically as the parameterization is changed.

Numerical design optimization comes in different flavors, depending on
the choice of parameterization. Three main branches in numerical design op-
timization in increasing levels of generality are: sizing optimization, boundary
shape optimization, and topology optimization. Sizing optimization is used to
find the optimal thicknesses (sizes) of the parts in a structure, such as the di-
mensions of individual beams in a truss structure. In boundary shape optimiza-



tion, geometry changes, given by boundary displacements of the reference
configuration, are examined. The optimal design obtained using boundary
shape optimization is topologically equivalent with the reference configura-
tion. The most general approach is topology optimization, where the connect-
edness of the optimal design is determined as a part of the optimization. Many
projects (for example in the car industry) use a mix of these flavors. Typically,
topology optimization finds a basic design, while sizing and boundary shape
optimization put the final touches on the design.

Topology optimization for continuum structures is a relatively new research
area and has developed rapidly during the last two decades. The first problems
considered came from structural mechanics, and the most popular problem is
to minimize the compliance of a structure, that is, making it as stiff as possi-
ble for a given set of load conditions and a given maximal weight. During the
last decade, much work has been focused on extending the ideas and methods
used in topology optimization of structures to other applications, such as fluid
flows and wave propagation. The first articles concerning topology optimiza-
tion applied to wave propagation problems were by Cox and Dobson [18, 21]
who applied topology optimization to maximize band gaps (that is, ranges
of frequencies in which waves cannot propagate) in photonic crystals for E-
and H-polarized light. The next type of wave propagation problems consid-
ered was the maximization of the transmission efficiency through different
devices, like photonic waveguides [10, 20, 34], or acoustical devices [35, 60].
This thesis focuses on topology optimization for wave propagation problems
and aims at making the technique as successful for this problem type as for
problems within structural mechanics.



2. Topology Optimization

Topology optimization addresses the problem of determining the best distri-
bution of material within a given region. The first topology optimization like
problems to be examined concerned discrete systems, such as the design of
truss structures transmitting specified loads to given points of support. Already
in 1866 this problem was addressed by Culmann [19], who proposed a posi-
tioning strategy for the joints in a structure. In 1904 Michell [42] published
important principles for low volume truss structures, using infinitely many in-
finitely thin bars, that are optimal with respect to weight. The ideas laid out
by Culmann and Michell have been extended and generalized [52]. The clas-
sic book by Pontryagin et al. [49] introduced important principles concerning
optimal processes governed by differential equations. Lions [39] presented
pioneering work on optimal control for partial differential equations, which
inspired research also on the closely related area of design optimization. With
the introduction of computers, the development of numerical algorithms for
finding the optimal design escalated. Glowinski [29] and Goodman, Kohn, &
Reyna [30] demonstrate early numerical algorithms regarding topology opti-
mization of continuum structures for model problems. In 1988, Bendsge and
Kikuchi [7] published their seminal work on topology optimization for lin-
early elastic continuum structures. Since then, topology optimization has been
subject to intense research and is today used as a part of the design process
of advanced components, for instance in the car and aeronautical industries.
For some classes of problems there is commercial software, from for exam-
ple Altair Engineering and FE-Design. A short introduction to topology op-
timization, with emphasis on the methods and techniques used in the papers
forming the base for this thesis, is given in this section. Eschenauer and Ol-
hoff [26] present a review of topology optimization of continuum structures.
For an exhaustive introduction to topology optimization and a presentation of
many of its applications, the interested reader is referred to the monograph [9]
by Bendsge and Sigmund.

2.1 The Material Distribution Method

The most common approach to topology optimization for continuum models
is to represent the presence of material with a material indicator function «,
such that a(x) = 1 if x is a point where material is present and «(x) = 0 oth-
erwise. The aim is to find a discrete-valued design that maximizes the perfor-
mance, that is, minimizes (or maximizes) the value of the objective function.



The state equation is here assumed to be given as a variational problem of
the form
Find u € V such that

2.1
ag(u,v) =4L(v), YveV, @D
where the state variable u is the physical property governed by the state equa-
tion, v is a test function, and V is an appropriate function space denoted the
state space. The objective function is denoted J and the optimization problem
is given by

min J(o,u)
aeU
subject to ay(u,v) =4€(v), Yv eV, (2.2)

additional constraints,

where U is the set of admissible designs. For U/ being the set of all functions
« such that a(x) € {0, 1} almost everywhere in the design region €2, the opti-
mization problem above is a nonlinear integer programming problem. These
problems are computationally expensive to solve; the seemingly simpler class
of linear integer programming problems is NP-complete [46, p. 358]. Another
problem with the integer formulation is that, in many cases, the problems are
ill-posed in that there exist non-convergent minimizing sequences. A standard
method used to clear this obstacle is to relax the problem and let « take val-
ues in a continuous range, that is a(x) € [0, 1] almost everywhere. However,
this relaxation changes the problem significantly, as will be discussed further
in the following section. For elastic structures, the relaxed material indicator
function « can be interpreted as a relative density and is thus often denoted p.
When the optimization problem is solved on a computer, the design domain
is partitioned into small chunks (elements). The material indicator function ¢
is then approximated by a function «y, € Uj,. Usually, the space Uy, consists of
all functions being constant on each element. The state equation is for example
discretized using the finite element method. The discretized state equation is

Find uj € Vy, such that

2.3)
apo, (Up,v) =Ly(vp), Yvp € Vy,

where uy, vy, ap, and £, are the discretized counterparts to u, v, a, and £
respectively, and Vj, C V is the discretized state space. The discretized opti-
mization problem reads

min  Jy (o, up)
o €Uy
subject to ap o, (Up,v) =Ly (vy), Yy € Vp, (2.4)

additional constraints,

where Jj, is a discrete version of the objective function.



2.2  Mathematical and Numerical Issues

When the optimization problem is discretized with the finite element method,
the zero lower bound on the design variables may cause the state matrix to
become singular, and thus the state equation not uniquely solvable. To avoid
this problem, the bounds are often changed into «(x) € {e, 1}, where ¢ > 0, in
the binary case, and to «(x) € [¢, 1] in the relaxed case. The material indicator
function a*, corresponding to the computed optimal design for the relaxed
problem, is in general not a binary function. One way of dealing with this
problem, while remaining in a continuum for «, is to introduce a penalty that
promotes values close to ¢ and 1. In topology optimization of linearly elastic
structures, where the objective is to minimize the compliance of a structure
with a constraint on the maximum weight of the structure, a common penalty
strategy is to introduce an artificial density function such that elements with
intermediate design values, that is ¢ < @ < 1, carry little stiffness compared to
their weight [6, 51, 64]. Several artificial density functions are analyzed and
compared by Bendsge and Sigmund [8].

A more versatile approach to suppress intermediate values is to explicitly
add a penalty function J), to the objective function in problem (2.2). A com-
monly used penalty function, suggested for topology optimization by Allaire
and Kohn [4], is

Iy = [ @=oi-o).

where y is a constant representing the amount of penalization that should be
used. The penalized problem may have many local minima, and the penaliza-
tion also destroys any possible existence of solutions for the relaxed, nondis-
cretized problem. The ill-posedness of the binary problem causes the solutions
of the discretized problem, whether binary or penalized, to depend on the size
of the elements in the mesh. That is, the optimal design may radically change
as the discretization is refined.

Below follows a short presentation of restriction methods used to treat the
ill-posedness and the numerical instabilities that might occur. A systematic
investigation of restriction methods with illustrative numerical examples for
elastic continua is given by Borrvall [11]. Sigmund and Petersson [61] present
an overview of numerical instabilities appearing in topology optimization.

The papers this thesis is based on use the filtering technique suggested by
Bruns and Tortorelli [13]. This technique optimizes over an auxiliary function
o and lets the physical design « be defined through the convolution

a0 = [ o F)dy,

where the kernel ® has compact support and d is the number of space dimen-
sions. The measure of the kernel’s support can be used as a tool specifying the
minimal size of the parts in the design. Bourdin [12] studies a filtered version,
with a fixed kernel, of the minimum compliance topology optimization prob-



lem, proves existence of solutions, and shows that one obtains convergence of
solutions to the finite element discretized version of the problem. An alterna-
tive approach that solves the problems listed above is to add a constraint or a
penalty on the perimeter or the gradient of the design [5, 31, 43, 48].

Another problem is that the numerically optimal design might have regions
of checkerboard-like structures. This problem originates from at least one of:
improper choice of finite elements in the discretization, or nonuniqueness
of solutions (in the continuum problem) [47]. These problems are normally
treated by choosing the proper elements or filtering [12, 13, 59].

2.3 Alternative Methods for Topology Optimization

Besides the material distribution method there exist several other techniques to
solve topology optimization like problems as outlined above. The first meth-
ods for continuum structures were build around homogenization ideas (aver-
aging heterogeneous media to derive effective properties) and employed com-
posite materials to find optimal microstructures. The base of this approach is
that it is often advantageous to have many tiny inclusions of one material in
the other than just a few large ones. The recent books on structural optimiza-
tion by Cherkaev [17] and Allaire [2] discuss homogenization principles in
detail and present many applications.

The bubble method treats the topology optimization problem by solving
a sequence of boundary shape optimization problems. The method gener-
ates several possible topologies, and a criterion for the maximum number
of holes must follow external demands on the construction [25]. A related
method is based on the level set method [44] for tracking the evolution of
moving boundaries and topology changes in the optimization. In 1996 San-
tosa [54] described how this technique can be used to solve inverse prob-
lems and showed results reconstructing a diffraction screen. Here, the evo-
lution was based on gradients of an objective function. Many contributions
considering inverse scattering followed. A majority of these focused on the
reconstruction of binary media using gradient-type evolution for the level
set [3, 15, 24, 33, 40, 50, 58]. The versatility of the level set method is il-
lustrated by its wide range of applications. A recent study by Burger & Os-
her [16] focuses on level set methods for inverse problems and optimal design.
Dorn & Lesselier [23] review level set methods applied to inverse scattering
problems.

An interesting (but computationally expensive) approach for the discrete
problems, is to keep the condition that the design « is binary throughout the
discretization. Stolpe and Svanberg [65] show that a large class of non-linear
0-1 topology optimization problems also can be modeled as linear mixed 0-1
problems. Svanberg and Werme utilize a hierarchical method with a neigh-
borhood search to optimize discretized load-carrying structures [66, 67], and
Stolpe [63] uses a branch-and-bound technique to find the global optimum of
minimum weight truss problems.



3. Summary of Papers

3.1 Acoustic Wave Propagation Problems, Papers [-1V
3.1.1 Background

Acoustic devices operating as parts of a loudspeaker system have a large im-
pact on the quality of the sound reproduction. Horns are used in such sys-
tems both to improve the efficiency and to direct sound toward the audience.
The left illustration in Figure 3.1 depicts the setup used as basis for the op-
timization. The geometry is assumed to be infinite in the direction normal to
the plane. The wave transducer consists of a waveguide with a funnel-shaped
termination (the horn). A wave propagating through the waveguide can be
expressed as a superposition of modal components. For the studied problem
it is possible to choose the dimensions such that only the planar wave mode
propagate in the waveguide. When a single frequency planar wave moving
from left to right in the waveguide reaches the horn, parts of it will propagate
out from the horn while other parts get reflected back into the waveguide. The
transmission efficiency of the horn can be measured by comparing the ampli-
tudes of the incoming right-going wave and the reflected left-going wave. The
directivity describes the angular distribution of the radiated wave in the far
field. When designing an acoustic horn, it is desired to have high transmission
efficiency as well as control over the directivity of the horn.

3.1.2 Model

The walls of the waveguide and the horn consist of a sound-hard solid ma-
terial and all other parts of space consist of air. The topology optimization
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Figure 3.1: Material is placed in the region 2, C Qy to improve the horn’s radiation
properties. The dotted lines in the left figure mark the left and right boundaries of the
region Qg and are not part of the structure.



Figure 3.2: In Paper IV the walls of the horn are displaced and material is placed in
the region Qy to improve the radiation properties.

problem in Papers I and II consists of finding the region Q2 C Qy where
solid material is to be placed to get optimal performance of the horn. The de-
sign optimization problem in Paper IV consists of a horn whose flare is subject
to boundary shape optimization together with an area 2y where solid material
is placed using topology optimization techniques (Figure 3.2). The presence
of material in the region is modeled by the material indicator function « (the
characteristic function of the region Q).
Assume that the wave propagation is governed by the wave equation for the
acoustical pressure P/,
a2p’
ar?

=c2AP/,

where ¢ is the speed of sound. Seeking time harmonic solutions for a sin-
gle frequency w making use of the ansatz P’(x,t) = R{e'*! p(x)}, where R
denotes the real part and i the imaginary unit, the above equation reduces to
the following Helmholtz equation for the complex amplitude function p in the
region of wave propagation,

Ap+w?p=0. 3.1

Further, assuming that the horn is the only sound source, all waves are outgo-
ing in the far field. This is equivalent to stipulating that p satisfies the Som-
merfeld radiation condition

lim |x|@—1D/2 (i-Vp —i—ikp) =0 (3.2)

|x|—o00 |X|

uniformly for all directions, where d is the number of space dimensions con-
sidered. In the far field, the complex amplitude function is essentially the prod-
uct of a function of the distance to the origin and a function of the direction.
More precisely, let p > 0, and let X(6) be a point on the unit sphere, where 6
represents the polar argument(s) of X. Then for xo = pX,
e~ikp 1
p(xo) = L@z {Poo(Q) +0 (;)% p — F00,
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Figure 3.3: Horn from Paper I optimized for high efficiency at the frequencies 400 Hz,
410 Hz, ...,500 Hz and its reflection spectra (solid line). The dashed line illustrates
the performance of the funnel shaped reference horn.

where k = w/c is the wave number. The function poo(6) is denoted the far-
field pattern of the horn. Paper I1I presents a derivation of the expression above
for time harmonic acoustic wave propagation in two and three space dimen-
sions, and includes detailed descriptions of the numerical evaluation of the
far-field pattern in some typical situations. The presentation covers all parts
required for computing the far-field properties of acoustical devices.

When optimizing the performance of the device in Papers I, II, and IV,
problem (3.1) is solved using the finite element method on a bounded domain
Q. At the outer boundary of 2 the outgoing wave property is imposed arti-
ficially. This can be done by either imposing a radiation boundary condition
at the boundary or by modifying the governing equation in a layer near this
outer boundary.

3.1.3 Selected Results

The wave propagation in the waveguide at cross section g (Figure 3.1) consists
essentially of one right-going (the incoming) and one left-going (the reflected)
wave, with amplitudes A and B respectively. The reflection coefficient

_ 18]
| A

depends on the frequency of the incoming wave as well as the shape of the
horn. In Paper I, our objective is to maximize the efficiency, that is, to mini-
mize the reflection coefficient of the horn. Figure 3.3 depicts a horn optimized
for efficiency in the range 400-500 Hz and its reflection spectra. To attain
this objective, the numerical algorithm minimizes the reflection coefficient at
frequencies 400 Hz, 410 Hz, ..., 500 Hz.

In Paper II, we include requirements on the efficiency as well as on the
directivity of the horn. Figure 3.4 shows two optimal horns from Paper II.
The left horn is optimized for maximum efficiency at 1200 Hz, and the right
horn is optimized for maximum efficiency and at the same time minimal en-
ergy along the horn axis at 1200 Hz. Even though these requirements are in
conflict, the algorithm finds a design with a good trade off between the two
objectives with almost perfect transmission (zero reflection coefficient) and a

9



330°

Figure 3.4: Optimization with respect to efficiency and far-field behavior for a single
frequency of 1200 Hz. Left: horn optimized only with respect to efficiency. Middle:
horn optimized with respect to both efficiency and far-field behavior. Right: far-field
behavior for the funnel shaped reference horn (dashed line), the horn optimized with
respect to efficiency (dotted line) and the horn optimized with respect to both effi-
ciency and far-field behavior (solid line).
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Figure 3.5: Horn with lens optimized for high efficiency and even directivity using
modifications of the horn flare and topology optimization of the lens in front of the
horn (left), the transmission loss in dB (middle), and the beamwidth (right) as func-
tions of frequency. The solid lines in the diagrams correspond to the horn—lens com-
bination, while the dashed line illustrates the performance of the funnel shaped refer-
ence horn without a lens.

low intensity along the horn axis. However, this design does not perform well
at other frequencies as can be seen in Paper II.

It is difficult to obtain both high transmission efficiency as well as control
over the far-field behavior using solely modifications in the horn region [68].
In Paper IV, we let material be arbitrarily placed in a region in front of the
horn using topology optimization, while using boundary shape optimization
of the horn flare to design a device with high efficiency and a wide beamwidth
(angular distance between the —6 dB points in the far-field) for a wide range
of frequencies. Aiming at creating an efficient device with beamwidth above
100° in the frequency range 250—-1000 Hz, this approach produces the horn—
lens combination in Figure 3.5. The solid line in the diagrams illustrate the
behavior of the optimized horn—lens combination while the dashed line cor-
responds to the funnel shaped reference horn. Compared with the reference
horn, the optimized horn—lens combination is more efficient and has a supe-
rior beamwidth throughout the frequency band of interest.

10



3.2  Microwave Tomography, Papers V-VII
3.2.1 Background

In tomography, images depicting cross sections of objects are created. Medical
tomographic systems are based on identification of tissue properties. Micro-
wave tomography is a technique in which microwaves illuminate a specimen,
and measurements of the scattered electrical field are used to determine and
depict the specimen’s dielectric and conductive properties. Important phys-
iological conditions of living tissues, such as blood flow reduction and the
presence of malignancy, are accompanied with changes in dielectric proper-
ties [37, 56, 57]. Due to the low energy of photons in the microwave region,
the radiation is not ionizing, in contrast to x-rays. Hence, microwave tomogra-
phy is expected to be safer than x-ray based tomography. However, the desired
resolution in microwave tomography is of the same size or smaller than the
used wavelengths. Thus, the fast ray-theory based algorithms [38] for x-ray
and ultrasound tomography cannot be expected to give satisfactory results.

A mathematical model for microwave tomography is to fit a complex per-
mittivity function in the Maxwell equations for a given set of measurements.
The first algorithms for microwave tomography focused on the low contrast
case, that is, the reconstruction of objects with only small spatial variations
in the permittivity. Kak and Slaney [38] review these so called fast diffraction
tomography methods as well as classical ray theory based methods. How-
ever, biological tissues show high contrasts in permittivity, for instance due
to differences in water content. Therefore, medical applications necessitate
methods that can handle the high-contrast case. The most straightforward—
and computationally expensive—way to eliminate the contrast restrictions is
simply to attack the original nonlinear least-squares problem with a numerical
method [1, 14, 27, 28, 36, 41, 55, 56, 62]. To decrease the computational cost,
most authors assume symmetries so that the governing Maxwell equations re-
duce to the scalar Helmholtz equation. Papers V—VII address the problem of
reconstructing the dielectric properties of biological objects using topology
optimization methodologies under the above mentioned symmetry assump-
tions.

3.2.2 Modeling

The problem consists of reconstructing the dielectric properties of unknown
objects located inside a hexagonal metallic container with side length 16 cm.
The objects are located in the region €29 (Figure 3.6) and embedded in a saline
solution with known dielectric properties, ;. A 2.2 cm wide waveguide filled
with a low loss-material with known dielectric properties &y, is attached to
each side of the container. At the end of each waveguide there is a device
able to radiate microwaves as well as measure the electric field. The setup as
well as the unknown objects are assumed to extend infinitely in the direction
normal to the plane.

11
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Figure 3.6: The problem consists of finding the dielectric properties of unknown ob-
jects. Left: a set of microwave transmitters and receivers are located at the ends of
the waveguides. Right: the container can be rotated with respect to the region €2+, in
which the unknown objects are located.

The Maxwell equations govern the electrical field vector E, which is as-
sumed to be polarized normal to the plane. Under the above polarization as-
sumptions, it is equivalent to consider the setup to extend only a finite length
normal to the plane, and being terminated by plates of perfectly conducting
material.

Figure 3.6 illustrates the computational domain €2. The sides of the con-
tainer and the waveguides consist of perfectly conducting material. The outer

ends of the waveguides are denoted Fi(nn), n=1,2,...,6 and their union I},.
The devices at the end of the waveguides are simulated with a Somerfeld ap-
proximation prescribing an incoming lowest mode wave while assuring that
all outgoing modes are absorbed. Letting V = {v € H'(Q) |v =0o0n Q2 —
I'in} and seeking time harmonic solutions for the wave propagation problem
with source located at waveguide m, angular frequency w, using the ansatz
E(x,t) =R{(0,0,u)e'®’} result in that the complex amplitude function u sat-
isfies the variational form: Find u € V such that

~ ~ — .t
[Vu-Vv—kO/wv—i-ik/uv=2ikA/ cos(w) v, (3.3)
Q Q2 rin Fiim) d

for all v € V. All components of the variational form above are detailed in
Papers V-VIIL.

3.2.3 Optimization problem

To depict the unknown dielectric properties, the electric field is observed at
a number of different illumination conditions. To achieve a good reconstruc-
tion, multiple frequencies are used; moreover, the container can be rotated (as
illustrated to the right in Figure 3.6) at angles 6; € [0°,60°), [ = 1,2,...,L
with respect to €2+. For each rotation angle ; and frequency wy, the devices at
the ends of the waveguides one at a time radiate the objects, and the resulting
electrical field is measured by all six devices.
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Figure 3.7: Real part of selected permittivity distributions from Paper V. Reconstruct-
ing the phantom (left) using 144 observations and no a priori information (middle) as
well as a priori information that the dielectric properties are either ¢; = 79.0 — 10.51
or g5 = 57.5—22.6i inside 2, (right). The scales on the axes are in centimeters.

For source location Fi(n"), rotation angle 6, and frequency wy, let v,’f j,ln de-

note the target (or measured) mean complex value over Fi(nm). The problem of

finding the dielectric properties is mathematically formulated as the following
nonlinear least squares problem:

6
n?nZ Z ‘(u(s)ﬁ’l)m—v,fj,ln 2, (3.4)

k, m,n=1

(m)

in

of the solution uﬁ’l to (3.3)
with source located at Fi(n"), at rotation angle 6;, and frequency wy,.

where (u(s)ﬁ’l) m denote the average over I

3.2.4 Selected Results

In Paper V we prove that problem (3.4) has at least one solution for any set of
complex measurements. We first show that for each permittivity distribution,
there exists a unique solution to the forward problem (3.3). To prove the exis-
tence of a solution to problem (3.4) we utilize properties concerning compact
inclusion of Sobolev spaces and a trace theorem for domains with Lipschitz
boundaries.

The numerical experiments in Paper V aim to find a triangular phantom,
with permittivity ¢ = 57.5 — 22.61 using incoming waves with frequency
900 MHz. At this frequency, the dielectric properties of the phantom corre-
spond to those of soft tissue. Figure 3.7 shows the real part of the phantom
(left) and two reconstructed versions of this phantom (middle and right
image). The left image also illustrates the mesh, which has 6144 elements in
the region €2, where the unknown objects are located. The middle image
was reconstructed using 24 irradiation positions, resulting in a total of 144
observations. By making use of these observations the 6144 unknowns
are reconstructed in (only!) 12 iterations of the optimization algorithm.
As opposed to topology optimization for structures, there is no indication
of mesh dependency and checkerboarding when forcing the permittivity
to attain discrete values. Using that the dielectric properties are either

13
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Figure 3.8: Sum of real and imaginary part of selected permittivity distributions from
Paper VI. Reconstructing the phantom (left) using a priori information that all ele-
ments not marked black in the middle image contain saline solution. The image on
the right shows the reconstructed properties. The scales on the axes are in centimeters.
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Figure 3.9: Real part of selected permittivity distributions from Paper VII. Recon-
structing the phantom (left) by solving a sequence of topology optimization problems.
A priori information about the permittivities and the solution of the current problem
defines the next problem in this sequence. The middle image shows the permittivity
distribution after the first problem and the right image shows the permittivity distribu-
tion after five problems. The scales on the axes are in centimeters.

&1 =79.0—10.51 or e, = 57.5—22.6i inside €2, and 24 irradiation positions
we obtain an almost perfect reconstruction of the permittivity; the right of
Figure 3.7 depicts the real part of this reconstructed permittivity distribution.

In Paper VI we use frequencies in the range 870-930 MHz to reconstruct
the dielectric properties of three phantoms. The images in Figure 3.8 show the
sum of the real and imaginary part of the dielectric properties. The left image
illustrates one of the phantoms. The triangular specimen has dielectric proper-
ties corresponding to muscle, the hexagonal specimen correspond to fat, and
the parallelogram shaped object corresponds to blood. In many real life appli-
cations, some geometric properties of the unknown objects are known or can
easily be obtained, for example through laser measurements. Here, the recon-
struction of the dielectric properties uses that all elements not marked black in
the middle image of Figure 3.8 contain the saline solution; the four frequen-
cies 870, 890, 910, and 930 MHz; and 24 irradiation positions per frequency.
The right image in Figure 3.8 depicts the dielectric properties reconstructed
using this approach and simulated numerical data with an approximate signal-
to-noise ratio of 40 dB.
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Paper VII presents a subdomain identification strategy that uses informa-
tion about the permittivities of unknown objects to construct successively a
sequence of problems. Each problem in this sequence is constructed using the
solution of the previous one in combination with available a priori information
about the distribution of the unknown permittivities in the complex plane. Fig-
ure 3.9 illustrates the benefits of using this approach. The left image depicts
the real part of the phantom; the mesh in the background has 1536 elements in
29 and is used in the reconstruction. The image in the middle is reconstructed
using the three frequencies 875, 900, and 925 MHz. The image on the right is
reconstructed using the same data, but with applying the subdomain identifi-
cation strategy and a sequence of five problems.

3.3 Large Scale Topology Optimization Using a GPU,
Paper VIII

3.3.1 Background

Material distribution problems are typically cast as nonlinear programming
problems over the coefficients in a partial differential equation. To avoid a
priori bias, the coefficient field is represented as large (for high resolution)
arrays of equally-sized elements (pixels). Such large scale pixel based topol-
ogy optimization problems demand much computational power and time. An
important step toward solving complicated large scale problems is the devel-
opment of efficient and parallel algorithms and implementations tailored for
these problems.

During the last years, the computational power of graphics processing units
(GPUs) has increased at a much higher rate than the corresponding rate for
regular CPUs. Compared to a typical CPU, the GPU allocates more transistors
to data processing and less to caching and flow control. As a consequence, the
hardware architecture imposes an algorithmic constraint on the class of prob-
lems that benefit from GPU acceleration. Candidate problems need to be solv-
able by algorithms for which data-parallel computations dominate the compu-
tational effort. One example of such problems is, as shown in Paper VIII, large
scale pixel based topology optimization problems. This contribution is in line
with a current trend to utilize the highly parallel architecture of the GPU to
accelerate the solution of various problems [22, 32, 45, 53].

3.3.2 Model Problem

The model problem studied in Paper VIII consists of a rectangular plate sub-
ject to constant heating. The plate occupies the unit-size two dimensional do-
main 2 (Figure 3.10) whose boundary consists of parts I'p and I'y. The plate
is insulated along I'y and held at constant temperature at I'n. Now assume
that we have a limited amount of a high conductivity material (x = k) and an
unlimited amount of a low conductivity material (k = k). We seek to distribute
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Figure 3.10: The problems consist of finding the distribution within €2 of two materi-
als with different heat conduction properties in order to obtain a temperature distribu-
tion that is as even as possible.

these two materials in order to obtain a temperature field that is as “even” as
possible at thermal equilibrium and formulate our material distribution prob-

lem as
i T
mn [ 1

subjectto —V-(kVT) = fin Q,
T =0onIp,
(«VT)-n=0o0nTIYy,

Kk =K+ak—k),

/afV,
Q

where T is the temperature, f the constant heat source density, n the unit
normal on I'y, o our design variable,

U={ae L®(Q)|a(x)€{0,1}ae.in Q},

(3.5)

and V' corresponds to the available amount of the high conductivity material.

3.3.3 Selected Results

To solve the material distribution problem efficiently, we relax the binary con-
straint on « using the SIMP (Solid Isotropic Material with Penalization) ap-
proach [6]. We partition the domain into N = n? squares (elements) and use
filtering with support within a fixed number of elements. This filter stabilizes
the numerical procedure without imposing a smallest geometry scale. We dis-
cretize the governing equation for the temperature field using the finite ele-
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Figure 3.11: Material distribution optimized using N = 2100? elements allowing high
conductivity material (black) to fill a relative volume fraction V' = 0.5 of the plate.

ment method with bilinear elements. The preconditioned conjugate gradient
method solves the resulting linear system. We solve a discrete version of prob-
lem (3.5) numerically on the GPU with the gradient based optimality criteria
method (see for example § 1.2 in Bendsge and Sigmund’s book [9] for a more
detailed description). Figure 3.11 shows the resulting material distribution for
N = 21002 and V = 0.5. In this case, the nonlinear optimization problem has
over 4 million design variables.

To compare the running time for the algorithm on the GPU with typical
CPU-based implementations, we implement a serial version of the algorithm
as well as an OpenMP parallelized version. We run the GPU and the sin-
gle core CPU versions of the algorithm on a workstation equipped with an
1.86 GHz Intel Core 2 Duo processor and a NVIDIA 8800 GTX based graph-
ics card. The parallel version of the algorithm is executed on an AMD Opteron
2220 (2.80 GHz) based HPC machine. Figure 3.12 shows the time per iter-
ation for the three experimental setups described above. For the larger prob-
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Figure 3.12: Tteration time in seconds as a function of problem size for the different
experimental setups. The solid line illustrates the computational time on the GPU. The
dash—dotted line presents the computational time on a single core on the 1.86 GHz
Intel Core 2 Duo processor. The dashed line shows the computational time on four
cores on a 2.80 GHz AMD Opteron 2220 based HPC cluster.

lems, the GPU based version is about 20 times faster than the single core CPU

version and about three times faster than the parallelized version running on
the HPC machine.
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4. Sammanfattning pa svenska

I alla tider har ménniskan utfort undersokningar och experiment for att forsta
hur saker och ting fungerar. Alla 4r inte lika intresserade av att experimentera
och undersoka olika system. Dédremot dr det i allmdnhetens intresse att det
framstills nya alster och utformningar som fungerar bittre én féregangarna.
Drommen for varje formgivare dr skapa ett optimalt system eller formge den
ultimata produkten. For att uppfylla denna drém maste man forst definiera
vad som menas med att nagonting dr optimalt. Exempelvis kan optimalitet
avse att systemet har minimal energiforlust, storsta forvdntade vinst, 4r mest
estetiskt tilltalande eller nagonting annat som formgivaren bestimmer sig for.
Denna avhandling behandlar problem dér prestanda kan mitas. Det finns alltsa
en malfunktion som for en given utformning producerar ett tal som beskriver
dess prestanda. En utformning sidgs vara optimal om vérdet pa malfunktionen
ar sa lagt eller hogt (beroende pa vilket mal som efterstravas) som mdojligt.
Vidare antas det att den bakomliggande fysiken kan beskrivas matematiskt
via en tillstandsekvation.

Inom industrin kridvs det oftast att utformningen haller sig inom ett visst
begrinsat utrymme, designomrddet, det dr ocksa vanligt att det finns ytter-
ligare bivillkor som begrinsar formgivarens valmdjligheter. Exempelvis, nér
man ska bygga en bro sa vill man att byggkostnaden ska vara sa lag som
mojligt (mal eller objekt), men man kridver dven att bron kan bdra minst en
viss forutbestimd belastning (bivillkor). Vanligtvis dr utformningsprocesser
iterativa. Forst foreslas och provas en utformning. Nar detta dr gjort gors
fordndringar och finjusteringar varefter den nya utformningen testas. Denna
process repeteras tills inga ytterligare forbattringar dr mojliga.

I takt med att datorer har blivit kraftfullare har datorsimuleringar blivit
kostnads- och tidseffektiva komplement till traditionella experiment. Under
designprocessen anvinds ofta datorsimuleringar for att evaluera prestandan
hos en given konfiguration. Ett alternativ till manuell finjustering av utform-
ningen och en utmirkt anvindning av datorers berdkningskraft dr att anvinda
sig av numerisk formoptimering. Vid dessa simuleringar parameteriseras geo-
metrin varpa parameterrymden genomsoks for att finna den optimala utform-
ningen. Detta gors genom att algoritmen systematiskt evaluerar prestandan
(malfunktionen) for olika parameterkombinationer. Parameteriseringen av
geometrin utgér ofta fran en given referenskonfiguration. Valet av parameter-
isering spelar en avgorande roll for slutresultaten. Datorprogrammet kan
trots allt inte géra mer 4n att soka igenom hela den givna parameterrymden
och saledes kan den resulterade optimala utformningen variera nir para-
meteriseringen dndras.
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Numerisk formoptimering kan delas upp i tre huvudgrenar: storleksopti-
mering, randformoptimering och topologioptimering. Storleksoptimering be-
star av problem dir formen, men ej storleken av alla delar i en konstruktion,
redan &r given. Det som soks i dessa problem ér alltsa de optimala storlekarna
for delarna. I randformoptimering studeras problem dér formen av objektet
inte dr foreskriven. I dessa problem undersoks geometrifordandringar givna
via randforskjutningar, vilket dr en utmirkt strategi for att gora de sista fin-
justeringarna av en utformning. Topologioptimering behandlar problem dir
man fran borjan inte gor nagra antaganden betriffande utforming. I dessa
problem far utformningen vixa fram och hal respektive fritt svivande delar
kan uppkomma eller forsvinna under processen.

Topologioptimering for kontinuumstrukturer 4r ett relativt ungt forsknings-
omrade som har utvecklats snabbt under det senaste tva artiondena. Topo-
logioptimering for strukturmekanik #r idag ett moget omrade och anvinds
for att framstilla och forbéttra nya produkter inom exempelvis bil- och flyg-
industrin. Under det senaste artiondet har forskare borjat applicera liknande
strategier pa problem inom andra discipliner, sasom vagutbrednings- och
stromningsproblem. Min forskning fokuserar pa anvindandet av topologi-
optimering for vagutbredningproblem. Mitt mal dr att gora dessa strategier
lika framgangsrika for vagutbredning som de dr for strukturmekaniska pro-
blem. Denna avhandling behandlar topologioptimering for vagproblem och &r
baserad pa atta artiklar vars innehall beskrivs kort nedan.

Artikel -1V fokuserar pa akustisk vagutbredning och utformningen av
akustiska horn. En viktig egenskap hos ett akustiskt horn 4r dess eftektivitet.
Artikel I anvédnder topologioptimering for att utforma horn med hog effek-
tivitet. En annan viktig aspekt dr hornets fjarrfaltsegenskaper (den akustiska
energins riktningskarakteristik vid stora avstand). Artikel II visar horn opti-
merade med avseende pa bade effektivitet och fjdrrfiltsegenskaper. Den
numeriska behandlingen av fjirrfiltsegenskaperna redogor Artikel III for. For
att att uppna en jaimn spridning och hog effektivitet anvinder sig Artikel TV
av randformsoptimering for hornet och later topologioptimeringsstrategier
placera en lins framfor hornet sa att 6nskade fjarrfiltsegenskaper uppnas.

Medicinsk tomografi anvinds for att framstélla bilder av tvérsnitt av
biologiska objekt. I mikrovagstomografi avbildas vidvnadernas dielektiska
egenskaper. Manga fysiologiska fordndringar, exempelvis minskat blodflode
och maligna vivnader medfor signifikanta dndringar i de dielektriska egen-
skaperna, vilket gor att dessa kan upptidckas med mikrovagstomografi utan
speciella kontrastvitskor. Vidare dr mikrovagor ickejoniserande och forvintas
vara sikrare och billigare dn rontgen. Diaremot gor de langa vagliangderna att
rekonstruktionsproblemet blir mycket komplicerat. Artikel V-VII redogor
hur rekonstruktionen av de dielektriska egenskaperna kan utforas med hjilp
av topologioptimeringstekniker.

Slutligen beskriver Artikel VIII hur berdkningskraften hos en modern
grafikprocessor kan anvéndas for att 10sa storskaliga topologioptimerings-
problem.
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