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Accurate dissection of highly polygenic traits is difficult, in part due to the power required
to identify and characterise minor loci, but also due to the potential nonadditive interactions
between the contributing genetic variations within a population. This is often further
complicated by the genetic features of natural or agricultural populations, where a good
understanding of the genetic architecture of a quantitative trait, e.g. the risk to develop a disorder,
or growth-traits in farm animals, would be beneficial. The aim of this thesis is to contribute
to a better understanding of the genetic architecture of quantitative traits. In order to do this,
the three studies in this thesis make use of a large 18-generation intercross population created
from a long running selection experiment on 56-day bodyweight in chicken, the Virginia weight
lines.. Combining this population with a new, cost efficient approach to genotyping, we created
a large, powerful dataset to explore multiple aspects of the quantitative trait in question, and
how its genetic architecture has been shaped by artificial selection.

The first study describes the approach used to generate the dataset and uses the increased
power and resolution for a comprehensive genome wide QTL scan, identifying multiple novel
loci and mapping others at better resolution.

The second study leverages the same dataset to study the contribution of capacitating epistasis
to the selection response. We identify multiple capacitors that explain a modest amount of the
selection response, as well as dissect a previous interaction between two QTL into a larger
epistatic network with multiple within and across chromosome interactions that explains a large
fraction of the phenotypic variance and selection response.

In the third study, we make use of the outbred nature of the founders to investigate the
contribution of still segregating variants to the selection response by adding a GWAS approach
to the QTL mapping. We identify multiple novel loci that have not been identified by the QTL
approach before, many of which likely still contribute to the selection response due to only
segregating in one of the two founding lines. Overall, this thesis showcases the complexity
of quantitative trait genetic architecture under selection, by identifying multiple novel loci
and epistatic networks that contribute to the selection response in different ways, as well as
highlights some of the benefits of combining multiple approaches with different assumptions.
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Introduction 

Quantitative traits, complex traits 

Quantitative Traits 
Genetics is the study of heredity, the passing of genetic information and asso-
ciated phenotypic features or quantitative variation in such from progenitor to 
offspring. 

The former are most commonly used to illustrate genetics, using examples 
such as flower-color in Gregor Mendels peas, (e.g Figure 1A), albinism, or 
coat colour and length in cats (1,2). Assessing the impact of this genetic vari-
ation on the phenotype in question (Color of the inflorescence, lack of pig-
mentation or e.g. length of the haircoat) is straightforward, and the line of in-
heritance easily traced. These traits are considered monogenic, meaning they 
are governed by genetic variation in a single region of the genome, and are 
inherited in a mendelian fashion. Beyond their use as demonstrators, in hu-
mans these traits often have medical considerations as rare, inheritable and 
often recessive disorders, such as cystic fibrosis, Huntington's disease and tha-
lassaemia (3–5). While these are often debilitating for the affected, identifica-
tion of the relevant regions in the genome via linkage mapping and studies in 
affected families, as well as prevention via screening for carriers are theoreti-
cally easy, barring ethical considerations (6,7). Other traits and their heredi-
tary components are more difficult to assess, since their effect does not parti-
tion into qualitative categories. Taking height in humans as an example, as-
suming monogenic, mendelian inheritance, there would be only 'tall' and 
'small' people, with every individual fitting neatly into one of the two catego-
ries. However, while there are tall and small people, there is also everything 
in between. Therefore, instead of qualitative categories, we measure height 
with a value on a continuous scale and consider it a quantitative trait. This 
holds true for many medical considerations as well, such as the risks that a 
given individual will suffer from cardiovascular disorders, type II diabetes or 
schizophrenia during their lifetime (8–10). Often, some of the phenotypic var-
iance in a quantitative trait can be explained by environmental influences. 
Height for example depends on the availability of food and nutrients during 
the childhood of a given individual (11), but commonly they also have a her-
itable component. Tall people are more likely to have tall children (12), and 
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people whose parents suffer from cardiovascular disorders, type II diabetes or 
schizophrenia are more likely to have these diseases and disorders as well. 
While it is often difficult to estimate the fraction of phenotypic variance that 
is heritable and disentangle it from environmental effects, identifying the ge-
nomic regions responsible for the inheritable variation is even more difficult. 
Some of the wide variation that makes a trait quantitative is due to environ-
mental influences, but it is commonly also due to the polygenicity of the trait: 
many different variants in the genome contributing to the phenotypic variation 
we observe. This leads to a staggering amount of genotype-combinations with 
unique contributions to the phenotype, with a set of four bi-allelic loci in a 
diploid organism already leading to 34 = 81 unique genotypes. Given sufficient 
polygenicity, the phenotype distribution of any quantitative trait quickly re-
sembles a normal distribution (e.g. figure 1B) with many different combina-
tions leading to very similar phenotype values. 

For human height, the upper bound of estimates assumes that more than 
100.000 variants across the human population contribute to height (13). While 
some of these may have comparatively large effects, the vast majority of these 
variants will only explain a minute fraction of the total phenotypic variation. 
This feature, and the inverse relationship between effect size of variants and 
statistical power required to confidently assess their contributions, makes for 
one of the core challenges of investigating the genetic basis of quantitative 
traits. 

Figure 1. A: example punnett square for pea-flower colour, cross of two F1 individu-
als, with purple corresponding to the dominant Allele (B) and white to the recessive 
allele (b). Madeleine Price Ball, CCO1.0 via Wikimedia Commons. B simple simula-
tions to show how combinations of loci with discrete effects across a population rap-
idly resemble continuous phenotype distributions akin to a normal distribution with 
the number of loci contributing to the trait. From top left to bottom right: random draw 
of phenotypes for 1,2,4,8,16 and 42 equally contributing loci, 3200 individuals each. 
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Complex traits 
Beyond the challenge of correctly identifying and characterising small effect 
size loci in an ideal, purely additive scenario, quantitative traits rarely conform 
to such assumptions. Biology is rife with examples of complex interactions on 
every sense of scale and dependencies, be it complex metabolic pathways 
(14), signalling cascades (15), protein-protein interactions (16), protein-ge-
nome interactions (17) or interactions leading to different 3-dimensional struc-
tures of the genome (18). It stands to reason that the statistical genetic archi-
tecture of quantitative traits underlying complex biology mirrors this com-
plexity (19–24). These gene-by-gene interactions, or epistasis, describe the 
phenomenon that the effect of one variant is contingent upon, or modified by, 
another. Epistasis, particularly capacitating epistasis, where one variant en-
hances or suppresses the effect of another, has been posited as one of the 
mechanisms allowing for the continued selection response beyond the initial 
phenotypic range of a trait (20,21), as well as a potential explanation for the 
“missing heritability problem” (25), which posits that the regions and variants 
identified in QTL or GWAS studies often only explain a small fraction of the 
total heritability. While there is no shortage of biological or genetic explana-
tory mechanisms for the presence of epistasis, it has been surprisingly difficult 
to identify and confirm epistatic interactions when investigating quantitative 
traits. Part of this is due to the increased power requirements of trying to ac-
count for the interactions between two loci, or even higher order interactions, 
with combinatorial explosion quickly leading to a searchspace of testable 
combinations that would overwhelm the power of any dataset. 

Quantitative Traits in Natural Populations 
Studying Quantitative traits in natural populations is particularly difficult. 
This is predominantly due to environmental influences, population structure 
and unbalanced allele-frequencies. 

Environmental influences are, on the one hand, problematic due to the size 
of their effects relative to the effect of individual loci in a polygenic trait, but 
polygenic, quantitative traits also represent many genetic components and bi-
ological systems that can be impacted by environmental factors, leading not 
only to larger environmental effects, but also a higher possibility for gene-by-
environment interactions (22–24). Similarly, confounding of a significant 
fraction of the variance with population structure is more likely due to poly-
genicity, since many variants contributing means that a larger fraction of the 
genome is contributing to the trait, or being in the vicinity of variation that 
does. Beyond the fact that low frequency variants result in fewer observations,  
thus raising the overall power-requirements for detection, low allele frequen-
cies in natural populations also often mask epistatic variance as additive. As-
suming most variants are very rare, it is unlikely that all epistatic loci involved 
in an interaction are at balanced allele-frequencies, resulting in some genotype 
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combinations being very rare, particularly double-homozygotes, assuming 
Hardy-Weinberg Equilibrium. This results in a large fraction of the variance 
explained by the interaction becoming hidden, assuming the 'on' combination 
is very rare, or appearing as an additive effect on the capacitated locus, assum-
ing it is common (26). In addition to that, similar to how linked minor QTL 
can appear as a single large QTL given limited resolution, local epistatic ef-
fects will appear as additive given insufficient resolution and linkage between 
the loci. 

Similarly, having a wide range of low or very low minor-allele-frequency 
variants might also lead to these variants perfectly coinciding with the rarer of 
the 'off' or 'on' combinations of epistatic loci, covering the epistatic effect and 
appearing as an extra additive locus. This may not be a problem if the goal is 
only accounting for the variance or doing genomic prediction in the population 
studied, but it precludes identifying the causative regions or mechanisms and 
limits transfer of these findings to populations that only share partial ancestry 
with the study population. 

Quantitative traits in experimental crosses 
The aforementioned issues and the power requirements to alleviate them is 
often the reason for quantitative traits to be investigated in a more limited and 
controlled fashion. One way to do so, in non-human organisms, is by creating 
experimental populations. Experimental crosses can solve part of this problem 
by moving the power-requirements into the achievable range by minimising 
environmental effects, exaggerating the investigated phenotypes, balancing 
the allele frequencies and reducing the complexity of the investigated genetic 
architecture. 

Experimental crosses allow for controlling environmental effects by keep-
ing all individuals under the same conditions, as well as accounting for popu-
lation structure by either selecting individuals very carefully, or alternatively 
create them via controlled mating, making population structure and kinship 
within the population a known variable. 

The most common way to do so has been by making F2 populations from a 
cross of individuals that differ in the investigated trait (e.g. individuals from 
two different populations, cultivars, breeds or inbred lines). This is done by 
crossing the founders (the F0 generation) to create individuals that are hetero-
zygous for the founder-genotypes (the F1 generation), relying on recombina-
tion events in these individuals to create an F2 population where individuals 
carry unique mosaics of founder genotypes. Using these mosaic individuals 
and their corresponding phenotype, one can investigate where in the genome 
genetic differentiation between the founders contributes to the difference in 
the investigated phenotype. When using inbred founders, quantitative trait 
analysis in F2 populations only makes use of the phenotypic and genotypic 
variation between the founders instead of the variation within a population. 
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This can reduce the scope of enquiry and explanatory power somewhat, or be 
a boon due to larger between-founder-populations difference in phenotype 
than phenotypic variance within the populations. However, it also limits the 
resolution of the study to the number of recombinations that occurred in the F1 
generation. This enables investigations with lower requirements in terms of 
statistical power, at the cost of resolution. Beyond that tradeoff, lower resolu-
tion also comes with additional artefacts, such as so-called “ghost QTLs", ap-
parent QTLs in the space between two real QTLs that are linked due given the 
limited number of recombinations, or linked QTL not being visible due to op-
posite effects. This has historically been less of an issue, since the number of 
genotype markers was the limiting factor for resolution. However, with the 
advent of affordable next-generation-sequencing, the number of individuals 
needed (and therefore recombination events) to attain that same state quickly 
becomes cost-prohibitive. 

Advanced Intercross Populations 
One way to alleviate this has been to increase the number of recombinations 
per individual, by generating individuals from subsequent crosses of the F2 - 
generating an intercross line, or advanced intercross line (AIL) instead of cre-
ating more F2 individuals, with individuals from subsequent generations in-
heriting recombinations from their progenitors, breaking up the mosaic fur-
ther. While this enables much higher resolution, if the marker density allows, 
it comes with some of the problems inherent to more natural populations, e.g. 
environmental effects, family structure and unbalanced allele-frequencies, al-
beit more attenuated. Special care needs to be taken that environmental con-
ditions are the same across the generations to decrease batch effects, and sim-
ilarly to the breeding scheme, in order to avoid pronounced population struc-
ture. Some unbalanced allele-frequencies are unavoidable due to genetic drift 
in smaller than infinite-sized populations, but due to the balanced allele-fre-
quencies in the starting population, this remains less of a problem than in nat-
ural populations. 

Crosses from outbred founders 
Another way to increase resolution for e.g. fine mapping is to utilise outbred 
founders for the initial cross. While this does not increase the number of re-
combinations, the within-founder-population genetic variance can still be used 
to infer founder-line origin of a given region, increasing the marker density 
and resolution, with no additional multiple testing burden beyond the increase 
in resolution. More importantly, the genetic variation retained within the line 
can be used to explain within-line phenotypic variance as well. Even if the 
experimental population is not powerful enough to bear the multiple testing 
burden a genome wide marker based association study would entail, they can 
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still be used for fine mapping. If the population is powerful enough for that, a 
genome wide association study (GWAS) opens up the possibility to investi-
gate genotype-phenotype association beyond the difference between the 
founders of a cross, and also investigate QTL that are not fixed or highly di-
vergent between the lines due to e.g. rarity, strongly deleterious effects in the 
homozygote or other other factors. 

The Virginia weight lines 
The Virginia weight lines are a bidirectional selection experiment for 56-day 
bodyweight in White Plymouth Rock chicken, initiated in 1957 by Paul B. 
Siegel at Virginia Polytechnic Institute and State University (27). These 
weight lines were created from a common, outbred stock that had previously 
been generated from 7 inbred lines of White Plymouth Rock chicken by se-
lecting the 56 (48+8, female+male) individuals of the population with the 
highest and lowest body weight at 56-days of age and then continue to select 
the top 40-24% (due to variation of generation size between 150-250) for the 
respective extreme over the course of subsequent generations, resulting in a 
High Weight Selected (HWS), and a Low Weight Selected (LWS) line (28–
30). The easily accessible phenotype and the polygenicity make bodyweight 
an excellent model for complex traits, while the choice of chicken as a model 
organism meant that the relatively fast generation time, modest requirements 
in space and effort to standardise the environment beyond what is already 
common in the poultry industry, as well as a sustained commercial interest in 
poultry breeding enabled running a large-scale selection experiment in a ver-
tebrate model for over 60 years. 

Artificial selection and breed history 
Arguably, the genetic history of the studied population and the selection re-
gime applied are both far from what one would expect from a natural popula-
tion, be it red jungle-fowl, the undomesticated ancestor of chicken, or a human 
population. The utilised breed of chicken, the Plymouth Rock chicken, first 
emerged as a distinct breed in the mid-19th century (31) in North America, 
both in its white and barred form, having been created from a mixture of asian 
and european breeds (32). 

Transport of the founding breeds to the Americas likely acted as a strong 
bottleneck on these founding populations, with the breed-formation only ex-
acerbating the resulting reduction of genetic diversity of the founding individ-
uals and the resulting recombinant individuals making up the new breed. Sub-
sequently, in order to partially balance allele-frequencies, the starting popula-
tion for the selection experiment was created from seven inbred lines derived 
from an existing outbred stock. 
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Each of these events, including the following selection in the high and low 
weight selected lines will likely have generated linkage disequilibrium be-
tween functional variants, creating the haplotypes that the subsequent selec-
tion will have acted upon. Throughout the artificial selection process, selec-
tion has acted upon these lines at different scales, and, due to the strong selec-
tion pressure, in a sequential fashion. Starting with an initial selection of re-
combined ancestral-breed chromosomes from the initial stock to form the 
lines, then combinations of said chromosomes within the lines, and then se-
quential sweeps on whichever haplotype confers the most extreme phenotype. 
Notably, this could have also facilitated the selection of variance-increasing 
loci such as epistatic capacitors, as the limited number of individuals chosen 
from each generation favours extreme phenotypes. 

Taken together, these events reduced the genetic diversity and simplified 
the genetic architecture to the point of making it feasible to gain meaningful 
insights into said architecture beyond individual loci. The limited genetic di-
versity and particularly the strong continued selection without defined optima 
or any other fitness constraints beyond the outright lethal, also means that this 
is best seen as a caricature of selection and natural populations, highlighting 
characteristics and features of complex trait architecture, instead of a direct 
stand-in. 

One of the first striking observations from the initial generations of selec-
tion in the virginia lines was the strong, unabated selection response beyond 
the initial phenotypic variance of the starting population. Contrary to expec-
tations that the extreme selection pressure would rapidly exhaust the genetic 
variation, leading to inbred or near-inbred lines that plateau in regards to the 
phenotype after a few generations, the lines continued to respond to selection 
for more than 50 generations (30) Leading to a nine-fold difference in body 
weight at Generation 40 and 16-fold at generation 59 (33), With the lines 
showing strong genetic differentiation without exhausting genetic variation 
(34–36). 

Creation of the AIL 
In order to investigate how the genetic differentiation between the lines con-
tributes to the strong phenotypic divergence between the lines, a cross was 
generated, using founders (nHWS=29, nLWS=30) from generation 40 with an initial 
intent of QTL mapping in the F2 (37,38) this was subsequently continued into 
an Intercross line, with the aim of doing fine mapping in the F8 and then F15 

(33,34,39–41) , with individuals generated from up to generation 18. 
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Sequencing 
Collecting all available individuals yielded a population of around 3k inter-
cross line individuals, which was sequenced at very low coverage (~0.4X) us-
ing a tagmentation approach (42). This was partially done due to cost-effi-
ciency of the selected library preparation and sequencing approach, but also 
to preserve options for downstream processing of the data, in particular with 
regards to different imputation approaches, and exploring within-line varia-
tion, in regards to GWAS approaches. 

Summary of Manuscripts 
This thesis consists of three projects, each attempting to evaluate how differ-
ent aspects of a quantitative trait contribute to the selection response observed 
after the many generations of extreme artificial selection for bodyweight that 
the Virginia weight lines have been subjected to. At the heart of these three 
studies is not a new theory, such as e.g. a new statistical model to consolidate 
the different ways genetic variation can exert power over the phenotype in-
vestigated, but a gamble on statistical power: “What could we find (and prove) 
if we had a sufficiently powerful dataset?" and aims to find confident answers 
to more limited questions, e.g. “Which regions contribute how much to the 
selection response?" (Paper I), “What is the contribution of capacitating epi-
stasis to the selection response?” (Manuscript II) And “What is the contribu-
tion of still segregating variants to the phenotype, and how much of it also 
contributes to the selection response?" (Manuscript III). Most of my time has 
been spent creating this dataset and solidifying our confidence in this dataset, 
as well as developing and improving the methods to both create and quality-
control it. While this work is described in Paper I, it is the foundation of Man-
uscript II and III as well. 

Paper I 
Low-coverage sequencing in a deep intercross of the Virginia body weight 
lines provides insight to the polygenic genetic architecture of growth: 
novel loci revealed by increased power and improved genome-coverage. 

 
This study is a classical QTL study on a nonclassical dataset, investigating the 
genetic basis of 56-day bodyweight in the Virginia weight lines. In order to 
maximise statistical power on a limited budget, we collected all available in-
dividuals from an existing population - the entire intercross line - instead of 
focussing on a single generation. In order to be able to genotype so many in-
dividuals we sequenced them at extremely low coverage (~0.25-0.4X) adapt-
ing a library preparation and imputation approach previously developed in our 
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research group (51) for use with individuals from a deep intercross line. This 
approach utilises a sliding window hidden-markov-model approach to impute 
recombination breakpoint positions and the founder haplotypes in between, 
using founder-line informative markers, combining information from high-
coverage sequenced founder-individuals, pedigree information and the low-
coverage sequencing data. The main advances here include procedures to se-
lect founder-line informative and still segregating but partially informative 
markers from each individual depending on their ancestry, as well as modifi-
cations accounting for the extreme variability in marker density across the ge-
nome from this sequencing approach, and the diminishing number of partially 
informative segregating markers due to further crosses to establish subsequent 
generations of the intercross line. 

Using this approach, we obtained high-confidence genotypes across 99.3% 
of the chicken genome for 3327 individuals (Fig 2). 

 
Figure 2. Genome coverage by the use of low-coverage sequencing data compared to 
an earlier F2 genome scan (Wahlberg et al. 2009) based on 372 SNP and microsatellite 
markers. Black/grey colors indicate 1 Mb bins with/without genotypes and red high-
lights chromosome ends with new genotypes outside the outermost markers in Wahl-
berg et al. (2009). Figure and caption from Rönneburg et al. (2023) (Paper I) under 
CC BY 4.0 

Comparing it to the most recent previous genome wide QTL scan on this pop-
ulation, I found many more QTL contributing to 56 day bodyweight: 12 in-
stead of just two Genome-wide significant QTL ,and an additional 30 sugges-
tive (i.e. passing 10% FDR threshold) QTL, with some of these completely 
novel, and others confirming previously suggestive QTL (Fig. 3).  
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Figure 3. Genome-wide QTL scan for 56-day body weight in generations F2-F18 of 
the Virginia body weight lines AIL. The y-axis shows the statistical support for QTL 
as LOD scores and the x-axis the genomic location in Mb bins. The solid red horizon-
tal lines shows the genome-wide significance thresholds. Red vertical segments show 
the most recent earlier reported associations in genome-wide scans in the F2 (Wahl-
berg et al. 2009), blue vertical segments indicate associations in the fine-mapping 
analyses in the F15 (Zan et al. 2017). Green vertical segments indicate new suggestive 
QTL without a previous association within 15 Mb. Figure and caption from Rönne-
burg et al. (2023) (Paper I) under CC BY 4.0 

Most of these are due to the increased power of the dataset, but some of the 
QTL, e.g. on Chromosome 8. are novel because they are in regions previously 
not covered. Others are now identifiable due to the increased resolution, either 
in terms of marker density, or increased number of recombinations (e.g. on 
Chromosome 1 and 4, see Fig. 4). Taken together, these loci explain a large 
fraction of the difference between the founding lines (37% or 84% for genome 
wide significance and 10% FDR QTLs, respectively), but only a modest albeit 
still improved fraction of total phenotypic variance (8.3%). While the obvious 
main result of this project is the increased list of QTL contributing to the se-
lection response, for me the key achievement is generating a powerful dataset 
from an eclectic collection of existing individuals, using extremely low cov-
erage sequencing and bespoke imputation that makes use of the features of an 
AIL with known founders. Both because it is an example for how to leverage 
cheap sequencing to make use of existing individuals, which could be appli-
cable to many otherwise languishing selection experiments, and because it 
serves as a foundation for subsequent studies into the nature of quantitative 
traits. 
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Figure 4: Comparison to previous marker-sets. Upper left and middle panels show 
the LOD score across selected peak regions on chromosome 1 (25-65 Mb) and chro-
mosome 4 (10-50 Mb), using different selections of markers and individuals. 
Dashed/solid lines show the QTL scans using the F2 individuals from Wahlberg et al. 
/ All individuals, solid round / empty square markers show QTL scans using markers 
from Wahlberg et al. (2009) / low coverage data. Bottom left and middle panels dis-
play information content across the same regions on chromosome 1 and 4 for the 
markers used in Wahlberg et al. (orange, dashed) and the deep-Stripes markers (peri-
winkle, solid) across the individuals used by Wahlberg et al. (2009). The right panel 
summarises information content for the same sets of markers and individuals, but 
across the 30 largest chromosomes. Figure and caption from Rönneburg et al. (2023) 
(Paper I) under CC BY 4.0 

Manuscript II 
Mapping and dissecting capacitating epistasis in a population subjected 
to long-term, directional selection. 
 
This study is an exploration of capacitating epistasis and its potential contri-
bution to the selection response in a population that underwent long-term, di-
vergent selection on a complex trait, using the dataset generated in the project 
described by Paper I. Interaction and interdependence of individual compo-
nents is one of the hallmarks of biological systems, yet remains understudied 
as an explanatory mechanism in quantitative genetics. However, for this sys-
tem and study population, the presence of epistatic interactions has been both 
shown and replicated (20,41) as well as posited as one of the explanatory 
mechanisms for the continued selection response in long-term selection ex-
periments (21,28). Here, I make use of the size, power and resolution of the 
population dataset to look for capacitating hubs of epistatic networks with a 
clear directional effect - the epistatic interactions we deem most likely to con-
tribute to the long term selection response. In order to do this, I combined two 
different approaches to identify potential loci. Firstly, assuming capacitative 
loci would be visible as marginal QTL in a sufficiently powerful additive scan, 
I took all additive QTL as candidate loci, stratifying the dataset on their gen-
otype and ran the QTL scan in the two homozygous strata to see which QTL 
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impacted which others. I used the resulting data to build a directed graph with 
weighted edges for network analysis, identifying hub nodes and their subnet-
works. This is a very sensitive approach, picking up a lot of other signals such 
as strong local haplotype effects, or epistasis that is not contributing to the 
selection response (Fig. 5). 

Figure. 5: Summary of the results from the genome-wide analysis to detect capacitor 
loci using stratification. A: Illustration of the differences in LOD scores between the 
homozygote high and low strata (Y-axis, color as in legend) across the evaluated 1Mb 
bins across the genome (X-axis). B: Genome-wide QTL scan for additive-effects 
(Rönneburg et al, 2022). Red vertical lines indicate the stratifying loci used in the 
capacitor scan (i.e. QTL detected at a 10% FDR threshold), blue horizontal lines in-
dicate the genome (solid) and chromosome wide (dashed) 5% significance thresholds, 
respectively. C: Graph representation of all loci where a stratification resulted in a 
4.01≥ LODscore difference between the high and low strata. Edgewidth is scaled with 
the difference between the strata, with nodes colored and sized by their degree 
weighted by the difference between the strata. Figure and caption from Manuscript II 

In order to focus on capacitating loci with a strong directional effect, I imple-
mented a variance-QTL scan using a Brown-Forsythe (43) approach, which is 
less sensitive, but better at singling out loci with a strong directional effect, 
since it only evaluates one locus at a time. For this I used a higher resolution 
haplotype imputation, since I was less concerned about novel loci, but rather 
identifying capacitive components of existing ones. Combining these ap-
proaches, I identified a set of 6 candidate loci across 4 chromosomes, capaci-
tating a modest total 259g of phenotypic variance across their epistatic net-
works. Beyond this systematic approach, I also investigated a set of QTL in 
close vicinity on chromosome 4 that had shown some irregularities in ancillary 
investigations, together with a previously identified epistatic interaction be-
tween growth-associated QTL on chromosomes 4 and 7 (20). Previously 
thought to be two larger QTL, Growth7 and Growth9, I show that when in-
vestigated with the resolution of a very large advanced intercross population, 
they decompose into a network where two capacitors on chromosome 4 and 7 
release an effect for two capacitated loci on chromosome 4, explaining more 
than twice the effect of the purely additive model when accounting for the 
interaction (136.9g vs. 331.5g, Fig. 6). This provides not only a better estimate 
for how genetic components correspond to the selection response observed, 
but also a mechanistic example of how higher resolution and power enabled 
the dissection of previously thought to be large, additive QTL into a complex 
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network of multiple smaller, interacting QTL, coherent with previous assump-
tions about the polygenicity and complexity of a highly polygenic trait. 

 
Figure. 6: Interaction between QTL on Chromosome four and seven. Panel A: 
Higher resolution QTL and vQTL scan of Chromosome 4. The black line indicates 
the negative log of pvalues for the QTL (left y-axis), the red line indicates the negative 
log of pvalues for the vQTL (right y-axis). Panel B: Linkage Disequilibrium between 
the investigated QTL, Pearsons r2 . Panel C: Schematic of the Interaction. Panel D: 
Higher resolution QTL and vQTL scan of Chromosome 7. The black line indicates 
the negative log of pvalues for the QTL (left y-axis), red line indicates the negative 
log of pvalues for the vQTL (right y-axis).Panel E: QTL-scan for Mb 8 to Mb 45 on 
chromosome 4 in the total (black), homozygous high (red) and low-weight (blue) in-
dividuals for vQTL 7-28. Y-axis indicates LOD score, X-axis indicates position in 
base pairs. Panel F: QTL-scan for Mb 8 to Mb 45 on chromosome 4 in the total 
(black), homozygous high (red) and low-weight (blue) individuals for vQTL 4-13. Y-
axis indicates LOD score, X-axis indicates position in base pairs. Panel G: Mean 
standardised phenotypes for the different genotypes of 4-23 separated by the geno-
types of the associated vQTL homozygotes (bottom, blue indicates low-weight homo-
zygote, red indicates high-weight homozygotes).Y-axis indicates the mean standard-
ised phenotype, colored lines the genotype at the 4-23 locus. (blue, purple and red 
indicating homozygous low-weight, heterozygous and homozygous high-weight gen-
otypes, respectively). Vertical bars indicate the standard error of the mean. Panel H: 
Mean standardised phenotypes for the different genotypes of 4-35 separated by the 
genotypes of the associated vQTL homozygotes (bottom, blue indicates low-weight 
homozygote, red indicates high-weight homozygotes) . Y-axis indicates the mean 
standardised phenotype, colored lines the genotype at the 4-35 locus. (blue, purple 
and red indicating homozygous low-weight, heterozygous and homozygous high-
weight genotypes, respectively). Vertical bars indicate the standard error of the mean. 
Figure and caption from Manuscript II 
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Manuscript III 
Within-line segregation as a contributor to long-term, single-trait selec-
tion-responses in the Virginia chicken lines. 
 
Manuscript III is an attempt to quantify the genetic contribution to both the 
selection response and more generally the phenotypic variance by regions out 
of scope for the QTL paradigm and line-cross design of the experimental pop-
ulation. While the founding lines of the AIL were generated from outbred 
founders, one of the primary assumptions of paper I and manuscript II (and 
most earlier work) is that, after 40 generations of intense selection which re-
sulted in a nine-fold divergence in bodyweight, the important regions contrib-
uting to the selection response were fixed or had highly divergent allele-fre-
quencies between the lines. While there were previous indications that the 
founding lines still retained significant variation, even in regions that were 
highly divergent between the lines (35), analysing this variation has so far 
been difficult, due to the higher power, marker density and number of recom-
bination events required to do so. The imputation approach we developed and 
used for paper I and manuscript II uses segregating variants, but only uses 
them to assign founder-line-origin to a given region, and predict recombina-
tion breakpoints. Here, we supplemented this imputation approach with a 
marker based imputation using AlphaFamImpute (44) which imputed SNP-
markers from the low coverage sequencing data to the high marker density of 
the founders sequenced at 30X coverage, using both sequencing-read and ped-
igree information. We then used the resulting data in a GWAS approach 
(Fig.7) to build a multi-locus model using a forward selection and backwards 
elimination (45,46) approach to retain all important markers at 5% FDR. Us-
ing these markers, and combining them with the information from the QTL 
approach and several summary statistics derived from both the study popula-
tion and its founders, we classify how much of the explained phenotypic var-
iance is explained by loci that are not overlapping identified QTL regions and 
whether or not these still contribute to the selection response (Tab 1). Strik-
ingly, a large fraction (24 out of 40) retained loci do not overlap known QTL 
regions, and explain a large fraction of the total phenotypic variance (15%, 
a=557.5g). However, out of those, 14 (a=346.6g, 9.3% of total phenotypic 
variance) are fixed in at least one of the lines, and likely still contribute to the 
selection response. These findings indicate that a large fraction of the selection 
response is likely contained in rare alleles only segregating in one line, which 
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makes it difficult to detect them with a classical QTL approach, but also rep-
resent potential for a continued selection response after 40 generations of se-
lection. 

Figure 7: Overview of the 28 largest Autosomes. Grey Manhattan Plot indicates 
GWAS Pvalues, Red line indicates LODscore of the QTLscan. Upper figure: 
Thumbnails of all chromosomes. Larger figures for each chromosome can be found 
in the Supplementary. Bottom figure: Chromosome 4. Xaxis indicates basepairs, left 
y-axis is -log(P) of the GWAS (grey markers), right y-axis indicates LOD scores for
the QTL-scan (red line). Figure and caption from Manuscript III
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Figure 8. Characteristics of regions detected in QTL and GWAS analyses. A Boxplot 
illustrating the differentiation of selected markers between the founding lines, using 
Fst for markers that overlap a previously identified QTL (MQ, green) and those that 
do not (M, blue). B Illustration of GWAS and QTL regions on Chromosome 4. GWAS 
Manhattan plot colored by Fst (see colorbar on the right side, with 1 indicating total 
fixation between the founders, and 0 no differentiation). The red line indicates QTL 
lod score, with vertical red shading indicating the extent of peaks reaching signifi-
cance at 10% FDR. Blue lines indicate the position of markers selected in the back-
wards elimination analysis, with blue shaded regions indicating their extent as deter-
mined by LD. C Boxplot illustrating the LD-extent of for markers that overlap a pre-
viously identified QTL (MQ, green) and those that do not (M, blue). D Illustration of 
GWAS and QTL region widths on Chromosome 4. GWAS Manhattan light gray, with 
peak-regions colored by the LD R2 to the selected marker (see colorbar on the right 
side) The red line indicates QTL lod score, with vertical red shading indicating the 
extent of peaks reaching significance at 10% FDR. Blue lines indicate the position of 
markers selected in the backwards elimination analysis, with blue shaded regions in-
dicating their extent as determined by LD. E Boxplot of the Minor Allele Frequency 
for markers that overlap a previously identified QTL (MQ, green) and those that do 
not (M, blue). F Illustration of GWAS and QTL regions on Chromosome 4. GWAS 
Manhattan plot colored by the MAF (see colorbar on the right side). The red line in-
dicates QTL lod score, with vertical red shading indicating the extent of peaks reach-
ing significance at 10% FDR. Blue lines indicate the position of markers selected in 
the backwards elimination analysis, with blue shaded regions indicating their extent 
as determined by LD. Figure and caption from Manuscript III. 
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Table 1: Partitioning of total explained variance between different groups of markers 
as gram(percentage of phenotypic variance). Table taken from Manuscript III 

fully segregating  247.7g (6.7%) 
fixed in at least one line  642.7g (17,3%) 

Overlapping QTL  332.8g (8.9%) 
Not overlapping QTL of which fully segregating 211.0g (5.7%) 

 of which fixed in at least one line 346.6g (9.3%) 
 total 557.5g (15.0%) 

Total  890.4g (23.9%) 

Discussion and Perspectives 

Post mortem of a PhD 
It is a common trope that PhD students start with high hopes and grand ambi-
tions, only to wonder in the end whether they now know less about their area 
of research than when they started. This was certainly true for me. While this 
could be easily just attributed to my personal growth of understanding and 
overview of the field, I like to think that it is in part also because our research 
has increased the general knowledge of the field and its extent. Looking at it 
in hindsight, it is likely that I have underestimated the complexity of the quan-
titative trait we were investigating, but also that this would not have been as 
obvious without the research presented here.  

More loci, more problems  
I do not think that this aforementioned conclusion was foregone: With high 
quality genotypes for more than 3000 individuals from an 18-generation in-
tercross line, following 40 generations of selection on a single trait, we had a 
very powerful tool for investigating quantitative traits, coming with a long 
history of experiments stretching into the 1950s, likely one of the largest and 
longest running selection experiments in vertebrates to this date, no less! How-
ever, the large body of previous experiments and their sometimes conflicting 
results is also a good indication for how complex the genetic architecture is. 
Another is the number of novel loci, in particularly novel suggestive loci we 
identified in the study described in Paper I. The presence of many suggestive 
loci with intermediate or minor effects indicates that the limit for identifying 
contributing loci is not the number of loci contributing in a meaningful way, 
but rather our power to detect them. 
While this does not detract from these findings in itself, it may limit how au-
thoritative our findings on the general nature of the genetic architecture are. 
More importantly, beyond that, they represent a bit of a two-edged sword: On 
the one hand, they represent a step forward in understanding which regions 
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contribute to the selection response and are one of the main points demonstrat-
ing that our methodology can be used to generate a large dataset on a relatively 
modest budget. On the other hand, the large number of novel loci recreates a 
previous conundrum that these studies were initially intended to solve: inves-
tigating epistasis is a costly endeavour when it comes to statistical power, and 
additional candidate loci increase the potential search space in an exponential 
manner, making the investigation into the genetic architecture of a trait more 
difficult. 

Would adding more statistical power lead to more novel loci? 
Given the number and effect sizes of QTL identified here, I think increasing 
statistical power would have rapidly diminishing returns and will likely not 
lead to a sufficient increase in explanatory power. Given the large selection 
pressure exerted, the vast majority of the selection response will likely be ex-
plained by several tens or low hundreds of loci, and not reach the polygenicity 
of a more neutral trait, like e.g. height in humans. This makes it unlikely to 
lead to the detection of many novel loci, even though there are probably many 
more loci that affect 56-day body weight. However, these are likely firmly 
within the domain of the infinitesimal model, and will have negligible indi-
vidual effect sizes, affecting body weight more as a pleiotropic effect, given 
that some of the statistically significant or suggestive loci already verge on 
insignificance in a practical biological sense. It is likely impractical to quan-
tify and locate each of these loci beyond accounting for them jointly as a sort 
of polygenic effect, though given that we already cover more than 30% of the 
genome with suggestive QTL, likely even that is unnecessary.  

Benefits of added power and resolution 
However, the added power and resolution helped dissect existing QTL. Given 
a sufficiently polygenic architecture, it is likely that many of the larger effect 
size QTL detected in an early generation population are composites, consist-
ing of multiple smaller QTL in close vicinity. This can certainly help with fine 
mapping of causative regions, and in the case of local epistatic interactions 
increase the explanatory power of a region, as it has been for the complex 
region on chromosome 4. I think the breakdown of a large QTL into multiple 
additive and epistatic components delivers a fascinating insight into the nature 
of large effect size QTL that are just as likely to consist of multiple interacting 
components, than a single, high impact variant. With a dependency on multi-
ple epistatic capacitors and capacitated QTL, it is also easy to see how some 
of these features could lead to replication failures of these seemingly “large 
effect QTL” even in closely related populations, or fine mapping approaches 
in different generations of an intercross. The major caveat is that the system 
on Chromosome 4 and 7 was discoverable due to the large effect size of the 
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QTL, as well as pronounced and directional epistasis involved. Similar pro-
cesses probably contribute to the effect or lack thereof in a multitude of loci, 
albeit to a much smaller degree, and a comprehensive, systematic investiga-
tion of all possible contributing interactions is far outside the statistical power-
budget of any experimental population, given the exponential nature of poten-
tial interactions between identified loci. 

Limiting the search space for epistasis 
When I attempted to get a formal and systematic overview of the contribution 
of epistasis to the selection response, I tried to alleviate the combinatorial ex-
plosion problem by first limiting the search for epistasis to identified marginal 
QTL, and the search for capacitor hubs to vQTL as well. Despite this, it is 
likely that the sub-network selection for each capacitor hub was either limited 
by our statistical power, or compromised by other features that would have a 
similar impact on the stratification results, such as local haplotype effects. 
This resulted in rather modest effect sizes capacitated by the capacitor loci I 
identified, though alternatively, this could also be explained by the some of 
the capacitors having divergent effects across the affected loci, meaning that 
they may be capacitative hub loci, but do not have a strong directional effect, 
indicating that my selection criteria for directional capacitation hubs was 
suboptimal. 

In contrast, the region that likely benefited most from the increased resolu-
tion and power contained another epistatic network which indeed has a strong 
directional effect. While the individual nodes of this network indeed show up 
in the stratification scan, and the main capacitor on chromosome 4 features 
quite prominently in the vQTL scan, I identified the relevant region on chro-
mosome 4 already earlier, when investigating the identified QTL for stability 
across generations of the intercross, hoping to find an explanation for why I 
can identify large effect loci that have evaded detection in the earlier F2 scans 
(37,38) with this intercross line. Instead of a QTL that was driven by the later 
generations, due to e.g. recombination between two previously linked QTL of 
opposite effects, this QTL was predominantly driven by the earlier generations 
(F2-F5) disappearing in the later ones. Looking at recombination events and 
allele-frequencies across the generations, I could identify a progressive loss of 
the high allele in a location that was not the location of the QTL, but later 
turned out to be the location of the epistatic capacitor, with the disappearing 
HWS allele being the “on"-allele. This initial evidence of local epistasis, taken 
together with historical evidence of an interaction between chromosome 4 and 
7 (20,41), allowed us to piece together a complex network with multiple in-
teracting partners, where two capacitors jointly release an effect of more than 
300 grams. I think this example is indicative of the general trend in my re-
search trying to characterise the genetic architecture of 56-day body weight: 
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While we have the statistical power to make general statements about the gen-
eral genetic architecture, as well as discover the specific genetic architecture 
of specific loci, we have neither the statistical power nor adequate models to 
make specific statements about the general genetic architecture of a trait. 

Contribution to the selection response by rare variants. 
One of the more interesting features of the GWAS approach is the large frac-
tion of phenotypic variance explained by GWAS loci not covered in the QTL 
scan. While some of these loci are freely segregating in both lines and not 
contributing to the selection response, a larger and more interesting fraction 
(equivalent to 9.3% of total phenotypic variance) is segregating in only one of 
the founding lines, contributing to the selection response and phenotypic dif-
ference between the lines. These variants are present at low minor allele fre-
quencies, explaining why they have been missed by the QTL approach.  

These could be loci that have not yet been swept to fixation or high allele-
frequency difference between the founders, representing some of the still se-
lectable genetic variation that enabled the continuous selection response ob-
served leading up to, and ongoing for generations in the selected lines after 
the formation of the Intercross line. 

Alternatively, these loci could still be segregating due to the strong selec-
tion on the lines, not despite it. The strong rank-based selection pressure will 
have initially acted upon entire RIL-like chromosomes or haplotypes from the 
starting population, sweeping large haplotypes to fixation or near fixation, 
which could result in a rapid initial decrease in allele frequency even for al-
leles in line with the selection pressure, if they are in linkage disequilibrium 
with alleles of opposite effect, resulting in selection at a later stage, as well as 
a stronger effect of drift. 

Similarly, the aggressive selection for bodyweight in the absence of mod-
erating factors or fitness constraints has likely also selected for variants with 
strong deleterious effects and a pleiotropic effect on bodyweight, with homo-
zygous lethality, cumulative or epistatic deleterious effects likely limiting the 
allele-frequency of some loci. 

There is evidence for selection on traits that indirectly contribute to body 
weight, such as behavioural changes, hormone balance and the immune sys-
tem, as well as for deleterious effects of the selection, particularly in the LWS 
line (30) , where one would expect deleterious variants to be more correlated 
with the direction of selection overall, putting a stronger constraint on delete-
rious alleles. 

It is therefore interesting to note that a large majority of these loci (10 out 
of 13) are still segregating in the HWS, while being fixed in the low line. This 
difference in potentially selectable variation is mirrored in the difference in 
selection response observed in the selected lines after the creation of the inter-
cross line, with the response in the LWS slowly attenuating (30) . 
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Taken together, it indicates that the genetic features seen in this population 
are likely more representative of strong, rapid selection events from maladap-
tion to a distant phenotype optimum, due to e.g. a rapidly changing environ-
ment, novel diseases as well as hybridisation or domestication events, rather 
than modest selection pressure towards a near optimum. The overall picture 
painted by this is a genetic architecture more messy and diverse than what can 
be accurately captured by a QTL approach, which assumes fixation or at least 
strong divergence in allele-frequency between the lines. 

Apparent Epistasis, Apparent additivity 
That is not to say that the GWAS approach perfectly captures the underlying 
genetics. The population used here violates assumptions of both the QTL and 
GWAS approach, with both capturing overlapping, but distinct aspects of the 
genetic architecture, together with artefacts based on the different assump-
tions. Some of my more interesting thoughts about the general genetic archi-
tecture of 56-day bodyweight likely result from my attempts (and failures!) to 
compare the results of both approaches. Striking for me here was firstly the 
failure to retain the epistatic system on chromosome 4 within the set of final 
GWAS markers, secondly my inability to make the backwards elimination 
approach workable for the QTL genotypes. Here, even the very strongest QTL 
failed to be retained in a meaningful number of bootstraps, despite the exist-
ence of a clear GWAS equivalent, or a more traditional stepwise backwards 
approach retaining them just fine. Ultimately, this points to a much stronger 
sensitivity to bootstraps, which could result from much stronger reliance of 
the signal local haplotype effects and epistasis, or stronger confounding by 
residual kinship than the GWAS markers.  

Working within the confines of a mostly additive framework such as a basic 
QTL or GWAS approach, it would be easy to afford the opinion that a GWAS 
approach is better at describing the genetic architecture, either because it can 
simply explain more of the phenotypic variance (here, 23.9% in contrast to 
14.6% for the QTL). This is partially because of otherwise undetected vari-
ants, or underestimation of effect sizes when still segregating variants only 
incompletely correlate with the founder-haplotypes. Not accounting for seg-
regating variants can also lead to artefacts, e.g. apparent epistasis, when 
founder-genotypes at multiple regions are needed to tag an underlying still 
segregating variant. 

On the other hand, being able to explain more phenotypic variance with an 
additive model does not necessarily mean that this additive model accurately 
captures the underlying genetic architecture. Given the high density of mark-
ers at all allele-frequencies in this population, it is easy to explain most epi-
static interactions with a lower-frequency variant that near-perfectly tags the 
relevant combination of alleles. While this distinction may not be relevant if 
the goal is simply to use variants from the very same population for breeding 



 

 32 

or genomic prediction, it does limit our understanding of the underlying ge-
netics, and how much of our findings are transferable to other populations that 
are only partially related. 

Conclusions and Future works 

No shortcuts 
I’ve had modest success in improving our understanding of how selection on 
56-day bodyweight has shaped the genetic architecture of this trait, and man-
aged to untangle some specific loci or interactions that hopefully serve as ex-
amples for the different ways genetic variation can contribute to quantitative 
traits in general. But thinking about the more holistic modelling of this trait 
specifically or quantitative traits in general, I do not think that it is a problem 
to be solved by better and more sophisticated models. Beyond the compara-
tively simple approaches I used here, I have attempted to use multiple more 
advanced statistical models, developed by people with a much better grasp on 
the underlying statistics, such as the NOIA approach (47–49), and decided not 
to use them each time due to concerns about the reliability and interpretability 
of the results. While they account for some of the specifics encountered in 
complex genetic architectures and imperfect populations, they do not account 
for all of them, often resulting in less robust estimates when some of the as-
sumptions are violated, requiring the same if not more caution and oversight 
in use and interpretation as simple models. Similarly, increasing statistical 
power of the study population has diminishing returns in explaining the ge-
netics underlying a trait, as the power requirements of a comprehensive, sys-
tematic scan for epistatic interactions will overwhelm the budget of any rea-
sonably structured scientific endeavour for most quantitative traits.  

From my experience, there is likely no good, single way to model quanti-
tative traits in a generic fashion, regardless of how sophisticated the model 
gets. And, at least for this system, sufficient statistical power to “do it all” is 
neither within reach, nor a sensible use of resources. There is likely room for 
improvement in the selection of potential capacitors and their networks, but 
no improvement or novel method will get around a significant amount of man-
ual investigation, for the same reason there is no optimal way of modelling 
quantitative traits: biology, and by extension genetics, is a messy, complicated 
business, and the emergent properties of large interconnected systems make 
for novel complications each time. Likely, there are no shortcuts that let you 
see the larger picture before you spend enough time with the puzzle pieces. 
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Future directions 
That is not to say that investigating quantitative traits and attempting to gain 
a comprehensive overview is a fool’s errand, but doing so by trying to perfect 
a single approach is likely a labour of love as much as anything. While the 
current trend in, e.g. machine learning, leans towards increasingly large da-
tasets and models, I believe interpretability of results and understanding of the 
general features of a system can more easily be found in the intersection of 
multiple, different lines of enquiry. Especially so when under the constraints 
of a budget. Such different lines of enquiry could be as simple as the overlap 
of multiple interpretable and robust statistical models with different assump-
tions or phenotypes, but may also include making use of existing public infor-
mation. Similarly, genomic summary statistics, information about other ge-
nomic features or even datasets from different populations can be applied. 

End of the line 
For the Virginia lines, or more specifically the investigation of 56-day body-
weight in the AIL, I believe further success will require alternative sources of 
information. Even if the AIL had not yet been terminated, there would be little 
to gain from generating more generations, more individuals, with only 
miniscule advancements in understanding to be gained from additional power 
or resolution. Already, there are more candidate loci than there is budget or 
personnel to follow up on, and further understanding is better to be gained 
from other sources of information that help identify the function, mechanism 
or extent of a given region. For the latter, our group had some success with 
elucidating the likely ancestral breeds of the White Plymouth Rock chicken, 
and how they contribute to different regions across the genome of the selected 
lines (32), which may be useful for ancestry-guided fine mapping, or identifi-
cation of more complex haplotypes that cannot be captured by the founding-
line paradigm. 

Still, while these are likely to increase our modelling of the trait, I think 
that genomic, particularly comparative or functional genomics approaches 
would serve better to further our understanding of individual loci, and there-
fore in sum, our understanding of the underlying genetics in general. Likely, 
the most accessible and useful data for these approaches is gene annotation 
data. It is difficult to use gene-function from e.g. orthologues in other species 
to narrow down the likely causative region, since body weight as a trait has 
many contributing biological systems. But beyond information about potential 
function, information about the gene-models also allows layering of other in-
formation over the existing data, such as impact of individual variants, or se-
quence conservation scores across orthologues of this gene or region from 
multiple related species. 
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Another approach, instead of being hampered by them, would be to utilise 
the individual biological components contributing to the trait by collecting 
nested or closely related phenotypes that pertain to them. While maybe not 
always feasible for existing populations, this has been done, at least in part, 
for the F8 generation, where traits such as shank-length, other weight measure-
ments and carcass traits as well as blood chemistry have been collected. The 
overlap between results from mapping multiple phenotypes may increase our 
confidence in the relevance of a given region, could be used to identify which 
biological systems are driving the emergence of specific QTL, as well as nar-
row down regions and potential candidate variation by limiting candidate 
genes to a specific subphenotype. Similarly, this would also enable compari-
son of gene content or gene ontology enrichment with a broader set of other 
selection experiments, possibly identifying convergently selected genes by 
e.g. overlapping with the results of a selection experiment for shank-length in 
mice (50). In the same fashion that one can look at the overlap between the 
results of experimental populations with a shared phenotype, knowing the an-
cestry of a given experimental population also allows for comparison with 
results from populations that share partial ancestry with this population, such 
as one or multiple overlapping founder-breeds. Particularly for a commer-
cially relevant species such as chicken, there are likely multiple experimental 
or commercial populations with extensive data on a variety of carcass traits 
which share at least partial ancestry with the White Plymouth Rock chicken. 
Comparison here could allow for prioritisation of the QTL that are robust to 
differences in the genetic background, less likely to have strong deleterious 
effects or be results of the strong selection pressure or unique genetic makeup 
of the starting population.  

Finding functional explanations for Epistasis 
Another promising approach is to utilise annotation data to gain insight into 
the functional underpinnings of statistical epistasis, either for the sake of itself, 
or to gain confidence in the validity of a discovered interaction. Statistical 
epistasis can be vexing due to the many artefacts leading to apparent epistasis, 
such as higher-order linkage disequilibrium in the context of insufficient 
marker coverage, hidden population structure or mismatch between the uti-
lised model and the genetic architecture, and the fact that the high power re-
quirements mean that prioritisation of a given network usually involves man-
ual decision making, as well as prohibits exhaustive testing for confounders. 
Given this, any additional evidence is a significant boon for gaining confi-
dence in the identified interaction. While this additional evidence can also be 
driven by gene-annotations, such as products of candidate genes taking part in 
similar metabolic or signalling pathways, or evidence of protein-protein inter-
actions in orthologues, derived from large scale yeast-two-hybrid scans, an-
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other likely avenue for interactions are additional datasets detailing e.g. chro-
mosome accessibility, such as ATAC-seq or Hi-C methodologies, with iden-
tification of e.g. topology associated domains in regions suspected of within-
chromosome epistatic interactions such as on chromosome 4 being strong sup-
porting lines of evidence. 
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student into a scientist. I might have been a student of genetics and bioinfor-
matics before, but I am a bioinformatician and geneticist now. Much of this 
improvement has been due to your tutelage. As much as I would like to joke 
that you have remade me in your image, I doubt I could ever emulate your 
glittering, razorsharp brilliance! I would like to think your careful and thor-
ough mentoring has helped me grow into my own instead. The advice, guid-
ance and opinions I have received from you are a priceless gift, and I will 
continue to benefit from them for the rest of my days. 

Mats, thank you for stepping in when I needed help. I don't doubt that I 
would have collapsed on the home-stretch of my PhD, were it not for your 
comprehensive support, advice, patience and overall sunny disposition. 

Ying and Carina, Thank you for having my back. I knew I could always 
count on you. 

Åke, being a stalwart and stoic support during my master thesis. I sure did 
a lot of hair-raising things to that data, as well as a lot of hair-pulling, yet 
somehow you weathered all of this with a smile. 

Malin, coming to Sweden was a big thing, starting out as a small thing. It 
was meant to be one semester of Erasmus, remember? Instead, I am still here, 
nearly seven years later. My success, be it present or future, can be traced back 
to the opportunities you have provided to me, as well as the multitude of pro-
fessional and personal advice I have received in your care. 
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Alisandra, who taught me my first bioinformatics, bash and the wonders 
of python. I don't think I would have tried to become a bioinformatician, had 
I not idolised you and Tony as much as I did. So in a sense I am holding you 
responsible for any future back pain I might incur! 

Wayne and Gregor, who taught me statistics and fieldwork, and instilled 
in me a healthy respect and appreciation for the rigours of data collection. 
While I have left the fieldwork behind (for now!), the ecology I have learned 
from you will forever contribute to my view on science. 

Frau Schmidtholz, While it's been a long time, I have not forgotten how 
you fostered my interest in biology, but also the confidence that, maybe, 
maybe, this could be something I can do. 

 
In a similar way, people say that discovery is made, metaphorically speaking, 
by standing on the shoulders of giants. This is true, and maybe for my research 
more obvious than for most. If I were to liken my supervisors to the framework 
that props up the house of my doctoral education, Paul and his collaborators 
are the bedrock, having laid the foundation of my research long before I was 
born, with the founding of the selection experiment that eventually resulted in 
the data I have been using. It has been a humbling and awe-inspiring experi-
ence to work with this data and look back upon an unbroken chain of research 
by so many people, reaching back more than half a century. In addition to that, 
I would also like to thank Paul and Christa, for being kind, thorough and 
patient collaborators who taught me a lot writing my first paper with me. 

To stretch the house metaphor beyond its breaking point, a house does not 
consist of foundation and support beams alone: 

While it is likely foolish to admit so in a public document, let me tell you: 
I am terrible at administrative work, terrified by bureaucracy, and downright 
lousy at planning ahead. That I have made it this far despite that is not due to 
some herculean effort on my part, but because I had help. Thank you, Tanel, 
Veronica, Rehné and Malin & Malin for your help and patience.  

Daniela, I don't think I would have managed to finish my Master thesis in 
time without your help, which would have brought this whole complicated 
artifice tumbling down before it even started. You were kind, caring and 
helped me without hesitation, having a much bigger impact on the trajectory 
of my life than you probably realised. I think of this often, and try to follow 
your example. 

There has also been a vast ensemble of colleagues and friends that have 
enriched my work and life throughout the time we have shared here. I cannot 
possibly mention everyone, but believe me that every friendly word, every 
shared laugh matters, irregardless how fleeting. They are the vast, luminescent 
tapestry that makes life joyful. 

Thibaut, During the time we shared an office, you were probably one of 
the people i spent the most time with, and every moment of it has been better 
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for it. Thank you for the far ranging, deep, diverse and often ridiculous dis-
cussions and shared struggles. I hope France treats you well, but whenever 
you are ready to build your empire in the great pacific garbage patch, let me 
know. 

Mark, stalwart and unflappable paragon of positivity. Despite the wide 
vortex of calamity that has surrounded us these past years, you have been the 
calm eye of the storm, with a ray of sunshine to boot! Stoicism, incredible 
positivity or just unshakable confidence? Who knows! Either way, you have 
been an inspiration, a fantastic colleague and a brilliant scientist, and I am sure 
you will be doing great things. 

Yanjun, thank you for sharing your time, ideas and thoughts with me. If I 
had a big brother, I would have liked him to be like you. 

Simon, thank you for the interesting discussions. Rest assured that next 
time I see you, I will be peppering you with questions.  

Mette, thank you for your kindness, time and an open ear when I needed 
one badly. 

Yunzhou, Claudio and Yiwen: Thank you for the good times! 
Beyond these immediate colleagues, I would like to highlight how much 

the general community of the D11:3 corridor has helped me retain my sanity. 
If i were to mention everyone individually that has contributed to my wellbe-
ing and joy, this thesis would be twice as long, and i would run out of adequate 
words to describe their positive qualities halfway through. This corridor is a 
veritable clown-car of excellence, and lunchtime there has always been one of 
the highlights of my day. 

Beyond these Friends and colleagues attached to the worksphere or other-
wise already mentioned here, i have been blessed with friends near and far, 
that have kept me tethered to reality and a life beyond science, despite my 
tendencies to become the human equivalent of an isolationist hermit crab: Iris, 
Laura, Gaëtan, Matilda, Les, Ruben, Phillipp, Susanna, Yuval, Arielle, 
Liana, Carles, Moritz as well as Hugo, Mariona, Alessio and the rest of the 
W&D. I will not write down individual paragraphs to commemorate their val-
orous contributions here. This is not an oversight, but a promise. Over the 
course of my PhD and particularly the pandemic I have been struggling very 
badly to stay in contact or generally devote time to social endeavours. Con-
sider this omission a promise to rectify this, and a placeholder for future mem-
ories. 

Finally, for my family: Mama, Papa, Vivi and Susmita. Any sentence I can 
think of here feels entirely inadequate, too derivative and meaningless. How 
could it not? It feels ridiculous to pick any given paragraph to lionise my fam-
ily for a specific thing, when all I am, all my achievements, is and are founded 
and contingent on the love, care and unwavering support I have received from 
you my entire life. Please allow me to reach for the most generic of platitudes: 
Mama, Papa, Vivi; Danke für alles. 
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Susmita, this is a bit easier. Mostly because you gave me strict instructions 
(“keep it short, don't make it too cheesy”), but also because you already know 
what you mean to me, and I am looking forward to telling you time and time 
again. 
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