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Simple Summary: p16 IHC is the HPV detection method suggested by the current version of the
TNM (AJCC 8th edition) for oropharyngeal squamocellular carcinoma. However, its reliability has
been extensively discussed, and its applicability in every context, especially the enrollment of patients
in de-intensification protocols, is debatable. Here, we discuss its limits, especially in populations with
a low prevalence of HPV-driven oropharyngeal squamocellular carcinoma, and suggest the possible
actions to be taken to overcome such limitations.

Abstract: High-risk human papillomavirus (HPV) infection is a defined etiopathogenetic factor in
oropharyngeal carcinogenesis with a clear prognostic value. The P16 IHC (immunohistochemistry) is
a widely accepted marker for HPV-driven carcinogenesis in oropharyngeal squamous cell carcinoma
(OPSCC); in the present paper, we discuss its reliability as a standalone marker in different popula-
tions. The literature suggests that rates of p16 IHC false positive results are inversely correlated with
the prevalence of HPV-driven carcinogenesis in a population. We propose a formula that can calculate
such a false positive rate while knowing the real prevalence of HPV-driven OPSCCs in a given
population. As it has been demonstrated that p16 positive/HPV negative cases (i.e., false positives at
p16 IHC) have the same prognosis as p16 negative OPSCC, we conclude that despite the valuable
prognostic value of p16 IHC, relying only on a p16 IHC positive result to recommend treatment
de-intensification could be risky. For this aim, confirmation with an HPV nucleic acid detection
system, especially in areas with a low prevalence of HPV-related OPSCCs, should be pursued.

Keywords: OPSCC; HPV-driven carcinogenesis; treatment de-intensification; HPV prevalence; diag-
nostic methods; specificity; false positives; molecular characterization; Western countries; develop-
ing countries
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1. HPV as a Marker for Molecular Characterization in Oropharyngeal Squamous
Cell Carcinoma

Evidence accumulated over the last 20 years [1–6] on the prognostic significance
of high-risk Human Papillomavirus (hr-HPV) infection in oropharyngeal squamous cell
carcinomas (OPSCCs) supported the inclusion of this parameter as the only acknowledged
molecular marker in both the American Joint Committee on Cancer (AJCC) TNM (tumour,
node, metastasis classification) and in main international guidelines for the head and
neck [7]. We know that HPV + OPSCC cases show a better prognosis mainly because of
their increased sensitivity to both cisplatin and radiotherapy [8–11], deriving at least in
part from the fact that the lower (half) mutational rate in cancer cells keeps a wild type
p53 gene, leaving the cells susceptible to pro-apoptotic agents [12]. Thus, the presence of
HPV genes in the tumor tissue is associated with defined biological features and clinical
behavior, and the fact that HPV-induced carcinogenesis can be easily diagnosed on small
bioptic or cytological samples makes it a valid and important biomarker for OPSCCs [13].
AJCC recently included HPV-driven carcinogenesis as a decisive prognostic determinant,
diversifying the TNM classification between HPV-driven and HPV-unrelated OPSCCs [14].

2. HPV in Relation to Treatment De-intensification

Since HPV-positive OPSCCs patients have markedly longer survival, the issue of
long-term morbidity and quality of life (QoL) deterioration, deriving also from the ag-
gressive multimodality treatments employed, becomes definitely more relevant [15,16].
The assumption that less aggressive treatments in HPV-positive OPSCCs could achieve
the same oncological results with reduced long-term toxicity is the rationale underlying
the perspective of treatment de-intensification, which has been evaluated in many, also
ongoing clinical trials [17,18].

However, despite the fact that the concept of treatment de-intensification has become
very popular with several studies hypothesizing treatment modulation according to HPV
status in OPSCCs, the National Comprehensive Cancer Network (NCCN) justifies, at
present, such an approach only in clinical trials [7]. On one hand, the NCCN panel is
probably waiting for stronger evidence, coming from the ongoing and future clinical trials,
to confirm that treatment de-intensification in HPV-driven OPSCCs is, for sure, beneficial
as far as functional results are concerned and that it is also oncologically safe [19].

At any rate, we believe that the lack of consensus about the best diagnostic method(s)
also contributes to hampering the safe introduction of HPV in head and neck clinical
practice [20].

3. Detection Methods for HPV in HNSCC

The mere detection of HPV in a tumor sample does not imply a transcriptionally active
virus, nor that the cancer is virus related. A diagnostic method that is to be utilized in
clinical practice for the characterization of OPSCCs must detect a clinically relevant number
of copies of transcriptionally active viral oncogenes. In fact, we need proof that HPV has
impacted the carcinogenic process and currently contributes to the transformed phenotype
(HPV-driven carcinogenesis), giving the tumor the typical clinical features of HPV-induced
OPSCC. On the other hand, an assay detecting a small number of copies of the HPV DNA
(which may come from a transient/not relevant infection or from contamination) may have
a high rate of false positive results.

E6 and E7 appear to be the main drivers of cancerogenesis in HPV + HNSCC [6,21–24],
while E5, another established oncogene, is usually not detected in OPSCC cancer cells. The
expression of the E6 and E7 oncoproteins appears to be fundamental for the maintenance
of the transformed phenotype [21]. Thus, the diagnosis of HPV-driven oropharyngeal
carcinogenesis should demonstrate the expression of the E6 and E7 proteins, and in the
absence of fully reliable immunohistochemical probes for the E6 and E7 proteins, methods
detecting E6 and E7 mRNA in cancer cells are currently the gold standards for diagnosing
an HPV-related HNSCC [20]. Unfortunately, this approach should be ideally carried



Cancers 2023, 15, 656 3 of 10

out on fresh-frozen tumor samples that are not routinely available in standard clinical
practices [25–28].

On the other hand, when it comes to methods that diagnose HPV-induced carcino-
genesis in standard formalin-fixed paraffin-embedded (FFPE) samples, a gold standard
is actually still missing [20]. Even if a plethora of methods are commercially available,
and much more have been described in the scientific literature, practically all of them
have been clinically validated in the uterine cervix but not in the head and neck. Current
options for FFPE samples usually follow one or more of the following strategies, includ-
ing the detection of viral DNA with or without a polymerase chain reaction (PCR), the
detection of mRNA or DNA with in situ hybridization (ISH), and the detection of surrogate
markers [29].

The detection of viral DNA with PCR is a non-quantitative method that is rather sensitive
but poorly specific, as it tends to amplify contaminating material coming from non-relevant
fragments of HPV DNA (non-cancerogenic strains or bystander infections) [28,30–32]. Such
limitations in terms of specificity have been partially overcome by techniques that involve
viral load quantification with RT-PCR and/or signal amplification methods (i.e., hybrid
capture). Techniques based on signal amplification, in particular, have been shown to correlate
nicely with mRNA detection methods in fresh frozen samples [27] and have been validated
in cytological samples [33]. However, problems in terms of sensitivity may arise when
the yield of the DNA extracted from the FFPE tissue samples is low or of poor quality [5].
Nonetheless, some landmark studies, including the original paper that demonstrated the
role of hr-HPV infection in the cancerogenic process of a subset of OPSCC along with its
prognostic relevance [1], and the work of Stransky et al. discussing the mutational pattern of
HPV-related OPSCC [12], were indeed based on data coming from DNA-based techniques.

ISH-based assays, despite being considered highly specific and having gained popu-
larity, especially in the USA, share with other IHC-based techniques a certain dependance
on an experienced histopathologist to correctly interpret the results, along with high costs
and lengthy and complex procedures. This relative liability is probably behind the lack of
diagnostic and prognostic reliability (particularly concerning sensitivity) and is sometimes
lower than that of p16 IHC [4,25,26,30,34].

Immunohistochemistry for the p16 INK4A protein (p16 IHC) has been used since 2003
as a surrogate marker [35] and rapidly became a widely accepted method for diagnosing
the HPV-driven OPSCCs thanks to its undeniable advantages, such as simplicity and low
cost. However, p16 IHC is associated with many drawbacks and, in particular, a low
specificity [36]. Despite these limitations, the expression of p16 is the criterion used for
patient enrollment in many prospective trials of treatment de-intensification [28,37] and
is acknowledged as valid in assessing HPV-related carcinogenesis in OPSCC, even by
AJCC [14].

An alternative sequential strategy, including two highly sensitive methods, has already
been validated by Dutch [30,31,38] and English [25] groups. Such a sequential strategy
includes upfront p16 IHC, and when positive staining is observed, a subsequent HPV
DNA detection with a PCR assay on FFPE samples for confirmation is performed. The
Dutch authors report that the specificity of such an approach can be as high as 100%, thus
drastically reducing the false positives coming from p16 IHC alone.

Additionally, in Denmark and Sweden, combining HPV DNA and p16 is already
recommended as essential for correct prognostication [39,40].

4. The Ominous Impact of False Positive p16 IHC

By analyzing the results of the Dutch and Swedish groups, it has been demonstrated
that p16-positive OPSCCs that turn out to be HPV DNA-negative actually have the same
prognosis [41] or slightly better [40] than p16-negative OPSCCs. These cases, if treated with
a de-intensified regimen, are expected to have a markedly lower disease control, so treat-
ment de-intensification would ultimately have a negative impact on oncological outcomes.
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Therefore, it is obvious that the specificity, or more precisely, the minimal false pos-
itive rate, is a fundamental requirement for any assay used to recommend treatment
de-intensification in supposedly HPV-driven OPSCC, raising concerns about the use of p16
IHC for this aim [20,42].

5. Factors Impacting the False Positive Rate of p16 IHC

In the literature, the rate of false positive cases with p16 IHC is extremely variable in
the different series (some examples in Table 1).

Table 1. Accuracy of p16 IHC in different OPSCC series. Notably, for a certain assay, the FPR is
relatively constant among very different populations (such as the Dutch, Germans, Czechs, and
Sardinians), while specificity always decreases along with the HPV-driven rate.

Population

Rate of p16
Positive among
HPV-Negative
OPSCCs (FPR)

Rate of
HPV-Induced
OPSCC in the

Population

Proportion of
HPV-/p16 +

OPSCC in the
Population

Probability That
Positive p16 Is

HPV-(1-
Specificity)

Detection
Methods

Nauta
(Holland) [41] 5.6% 28.2% 4% 12.3%

p16 (70%)
GP5þ/6þ
DNA PCR

Bussu (North
Sardinia) [42] 5.7% 14.5% 4.8% 25%

p16 (70%)
GP5þ/6þ
DNA PCR

Bussu (Central
Italy) [5] 20.6% 32% 14% 30.4%

p16 (70%)
HPV E6 and
E7 mRNA

DNA (Hybrid
Capture 2)

Saito (Japan) [43] 9.8% 32% 6.7% 17.2%
p16 (70%)
DNA ISH

DNA PCR E6

Benzerdjeb
(France) [44] 13.6% 46.4% 7.2% 13.6%

p16 (70%)
DNA ISH
DNA PCR

(CLART HPV2)

Schache (UK) [25] 11.3% 36.1% 7.2% 18%

p16 (70%)
HPV16 E6

DNA qPCR
HPV16 E6

RNA qPCR

Ang * (US) [4] 18.8% 63.8% 6.8% 10.3% p16 (70%)
ISH DNA

Rotnaglova (Czech
Republic) [45] 5.3% 60% 2.2% 3.7%

p16 (50%)
GP5þ/6þ
DNA PCR

Linge
(Germany) [46] 9.6% 21.7% 7.4% 25.6%

p16 (70%)
GP5þ/6þ
DNA PCR
DNA PCR

(LCD-Array HPV)
HPV16

E6/E7 RNA

Prigge
(Germany) [47] 5.7% 17.2% 4.7% 21.4%

p16
HPV16 E6 mRNA
DNA (multiplex)

Oliva (Chile) [48] 26.3% 60.4% 10.4% 17.9%
p16 (70%)
GP5þ/6þ
DNA PCR
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Table 1. Cont.

Population

Rate of p16
Positive among
HPV-Negative
OPSCCs (FPR)

Rate of
HPV-Induced
OPSCC in the

Population

Proportion of
HPV-/p16 +

OPSCC in the
Population

Probability That
Positive p16 Is

HPV-(1-
Specificity)

Detection
Methods

Méndez-Matías
(Mexico) [49] 20% 39.2% 12.3% 23.7% p16 (70%)

DNA (INNO-Lipa)

Evans (UK) [50] 5.8% 50% 2.89% 5.5%

p16 (70%)
GP5þ/6þ
DNA PCR
DNA ISH

Henneman
(Netherlands) [51] 6.3% 34.9% 4.1% 10,5% p16 (75%)

DNA (INNO-Lipa)

D’Souza
(USA) [52] 9.5% 55.8% 4.2% 7%

p16 (70%)
DNA ISH
RNA ISH

Lucas-Roxburgh
(New Zealand) [53] 7,5% 62.6% 2.8% 4,3% p16 (75%)

DNA rtPCR

Ou (New Zealand)
[54] 7% 74.5% 1.8% 2,3%

p16 (70%)
GP5þ/6þ
DNA PCR

E6/E7 DNA rtPCR
Haeggblom

(Sweden) [55] 15% 70% 4,5% 6% p16 (75%)
DNA (multiplex)

* HPV detected through FISH, with notorious sensitivity issues, with a relevant rate of false negative cases.

However, for a given methodology used as a reference, the number of HPV-negative
tumors overexpressing p16 tends to be constant. For example, when HPV-driven carcino-
genesis is assessed with a combination of p16 IHC and PCR on genomic DNA, a relatively
constant percentage (around 5.5% of HPV-negative tumors in a best-case scenario) overex-
press p16 [5,41,42,45,47] (Table 1). Therefore, when using the sequential “Dutch” assay [30],
the minimal proportion of HPV-negative/p16 + OPSCCs in a population can be predicted
using the following formula: 5.5% × HPV non-driven rate. Likewise, the probability that a
case that overexpresses p16 is HPV-negative (1-Specificity) can be easily predicted based
on the prevalence of HPV-related carcinogenesis in that population with a simple formula
(Figure 1).
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Figure 1. Formula to compute the rate of false positive p16 IHC if the reference is the combination
between p16 IHC and PCR of genomic E6/E7.

As shown in Table 2, the expected rate of false positives among p16 overexpressing
cases, and that of the general OPSCC population, can be calculated to vary widely according
to the prevalence of HPV-driven OPSCC in different populations.



Cancers 2023, 15, 656 6 of 10

Table 2. Prediction of the rate of false positive tests (1-specificity) at p16 IHC when the reference is the
combination of p16IHC + genomic DNA PCR, according to the proportion of HPV-driven OPSCCs in
a given population. The calculation is made by the formula in Figure 1.

Rate of HPV-Induced
OPSCC

Expected Rate of False
Positive among p16

Overexpressing OPSCC

Expected Rate of False
Positives in the Whole

OPSCC Population

28% (Holland) 12.4% 3.9%
14.5% (North Sardinia) 25% 4.7%

80% (US) 1.3% 1.1%
90% (Scandinavian Countries) 0.6% 0.5%

This means, for example, that about one-fourth of p16-positive OPSCCs will turn
out to be HPV-negative in Sardinia compared to only 0.6% in Scandinavian countries.
The total of 0.6% for a false positive rate is acceptable in the perspective of treatment
de-intensification, but 25% is not because a high percentage of p16 positive cases would be
undertreated with a relevant impact on prognosis. It means that p16 IHC may be deemed
sufficient to recommend treatment de-intensification in Scandinavia or in the US, but not
in Sardinia or in most of the world’s population, considering that in the most densely
populated areas as India, Southern China, and Brazil a much smaller proportion of OPSCCs
are HPV-driven. A graphical representation of what happens in a “best case scenario” (5.5%
of HPV-negative tumors overexpress p16) can be seen in Figures 2 and 3. Figure 2 shows
how the probability that the p16 positive tumor is indeed HPV- changes according to the
proportion of HPV-driven OPSCCs in a given population. The function is not linear and is
expected to rise sharply in populations with an HPV-driven rate of OPSCCs below 25%.
Notably, the probability is 1.8% in populations with 75% of HPV-driven OPSCCs, and it
more than doubles (5.2%) in a population with an HPV-driven rate of 50%. Figure 3, starting
from the same assumptions, shows how in this scenario, the number of false positive cases
would rise constantly with a lower HPV-driven rate, with one misclassified patient every
100 tested at an 88% HPV-driven rate, two at 64%, three at 46% and four at 27% up to a
maximum of 5.5 at 100%.
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6. Conclusions

To conclude, if we aim to safely implement treatment de-intensification for OPSCC,
the above data and considerations must be kept in mind. We believe that the scientific
community has two options in front of this evidence.

1. To accept p16 IHC as a standalone test only in populations with a high prevalence
of HPV and defining a threshold (e.g., 50%, which would be associated with (1-specificity)
= 5% in the best case scenario, according to the above formula for the prevalence of HPV-
driven OPSCC, above which the expected rate of false positive p16IHC is considered
acceptable.

2. To always confirm p16 IHC with hr-HPV nucleic acid detection before recommend-
ing treatment de-intensification in OPSCC. Notably, this is already the recommendation
in Denmark and Sweden, even if these are countries with a notoriously high rate of HPV-
induced OPSCCs.
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