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1 Introduction

This paper is the first of a series devoted to revisiting the properties of the Heterotic
strings on ALE spaces. The main motivation for our study is that recent progress in un-
derstanding the structures of six-dimensional theories [1–13] and their continuous 2-group
symmetries [14–19] can be exploited to give new insights on some of the open questions in
the subject.

The focus of this work are the little string theories (LSTs) of Heterotic ALE instantons
and the corresponding T-dualities [20–25]. The LSTs governing the worldvolumes of the
heterotic Spin(32)/Z2 ALE instantons are obtained from orbifolds of the Lagrangian theory
governing a stack of N NS5 branes of the Spin(32)/Z2 Heterotic string and are well-
known [22, 23, 26, 27]. On the contrary, the LSTs governing the worldvolumes of the
Heterotic E8 × E8 ALE instantons are non-Lagrangian and slightly more mysterious: our
first result in this context is to completely determine the latter exploiting 6d conformal
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matter, thus extending previous results in the literature [21, 28, 29]. To confirm our
predictions we exploit T-duality with the known Spin(32)/Z2 ALE instantons LSTs. The
main criteria we use for identifying T-dual pairs of theories are the matching of flavor
symmetry ranks, 5d Coulomb branch dimensions, and 2-group structure constants [16, 17].
The latter constraint is often the most stringent, and allows to chart the corresponding T-
dual models purely from a field theoretical perspective. We conjecture that the matching of
the above data is sufficient to predict a T-duality between a pair of LSTs. As a consequence
we end up predicting several new families of equivalences among these models.

As a further consistency checks of the results above we exploit brane constructions in
Type I and Type I′ for some of the models of interest. These brane engineerings however
are not effective for exceptional ALE singularities. For those cases, we can confirm our
results by exploiting the geometrization of T-duality in F-theory [5, 21]. The detailed
analysis of the relevant geometries will appear in a follow up work in this series [31].

The structure of this paper is as follows. In section 2 we establish the notations and
conventions used throughout this paper and we review the relevant aspects of the 2-group
global symmetry of 6d LSTs. In section 3 we determine all the 6d LSTs for the Heterotic
ALE E8 × E8 instantons in presence of arbitrary choices of flat connections at infinity. In
section 4 we describe in details the case of Ak-type singularities, exploiting the duality with
Type I′ superstrings to fully chart the T-duality landscape for some small values of k. In
section 5 we briefly discuss some aspects of the case of D-type singularities. In section 6
we discuss the case of exceptional singularities, with particular focus on the choices of flat
connections at infinity which give rise to exceptional flavor symmetries. We focus on these
examples for the sake of brevity, but our methods are valid in full generality. We conclude
in section 7 presenting a conjecture about the role of the R-symmetry 2-group structure
constant to constrain RG flows. By direct inspection of the cases considered in this paper,
we see that indeed the latter is decreasing along RG flows.

Note added. While this work was in preparation we have been informed about [30]
which obtained some of the results we present here in the context of T-duality with different
methods. We thank the author of that manuscript for coordinating the publication.

2 A quick review of 2-groups for LSTs

In this section we fix our notations and conventions for generalized quiver diagrams [2] for
6d LSTs [9] and we illustrate the formulas for the 2-group structure constants obtained
in [16, 17].1 Experienced readers can safely skip to the next section.

Consider a 6d LSTs of rank nT , with a global 6d zero-form symmetry with Lie algebra

f(0) =
nf∏
a=1

fa , (2.1)

where fa are irreducible factors. Its generalized quiver is encoded by two sets of data:
1 We stress this is by no means meant to be a comprehensive review about the physics of these models:

we refer the readers interested in a review to section 2 of [32] or to the manuscript [33].
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• An (nT + 1 + nf )× (nT + 1 + nf ) symmetric matrix(
ηIJ ηIA

ηAI 0

)
I, J = 1, . . . , nT + 1
A = 1, . . . , nf

(2.2)

• A (nT + 1 + nf )-touple of Lie algebras

g = (g1, . . . , gnT+1, f1, . . . , fnf ) , (2.3)

One associates a node of the generalized quiver to each 1 ≤ I ≤ nT + 1, decorated with
the value of ηII , the Lie algebra gI , and, whenever ηIA 6= 0, a factor fA of the symmetry
Lie algebra in square brackets, schematically

· · ·
gI

ηII

[fA](ηia)

· · · (2.4)

The algebras gI , I = 1, . . . , nT + 1 above correspond to dynamical gauge fields. The
diagonal entries of the ηIJ block are positive integers between 0 and 12 encoding the
self Dirac pairings for the nT + 1 elementary BPS strings of the theory, which source
the corresponding selfdual 2-form gauge fields b(2)

I . The off-diagonal entries of the ηIJ
block are non-positive integers encoding the adjacency matrix for the generalized quiver:
if ηIJ 6= 0 the two nodes ηII and ηJJ are adjacent and the corresponding BPS strings can
form bound-states. For all cases we consider in this paper, the off-diagonal entries of ηIJ
are either 0 or −1, but more general cases are indeed possible [9, 34]. The decoration by gI
is typically suppressed for those nodes with ηII = 1 and gI = sp0 (for which h∨ ≡ 1), and
ηII = 2 with an gI = su(1) (for which also h∨ ≡ 1). Matter in representations to cancel
the corresponding quartic gauge anomalies is typically added, but often is suppressed in
the notation, together with the coefficient ηIA, which is determined by it. For more details
about the physics interpretation of this notation, we refer our readers to the papers [2, 6],
as well as to [9] for its application to LSTs.

For 6d SCFTs the matrix ηIJ must be postive definite, while for 6d LSTs it has to be
non-negative. The little string of the theory is given by a boundstate of elementary BPS
strings with charge encoded in the unique null eigenvector of ηIJ (which is a generalized
affine Cartan matrix) [9]:

ηIJ`J = 0 gcd(`1, . . . , `nT+1) = 1 `I > 0 . (2.5)

Corresponding to this charge, a feature of 6d LSTs is that the following linear combination
of 2-form tensor fields is background

B
(2)
lst =

nT+1∑
I=1

`Ib
(2)
I (2.6)

and corresponds to a 1-form symmetry U(1)(1)
lst. The associated background curvature 3-

formH
(3)
lst satisfies a modified Bianchi identity involving the background instanton densities,
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which, if non-trivial, control the 2-group structure constants κ̂F , κ̂P and κ̂R [16]:

1
2πdH

(3)
lst = 1

2π

r+1∑
I=1

`IdH
(3)
I

= κ̂Rc2(R)− κ̂P

4 p1(TM6)− 1
4 κ̂FTrF 2

A .

(2.7)

In presence of nontrivial backgrounds for the zero-form global symmetries of the 6d theory,
the two-form fields b(2)

I have Green-Schwartz couplings of the form [3]∫
6
b
(2)
I ∧

(
h∨gI c2(R) + 1

4(ηII − 2)p1(TM6) + 1
4η

IATr(F 2
A)
)
, (2.8)

where ηII is not summed over, c2(R) and p1(TM6) correspond to backgrounds for the
Sp(1)R symmetry of the theory and gravity respectively, and FA is a background field
strength for the A-th factor of the global flavor symmetry group. In presence of the GS
couplings in equation (2.8), all the tensor fields have modified Bianchi identities of the form

1
2πdH

(3)
I = h∨gI c2(R) + 1

4(ηII − 2)p1(TM6) + 1
4η

IATr(F 2
A), (2.9)

Plugging this equation into (2.7), gives an equation for the 2-group structure constants of
the model

κ̂F = −∑r+1
I=1 `Iη

IA κ̂R = ∑r+1
I=1 `Ih

∨
gI

κ̂P = −∑r+1
I=1 `I(ηII − 2) . (2.10)

In reference [17] it was checked that the above 2-group structure constants always match
for T-dual LSTs. The purpose of this work is to exploit such matching to chart the possible
T-dualities among Heterotic ALE instantonic LSTs.

3 The LSTs of Heterotic E8 × E8 ALE instantons

The worldvolume theories governing a stack of N instantonic NS5 branes of type
Spin(32)/Z2 are well-known [35]: they have a Lagrangian description in terms of an sp(N)
gauge theory coupled to Nf = 16 hypermultiplets in the fundamental representation, as
well as one antisymmetric. The corresponding generalized quiver is

[so(32)]
spN
0 [su(2)] . (3.1)

Thanks to this a Lagrangian, the worldvolume theories of ALE heterotic Spin(32)/Z2
can be easily determined by orbifolding [22, 23, 36]. Since π1(S3/Γg) ' Γg, the resulting
theories also depend on the choice of a flat connection at infinity, encoded in a choice of a
mapping

λ : Γg → Spin(32)/Z2. (3.2)

We review the structure of the relevant models when needed in the analysis below. We
denote them

K̃N (λ; g) (3.3)
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Figure 1. Exceptional LSTs in the Hořava-Witten duality frame.

in what follows. These models have 6d flavor symmetry F (λ) which is determined by the
commutant of λ(Γg) in Spin(32)/Z2.

An important subtlety here is that one should distinguish whether these instantons
give obstructions to a “vector structure” for Spin(32)/Z2 via a positive second Stieffel-
Whitney class w̃2 6= 0 or not — as remarked in [37]. In this paper, as well as in parts 2
and 3, we will mostly focus on the case in which w̃2 = 0, since, as we will discuss below, we
expect the cases with w̃2 6= 0 to be dual to configurations in the frozen phase of F-theory,
which is still relatively unexplored [34, 38].2

On the contrary, the theories associated to instantons on E8 ×E8 are close cousins of
the 6d (2,0) SCFTs, and in particular one does not expect these models to have a simple
Lagrangian formulation. A beautiful characterization for the LSTs of fractional E8 × E8
heterotic instantons is achieved via the Hořava-Witten duality between Heterotic super-
strings and M-theory on a finite interval [39]. In the M-theory dual frame, the exceptional
LSTs arise from a stack of N M5 branes extended along the directions x0,1,2,3,4,5 that are
parallel to the two M9 branes at the opposite ends of the world [40]. Along the directions
x6,7,8,9 transverse to the M5 branes, an ALE singuarity C2/Γg is located — see figure 1.
Due to the presence of the singularity, the instantonic configuration fractions and the re-
sulting theory depends on a further choice of a flat connection at infinity for the two E8
bundles. The latter are encoded in two group morphisms

µa : π1(S3/Γg) ' Γg → E8 , (3.4)

where a = 1, 2 is a label for the two M9 branes. We represent this graphically in figure 1
as a decoration of the M9 brane. The zero form global symmetry of the resulting LSTs is
determined by the commutant of µa(Γg) in E8, namely we expect to have

F (0)
a ≡ {g ∈ E8 | gh = hg, ∀h ∈ µa(Γg)} a = 1, 2 . (3.5)

The cases with global symmetry F
(0)
1,2 ' E8, corresponding to the choice of trivial flat

connections for the end of the world gauge fields, are dual to certain geometries in F-
theory, discovered by Aspinwall and Morrison [21]. In this paper, we are concerned with

2 We plan to return to this issue in part IV of this project, which is currently under preparation.
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all other possible choices. We denote the corresponding theories

KN (µ1,µ2; g) (3.6)

The precise form of the tensor branches for all these classes of theories can be easily
obtained from the conformal matter approach. The distance M9-M5 corresponds to the
vev of a (1,0) tensormultiplet associated to a BPS string with unit self Dirac pairing, while
the distance M5-M5 corresponds to the vev of a (1,0) tensormultiplet associated to a BPS
string with self Dirac pairing two, leading to a structure

1 2 2 2 · · · 2 2︸ ︷︷ ︸
N−1

1 (3.7)

In presence of a C2/Γg singularity the various branes involved can fraction. The resulting
fractions have been determined exploiting F-theory techniques [2] — for an application in
the context of this paper, we refer our readers to [31]. The resulting theories are described
as generalized quiver theories of the form

KN (µ1,µ2; g) = T (µ1, g) g TN−2(g, g) g T (µ2, g) (3.8)

where:

• T (µa, g) is the minimal 6d orbi-instanton theory associated to the M9-M5 system in
presence of a C2/Γg transverse to the M5, with a choice of flat connection at infinity
µa : Γg → E8;

• TN−2(g, g) is the 6d conformal matter theory associated to N − 2 M5 branes probing
a C2/Γg singularity;

• g denotes the operation of (diagonal) fusion of the common factors g of the
global symmetry of the corresponding 6d SCFTs, schematically at the level of the
corresponding generalized quivers:3

· · ·
g′

n′ [g] g [g]
g′′

n′′ · · · −→ · · ·
g′

n′
g
n

g′′

n′′ · · · (3.9)

The theories T (µa, g) can be determined from results found in references [2, 6, 11, 42], by
identifying the minimal orbi-instanton model, corresponding to a single M5-M9 system in
presence of a transverse ALE singularity. When N ≥ 3, the structure we describe in (3.8)
completely determines the tensor branches of all possible fractional E8 × E8 heterotic
instantons for all possible singularities, thus nicely complementing the results available for
this class of models in the literature [20, 21, 23].

3 This is the 6d version of the gauging operation in 4d, which our readers are probably more familiar
with. For further references about this, see [32] and [41]. Our readers that are not familiar with this
operation can find plenty of examples in the discussion below.
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Remarks.

1. We stress here that the N ≤ 2 cases deviate slightly from the structure above. The
theories corresponding to such small N cases are analysed in details in the second
paper of this series [43], where an application of these methods to determine the
geometric engineering limits of the Heterotic Strings on ALE singularities is also
presented.

2. When indicating the flavor symmetries below we will not be careful about the global
form of the group, which are inessential for the main purpose of this note.

3. From the structure of the theories above, we see that all these theories will have
κ̂P = 2. The most interesting 2-group structure constant is

κ̂R = κ̂g,N + κ̂g,µ1 + κ̂g,µ2 (3.10)

where

• κ̂g,N is the contribution to κ̂R coming from the conformal matter of type
TN−2(g, g) with the addition of the contribution from the two gauge groups
involved in the fission procedure;

• κ̂g,µa is the contribution to κ̂R arising from the models T (µa, g)

These quantities are additive and have the structure above because the LS charge

η · ~̀LS = 0 (3.11)

factors along the genrealized quiver with structure

~̀
LS = (~̀g,µ1 , `g,1,

~̀(N,g), `g,2, ~̀g,µ2) (3.12)

compatible with the decomposition in equation (3.8) above. Then we have that

κ̂g,µa = ~̀
g,µa · ~h

∨(T (µa, g)) (3.13)

Moreover,
κ̂g,N = (`g,1 + `g,2)h∨g + ~̀(N,g) · ~h∨(TN−2(g, g)) (3.14)

where `g,a is the coefficient of the LS charge corresponding to the a-th fusion node,
and we have introduced the notation ~h∨(T ): for a 6d theory T with generalized
quiver

g1
n1 · · ·

gI
nI · · ·

gr
nr (3.15)

we define
~h∨(T ) ≡ (h∨g1 , . . . , h

∨
gI
, . . . , h∨gr) . (3.16)
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4. Sometimes it can happen that a pair of models T (µ, g) and T (µ′, g) have

κ̂g,µ = κ̂g,µ′ . (3.17)

For all those examples the theories

KN (µ,µ′′; g) and KN (µ′,µ′′; g) (3.18)

will have the same κ̂R.

Given the above data the question we are addressing in this paper is to chart the T-dualities

K̃
Ñ

(λ; g) ∼ KN (µ1,µ2; g) . (3.19)

For a pair of models to be T-dual, the following conditions must be met

• The flavor symmetry ranks must match:

rk F (λ) = rk F (µ1) + rk F (µ2) = rk F5d − 1

where we have subtracted the contribution of the KK charge from rk F5d;

• The dimensions of the Coulomb branches of the 5d theories obtained by the circle
reduction of the two models must match;

• The 2-group structure constants must match across T-duality. For all these models

κ̂P = 2 . (3.20)

A much stronger constraint is provided by the requirement that

κ̂R(K̃N (λ; g)) = κ̂R(KN (µ1,µ2; g)) . (3.21)

Moreover, of course, one has also to check that the 2-group structure constants cor-
responding to the 6d flavor symmetries of these models do indeed match. In order to
do that one has to remember that often along the T-duality circles one can introduce
Wilson lines breaking the two flavor symmetries to maximal subalgebras

F (λ)
Wλ

&&
F5d

F (µ1)× F (µ2)

Wµ1⊕Wµ2

88

(3.22)

Then the 2-group structure constants can be compared in 5d as they correspond to
the same F5d. Along the process one might have to rescale them according to the
index of embedding of F5d in the 6d flavor symmetry groups. In all the cases we
consider in this paper such an index equals one and the flavor structure constants are
easily matched, we therefore omit them from our tables.
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The requirements above are necessary for a pair of LSTs to be T-dual. For the examples
we consider in this paper, we conjecture these requirements are also sufficient. Evidence
for this conjecture is obtained exploiting Type I′ geometric engineering for these systems
and the behavior of membranes upon string dualities, which give the Type I′ version of
the Heterotic T-dualities. For the case of exceptional singularities, no brane engineering
is available and one has to turn to F-theory for checking these conjectures. This is the
subject of Part III of this series of works [31].

4 Heterotic instantons on C2/Zk singularities

In this section we review the results for g = ak−1 singularities, C2/Zk. In this case the
possible µ : Zk → E8 are classified by a simple rule [44] (see also section 7 of [6]). Each
different µ corresponds to a decomposition of k into a sum (with repetitions) of the form

k =
∑
j

dij (4.1)

where di are the Kac labels for E8, positive integers corresponding to the nodes of the Ê8
diagram as follows

3′•

1◦ 2• 3• 4• 5• 6• 4′• 2′•

(4.2)

The corresponding maximal subgroup F of E8, which commutes with such an embed-
ding has the Dynkin diagram obtained by deleting from the diagram in equation (4.2) the
nodes corresponding to the di’s which enter in the decomposition in (4.1). A nice algorithm
which determines all possible T (µ, suk) theories can be found in reference [11].

4.1 Type I′ formulation

When the singularities involved are of type g = ak−1 or dk, one can consider dual Type
I′ configurations, which we can take advantage of in order to track T-dualities. In what
follows we consider the ak−1 cases and we review some aspects of the relevant dualities
following the discussion in [39, 45] — see also [23–25].

Let us proceed by dualizing the Hořava-Witten setup to a Type I′ system [45]. In order
to do that it is convenient to realize the C2/Zk singularity as a charge k Taub-NUT space
TNk and then use the Taub-NUT circle as an M-theory circle, which morphs the Taub-
NUT metric into a stack of k D6 branes [46]. It is convenient to summarize schematically
the configuration as follows (see also figure 1)

0 1 2 3 4 5 6 7 8 9 10
M9 • • • • • • • • • •
N M5 • • • • • •
TNk • • • • • • ◦ ◦ ◦ ◦ •

(4.3)
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Figure 2. Example of Type I′ dual configuration to a Hořava-Witten setup: here we have instantons
probing a C2/Z2 singularity with µ1 = 1 + 1, µ2 = 2′.

Dualizing, one obtains the following IIA brane system

0 1 2 3 4 5 6 7 8 10
O8-D8 • • • • • • • • •
M NS5 • • • • • •
k D6 • • • • • • •

(4.4)

Recall that x10 is an interval of the form S1/Z2. The two M9 branes are mapped to two O8−
planes located at the antipodal points each associated with 8 D8 branes (and their images)
so that the overall Roman’s mass of the configuration is zero. The rules to manipulate
these diagrams are well known (see e.g. [24, 25]). The C2/Zk singularity becomes a stack
of k D6 branes which are wrapping around the S1/Z2. Naively one might say that the N
M5 branes are mapped to N NS5 branes, but in facts this is not the case, which is due to
the fact that the M9 fractions along the singularity [2]. We instead obtain a total of

M = N +Nµ1 +Nµ2 (4.5)

NS5 branes in this case: part of the NS5 branes in the dual Type I′ configuration are dual
to fractions of M9 branes, which crucially depend also on the choice of µa, that, moreover,
encodes the position of the D8 branes relative to the NS5s. For a simple example our
readers can look at figure 2, where we see that for µ2 = 2′ (on the right) the M9 does not
fraction, while for µ1 = 1 + 1 (on the left), the corresponding M9 indeed fractions.

Now, since we are interested in T-duality we can add an extra circle within the M5
branes worldvolume. Let’s choose the x5 coordinate in the Hořava-Witten setup to be such
an S1. Then we could use that circle as an M-theory circle which gives the IIA brane
system

0 1 2 3 4 6 7 8 9 10
O8-D8 • • • • • • • • •
N D4 • • • • •
TNk • • • • • ◦ ◦ ◦ ◦ •

(4.6)
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At this point we can dualize to IIB along the Taub-NUT circle to obtain

0 1 2 3 4 6 7 8 9′ 10
O7-D7 • • • • • • • •
N D5 • • • • • •
k NS5 • • • • • •

(4.7)

which is a configuration that we can uplift back to Type I′ by T-dualizing along the 10-th
direction, thus giving:

0 1 2 3 4 6 7 8 9′ 10′
O8-D8 • • • • • • • • •
N D6 • • • • • • •
k NS5 • • • • • •

(4.8)

The latter is a Type I′ configuration that has an interpretation as the LST of N Heterotic
Spin(32)/Z2 instantons probing a C2/Zk after [23–25]. In the process of T-dualising along
the 10-th direction, the orientifold planes are merged together and recombine, which signals
non-perturbative effects kick-in from the Heterotic perspective. Here the group morphism

λ : Zk → Spin(32)/Z2 (4.9)

is encoded by the relative position of the 16 D8s with respect to the NS5s.
Exploiting the matching of the corresponding 2-group structures and 5d Coulomb

branch dimensions we can proceed charting in details the corresponding T-duals

KN (µ1,µ2; g = ak−1) ↔ K̃N (λ; g = ak−1) (4.10)

In this context it is interesting to see how the possible choices of µ1 and µ2 are mapped
to choices of λ.

In all these examples the generalized quiver diagrams have ηIJ of the form

ηIJ =



1 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
...

...
· · · −1 2 −1
· · · 0 −1 1


(4.11)

where the fact that there are two BPS strings with charge 1 ultimately follows from the
presence of the two O8− planes. The corresponding LS charge is

~̀
LS = (1, 1, . . . , 1) (4.12)

which simplifies considerably the analysis of the matching of the structure constants across
T-duality: firstly notice that

κ̂P = 2 , (4.13)
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µ = 1 + 1 µ = 2 µ = 2′

Nµ = 2 Nµ = 1 Nµ = 0

Figure 3. Type I′ brane configurations and corresponding choices of µ : Z2 → E8.

for all these models, which signals the presence of the two M9 branes. Moreover, since for
these models the matching of κ̂R implies the matching of the corresponding 5d Coulomb
branch dimensions, we do not need to list the two invariants separately, in the analysis
below. This simplification will be dropped in the study of the more complicated singularities
g = dk and e6,7,8 below.

4.2 The k = 2 examples

Let us begin with a detailed discussion of the case k = 2. In this case we have only 3 possible
theories of type T (µ, su2) corresponding to the following identities of the form (4.1)

• 2 = 1 + 1 with global symmetry E8,

• 2 = 2 with global symmetry SU(2)× E7,

• 2 = 2′ with global symmetry SO(16).

The corresponding generalized quivers are

T (1 + 1, su2) = [e8] 1 2
su2
2

[Nf=1]
[su2]

T (2, su2) = [e7] 1
su2
2

[Nf=2]
[su2]

T (2′, su2) = [so16]
sp1
1 [su2]

(4.14)

which are associated in Type I′ to the brane configurations in figure 3. The conformal
matter theory of N ′ M5 branes along a C2/Z2 singularity is

TN ′(su2, su2) = [su2]
su2
2

su2
2 · · ·

su2
2︸ ︷︷ ︸

N ′−1

[su2] (4.15)
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KN (µ1,µ2; g) κ̂R

KN (2′, 2′; su2) [so16]
sp1
1

su2
2

su2
2

su2
2 · · ·

su2
2︸ ︷︷ ︸

N−3

su2
2

sp1
1 [so16] 2N + 2

KN (2, 2′; su2) [e7] 1
su2
2

[Nf=2]

su2
2

su2
2

su2
2 · · ·

su2
2︸ ︷︷ ︸

N−3

su2
2

sp1
1 [so16] 2N + 3

KN (1 + 1, 2′; su2) [e8] 1 2
su2
2

[Nf=1]

su2
2

su2
2

su2
2 · · ·

su2
2︸ ︷︷ ︸

N−3

su2
2

sp1
1 [so16] 2N + 4

KN (2, 2; su2) [e7] 1
su2
2

[Nf=2]

su2
2

su2
2

su2
2 · · ·

su2
2︸ ︷︷ ︸

N−3

su2
2

su2
2

[Nf=2]
1 [e7] 2N + 4

KN (1 + 1, 2; su2) [e8] 1 2
su2
2

[Nf=1]

su2
2

su2
2

su2
2 · · ·

su2
2︸ ︷︷ ︸

N−3

su2
2

su2
2

[Nf=2]
1 [e7] 2N + 5

KN (1 + 1, 1 + 1; su2) [e8] 1 2
su2
2

[Nf=1]

su2
2

su2
2

su2
2 · · ·

su2
2︸ ︷︷ ︸

N−3

su2
2

su2
2

[Nf=1]
2 1 [e8] 2N + 6

Table 1. All the E8 × E8 a1 instanton LSTs and their corresponding κ̂R.

Let us consider the fusion operation for the case K2(1 + 1, 1 + 1; su2): the SU(2) global
symmetries of the TN ′(su2, su2) theories have to be fused into a new gauge node with the
SU(2) global symmetries of the two T (1 + 1, su2) theories on the left and on the right as
follows:

[e8] 1 2
su2
2

[Nf=1]
[su2] [su2]

su2
2

su2
2 · · ·

su2
2︸ ︷︷ ︸

N−3

[su2] [su2]
su2
2

[Nf=1]
2 1 [e8]

−→ [e8] 1 2
su2
2

[Nf=1]

su2
2

su2
2

su2
2 · · ·

su2
2︸ ︷︷ ︸

N−3

su2
2

su2
2

[Nf=1]
2 1 [e8]

Proceeding similarly, we obtain 6 options for the possible instanton LSTs, which we list
in table 1, where we have highlighted in red the fusion nodes. The two theories KN (1 +
1, 2′; su2) and KN (2, 2; su2) have the same κ̂R. This gives some evidence that there is a
quantum transition which renders the two theories equivalent on a circle, as we shall see
below, this is an example where we have a triality at fixed value of N .

Clearly these results needs to be slightly modified when N is small, for instance we
have [43]

K2(1 + 1, 1 + 1; su2) = [e8] 1 2
su2
2

[Nf=1]

su2
2

su2
2

[Nf=1]
2 1 [e8]

K1(1 + 1, 1 + 1; su2) = [e8] 1 2
su2
2

[Nf=1]

su2
2

[Nf=1]
2 1 [e8]

(4.16)

for the cases N = 1, 2 and a choice of µi that is not breaking E8.
Consider now the Spin(32)/Z2 side. According to our duality chain we expect to find

Type I′ systems with k = 2 NS5 branes and N D6 branes. Naively, following the analysis
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K̃N (λ; g) κ̂R

K̃N (2p, 16− 2p; su2) [so4p]
spN
1

spN+4−p
1 [so32−4p] 2N + 6− p

K̃N (8∗, 8∗; su2) [u(8)]
su2N

0 [u(8)] 2N

Figure 4. Brane diagrams and generalized quivers for the theories of Spin(32)/Z2 instantons on a
C2/Z2 singularity with w̃2 = 0, and corresponding κ̂R.

Figure 5. Spin(32)/Z2 ALE instantons on an A1 singularity — brane diagrams corresponding to
cases without vector structure w̃2 6= 0.

in [24, 25] we have the possibilities listed in the top part of figure 5, which have also
been analyzed as orbifold of the theory of N heterotic Spin(32)/Z2 instantons. We point
out that, however, one could also obtain models with w̃2 6= 0, like the ones listed on the
bottom part of the figure. In this paper and its sequels [31, 43] we are going to neglect this
possibility, and we will focus on the cases with w̃2 = 0.

For the cases with w̃2 = 0, we can label λ as a splitting 16 = w1 + w2, where wi are
two non-negative even integers. On the brane side this corresponds to the location of the
D8 branes with respect to the NS5. We find it conventient to organize such a splitting as

w1 = 2p w2 = 16− 2p 0 ≤ p ≤ 8 (4.17)

in order to keep track of the corresponding Romans mass and to account for the brane
creation accordingly. There is a further possibility which in the literature is also referred
as a case ‘without vector structure’ (abusing slightly terminology4). This case correspond

4 See footnote 2 of [47] for a clarifying discussion.

– 14 –



J
H
E
P
0
1
(
2
0
2
3
)
1
7
6

to the theories in the top right corner of figure 5. Since this case is the unique of its kind for
the C2/Z2 singularity, we denote the corresponding λ by (w1, w2) = (8∗, 8∗). We describe
the resulting generalized quivers in table 4.

Looking at the resulting field theories we see that sometimes a shift in N is necessary
for the consistency of the model: for sufficiently small number N of D6 branes and certain
values of p one would end up with negative group ranks. The necessity of such shifts is
mirrored as the resulting values for κ̂R are not in the same range as on the T-dual side,
which is also further evidence that some shift might be necessary to achieve a matching and
there is redundancy among the field theoretical labels for the instantons. This redundancy
is the main source of further T-dualities.

Let us discuss the model
KN (1 + 1, 1 + 1; su2) (4.18)

which has
κ̂R = 2N + 6 , (4.19)

and serves well as an example. We want to compare this model with a T-dual with so32
flavor symmetry, which is implied by the standard heterotic T-duality. On the T-dual side
we see that such a flavor symmetry is achieved by two possible choices of p: p = 8 or p = 0,
corresponding to the models

K̃
Ñ

(16, 0; su2) and K̃
Ñ

(0, 16; su2) (4.20)

where we have relabeled the number of NS5 branes on the Spin(32)/Z2 side with Ñ for
the sake of comparison. The corresponding generalized quivers are, respectively

[so32]
sp
Ñ

1
sp
Ñ−4
1 and

sp
Ñ

1
sp
Ñ+4
1 [so32] . (4.21)

The resulting 2-group have structure constants, respectively

κ̂R = 2Ñ − 2 and κ̂R = 2Ñ + 6 (4.22)

which suggest the matching for the first model is Ñ = N + 4, hence the desired T-duality
is

K̃N+4(16, 0; su2) ∼ KN (1 + 1, 1 + 1; su2) . (4.23)

For the second model instead, the resulting group ranks from the brane webs are not getting
negative for small N , hence, the shift is not necessary and indeed we see that we have

K̃N (0, 16; su2) ∼ KN (1 + 1, 1 + 1; su2). (4.24)

This latter situation seems to be the case as long as p ≤ 4, where the gauge theories are
automatically consistent for all values of N . Assuming this is the case, gives the following
T-dualities which are traced by matching the 2-group structure constant κ̂R, keeping N
fixed:

KN (2′, 2′; su2) ∼ K̃N (8, 8; su2) KN (2, 2′; su2) ∼ K̃N (6, 10; su2)
KN (1 + 1, 2′; su2) ∼ K̃N (4, 12; su2) KN (2, 2; su2) ∼ K̃N (4, 12; su2)
KN (1 + 1, 2; su2) ∼ K̃N (2, 14; su2) KN (1 + 1, 1 + 1; su2) ∼ K̃N (0, 16; su2)

(4.25)
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At this point it is natural to ask about the K̃N (8∗, 8∗; su2) theory. Keeping N fixed,
we do not see an immediate T-dual, and for this example there is no need of shifting N
for ensuring the positivity of the gauge ranks. However, recall the effect observed in [20]:
in 5d we can trade rank of gauge groups for tensor branch dimensions — as long as we
are ensuring that the corresponding theories have the same 2-group structure constants,
Coulomb branch dimensions, and flavor group ranks, the corresponding models are likely
to be equivalent in 5d. In particular one is lead to claim the following equivalence

K̃N (8, 8; su2) ∼ K̃N+1(8∗, 8∗; su2) (4.26)

Including these types of transitions, we see that all these models come in two families: for
the Heterotic Spin(32)/Z2 we have

• Family 1: p = 0 mod 2

K̃N (0, 16; su2) ∼ K̃N+1(4, 12; su2) ∼ K̃N+2(8, 8; su2) ∼ K̃N+3(8∗, 8∗; su2)

• Family 2: p = 1 mod 2

K̃N (2, 14; su2) ∼ K̃N+1(6, 10; su2)

while for the E8 × E8 we get

• Family 1: κ̂R = 0 mod 2

KN (1 + 1, 1 + 1; su2) ∼ KN+1(2, 2; su2) ∼ KN+1(1 + 1, 2′; su2) ∼ KN+2(2′, 2′; su2)

• Family 2: κ̂R = 1 mod 2

KN (1 + 1, 2; su2) ∼ KN+1(2, 2′; su2)

Then it becomes clear that elements of a fixed Family in either Heterotic models are the
ones which can be transformed into one another other upon T-duality.

This should not come as a surprise: a similar effect was observed by [48, 49] in the
context of the LSTs of N M5 branes on C2/Zk, where all models with the same κ̂R = N×k
have been proven to be T-dual. Here we are essentially decorating the same geometries
with M9 branes, and we are seeing the counterpart of this effect on the Heterotic ALE
instanton LSTs. A way to see this effect explicitly is to get to the IIB duality frame in
equation (4.7) and start playing with S-duality and flop transitions for the corresponding
(p, q) five-brane webs. The same mechanism already observed in [48, 49], adapted to this
slightly more general situation, can be used to predict the T-dualities above.
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Figure 6. Left: example of Type I′ configurations corresponding to E8 ×E8 ALE instanton LSTs
of A-type. In this figure we have a case k = 2p and Fa(µa) = SO(16) a = 1, 2 corresponding to the
decomposition k = 2+2+2+ . . .+2. Right: t-dual configuration corresponding to the Spin(32)/Z2
case.

4.3 Examples: dualities for LSTs with SO(16)2 symmetry

In the above examples we have seen that the model KN (2′, 2′; g = a1) with tensor branch

[so16]
sp1
1

su2
2 · · ·

su2
2

sp1
1 [so16] (4.27)

is T-dual to the model K̃N (8, 8; g = a1, v) with tensor branch

[so16]
spN
1

spN
1 [so16] (4.28)

This suggests to seek for a generalization, which is immediate from the duality chain we
discussed in the previous section. Indeed, consider the case k = 2p. If that is the case, we
can always decompose

k = 2p = 2′ + 2′ + 2′ + · · ·+ 2′ p times (4.29)

and hence we expect to be able to construct a 6d LST with 6d global symmetry SO(16)×
SO(16). The latter is realized in Type I′ in figure 6, and the corresponding generalized
quiver is

KN (SO(16), SO(16); g = a2p−1) : [so16]
spp
1

su2p
2 · · ·

su2p
2︸ ︷︷ ︸

N−1

spp
1 [so16] (4.30)

Building on the T-duality we discussed above, we obtain that in this case the T-dual
model is

[so16]
spN
1

su2N
2 · · ·

su2N
2

spN
1︸ ︷︷ ︸

p+1

[so16] (4.31)

which gives an interesting (not-simply laced) version of the more familiar fiber base duality:

KN (2′, 2′; g = a2p−1) ↔ K̃N (8, 0, 0, . . . , 0, 8; g = a2p−1) (4.32)

Where the theory on the r.h.s. is the theory of N Heterotic Spin(32)/Z2 instantons on
C2/Z2p with a choice of λ corresponding to the diagram in figure 6 with p and N (base
and fiber) swapped.
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As we shall see below, this perspective will be useful for determining the corresponding
T-duals for this class of examples.

This does not come as a surprise, since it is well known that systems of M5 branes
probing singularities have several T-dualities, and here we are essentially promoting them
to the situation where we are adding M9 branes.

4.4 Higher k examples

One can proceed similarly increasing the value of k. In order to have more clear expectations
on the generic behavior, we consider in details the cases k = 3 and k = 4.

4.4.1 Heterotic instantons on a C2/Z3 singularity

For k = 3 we have a total of 5 different theories of type T (µ, su3), which we list in figure 7.
All these models have ` = 1. The corresponding brane configurations in Type I′ are listed in
figure 7. The theory corresponding to the LST of N+1 heterotic instantons with prescribed
flat connections at infinity can be easily assembled from these data. For sufficiently large
N , the desired theory has the form

T (µ1, su3) su3 TN−2(su3, su3) su3 T (µ2, su3) (4.33)

in order to determine the 2-group structure constant for the corresponding theory one just
has to read off T (µa, su3) and perform a fission on the common diagonal with the conformal
matter theory of N − 2 M5 branes along an C2/Z3 singularity:

TN−2(su3, su3) = [su3]
su3
2

su3
2 · · ·

su3
2︸ ︷︷ ︸

N−3

[su3]. (4.34)

The latter contributes to κ̂R with
3(N − 3) (4.35)

that, together with the two extra contributions from the fusion nodes gives

KN (µ1,µ2; su3) has κ̂R = 3N − 3 + κ̂su3,µ1 + κ̂su3,µ2 . (4.36)

As a concrete example, consider the case µ1 = 2′ + 1 while µ2 = 2 + 1:

KN (2′ + 1, 2 + 1; su3) = [e7] 1
su2
2

[Nf=1]

su3
2

[Nf=1]

su3
2

su3
2 · · ·

su3
2︸ ︷︷ ︸

N−3

su3
2

su3
2

[Nf=1]

sp1
1 [so14] (4.37)

where we are indicating in red the fission gauge nodes and

κ̂R = 3N − 3 + 6 + 5 = 3N + 8 (4.38)

Using the data in figure 7 one can clearly see that we obtain a total of 15 sequences of
theories, and that, by shifting N , we expect these models are organized in 3 families,
corresponding to the values of κ̂R modulo 3.
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µ = 1 + 1 + 1
Nµ = 3

µ T (µ, su3) κ̂su3,µ

µ = 1 + 1 + 1 [e8] 1 2
su2
2

su3
2

[Nf=1]
[su3] +7

µ = 2 + 1 [e7] 1
su2
2

[Nf=1]

su3
2

[Nf=1]
[su3] +6

µ = 2′ + 1 [so14]
sp1
1

su3
2

[Nf=1]
[su3] +5

µ = 3 [e6] 1
su3
2

[Nf=3]
[su3] +4

µ = 3′ [su9]
su3
1 [su3] +3

µ = 2 + 1 µ = 3
Nµ = 2 Nµ = 1

µ = 3′ µ = 2′ + 1
Nµ = 0 Nµ = 1

Figure 7. The T (µ, su3) SCFTs corresponding to the embeddings µ : Z3 → E8 and the dual
configurations in Type I′. We indicate for later convenience also the number Nµ of additional NS5
branes which arises from M9 fractionalization.
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Figure 8. Brane diagram for the K̃N (w1, w2; su3) LSTs with w1 = p, w2 = 16− p.

The dual theories in this class are obtained straightforwardly. One has a Type I′
configuration with 3 NS5 branes, of which one must be stuck at the O8− plane — see
figure 8. In total we obtain naively a series of 17 models:

K̃N (p, 16− p; su3) = [so2p]
spN
1

su2N+8−p
1

[NA=1]
[u16−p] 0 ≤ p ≤ 16 , (4.39)

which have the following structure constants

κ̂R = 3N + 9− p . (4.40)

Similar to the case k = 2, in order to match one class of models to the other it is necessary
to match the corresponding families modulo 3 and sometimes in order to achieve a matching
it is necessary to shift N , which is also clear from the fact that for small N and p high
enough one might end up with negative group ranks. Again as an example we consider the
model

KN (1 + 1 + 1, 1 + 1 + 1; su3) (4.41)

which has E8 × E8 flavor symmetry. We expect this theory is T-dual to the case p = 16
because of the usual matching of flavor symmetries which underlies the heterotic T-duality,
we desire a dual theory with so(32) flavor symmetry. The two theories have

κ̂R = 3N + 11 κ̂R = 3Ñ − 7 (4.42)

where we denoted with Ñ the number of NS5 branes on the T-dual side for the sake of
comparision. This suggests that

Ñ = N + 6 (4.43)

on the Spin(32)/Z2 side. Using this model to normalize N with respect to Ñ we see that
the resulting κ̂R indeed always match.

4.4.2 A qualitative explanation from an inequivalent duality chain

One might wonder whether we could track the origin of the shifts in N which are necessary
from the brane web duality chains. Perhaps the most explicit way to do this is to revisit
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the duality chain we discussed in section 4.1. We know that in Type I ′ the heterotic
instanton E8 × E8 LSTs on a C2/Zk are realized with a slightly larger number of branes
M , corresponding to the fractionalization of the M9 brane. Let us consider dualizing the
diagram in equation (4.4) along x5, we have

0 1 2 3 4 5′ 6 7 8 10
O7-D7 • • • • • • • •
M NS5 • • • • • •
k D5 • • • • • •

(4.44)

where now M = N + Nµ1 + Nµ2 . Now performing IIB S-duality is swapping the D5 and
the NS branes in this picture, and we obtain and equivalent dual picture

0 1 2 3 4 5′ 6 7 8 10
O7-D7 • • • • • • • •
M D5 • • • • • •
k NS5 • • • • • •

(4.45)

at this point we can T-dualise back to IIA using the 10-th direction, giving

0 1 2 3 4 5′ 6 7 8 10′
O8-D8 • • • • • • • • •
M D6 • • • • • • •
k NS5 • • • • • •

(4.46)

which indeed coincides to the Type I′ description of a system of M heterotic Spin(32)/Z2
instantons probing a C2/Zk singularity. This different duality chain, gives a qualitative
explanation of the shifts between N and Ñ we have observed above. Indeed, from the tensor
branch of the model T (µ, su3) and its dual brane realization in Type I′ in figure 7 we read
off that Nµ=1+1+1 = 3, and hence for the E8×E8 model with µ1 = µ2 = {1+1+1} that we
discussed above, we have M = N + 3 + 3, consistently with our remark in equation (4.43)
in the previous section.

This further duality chain indicates that (as expected) T-dualities often involve models
which are related also by shifts in the instanton number N , as we remarked above.

4.4.3 The case of a C2/Z4 singularities

As a further example, in table 2, all the theories T (µ, su4) can be found. One can proceed
as above, mutatis mutandis. The theories KN (µ1,µ2, su4) have

κ̂R = 4(N − 1) + κ̂µ1,su4 + κ̂µ2,su4 (4.47)

where 4(N − 1) is the contribution from the su4 conformal matter and the fusion nodes.
We obtain the following values of

κ̂R = 4N − 4 + p 8 ≤ p ≤ 22 (4.48)
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µ F (µ) T (µ, su4) κ̂µ,su4

1 + 1 + 1 + 1 E8 [e8] 1 2
su2
2

su3
2

su4
2

[Nf=1]
[su4] 11

1 + 1 + 2 E7 [e7] 1
su2
2

[Nf=1]

su3
2

su4
2

[Nf=1]
[su4] 10

1 + 1 + 2′ SO(14) [so14]
sp1
1

su3
2

su4
2

[Nf=1]
[su4] 9

1 + 3 E6 × SU(2) [e6] 1
su3
2

[su2]

su4
2

[Nf=1]
[su4] 8

1 + 3′ SU(8) [su8]
su3
1

su4
2

[Nf=1]
[su4] 7

2 + 2′ SU(2)× SO(12) [so12]
sp1
1

su4
2

[su2]
[su4] 6

2′ + 2′ SO(16) [so16]
sp2
1

su4
2

[su2]
[su4] 6

4 SU(4)× SO(10) [so10] 1
su4
2

[su4]
[su4] 5

4′ SU(2)× SU(8) [su8]
su4
1

[NA=1]
[su4] 4

Table 2. µ VS F for the case k = 4 [11].

Figure 9. Type I′ configurations for Spin(32)/Z2 instantons along a C4/Z4 singularity.
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As an example consider theory with µ1 = {1 + 1 + 1 + 1} and µ2 = {1 + 3}: by fusion we
obtain the theory of N heterotic instantons corresponding to these two choices is given by

KN (1 + 1 + 1 + 1; 1 + 3; su4) = [e8] 1 2
su2
2

su3
2

su4
2

[Nf=1]

su4
2

su4
2

su4
2 · · ·

su4
2︸ ︷︷ ︸

N−3

su4
2

su4
2

[Nf=2]

su3
2

[su2]
1 [e6] (4.49)

where we are indicating in red the fission gauge nodes.
The dual models in Spin(32)/Z2 are described via Type I′ brane diagrams in figure 9.

We obtain theories of two kinds for models with w2 = 0, namely

K̃N (2p, 2q, 16− 2p− 2q; su4) = [so4p]
spN+8

1
su2(N+4−p)

2
[Nf=2q]

spN+8−2p−q
1 [so32−4p−4q] (4.50)

which is defined for pairs 0 ≤ p, q ≤ 8 such that p+ q = 8 give rise to

κ̂R = 4N + 18− 4p− q (4.51)

as well as
K̃N (8∗ − p, 8∗ + p; su4) = [up]

su2N
1

[NA=1]

su2N+p
1

[NA=1]
[u16−p] (4.52)

which is defined for 0 ≤ p ≤ 16 and gives

κ̂R = 4N + p (4.53)

Also here we observe that only the value of κ̂R modulo 4 is relevant to establish boundaries
for the families of T-dual models.

4.4.4 Generic behaviour for Heterotic C2/Zk instantons

Out of these examples we expect the following generic behaviour for Heterotic C2/Zk
instantons:

• The field theoretical labels λ : Zk → Spin(32)/Z2 and µa : Zk → E8 a = 1, 2 are
oftentimes confused upon T-duality, moreover multiple T-dual channels open up once
shifts in N are allowed corresponding to the fractionalization of M9 branes;

• There are however always k inequivalent classes of models that do not transition one
another upon T-duality, which are distinguished by the value of

κ̂R mod k (4.54)

We expect that models in the same class end up being T-dual upon allowing shifting
in N .

• For this class of examples the rank of the flavor symmetry never jumps, moreover the
Coulomb branch dimensions are also very closely related to the actual value of κ̂R as
remarked in [17]. Models corresponding to singularities of dk and e6,7,8 types exhibit
a qualitatively different behaviour in this respect.
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5 D-type cases: adding orientifolds to the webs

When the singularities involved are of type Dk, the corresponding Lie algebra associated by
the MacKay correspondence is g = so2k, obtained from the binary dihedral finite subgroup
of SU(2). The presence of such a singularity has a relatively simple effect with respect
to the Type I′ brane diagrams we have considered in the previous section: it amounts
to adding an orientifold six-plane along the locus of the D6 branes. The orientifold six
plane changes sign when crossing the NS5 branes, which modifies its contribution to the
cosmological constant involved in the various processes of brane creation. Correspondingly
one expects to obtain orthosymplectic generalized quivers from this setup. There is one
major caveat, however: in all these models the O6 planes are intersecting the O8 planes
located at the two ends of the S1/Z2 direction. There are some further degrees of freedom
that are trapped at the intersection, which give rise to the ON0 plane of [50]. In presence
of stuck D8 branes, the corresponding dynamics becomes more interesting.

Let us begin from the Spin(32)/Z2 cases. In this context, whenever the order k of
the Dk singularity is even, one can consider instantons with a non-trivial w̃2, i.e. instan-
tons which obstructs a vector structure. Again, these are mapped to LST configurations
corresponding to systems of O8− and O8+, which require dual F-theory configurations
which are of the frozen kind. We plan to return to these configurations in future work.
For configurations with w̃2 = 0, instead, we have configurations with two O8− located
at the two extrema of the interval S1/Z2 with a total of 16 D8s suspended in between.
The theory of N instantons corresponds to the presence of 2N D6s, located along an O6
plane. The Dk singularity is realized by 2k NS5 branes with two ON0 planes located at
the intersection of the O6 planes with the O8− planes. There is a different qualitative
behaviour depending on whether k is even or odd, corresponding to the fact that in one
case the O8− plane intersects an O6− while in the other it ends up intersecting an O6+

plane. The resulting quivers have the same structure already determined by Intriligator
and Blum. In this context we cannot have systems with stuck NS5 branes along the O8−
planes because the change in sign of the O6− across such a stuck NS5 would break the Z2
symmetry necessary for the orbifold.

For brevity, here we just describe some examples corresponding to the D4 singularity.
On the Spin(32)/Z2 side, the latter gives rise to instantonic configurations of the form

spv1
1

[so(2w1)]

spv3
1

[so(2w3)]
so2v2

4
[sp(w2)]

spv4
1

[so(2w4)]

spv5
1

[so(2w5)]

(5.1)

with LS charge (1, 1, 1, 1, 1). The form of the 2-group structure constant for these configu-
rations is

κ̂R = 2 + v1 + 2v2 + v3 + v4 + v5 (5.2)
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but of course only a few of the vi’s above satisfy anomaly cancellation. An example that
will be useful below is provided by the following configuration5

spN
1

spN
1

so4N+16
4

spN
1

spN+8
1

[so(32)]

κ̂R = 8N + 26 (5.3)

Let us consider the E8×E8 case realized as N M5 branes in the Hořava-Witten setup
transverse to a D-type singularity C2/Dk (see figure 1). To trace the duality to Type I′ we
summarize the position of the relevant branes and singularities as follows

0 1 2 3 4 5 6 7 8 9 10
M9 • • • • • • • • • •
N M5 • • • • • •
C2/Dk • • • • • • ◦ ◦ ◦ ◦ •

(5.4)

Dualizing to Type I′ one obtains the following IIA brane system

0 1 2 3 4 5 6 7 8 10
O8-D8 • • • • • • • • •

M NS5 + ON0 • • • • • •
2k D6 + O6± • • • • • • •

(5.5)

where with respect to the previous section the main difference is the presence of an O6±
plane parallel to the stack of D6s. The latter changes sign across NS5 branes, which
is compatible with the fractionalization of M5 branes. Moreover, since the O6± end up
intersecting the O8− planes at a point, these systems also have ON0 branes parallel to
the NS5 brane stacks, localized at the point of intersection. While some of the rules to
manipulate these diagrams are well known (see e.g. [24, 25, 50]), in some cases there are
some interesting predictions from F-theory. For instance, from the results in [42] we can
read off the theory for a fractionalized M9-M5 system along a D4 singularity for a choice
of µ : D4 → E8 such that F (µ) = E8. It is

T (µ, g = so8) = [e8] 1 2
su2
2

g2
3 1

so8
4 1 [so8] . (5.6)

We clearly see that the above tensor branch is slightly non-perturbative in nature. After
fission we obtain

KN (E8, E8; so8) = [e8] 1 2
su2
2

g2
3 1

so8
4 1

so8
4 1

so8
4 1

so8
4 · · ·

so8
4 1︸ ︷︷ ︸

gauged TN−2(so8,so8)

so8
4 1

so8
4 1

g2
3

su2
2 2 1 [e8] (5.7)

where a total of N+1 gauge groups of type so8 are featured. The LS charge of this model is

(1, 1, 1, 1, 2, 1, 2︸ ︷︷ ︸
T (e8,so8)

, 1, 2, 1, . . . , 1, 2︸ ︷︷ ︸
TN−2(so8,so8)

, 1, 2, 1, 2, 1, 1, 1, 1︸ ︷︷ ︸
T (e8,so8)

) (5.8)

5 Which is realized by the brane diagram in figure 21 of [50].
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g T1(g, g) g

E6 [e6] 1
su3
3 1 [e6]

e6
6

E7 [e7] 1
su2
2

so7
3

su2
2 1 [e7]

e7
8

E8 [e8] 1 2
su2
2

g2
3 1

f4
5 1

g2
3

su2
2 2 1 [e8]

e8
12

Table 3. The rank one conformal matter theories.

And therefore the R-symmetry 2-group structure constant for this theory is

κ̂R = 18 + 18 + 6 + 6 + 6(N − 3) + 2(N − 2)
= 8N + 26

(5.9)

which correctly matches the one computed on the T-dual side. A more systematic analysis
of the D-type cases can be achieved with similar methods. We will report on the results in
future work on the topic.

6 Heterotic instantons on exceptional singularities

The theories governing Heterotic Spin(32)/Z2 instantonic LSTs can be determined again
by orbifolding techinques. For exceptional singularities, however, there are no (known)
dual Type I′ realizations. The resulting theories have been determined by Intriligator and
Blum for all the models with w̃2 = 0. In this section we will therefore focus on the E8×E8
side of the duality.

The theories governing fractional heterotic instantons on exceptional ALE singularities
can be described exploiting the results on the 6d SCFTs of type T (µ, E8) and the conformal
matter theories TN (Es, Es) that can be found in references [2, 6, 42].

The theories TN (Es, Es) can be understood as fusions of the corresponding rank one
theories, by the recursive formula

TN (Es, Es) = TN−1(Es, Es)
Es T1(Es, Es) (6.1)

In table 3 we summarise the data of exceptional conformal matter theories we will need in
this section. As an example

T2(E6, E6) = T1(E6, E6) E6
T1(E6, E6)

= [e6] 1
su3
3 1

e6
6 1

su3
3 1 [e6] .

(6.2)

The models T (µ, E8) have been studied in details in reference [42]. In this paper we focus
on the choices of µa for which F (µa) has at least one exceptional factor. We summarise
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g = es F (µ) T (F (µ), g)

e6 E6 [e6] 1
su3
3 1

f4
5 1

su3
3 1

e6
6 1

su3
3 1 [e6]

E6 × U(1) [e6] 1
su3
3 1

e6
5

[Nf=1]
1
su3
3 1

e6
6 1

su3
3 1 [e6]

E6 × SU(3) [e6] 1
su3
3 1

e6
6
1

[su3]

1
su3
3 1 [e6]

E7 [e7] 1
su2
2

g2
3 1

f4
5 1

su3
3 1

e6
6 1

su3
3 1 [e6]

E8 [e8] 1 2
su2
2

g2
3 1

f4
5 1

su3
3 1

e6
6 1

su3
3 1 [e6]

e7 E6 [e6] 1
su3
3 1

f4
5 1

g2
3

su2
2 1

e7
7 1

su2
2

so7
3

su2
2 1 [e7]

E′6 [e6] 1
su3
3 1

e6
6 1

su2
2

so7
3

su2
2 1

e7
7 1

su2
2

so7
3

su2
2 1 [e7]

E7 [e7] 1
su2
2

g2
3 1

f4
5 1

g2
3

su2
2 1

e7
7 1

su2
2

so7
3

su2
2 1 [e7]

E′7 [e7] 1
su2
2

so7
3

su2
2 1

e7
7

[Nf=1/2]
1
su2
2

so7
3

su2
2 1 [e7]

E7 × SU(2) [e7] 1
su2
2

so7
3

su2
2 1

e7
8
1

[su2]

1
su2
2

so7
3

su2
2 1 [e7]

E8 [e8] 1 2
su2
2

g2
3 1

f4
5 1

g2
3

su2
2 1

e7
7 1

su2
2

so7
3

su2
2 1 [e7]

e8 E6 [e6] 1
su3
3 1

f4
5 1

g2
3

su2
2 2 1

e8
(12)

1
1 2

su2
2

g2
3 1

f4
5 1

g2
3

su2
2 2 1 [e8]

E′6 [e6] 1
su3
3 1

e6
6 1

su3
3 1

f4
5 1

g2
3

su2
2 2 1 [e8]

E7 [e7] 1
su2
2

g2
3 1

f4
5 1

g2
3

su2
2 2 1

e8
(12)

1
1 2

su2
2

g2
3 1

f4
5 1

g2
3

su2
2 2 1 [e8]

E′7 [e7] 1
su2
2

so7
3

su2
2 1

e7
8 1

su2
2

g2
3 1

f4
5 1

g2
3

su2
2 2 1 [e8]

E8 [e8] 1 2
su2
2

g2
3 1

f4
5 1

g2
3

su2
2 2 1

e8
(12)

1
1 2

su2
2

g2
3 1

f4
5 1

g2
3

su2
2 2 1 [e8]

Table 4. Choices of µ leading to exceptional symmetries along e6,7,8-type ALE spaces.
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the corresponding theories in table 4. Given our definitions above, the 6d (1,0) little string
theory of N heterotic E8 × E8 instantons probing an E-type singularity is then given by

T (µ1, es)
es TN−2(es, es)

es T (µ2, es) (6.3)

Exploiting these results and the fusion operations of equation (3.8) it is straightforward to
determine the LSTs of interest, which we will denote

KN (F (µ1), F (µ2); g = es) . (6.4)

As an example, consider the case of an E6 ALE singularity and take the heterotic
instantonic LSTs with flavor symmetries F1 = E6 × U(1) and F2 = E7. We obtain that
KN (E6 × U(1), E7; g = e6) has generalized quiver

[e6] 1
su3
3 1

e6
5

[Nf=1]
1
su3
3 1

e6
6 1 3 1

e6
6 1 3 1 · · · 1 3 1

e6
6 1

su3
3 1︸ ︷︷ ︸

TN−2(e6,e6)

e6
6 1

su3
3 1

e6
6 1

su3
3 1

f4
5 1

g2
3

su2
2 1 [e7] . (6.5)

where again we have indicated in red the fission nodes.
It is straightforward to extend our results to a more systematic explorations of all

possible other cases corresponding to more general choices of µa : Γg → E8, obtaining by
patching together two copies of the models discussed in [42]. We leave a systematic study
of these examples for the future.

As a further check for this characterization of this class of models, we now turn to
the corresponding T-dualities. We stress that for the cases of exceptional singularities,
there are no dual brane configurations, and to prove these T-dualities one needs to exploit
F-theory. In the section below we show that the corresponding 2-group structure constants
and Coulomb branch dimensions for the theories we propose do indeed match with the
ones of known Spin(32)/Z2 instantons.

6.1 The case of g = e6

From the analysis by Intriligator and Blum [22] it follows that the Spin(32)/Z2 Heterotic
instantons which are compatible with a vector structure all have generalized quivers of the
form6

spv1
1

[so2w1 ]

so2v2
4

[spw2 ]

spv3
1

[so2w3 ]

suv4
2

[uw4 ]

suv5
2

[uw4 ]
(6.6)

which have LS charge
~̀
LS = (1, 1, 3, 2, 1) (6.7)

and therefore
κ̂R = 2 + v1 + 3v3 + 2v2 + 2v4 + v5 (6.8)

while the corresponding Coulomb branch dimension is

dCB = 2 + v1 + v2 + v3 + v4 + v5 (6.9)
6 Our conventions for the integers vi and wi differs slightly from the ones in [22].
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F (µ1) F (µ2) κ̂R dCB K̃N (λ; g = e6) dual

E8 E8 74 + 24N 42 + 12N [so32]
sp10+N

1
so24+4N

4
sp6+3N

1
su8+4N

2
su4+2N

2

E8 E7 73 + 24N 41 + 12N [so28]
sp9+N

1
so24+4N

4
[sp1]

sp6+3N
1

su8+4N
2

su4+2N
2

E7 E7 72 + 24N 40 + 12N [so24]
sp8+N

1
so24+4N

4
[sp2]

sp6+3N
1

su8+4N
2

su4+2N
2

E8 E6 70 + 24N 39 + 12N [so26]
sp8+N

1
so22+4N

4
sp6+3N

1
[so2]

su8+4N
2

su4+2N
2

E7 E6 69 + 24N 38 + 12N [so22]
sp7+N

1
so22+4N

4
[sp1]

sp6+3N
1

[so2]

su8+4N
2

su4+2N
2

E6 E6 66 + 24N 36 + 12N [so20]
sp6+N

1
so20+4N

4
sp6+3N

1
[so4]

su8+4N
2

su4+2N
2

Table 5. T-dual theories for the KN (F (µ1), F (µ2), e6) LSTs. Notice that the Coulomb branch
dimensions are increasing by units of h∨

E6
= 12.

The coefficients vi above are a function of the wi which are in turn determined by the
choice of λ. We refer our readers to [22] for the details of the dictionary, which we use
here only to provide the examples that we need to give evidence for the structure of the
Heterotic E8 ×E8 instantons we are constructing. We report in table 5 our results for the
models of the form

KN (Er, Es; e6) = T (Er, e6)
e6 TN−2(e6, e6)

e6 T (Es, e6) s, r ∈ {6, 7, 8} (6.10)

where the theories T (Er, e6) can be read off from table 4. For each of the proposed theories
we find at least one model among the Heterotic Spin(32)/Z2 instantonic LSTs of type
K̃N (λ; g = e6) which satisfies the necessary conditions to be a T-dual theory.

6.2 The case of g = e7

In this section we consider the E8 ×E8 LSTs along the e7 singularity. We focus on models
of the form

KN (Er, Es; e7) = T (Er, e7)
e7 TN−2(e7, e7)

e7 T (Es, e7) s, r ∈ {6, 7, 8} (6.11)

Sometimes different embeddings
µ,µ′ : Γe7 → E8 (6.12)

are such that
F (µ) = F (µ′) = Es (6.13)

If that is the case, to distinguish the corresponding M9 −M5 theories, we denote them
T (Es, e7), and T (E′s, e7) in table 4.

– 29 –



J
H
E
P
0
1
(
2
0
2
3
)
1
7
6

The generalized 6d quivers for the K̃N (λ; g = e7) have the form

[so2w8
]

spv8
1

[so2w1 ]
spv1
1

so2v2
4

[spw2 ]

spv3
1

[so2w3 ]

so2v4
4

[spw4 ]

spv5
1

[so2w5 ]

so2v6
4

[spw6 ]

spv7
1 [so2w7 ]

(6.14)

where the vi are a function of the wi, which in turn are encoded by λ as explained in details
in [22]. From the generalized quiver above we read off the LS charge

2,
~̀
LS = (1, 1, 3, 2, 3, 1, 1)

(6.15)

and hence
κ̂R = 2 + v1 + 2v2 + 3v3 + 4v4 + 3v5 + 2v6 + v7 + 2v8

dCB = 7 +
8∑
i=1

vi
(6.16)

We find T-dual models with the same features for all the theories we propose. We have
explicitly checked all possible combinations with exceptional symmetries, but the check is
not that instructive. We report some of our results in table 6. It would be interesting
to carry out a more systematic scan of these possibilities, along the lines of the analysis
we have done for the C2/Z2 singularity. We expect that from one such systematic study
several novel families of T-dualities will emerge.

6.3 The case of g = e8

The analysis of the E8×E8 instantonic LSTs along the e8 singularity proceeds in a similar
way. For these models, the Intriligator Blum duals have the form

[so2w8 ]

spv8
1

[spw7 ]
so4+4M

4
sp−4+4M

1
[so2w6 ]

so2v3
4

[spw5 ]

spv4
1

[so2w4 ]

so2v5
4

[spw3 ]

spv6
1

[so2w2 ]

so2v7
4

[spw1 ]

spv9
1 [so2w9 ]

(6.17)

where the vi are a function of the wi, which in turn are encoded by λ as explained in details
in [22]. The corresponding LS charge is

3,
~̀
LS = (1, 4, 3, 5, 2, 3, 1, 1)

(6.18)

from which one can easily extract the value of κ̂R for this class of theories. Again exploiting
the known T-duals we can confirm our results on the E8 ×E8 side — see table 7 for some
results.
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F (µ1) F (µ2) κ̂R dCB K̃N (λ; g = e7) dual

E8 E8 98 + 48N 47 + 18N
sp2N

1

[so32]
sp10+N

1
so24+4N

4
sp6+3N

1
so16+8N

4
sp2+3N

1
so8+4N

4
sp−2+N

1

E7 E8 97 + 48N 46 + 18N
sp2N

1

[so28]
sp9+N

1
so24+4N

4
[sp1]

sp6+3N
1

so16+8N
4

sp2+3N
1

so8+4N
4

sp−2+N
1

E7 E7 96 + 48N 45 + 18N
sp2N

1

[so24]
sp8+N

1
so24+4N

4
[sp2]

sp6+3N
1

so16+8N
4

sp2+3N
1

so8+4N
4

sp−2+N
1

E6 E8 94 + 48N 44 + 18N
sp2N

1

[so26]
sp8+N

1
so22+4N

4
sp6+3N

1
[so2]

so16+8N
4

sp2+3N
1

so8+4N
4

sp−2+N
1

E6 E7 93 + 48N 43 + 18N
sp2N

1

[so22]
sp7+N

1
so22+4N

4
[sp1]

sp6+3N
1

[so2]

so16+8N
4

sp2+3N
1

so8+4N
4

sp−2+N
1

E6 E6 90 + 48N 41 + 18N
sp2N

1

[so20]
sp6+N

1
so20+4N

4
sp6+3N

1
[so4]

so16+8N
4

sp2+3N
1

so8+4N
4

sp−2+N
1

E′7 E8 73 + 48N 37 + 18N
sp−1+2N

1
sp−2+N

1
so8+4N

4
[sp1]

sp1+3N
1

so12+8N
4

sp4+3N
1

so20+4N
4

sp8+N
1 [so28]

E′7 E′7 48 + 48N 27 + 18N
sp−2+2N

1
sp−2+N

1
so8+4N

4
[sp2]

sp3N
1

so8+8N
4

sp2+3N
1

so16+4N
4

sp6+N
1 [so24]

Table 6. T-dual theories for selected KN (F (µ1), F (µ2), e7) LSTs. Notice that the Coulomb branch
dimensions are increasing by units of h∨

E7
= 18.
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F (µ1) F (µ2) κ̂R dCB Dual K̃N (λ; g = e8) theory
E8 E8 122 + 120N 52 + 30N

sp−2+3N
1

so8+4N
4

sp4N
1

so8+12N
4

sp2+5N
1

so16+8N
4

sp6+3N
1

so24+4N
4

sp10+N
1 [so32]

E7 E8 121 + 120N 51 + 30N
sp−2+3N

1
so8+4N

4
sp4N

1
so8+12N

4
sp2+5N

1
so16+8N

4
sp6+3N

1
so24+4N

4
[sp1]

sp9+N
1 [so28]

E7 E7 120 + 120N 50 + 30N
sp−2+3N

1
so8+4N

4
sp4N

1
so8+12N

4
sp2+5N

1
so16+8N

4
sp6+3N

1
so24+4N

4
[sp2]

sp8+N
1 [so24]

E6 E8 118 + 120N 49 + 30N
sp−2+3N

1
so8+4N

4
sp4N

1
so8+12N

4
sp2+5N

1
so16+8N

4
sp6+3N

1
[so2]

so22+4N
4

sp8+N
1 [so26]

E6 E7 117 + 120N 48 + 30N
sp−2+3N

1
so8+4N

4
sp4N

1
so8+12N

4
sp2+5N

1
so16+8N

4
sp6+3N

1
[so2]

so22+4N
4

[sp1]

sp7+N
1 [so22]

E6 E6 114 + 120N 46 + 30N
sp−2+3N

1
so8+4N

4
sp4N

1
so8+12N

4
sp2+5N

1
so16+8N

4
sp6+3N

1
[so4]

so20+4N
4

sp6+N
1 [so20]

E′7 E8 73 + 120N 38 + 30N
sp−3+3N

1

[sp1]
so8+4N

4
sp−1+4N

1
so4+12N

4
sp5N

1
so12+8N

4
sp4+3N

1
so20+4N

4
sp8+N

1 [so28]

E7 E′7 72 + 120N 37 + 30N
sp−3+3N

1

[sp1]
so8+4N

4
sp−1+4N

1
so4+12N

4
sp5N

1
so12+8N

4
sp4+3N

1
so20+4N

4
[sp1]

sp7+N
1 [so24]

E′6 E8 46 + 120N 30 + 30N [so2]

sp−3+3N
1

so6+4N
4

sp−2+4N
1

so2+12N
4

sp−1+5N
1

so10+8N
4

sp3+3N
1

so18+4N
4

sp7+N
1 [so26]

Table 7. g = e8 cases. Notice that again dCB is increasing in steps of h∨
e8

= 30.

7 Proposal for an a-Theorem for 6d LSTs

We conclude this paper with an interesting remark about the structure of the LSTs we
have discussed. All the orbi-instanton theories labeled by pairs (Γg,µ) are connected via
Higgs branch RG flows. This triggers Higgs branch RG flows involving 6d LSTs of the type
we consider in this paper. More precisely, whenever there is an RG flow of the form

T (µ, gΓ) RG−−−−−−−−−→ T (µ̃, gΓ) (7.1)
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F (µ1) F (µ2) κ̂R dCB Dual K̃N (λ; g = e8) theory
E6 E′7 69 + 120N 35 + 30N

sp−3+3N
1

[sp1]
so8+4N

4
sp−1+4N

1
so4+12N

4
sp5N

1
so12+8N

4
sp4+3N

1
[so2]

so18+4N
4

sp6+N
1 [so22]

E′6 E7 45 + 120N 29 + 30N [so2]

sp−3+3N
1

so6+4N
4

sp−2+4N
1

so2+12N
4

sp−1+5N
1

so10+8N
4

sp3+3N
1

so18+4N
4

[sp1]

sp6+N
1 [so22]

E′6 E6 42 + 120M 27 + 30N [so2]

sp−3+3N
1

so6+4N
4

sp−2+4N
1

so2+12N
4

sp−1+5N
1

so10+8N
4

sp3+3N
1

[so2]

so16+4N
4

sp5+N
1 [so20]

E′7 E′7 24 + 120N 24 + 30N
sp−4+3N

1

[sp2]
so8+4N

4
sp−2+4N

1
so12N

4
sp−2+5N

1
so8+8N

4
sp2+3N

1
so16+4N

4
sp6+N

1 [so24]

E′6 E′7 −3 + 120N 16 + 30N [so2]

sp−4+3N
1

[sp1]
so6+4N

4
sp−3+4N

1
so−2+12N

4
sp−3+5N

1
so6+8N

4
sp1+3N

1
so14+4N

4
sp5+N

1 [so22]

E′6 E′6 −30 + 120N 8 + 30N [so4]

sp−4+3N
1

so4+4N
4

sp−4+4N
1

so−4+12N
4

sp−4+5N
1

so4+8N
4

sp3N
1

so12+4N
4

sp4+N
1 [so20]

Table 8. g = e8 cases — continued.

we expect that it induces an RG flow among the corresponding LSTs

KN (µ,µ′; g) RG−−−−−−−−−→ KN (µ̃,µ′; g) . (7.2)

RG flows among orbi-instanton theories have been widely studied, and therefore one can
relatively simply chart such RG flows [41, 51, 52].

It is natural to ask whether in this context we can give evidence for the existence of
an a-Theorem for 6d Little String Theories. This theorem must be non-standard because
a-Theorems typically involve the coefficient of the Euler density of the Weyl anomalies for
the trace of the stress energy tensor Tµν

〈Tµµ 〉 ∼ aEd + · · · (7.3)

in presence of a background metric,7 but LSTs do not have a well defined stress energy
tensor because of T-duality. Hence, a question arises naturally: is there a function which
is monotonically decreasing along LST RG flows? For 6d SCFTs and a-theorem can be
argued for [53, 54], hence it is possible that there is an extension of such a theorem which
holds for 6d LSTs.

7 The · · · indicate the possible presence of other dimension-dependent Weyl invariants of degree d.
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Computing κ̂R for theories related by RG flows of the form in equation (7.2), one can
indeed see that

κ̂R(lstuv) > κ̂R(lstir) (7.4)

thus indicating that κ̂R is a quantity which is decreasing along RG flows.
All examples we have considered in this paper that are connected by RG flows indeed

have this feature — notice that the RG flows among LSTs are never of the tensor-branch
kind, because removing a single tensor from a 6d LST would give rise to a 6d SCFT.
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