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Abstract: In this paper we introduce the characteristic dimension of a four dimensional
N = 2 superconformal field theory, which is an extraordinary simple invariant deter-
mined by the scaling dimensions of its Coulomb branch operators. We prove that only
nine values of the characteristic dimension are allowed, −∞, 1 ,6/5, 4/3, 3/2, 2, 3, 4,
and 6, thus giving a new organizing principle to the vast landscape of 4dN = 2 SCFTs.
Whenever the characteristic dimension differs from 1 or 2, only very constrained special
Kähler geometries (i.e. isotrivial, diagonal and rigid) are compatible with the corre-
sponding set of Coulomb branch dimensions and extremely special, maximally strongly
coupled, BPS spectra are allowed for the theories which realize them. Our discussion
applies to superconformal field theories of arbitrary rank, i.e.with Coulomb branches of
any complex dimension. Along the way, we predict the existence of newN = 3 theories
of rank two with non-trivial one-form symmetries.
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1. Introduction

Superconformal algebras (SCAs) owe their existence to little miracles in representation
theory, the exceptional isomorphisms between Lie algebras in low ranks. This allows
us to fully classify them, and, in particular, rule out the existence of superconformal
field theories (SCFTs) in dimensions larger than six [1]. Solely the properties of SCAs
and their representations give very stringent constraints on the dynamics of SCFTs—
for instance in 6d the maximal superconformal algebra compatible with the existence
of a stress tensor multiplet is the 6d (2,0) one [2]. SCFTs themselves are indeed so
constrained that a full classification might be possible, especially in cases with a high
enough amount of supercharges. Most notably, six-dimensional (2,0) theories have an
ADE classification, that has a geometric origin in the McKay correspondence and IIB
geometric engineering [3], and a field theory origin in the assumption that these systems
are the UV completion of 5dN = 2 gauge theories [4].—for a complementary field the-
oretical argument based on the Dirac pairing of 6d (2,0) strings see [5]. Six-dimensional
(1,0) SCFTs also admits a classification within F-theory [6–9] whose field theoretical
counterpart is an interesting open question.1

A wide array of results have been obtained recently about SCFTs in dimension
five and four starting from such classifications, leading to the conjecture that all lower
dimensional SCFTs have a six-dimensional origin of sort. This conjecture has been
formulated in the context of 5d SCFTs where it was checked for theories of rank one
and two [11]. The results of [12] building upon the special arithmetic of flavor [13]
can be exploited to extend the conjecture to 4d N = 2 theories as well. Indeed, the
physical interpretation of the result of [13] is that via toroidal twisted compactifications
of the (1,0) E-string theory one can obtain all rank-one 4dN = 2 SCFTs that have been
classified independently exploiting the special geometry of rank-one Coulomb branches
[14–18]. More recently a study of the higher dimensional origin of the currently known
rank-twoN = 2 theories in 4d was performed [19] with the result that overwhelmingly
the latter do descend from higher dimensional SCFTs.

These results give strong motivations to probe such a conjecture further. With that
objective inmind it is crucial to develop other classification schemes that are intrinsically
independent from 6d constructions. The first step in such a program is to identify a class
of examples that are constrained enough that alternative routes of classification are
possible. The second step is to develop a classification scheme which is based solely on
the properties of that class and has no further input from geometric engineering or other
types of constructions. This is the main aim of this paper, which is the first in a series
dedicated tomaking strives towards classifying 4dN ≥ 2 SCFTs of arbitrary rank r ≥ 1
and thus quantitatively addressing this question.We propose a new classification scheme,
which is inspired by the Kodaira-Enriques classification of compact complex surfaces
[20] and is based on the new notion of characteristic dimension of four dimensional
N = 2 SCFTs.

Since we presume that not all our readers are familiar with the works by Enriques and
Kodaira, let us briefly review how that storyworks. Kodaira built on Enriques’work, who
had the crucial insight of introducing an equivalence relation—birational equivalence—
emphasizing that the meaningful program was to classify complex surfaces modulo

1 For 6d SCFTs with conventional matter, a field theoretical classification can be found in [10].
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this equivalence. Kodaira then made the breakthrough of introducing a new numerical
birational invariant for surfaces—the Kodaira dimension κ—which takes only a finite
set of values

κ ∈ {−∞, 0, 1, 2} (1.1)

Then he proceeded to classify birational classes of compact surfaces S with a given
Kodaira dimension κ(S). For κ /∈ {1, 2} his classification is pretty explicit and detailed,
while for κ = 1, 2 it captures only the general features. The case κ = −∞ is mostly
boring, a part from the existence of the special family of non-algebraic surfaces of type
VII, that are still poorly understood.

Inspired by the above ideas, in this paper we identify a numerical invariant associated
to each 4d N = 2 SCFT that we call its characteristic dimension, and we denote with
the letter κ.2 We show that the characteristic dimension of a rank r ≥ 1 SCFT can take
only a finite set of eight positive rational values, in one-to-one correspondence with the
allowed rank-one CB dimensions

κ ∈
{
1,

6

5
,
4

3
,
3

2
, 2, 3, 4, 6

}
(1.2)

This can be used to organize the space ofN ≥ 2 SCFTs in a way similar to the Kodaira-
Enriques story. Ironically, also in this case it turns out that when our invariant has value
that differs from 1 or 2 the classification is pretty explicit and detailed, while it becomes
rather schematic otherwise. For the sake of analogy, then, we decided to assign a ninth
value, κ = −∞, to the class of theories without a CB.3 Since in this paper we do not
consider any examples belonging to this category, we will assume κ > 0 from here
onwards for the sake of simplicity of exposition. We proceed with a brief schematic
exposition of our

Main results:

1. The characteristic dimension κ(T ) of a rank r ≥ 1 SCFT T has only eight allowed
values in one-to-one correspondence with the allowed rank-one CB dimensions (1.2).

2. For theories with a freely generated Coulomb branch (CB) of dimension r ≥ 1,κ(T )

is captured by a simple formula, depending solely on the scaling dimensions of its
CB operators—see the discussion around equation (2.38) below.4

3. Theories for which κ(T ) /∈ {1, 2} are severely constrained, in particular
(a) T is maximally strongly-coupled (mSC), meaning that all energy levels in the

spectrum over a generic point along the CB are necessarily degenerate with mu-
tually non-local BPS states.

(b) T is a rigid SCFT, by which we mean that T does not have anN = 2 conformal
manifold.5

2 For the definition of characteristic dimension we refer our readers to Sect. 2.7.
3 In that context we know of many boring examples, free hypers or discrete gaugings thereof [21,22], and

we still do not know whether a family of interacting r = 0 SCFTs exists or not. If it does, in our classification
scheme, its name ought to be a type VII.

4 There is a more general explicit formula which holds under the weaker condition that the Coulomb branch
chiral ringR is finitely generated. Let λ be the largest rational number such that the Hilbert series ofR (as a
ring graded by the C

×-weights) is a rational function of tλ. Then κ is defined as the unique rational number
in [1,+∞) such that 1/κ ≡ 1/λ mod 1.

5 It can happen that rigid SCFTs are nevertheless not isolated, as they could still admit anN = 1 conformal
manifold along the lines discussed in [23].
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Table 1. Data for the new exoticN = 3 SCFTs

T � 12c 24a f kf

G5 {6,12} 102 204 u(1) –

G8 {8,12} 114 228 u(1) –

(c) The special Kähler geometry (SKG) associated to the theory’s CB is necessarily
isotrivial, i.e. the CB metric τi j is locally constant, that is, globally constant over
the entire CB6 up to Sp(2r, Z) rotations of the electro-magnetic duality frame.
We call N = 2 SCFTs with isotrivial CBs, isotrivial SCFTs.

(d) discreteZn subgroup of theU (1)R symmetry is necessarily unbroken at all generic
points of the CB, with enhancements at non-generic points. We call this Zn sym-
metry the characteristic symmetry of the SCFT and we have

n =

⎧⎪⎨
⎪⎩
6 if κ = 6

5 , 6
4 if κ = 4

3 , 4
3 if κ = 3

2 , 3
(1.3)

This in particular entails that, in a suitable electro-magnetic duality basis, at a
generic point

τi j = ζ δi j with ζ n = 1 (1.4)

modulo a local Sp(2r, Z) rotation.7 We call SKGs satisfying (1.4) diagonal SKGs
and the theories realizing them diagonal SCFTs.

4. Closure upon stratification of isotrivial SCFTs. CBs of N = 2 SCFTs of rank r
are stratified by singular loci supported in codimension r − p where the dynamics
is that of a rank p SCFTs. The pattern of intersections of such singular loci give
rise to a stratification of the CB [31,37,38]. Isotrivial SCFTs form a class which is
necessarily closed upon stratification, meaning that all the strata are isotrivial theories
themselves.8

5. Exotic N = 3 theories. The purpose of every good classification program is to
discover exotics. In this paper, we give a small teaser for our readers by identifying
two novel rank-two N = 3 exotic SCFTs—see Table 1 for their properties. We
present a stringent consistency check on their existence building on the stratification
properties of their CBs and Higgs branches in Sect. 3.

Remarks. i.) A consequence of the remark about characteristic symmetry is that two
theories T and T ′ with κ /∈ {1, 2} such that

r(T ) = r(T ′) and κ(T ) = κ(T ′) (1.5)

must have CB special Kähler geometries that are necessarily locally isometric.9

6 The name isotrivial follows from the fact that the fact that τi j is constant implies that the total space of
the CB is an isotrivial fibration, i.e. all smooth fibers are isomorphic as Abelian varieties.

7 Well-known examples of theories in such class are for example the rank-r theories engineered as world-
volume theories of r D3 branes probing F-theory 7-branes singularities and/or S-folds [24–36] which, in
particular, include all rank-1 theories.

8 In an upcoming work in this series we will show that also the converse of this statement is true. If all the
lower rank theories on the strata are isotrivial, then also the UV theory has to be isotrivial itself.

9 That is, they admit isometric (finite) covers.
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i i.) We stress here that there are isotrivial theories also among the theories that are not
maximally strongly coupled, e.g. with κ ∈ {1, 2}. In particular, all theories with
N ≥ 3 supersymmetry are necessarily isotrivial, with N = 3 theories being rigid
and N = 4 being non-rigid. Isotriviality is instead quite peculiar in the strictly
N = 2 context. All the examples we know so far of purelyN = 2 isotrivial SCFTs
arise from D3 branes probing 7-branes in F-theory and their S-folds. For that class
of models, κ is obviously identified with the deficit angle corresponding to the
F-theory 7-brane stack, which gives an F-theory origin of its possible 8 values, as
well as to the many special properties of the mSC models with κ �= {1, 2}.

i i i.) Isotrivial classification problem. Since the class of isotrivial geometries is closed
upon stratification, meaning that the various higher codimensional strata of the
CB have to be isotrivial too, the class of 4d N = 2 SCFTs with an isotrivial CB
geometry is ideal from the perspective of an inductive classification. The inductive
parameter for such a classification is the rank of the corresponding N = 2 theory.
We are currently developing a classification of isotrivial SCFTs, which will appear
in a future publication in this series.

iv.) Physical interpretation of the closure under stratification. Since the class of isotriv-
ial geometries is closed upon stratification, the massless BPS spectrum of an arbi-
trary rank-r isotrivial theory must necessarily be described, anywhere on the CB,
by an effective low-energy theory which is itself isotrivial.

2. Characteristic Dimension: The Physical Insight

In this section we introduce the characteristic dimensionκ of a 4dN = 2 SCFT, explain
its physical meaning, and describe some of its far-reaching implications.

2.1. A quick and dirty review of the Coulomb branch. The bosonic part of the N = 2
superconformal algebra contains, besides the usual so(4, 2) conformal generators

Pμ, Kμ, Mμν, D, (2.1)

the R-symmetry algebra u(2)R = u(1)R ⊕ su(2)R which acts on the Q-supercharges as
the fundamental representation plus its complex conjugate. We write R for the generator
of u(1)R normalized to be ± 1

2 on the supercharges.
A continuous family of supersymmetric quantumvacua of a 4dN = 2 SCFT is called

a punctured CB (pCB) iff the Abelian R-symmetry u(1)R is spontaneously broken in
the vacua of the family. A pCB is called pure if, in addition, the symmetry su(2)R is
unbroken; otherwise is called mixed (or extended). All our arguments and results apply
without changes in full generality to any pCB whether pure or mixed. However, for ease
of exposition we shall take the pCB to be pure of positive dimension.

A (pure) pCB is parametrized by a complex space of dimension r (r being the rank
of the SCFT). The complex charge R + i D generates a holomorphic C

×-action on the
punctured CB which then is the union of open C

×-orbits. The (unpunctured) CB C is
the closure of the pCB with respect to the action of C

×. The CB contains just one more
point than the pCB—the origin 0 of C—corresponding to the unique vacuum of the
SCFT where the superconformal symmetry is not spontaneously broken. 0 is the unique
closed C

×-orbit in C, and hence it lays in the closure of all C
×-orbits.
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Typically C is a copy of C
r with global coordinates the vevs of CB operators of the

SCFT, (u1, . . . , ur ) transforming with definite weights under C
×

(u1, . . . , ur ) → (λ�1u1, . . . , λ
�r ur ), λ ∈ C

×, (2.2)

where the weights �i are rational numbers > 110 called the CB dimensions.

2.2. Stratification versus the generic point. The traditional approach to the IR physics
of a N = 2 SCFT is to distinguish between the “boring” generic points u ∈ C, which
represent vacua where the only light degrees of freedom are r IR-free massless vector
multiplets governed by the effective bosonic Lagrangian11

Lbos = Im(τi j (u))daida j +
1

4π

(
τi j (u) Fi

+F
j
+ + h.c.

)
, Fi± ≡ 1

2
(Fi ± i F̃ i ),

(2.3)

and the “interesting” locus S1 ⊂ C which parametrize SUSY vacua where additional
degrees of freedom become massless. We stress that the coupling τi j (u) is determined
only modulo a Sp(2r, Z)-rotation of the electro-magnetic duality frame, and hence the
entries of τi j (u) are multi-valued holomorphic functions on C, as are the scalar fields ai .
The v.e.v.ai of the scalar fields, while not univalued functions on C, are still a valid set
of local complex coordinates in some neighborhood of a “boring” point u ∈ C (they are
called special local coordinates).

By supersymmetry, the “interesting” locus S1 (if not empty12) is a closed analytic
subspace of pure complex codimension 1. With a little more work, one can show that S1
is an algebraic hypersurface in the affine space C

r which is quasi-homogeneous for the
C

×-action (2.2).13 In turn,S1 contains a co-dimension 2 locusS2 ⊂ S1 where evenmore
states get massless, and then we have a codimension-3 locus S3 ⊂ S2 and so on, until
we reach Sr ≡ {0}, the origin of C, where the superconformal symmetry is fully restored
and all UV degrees of freedom are “light”. Each S j is a union of closed C

×-orbits. The
IR interactions of the degrees of freedom which are light in each irreducible component
S j,α of the locus S j \ S j+1 are described by some effective N = 2 QFT of rank j .

The basic idea of the traditional approach is to analyze the IR dynamics along each
special locus S j,α , and then use this local information to determine the low-energy
physics globally on C, and in particular the (multivalued) holomorphic function τi j (u),
which yields the special Kähler metric

ds2 = Im(τi j (u))daida j (2.4)

on the CB C. ds2 is the natural metric entering in the low-energy Lagrangian L. We
refer to the geometry of C endowed with this Kähler metric as special Kähler geom-
etry (SKG).14 ds2 is well-defined and smooth only in the open dense domain C \ S1

10 If � = 1 the theory necessarily has a free sector.
11 The indices i, j take the values 1, 2, . . . , r . The coupling τi j (u) is a symmetric r × r complex matrix

with positive-definite imaginary part which depends holomorphically on the point u ∈ C—see e.g. [39] for a
review.
12 This happens only if the theory is free.
13 For the class of SCFT we focus on, this will be show below where the equation of S1 will be explicity

written.
14 For a nice review about special Kähler geometries our readers can consult the manuscript [39], as well

as the textbook [40].
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where it is not geodesically complete.15 Informally we see ds2 as a Kähler metric with
“singularities” along S1.

This standard approach has some serious drawbacks. We need to understand the IR
physics of the several components S j,α of S j \ S j+1 for all j’s, and the complexity of
the massless sector grows quite rapidly with the codimension j of the component. This
may be easy enough when the local light degrees of freedom are asymptotically weakly-
coupled, but often their interactions are described by strongly-coupled (effective) SCFTs.
In this case wemay still proceed with the local analysis at S j,α provided we have already
encountered the relevant strongly-interacting SCFTs and we have a full understanding
of their non-perturbative physics. It is quite possible that along some component S j,α
we find a strongly-interacting SCFT that we don’t know yet; indeed this is inevitable
for large j since our knowledge of the zoo of higher-rank SCFTs is still rather poor. As
a strategy to classify SCFTs, the traditional approach is then rather dismal: we cannot
even start classifying rank-r SCFT before completing the classification for all ranks
r ′ < r in full detail. In addition, we have the major technical problem of being able to
glue the several local geometries along the S j,α’s into a global SKG on the whole of C,
a problem which looks (almost) hopeless for higher r ’s.

In this note we switch gears and take the opposite attitude. We fix once and for
all a unique SUSY vacuum |u〉, chosen to correspond to a very generic point u ∈ C,
and study the purportedly “boring” IR physics in the Hilbert space Hu constructed
by acting with smeared local operators on the fixed vacuum |u〉. We never leave the
comfort zone of our “good” vacuum |u〉 whose IR physics is so well understood to be
dubbed “boring” in the mainstream literature. We claim that under certain favorable
circumstances (to be specified momentarily) we can recover the global special Kähler
geometry of C from simple facts about the IR physics in the “boring” Hilbert space Hu .
Once we have determined the special Kähler geometry everywhere in C, we can (if we
wish so) specialize the result to sub-loci S j,α of arbitrary codimension j thus reading the
non-perturbative physics of the corresponding effective rank- j local SCFT. Although
our procedure works under special circumstances, the method applies in arbitrarily high
rank r and, most importantly, it works precisely when the traditional approach is less
efficient, that is, whenever the local light degrees of freedom are inherently strongly-
coupled everywhere in C. Thus our “dual” viewpoint complements the standard one in
a nice and fruitful way.

2.3. The unreasonable effectiveness of the boring vacuum. By the definition of the CB,
the U (1)R symmetry is spontaneously broken in our “boring” vacuum |u〉. However,
it needs not to be completely broken: a discrete subgroup Zn ⊂ U (1)R may still be
unbroken.16 We claim that the global special Kähler geometry is essentially determined
by the datum of the order n of the unbroken R-symmetry in the generic vacuum |u〉
provided this order is larger than 2. “Essentially” means the following: given r and
n ≥ 3, there is a unique C

×-equivariant master special Kähler manifold Mr,n and a
finite set 
r,n of discrete subgroups of the isometry group of Mr,n such that the list of
special Kähler geometries describing SCFT with the given r, n ≥ 3 is{

Mr,n/G, G ∈ 
r,n

}
. (2.5)

15 That is, the “singular” locus S1 is at finite distance from a generic base point if the distances are measured
with the metric ds2.
16 In this paper we are using the same conventions as in [41]: the central charges have unit R charge.
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In particular, for given r, n ≥ 3 all manifolds are locally isometric. From the classi-
fication standpoint the small residual ambiguity parametrized by the finite set 
r,n is
very welcomed: one gets at once all possible special Kähler geometries with the given
invariants r, n.

Our pretense to be able to solve non-perturbatively the IR physics in all vacua along
C (including the ones in the special loci S j,α) just by knowing that the physics in the
single “boring” vacuum |u〉 is invariant under a Zn≥3 symmetry, may look unreasonable
at first. However, it is not so; let us explain why.

Recall that only the N = 2 Poincaré supersymmetry is realized linearly on the
SUSY-invariant vacuum |u〉, the superconformal symmetry being broken. This entails
that on Hu it acts a complex conserved charge Z , the central charge of the N = 2
SUSY algebra. Z is an additive conserved charge which commutes with all Noether
(super-)currents; this puts strong constraints on Z as a quantum operator acting in Hu .
We recall the following well-known result omitting its derivation. First, Hu decomposes
into super-selected sectors of defined magnetic and electric charges (m j , ei )

Hu =
⊕

(m j ,ei )∈�

Hu,(m j ,ei ), (2.6)

where � is the rank-2r lattice of the integrally quantized magnetic and electric charges
for the r massless photons. Then Z acts as multiplication by a constant in each super-
selected sector Hu,(m j ,ei ). Together with conservation and additivity, this entails that
there are complex constants (ai , b j ) such that

Z = ai ei + b jm
j in Hu . (2.7)

Of course, the constants ai depend on the choice of our generic vacuum |u〉; indeed,
locally around our “boring” vacuum, the functions ai (u) (i = 1, . . . , r ) may be used as
(local) special coordinates in the sense of SKG. For a C

×-symmetric SKG one has the
basic relation

bi = τi j a
j (2.8)

where τi j is the effective gauge coupling matrix in the vacuum |u〉.
The operator Z needs not to commutewith the symmetry generatorswhich are broken

in |u〉. For R we have

ei Rα Z e−i Rα = eiα Z α ∈ R. (2.9)

Thus the statement that Zn ⊂ U (1)R is unbroken in |u〉 actually means the following:

Fact 1. If the “boring” Hilbert space Hu contains a state with mass m, spin s, and flavor
quantum numbers fs , which belongs to a SUSY supermultiplet of a given type (e.g. a
general long supermultiplet, a vector supermultiplet, a hypermultiplet, etc.), and has a
central charge z �= 0, then it contains another state with the same mass, spin and flavor
charges, contained in a SUSY supermultiplet of the same kind, whose central charge is
Z = ζ z where ζ = e2π i/n.

In particular the spectrum of Z in Hu is invariant under multiplication by ζ . Let consider
the various possibilities in turn.

• If n = 1, ζ = 1 and the above statement is empty. Of course, we cannot solve
non-perturbatively anything using only an empty statement.
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• If n = 2, ζ = −1. There is always a state with the opposite central charge, say the
PCT conjugate.17 We cannot pretend to solve a QFT on the mere ground that it is
consistent with PCT, otherwise we would solve all QFTs in a single shot.

• Whenever n ≥ 3, our “unreasonable” claim states that the SKG is (essentially)
determined.

The claim can be proven in several ways: in [42] we show that it follows from the very
existence of the Seiberg-Witten differential; here we argue for this statement using arith-
metics. Before going to the argument, let us explain physicallywhy having a generically
unbroken Zn≥3 R-symmetry is so constraining that fixes the SKG in (essentially) all
details. The analysis below will give:

Fact 2. Assume n ≥ 3. Let |ψ〉 ∈ Hu be any eigenstate of Z with non-zero eigenvalue,
and e2π i R/n|ψ〉 its partner with the same quantum numbers. The two partner states are
never mutually local.

Having mutually non-local states whose masses are of the same order is quite a
constraining condition in QFT. For instance, it is strictly inconsistent in any weakly-
coupled or Lagrangian QFT.18 To have a consistent dynamics in presence of mutually
non-local particles of roughly the same mass requires some subtle non-perturbative
“miracle”. In our situation most states appear in mutually non-local, exactly degenerate
n-tuples (n ≥ 3), and moreover this happens generically (since u is a generic vacuum).
Consistency of the dynamics in such an extreme situation is a formidable condition:
unsurprisingly, there is no consistent solution for almost all n’s, and when it exists the
solution is essentially unique. Physical consistency requires the SCFT to be inherently
strongly-coupled for n ≥ 3, with no asymptotic limit where some charged sub-sector
gets weakly-coupled. In particular, the effective SCFTs along the several special loci
S j,α ⊂ C (of arbitrarily high codimension j) must be strongly-coupled everywhere on
the respective locus. This also entails that for n ≥ 3 the SCFT is rigid, that is, itsN = 2
conformal manifold reduces to a point.19

2.4. Arithmetics of the characteristic symmetry. Building upon the discussion above we
see that precisely those cases that defy the naive perturbative intuition are more tractable
from our perspective, as they result more constrained by the existence of an unbroken
characteristic symmetry.

The vacuum |u〉 was chosen to be very generic; it follows that the electric coeffi-
cients {a1, . . . , ar }, that is the value of the special coordinates at the vacuum u, form
a very generic r -tuple of complex numbers. Since the complex numbers are uncount-
able and there are only countably-many algebraic numbers, the {a1, . . . , ar } are linearly
independent over the algebraic closure Q of Q.

We are interested in the spectrum of the operator Z in Hu seen as a discrete subset
of C

spec Z ≡
{
ai ei + b jm

j , (m j , ei ) ∈ �
}

⊂ C. (2.10)

17 The story is slightly more subtle because of the role of the flavor charges, but the subtlety is inessential.
18 In a weakly-coupled Lagrangian QFT the monopoles must be hierarchically heavier than the electrically

charged particles. The ratio of monopole to electron masses is of order 1/g2 and blows up at weak coupling.
19 This prediction will be checked explicitly below.
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By additivity of the central charge, spec Z is a Z-submodule of C, that is,

z1, z2 ∈ spec Z ⇒ mz1 + nz2 ∈ spec Z for all m, n ∈ Z. (2.11)

The linear independence of the ai over Q yields the inequality

dimQ

(
spec Z ⊗Z Q

) ≥ r. (2.12)

For n ≥ 3, ζ ≡ e2π i/n is a non-real root of unity of order n, and the cyclotomic field
Q(ζ ) has degree φ(n), where φ is the famous Euler totient function. Then, by additivity
and invariance under multiplication by ζ , if z1, z2 ∈ spec Z
(
m1 + ζm2 + · · · + ζφ(n)−1mφ(n)

)
z1 +

(
n1 + ζn2 + · · · + ζφ(n)−1 nφ(n)

)
z2 ∈ spec Z ,

(2.13)

for allma, nb ∈ Z. In other words, the unbrokenZn R-symmetry enhances spec Z from
a Z-submodule of C to a Z[e2π i/n]-submodule. To simplify the analysis, we replace the
module with the corresponding vector Q(ζ )-space, that is,

spec Z ⊗Z Q =
2r/φ(n)∑
i=1

Q(ζ ) ci ≡
2r/φ(n)∑
i=1

(
mi,1 + ζmi,2 + · · · + ζφ(n)−1mi,φ(n)

)
ci ⊂ C

(2.14)

where nowmi,a ∈ Q and the ci ’s are suitable complex constants. Since ζ k ∈ Q, counting
dimensions of vector spaces we get

r ≤ dimQ

(
spec Z ⊗Z Q

) ≤ 2r

φ(n)
. (2.15)

Then φ(n) = 1 or φ(n) = 2. The first case corresponds to n = 1, 2 which are the two
instances where we cannot say anything. The second case corresponds to n = 3, 4, 6.
In particular we have shown

Fact 3. The unbroken subgroup of U (1)R at a generic point along the CB of an N = 2
SCFT is Zn with n ∈ {1, 2, 3, 4, 6}.
Our claim states that whenever n = 3, 4 or 6 we can essentially determine the global
SKG in the sense of Eq. (2.5).

The next observation is due to Gauss: for n = 3, 4, 6 the ring Z[e2π i/n] is a principal
ideal domain. Hence, a torsionless Z[ζ ]-module is free; in down-to-earth terms, this
means that we are entitled to be naive and simply take the ma’s in Eq. (2.14) to be
integers, that is,

spec Z =
2r/φ(n)∑
i=1

Z[ζ ] ci ≡
2r/φ(n)∑
i=1

(
mi,1 + ζmi,2 + · · · + ζφ(n)−1mi,φ(n)

)
ci ⊂ C.

(2.16)

This identifies the charge lattice � ∼= Z
2r with the lattice Z[ζ ]r ; the identification is

intrinsic since exp(2π i R/n) is a symmetry of the physics.
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The charge lattice � carries a skew-symmetric, non-degenerated, integral, bilinear
pairing (called the polarization)

〈−,−〉: � ⊗ � → Z (2.17)

given by the Dirac electro-magnetic pairing of charges

〈(m j , ei ), (m̃
j , ẽi )〉 = ei m̃

i − m j ẽi . (2.18)

The polarization is calledprincipal iff it induces an isomorphism� ∼= �∨. For simplicity
we assume the polarization to be principal.20 Two states in Hu are mutually local iff the
Dirac pairing of their electro-magnetic charges vanishes.

The polarization must be consistent with the unbroken R-symmetry, hence it must be
a polarization on the lattice Z[ζ ]r which is consistent with its structure of Z[ζ ]-module.
Such a polarization may always be written in the form

〈v,w〉 = ± 1

ζ − ζ

(
H(v,w) − H(w, v)

)
, v,w ∈ Z[ζ ]r , (2.19)

where H is a positive-definite Hermitian form

H : Z[ζ ]r × Z[ζ ]r → Z[ζ ], (2.20)

and the overall sign reflects the orientation of the charge space [50]. For n = 3, 6 or
for n = 4 and r odd, up to isomorphism there is a unique such Hermitian form which
induces a principal polarization, namely the diagonal one21

H(v,w) = vtw ≡
r∑

a=1

vawa . (2.21)

For n = 4 and r even we have a second inequivalent possibility, which is isometric over
Q to the diagonal one, so it leads to the same local SKG.

Let us now argue that Fact 2 is true. We write v ∈ Z[ζ ]r ∼= � for the vector of
electric and magnetic charge of the state; then

± 〈v, ζv〉 = 1

ζ − ζ

(
H(v, ζv) − H(ζv, v)

)
= H(v, v) ≥ 0, (2.22)

with equality only in the sector Hu,(0,0) of zero charge.
Comparing eqns.(2.8),(2.10),(2.16),(2.18) and (2.21) we get

bi ≡ τi j a
j = ζ ai (2.23)

20 With more work one can show that our conclusions hold mutatis mutandis without this assumption. The
main difference is that the theories without a principal polarization will have a non-trivial global structure, see
e.g. [21,22,43–49] for some recent studies on the topic of 1-form symmetries of N = 2 SCFTs. Moreover,
this assumption is really strictly necessary only for (2.21), the following equations are true independently from
it.
21 These statements are not as innocent as they sound. Even if they may be roughly translated in the

slogan “everything works as naively expected”, their actual proofs are a piece of higher Number Theory, see
Proposition 6.4 in [51].
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so that, we have τi j = ζ δi j in an appropriate duality frame. Our point u ∈ C was chosen
to be very generic, so that the equation

τi j = ζ δi j (2.24)

holds everywhere inCmodulo a local Sp(2r, Z) rotation. In particular, the gauge coupling
is frozen to either i δi j or e2π i/3 δi j , and the SCFTs with n ≥ 3 are necessarily rigid
mSC-theories, as expected on physical grounds.

The special Kähler metric locally reads

ds2 = sin(2π/n)
∑
i

dai dai (2.25)

and is locally flat. Thus, as a singular Kähler space,

C = C
r/G (2.26)

for some discrete subgroup G of the isometry group U (r) � C
r of C

r—our readers can
find a proof for the above fact in the appendix.

2.5. Structure of isotrivial and diagonal special geometries. Let us restate the above
results in a nicer way, by reviewing the features of isotrivial geometries in this section.
Recall that the special geometry of aN = 2 SCFT is, in particular, a (C×-isoinvariant)
holomorphic integrable system, i.e. a holomorphic fibration over the CB

π : X → C ∼= C
r (2.27)

such that the total space X is holomorphic-simplectic with Lagrangian fibers [52–54]
(see also [39]). The smooth fibers Xu are polarized Abelian varieties of dimension r
whose period matrices τi j (u) are equal to the effective couplings we denoted by the
same symbol.22

The special geometry is isotrivial iff all smooth fibers are isomorphic (as polarized
Abelian varieties) to a fixed Abelian variety A. From Eq. (2.24) we see that the geometry
is diagonal iff, in addition,

A ∼=
r factors︷ ︸︸ ︷

Eζ × Eζ × · · · × Eζ (2.28)

where Eζ is the elliptic curve with period τ ≡ ζ . There are several isotrivial special
geometries which are not diagonal—comparing with the discussion in Sect. 2.7 below,
these have necessarily κ = 1, 2. An important example of isotrivial geometry which is
neither diagonal nor rigid is given by theN = 4 SCFT with gauge group G: in this case
the fixed Abelian variety A is

A = C
r/[�G ⊕ τ �∨

G] (2.29)

with �G the weight lattice of G.
In the isotrivial case the integrable system (2.27) takes the form

(A × C
r )/G → C

r/G (2.30)

22 The group Sp(2r, Z) of duality frame rotations is then identified with the mapping class group of the
underling complex torus of Xu .
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where A is the fixed Abelian fiber. The action of G on the first factor factors through the
automorphism group Aut(A) of A, that is we have a group homomorphism

σ : G → Aut(A) (2.31)

and the total space of the integrable system is explicitly

X ≡ A × C
r/[

(a, x) ∼ (σ (g)a, gx), g ∈ G

]
. (2.32)

Thus an isotrivial rank-r special geometry is specified by the following data: a model
Abelian variety A, a discrete group G of isometries of C

r , and a map G → Aut(A). In
the diagonal case A should have the special form (2.28).

Classifying the isotrivial special geometry is reduced to listing the allowed triples
(A, G, σ ): there are only finitely many for a given r . Details on the classification will be
given in another paper of the present series. We close this section with some preliminary
observation as a preparation to the following section.

2.6. Reflection groups and the discriminant. The discrete group G does not act freely
on C

r , and this leads to orbifold singularities of ds2 along the several components of
the special locus S1. In the language of Eq. (2.5), the master geometry Mr,n is C

r with
the flat Kähler metric; to complete the classification of SKG with n ≥ 3 it remains to
determine the finite set 
r,n of allowed isometry subgroups G.

The action of G must be compatible with the C
× one, so G leaves the origin fixed,

and then G ⊂ U (r). Being a discrete subset of the compact group U (r), G is finite. We
can assume that G acts irreducibly on C

r , since otherwise the SKG decomposes into the
product of lower rank SKGs.

If, in addition, we assume the CB C to be a copy of C
r 23, by the Shephard-Todd-

Chevalley theorem [57,58], G must be an irreducible (complex) reflection group of
degree r . However, not all such reflection groups belong to 
(n,r). The point is that the
allowed singularities of the special Kähler metric are of a restricted (mild) kind (since
they should correspond to physicallymeaningful SCFTs alongS1) and only a few groups
G produce singularities of the right type.

The coordinate ring of the quotient Cr/G, with G ⊂ U (r) a finite reflection group, is
a free polynomial ring in u1, . . . , ur where ui is an invariant homogeneous polynomial
of degree di in the coordinates xi of C

r . The set {d1, . . . , dr } are called the degrees
of the reflection group G. The Jacobian J (x) of the polynomial map (x1, . . . , xr ) →
(u1, . . . , ur ) is a semi-invariant polynomial for G, that is,

J (gx) = χ(g) J (x), for g ∈ G (2.33)

where χ(g) is a root of unity (i.e. g �→ χ(g) is a unitary character of G). Then there
is an integer k such that J (x)k is truly G-invariant; hence, a homogeneous polynomial
D(u1, . . . , ur ) in the basic invariants ui called the discriminant. The (non reduced) locus
S1 is the algebraic hypersurface

S1 = {
D(u1, . . . , ur ) = 0

} ⊂ C
r , (2.34)

The allowed groups G are determined by the condition that the singularities along the
several irreducible components of the discriminant S1 are of the appropriate kind.

To put the question of the allowed G’s in the proper perspective, it is convenient to
introduce an invariant which refines the order n of the unbroken U (1)R . This invariant
is the characteristic dimension of the corresponding N = 2 SCFT.

23 This includes the vast majority of SCFTs, for other cases see [55,56].
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Table 2. Kodaira fibers with monodromy A of order n = 6, 4, 3

Kodaira fiber Order n A κ

I I 6

(
1 1

−1 0

)
6/5

I I∗ 6

(
0 −1

1 1

)
6

I I I 4

(
0 1

−1 0

)
4/3

I I I∗ 4

(
0 −1

1 0

)
4

I V 3

(
0 1

−1 −1

)
3/2

I V ∗ 3

( −1 −1

1 0

)
4

2.7. The characteristic dimension κ. Since both the polarization and τi j are diagonal,
to simplify the notation we can consider the r = 1 case, the conclusion being true for
all r (and n ≥ 3).

Since Z is constant in each sector Hu,(m,e), we may dually rephrase Fact 1 by saying
that the symmetry e2π i R/n : Z → ζ Z relates different super-selection sectors

|ψ〉 ∈ Hu,(m,e) ⇒ e2π i R/n|ψ〉 ∈ Hu,(m′,e′), (2.35)

that is, the symmetry Zn ⊂ U (1)R acts by permutations of the Hilbert-space direct
summands in Eq. (2.6). We wish to determine this action explicitly.

Consistency with charge quantization, additivity, and Dirac pairing yields

e2π i R/n : (
m
e
) →

(
m′
e′

)
≡ A

(
m
e
)

(2.36)

where A ∈ SL(2, Z). Two A’s which are conjugate in SL(2, Z) are equivalent modulo
a rotation of the duality frame, so we are interested in the integral matrices A modulo
conjugacy in SL(2, Z). By construction ζ is an eigenvalue of A, and since A is real,
the other eigenvalue is ζ . For n ≥ 3 ζ �= ζ , so A is semi-simple (diagonalizable).
The conjugacy classes in SL(2, Z) are in one-to-one correspondence with Kodaira’s
exceptional fibers, and hence the allowed A correspond to the Kodaira fibers whose
monodromy has order n = 3, 4, 6, see Table 2. In the last column of the table κ ≡ � is
just the CB dimension of the rank-1 SCFT with given monodromy matrix A. For each
order n we have two Kodaira fibers, the starred and the un-starred one. The starred fibers
have κ = n, while the un-starred ones have κ = n/(n − 1). The two possible A’s for
a given n correspond to the two signs in (2.22), that is, to the two orientations of the
charge space.24

κ is an invariant of the SCFT which refines the previous invariant n, since it contains
the information on the (dual) action of the unbroken symmetry e2π i R/n on the charge
sectors, in addition to the order n of the unbroken R-symmetry.

For general r the overall sign ± is common to all terms in (2.21), so the dual action
of e2π i R/n on the charge lattice � ∼= Z[ζ ]r is given by the block-diagonal matrix

24 The two A’s with the same order n are conjugate in GL(2, Z) by the Pauli matrix σ1 �∈ SL(2, Z) which
flips the orientation of the charge space.
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diag(A, A, . . . , A) where A is one of the matrices in Table 2. Therefore for all ranks r
we may replace the order n by the finer invariant κ which specifies the order n as well
as the action of e2π i R/n as a permutation of the Hilbert-space direct summands in Eq.
(2.6).

We give the explicit expression of κ for a theory T with CB dimensions � =
(�1, . . . ,�r ) ∈ Q

r of the SCFT.25 Write

(�1, . . . ,�r ) = λ(d1, d2, . . . , dr ), λ ∈ Q
×, (2.37)

where the di ’s are the unique integers with gcd(d1, . . . , dr ) = 1 which represent the
same point in projective space as (�1, . . . ,�r ). We set

κ(T ) = 1

{λ−1} , (2.38)

where, for x ∈ R, {x} is the unique real number equal to x mod 1 and 0 < {x} ≤ 1. The
above discussion yields

Fact 4. For a 4dN = 2 SCFT T the invariant κ(T ) takes a value which is an allowed
CB dimension in rank-1, that is,

κ(T ) ∈ {
1, 6/5, 4/3, 3/2, 2, 3, 4, 6

}
, (2.39)

and the order n of the generically unbroken R-symmetry is the order of 1/κ in Q/Z. If
κ �= 1, 2 (i.e. n �= 1, 2) the SKG is essentially uniquely determined by κ.

We call κ the characteristic dimension of the SCFT. In rank-1 it coincides with the
dimension in the usual sense. All possible values of κ are realized by a SCFT (this
already holds in rank-1).

In the classification of the allowed finite groups G we need to distinguish the ones
allowed for κ(T ) = n and the ones for κ(T ) = n/(n − 1) (n ≥ 3).

3. A Teaser from the Classification of Isotrivial SCFTs

As mentioned in passing, all rank-1 theories are isotrivial and since in this case κ(T ) ≡
�, where � is the CB scaling dimension of the coordinate parametrizing the one di-
mensional CB, it is extremely straightforward to identify which of the rank-1 theory is
also rigid (of course at rank-1 all geometries are diagonal). Thus rank-2 is the first case
where the question becomes more interesting.

Recently one of the authors compiled a catalog of known rank-2 theories [59, Table
1-3] and it is straightforward to check how many entries in this list have κ(T ) �= {1, 2}.
We notice that all theories which satisfy this condition arise in F-theory as wordvolume
theory on two D3 branes, with or without S-folds [29](see also [30,32,36]). The fact that
these theories are diagonal, isotrivial and rigid is somewhat obvious from the F-theoretic
perspective, but a natural question to ask is whether these are the only possible theories
at rank-2 satisfying such conditions.

We partially address this question here presenting examples of perfectly consistent
diagonal, isotrivial and rigid SKG and which furthermore satisfy a series of non-trivial

25 This fact follows from the discussion in the previous page by recalling that, as a consequence of the
N = 2 superconformal algebra, the �i equal the R-charges in our conventions—which are the same as in
[41].
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low-energy constraints. These geometries are associated to peculiar crystallographic
complex reflection groups and the relevant properties of the corresponding SCFTs are
reported in Table 3. The mapping between crystallographic complex reflection groups
and consistent iso-trivial CBs is explained for example in [13,60]. All the examples that
we discuss here haveN = 3 supersymmetry with a non-trivial one-form symmetry. This
is manifested in the geometry by the fact that the abelian variety (constantly) fibered
over the CB is not principally polarized. It would be extremely interesting to see if the
theories we present below can be constructed in string theory.26

3.1. Consistency conditions from stratifications. Let us start from analyzing these pu-
tative theories from the point of view advocated in [41,59]. There, the stratification of
the CB leads to highly non-trivial formulae for the central charges of theory derived
from anomaly matching à la Shapere and Tachikawa [62]. Furthermore, there is a rich
interplay between the CB stratification and the stratification of the Higgs branch (HB)
[63] leading to stringent consistency conditions for our putative theories. We will briefly
discuss thismethod before applying it to two examples. Since our examples are in rank-2,
we will phrase the discussion under this assumption. We stress, however that the method
can be generalised.

First of all, given CB dimensions {�u,�v} associated to CB coordinates {u, v}, we
can determine the polynomial forms of the irreducible components of the discriminant
locus D. Conformal invariance implies that such polynomial Pi (u, v) should necessarily
be quasi homogeneous and we will call its scaling dimension �

sing
i ≡ �(Pi (u, v)). We

are always allowed a stratum of the form

u p + λvq = 0, (3.1)

where p and q are chosen such that p�u = q�v and gcd(p, q) = 1 and λ ∈ C
×.

To this stratum we associate a scaling dimension �sing ≡ p�u = q�v . Additionally,
we are allowed the stratum u = 0 (resp. v = 0) only when �v (resp. �u) is a scaling
dimension allowed at rank-1, i.e. �v/u = { 65 , 4

3 ,
3
2 , 2, 3, 4, 6}. In this case �sing = �u

or �v depending on the case. Henceforth we use the following nomenclature [64]:

• knotted strata to refer to strata identified by polynomials of the form (3.1).
• unknotted strata to refer to strata identified by either u = 0 or v = 0.

Along any strata, we must find rank-one theories TP(u,v) which describe the set of
BPS states which become massless there. The TP(u,v) are constrained by the Kodaira
type corresponding to each stratum. Isotriviality restricts these to be genuinely interacting
rank-1 SCFTs, a table of which can be found in [59], for example. With this set-up, we
can now use the central charge formulae [41]:

12c = 4 + h +
n∑

i=1

bi�sing
i , (3.2)

24a = 10 + h + 6

( 2∑
i=1

�i − r

)
+

n∑
i=1

bi�sing
i . (3.3)

26 It is tempting to conjecture that these models can be obtained from F-theory by exploiting a slight
generalisation of the S-fold construction of [28,29] involving the full IIB duality group GL+(2, Z), instead
of just SL(2, Z). See e.g. [61] for a recent discussion which prompted this conjecture.
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Here h is the dimension of the extended Coulomb branch (ECB) and bi ∈ 1
2N is a

quantity associated to the rank-1 theory on the stratum given by

bi = 12ci − 2 − hi
�i

, (3.4)

where ci and hi are the central charge and ECB dimension of the rank-1 theory on the
i-th stratum. A particularly useful combination of these is given by

24(c − a) = h − 2 +
n∑

i=1

bi�sing
i − 6

( 2∑
i=1

�i − r

)
. (3.5)

When the theory can be Higgsed down to free hypermultiplets, this coincides with the
dimension of the HB dHB. Otherwise, there is an extra contribution to the HB dimension
equal to the value of 24(a − c) of the residual SCFTs.

The final step of this consistency check is to analyze the HB stratification. It is worth
recalling the following principle, which further constrains the possible HB stratification.
F-condition. The simple factors of the flavor group of an SCFT act on the massless BPS
spectrumwhich arise on at least one irreducible component of the complex codimension
one singular locus.
Taking this effect into account, we can then try to form a consistent HB stratification.
If we find one, we claim that the SKG given is consistent from the field theory point of
view and can posit that a corresponding rank-2 SCFT exists.

3.2. TheG5 isotrivial SCFT. Consider the case ofκ(T ) = 6where the generic fiber over
theCB is S = Eρ×Eρ withρ = eiπ/3. It is known that themaximal automorphismgroup
of S is exactly the complex reflection group G5 [65]. As such, this complex reflection
group defines the particular SKG of the system and we expect a corresponding N ≥ 2
theory associated to it. Furthermore, one can infer the stratification type and scaling
dimensions of geometry by inspecting the cyclic reflection subgroups of G5 (see [66]
for such data). In particular, using the results of [67], we find that the G5 theory should
have scaling dimensions {6, 12} and two I V ∗ strata. We can test the consistency of the
putative theory using the conditions detailed in [59]. Let us now follow that approach.

Since �u = 6 is an allowed rank-1 dimension, the unknotted stratum v = 0 can
support a rank-1 theory. The other theory lies on the stratum given by

u2 + v = 0. (3.6)

Both strata have scaling dimension 12, meaning the central charge formulae are simply

12c = 4 + h + 12(b1 + b2), 24a = 106 + h + 12(b1 + b2), (3.7)

where h is the dimension of the ECB and b1,2 ∈ 1
2N are parameters associated to the

rank-1 theories living on the strata. Consequentially, the higgsable part of the Higgs
branch has dimension

24(c − a) = h + 12(b1 + b2) − 98. (3.8)

Anticipating a possible N = 3 theory we can place a copy of S(1)
∅,3 on each stratum,

consequentially taking b1 = b2 = 4, and set h = 2. Doing so immediately gives us the
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Table 3. Central charges, Coulomb branch dimensions and stratification data for the putativeN > 2 theories

New N > 2 theories
G �u,v κ(T ) Tv Tknot. 12c 24a fk kf

G5 {6, 12} 6 S(1)
∅,3 S(1)

∅,3 102 204 u(1) –

G8 {8, 12} 4 – S(1)
∅,4 114 228 u(1) –

The theories S(1)
∅,n are rank-1 S-fold theories defined in [32]

data in Table 3 and that a = c. This property is required by N ≥ 3 SUSY, validating
our suspicions of enhanced supersymmetry. We can summarize this stratification in the
following Hasse diagram.

•

[I V ∗, u(1)]N=3

�����������
[I V ∗, u(1)]N=3

�����������

G5

[v=0]

����������� [u2+v=0]

�����������

The remaining step is to check that using other rank-1 theories arising from I V ∗ strata
don’t give rise to consistent CB and HB stratifications. This is easily done and leaves us
with the stratification above.

3.3. The G8 isotrivial SCFT. Similarly to the previous case, G8 is known to be the
maximal automorphism group of Ei × Ei [65]. The process is much the same as before
but with a minor caveat.

Proceeding as before, we inspect the cyclic reflection subgroups of G8 to extract the
stratification type of the geometry. We see that there is conjugacy class consisting of 6
order 4 cyclic subgroups in addition to another conjugacy class with 6 order 2 subgroups.
Again comparing with [67], we see that there is a I I I ∗ stratum. However, inspecting
the order 2 subgroups further shows that these arise simply as the index 2 subgroups of
the order 4 cyclic groups. Therefore, the orbit of the (+1)-eigenspace of the generator
coincides with those of the order 4 groups and we obtain the same invariant and no
extra information. We conclude that there is only a single I I I ∗ stratum involved and
nothing else. Additionally, the degrees of the invariants are {8, 12}, which correspond
to the scaling dimensions.

Since neither of the scaling dimensions are of rank-1 type, the only allowable stratum
is given by

u3 + v2 = 0, (3.9)

which has scaling dimension 24. The central charge formulae take the form

12c = 4 + h + 24b, 24a = 118 + h + 24b, (3.10)

which gives the higgsable HB dimension

24(c − a) = h + 24b − 110. (3.11)
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Anticipating an N = 3 theory, we take h = 2 and set 24(c − a) to zero. Solving for b
tells us that b = 9

2 , indicating that the rank-1 theory supported on the I I I ∗ stratum is

the N = 3 S(1)
∅,4 theory. This gives us the linear Hasse diagram below.

•

[I I I ∗, u(1) � Z2]N=3

[u3+v2=0]

G8

Checking the other possible rank-1 theories arising from a I I I ∗ singularity shows that
this is the only reasonable choice of stratification.
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A. Appendix

In this appendix we provide a derivation of our assertion around equation (2.26), that
any isotrivial special geometry is a global quotient of the free special geometry.
The math definition of “isotrivial” is that the fibration in polarized Abelian varieties
becomes trivial, i.e. a product, after pulling back the fibration to a finite cover X ′ of the
complement X ≡ C \ D of the discriminant D in the Coulomb branch C. Equivalently
we define “isotrivial” as the condition that all (smooth) fibers over X are isomorphic,
as polarized Abelian varieties, to a fixed model variety A. Preliminarily we show the
equivalence of the two definitions of “isotrivial”. We suppose that all smooth fibers are
isomorphic to A; then the monodromy representation � : π1(X) → Sp(2r, Z) of the
fibration has image contained in the polarized automorphism group Aut(A) of A,

�(π1(X)) ⊂ Aut(A) ⊂ Sp(2r, Z), (A.1)

http://creativecommons.org/licenses/by/4.0/
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while Aut(A) is a finite group [69]. Hence27 X ′ def= X̃/ker � is a finite (unbranched)
cover of X with deck group the finite group

π1(X)/ker � � �(π1(X)) ⊂ Aut(A). (A.2)

The period map extends holomorphically over the discriminant D (see e.g. Theorem
13.7.5 in [70]): it is just the constant map which sends all points of the Coulomb branch
C to the point in themoduli space of polarized Abelian varieties which corresponds to the
isoclass of A. By construction, the pull back to X ′ of the fibration has trivial monodromy,
hence is the product X ′ × A. By the “Riemann existence theorem” (alias the Grauert-
Remmert theorem [71]) the cover X ′ → X ⊂ C can be extended to a finite branched
cover C′ → C, branched over the discriminant D ⊂ C, with the same deck group
π1(X)/ker � � �(π1(X)). The pull back of the special Kähler geometry from C to C′ is
a special Kähler geometry which is flat (since the period matrix τi j is now constant) with
trivial monodromy group, so that it has globally defined special coordinates ai , a j . Thus
the pulled back special geometry has Coulomb dimensions {1, 1, . . . , 1} so it describes
a rank-r free SCFT since the unitary bound is saturated. Hence C′ = C

r with the global
flat Kähler metric ds2 = Im(τi j )daida j . We conclude that the original isotrivial special
geometry is the finite global quotient of the free special geometry C

r × A

π : (Cr × A)/�(π1(X)) → C
r/�(π1(X)) (A.3)

where �(π1(X)) acts on the factor C
r as the deck group of the branched cover C

r → C
and on the factor A through the canonical embedding �(π1(X)) ↪→ Aut(A).
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