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Abstract
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The discovery of integrability in the planar limit of the AdS5/CFT4 correspondence has led
to impressive progress in the study of string theory and four-dimensional N=4 Super-Yang-
Mills. In particular, with the formulation of the Quantum Spectral Curve (QSC) the spectral
problem is now solved. The QSC has demonstrated its versatility and usefulness in various other
applications, including the study of Wilson lines, conformal bootstrap, and the calculation of
structure constants.

It would be highly desirable to extend the QSC from AdS5/CFT4 to other instances of the
AdS/CFT correspondence, a program so far only fully completed for AdS4/CFT3. Achieving
this objective requires a solid understanding of the foundation of the QSC, a so-called analytic Q-
system. In this thesis and the included papers, we investigate Q-systems and their algebraic and
analytic properties. Inspired by the ODE/IM correspondence we propose Q-systems that encode
the conserved charges of integrable models with a simply-laced symmetry algebra. In particular,
for the case of D(r) a powerful parameterization of the Q-system using pure spinors is employed
to efficiently solve compact rational spin chains and find T-functions solving Hirota equations.
The extension from D(r) to the non-simply laced algebra B(2)/C(2) is explained and detailed.
While many features are similar the relation between the symmetry of the Q-system and that of
the integrable model becomes more intricate. By introducing a new method dubbed Monodromy
Bootstrap we construct new Quantum Spectral Curves based on gl(2|2). In particular, one curve
is conjectured to describe planar string theory on AdS3 with pure RR-flux. We solve the curve
in a weak coupling limit both analytically and numerically.

We also discuss the problem of finding the eigenvalue spectrum of operators on the squashed
seven-sphere coming from the compactification of eleven-dimensional supergravity. These
eigenvalues are of importance for the mass spectrum of fields in AdS4.
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1. Introduction

This thesis is about the use of symmetries, mainly in the context of exactly
solvable models. Such models are rare but of great significance. Among their
ranks, we find the harmonic oscillator, the Kepler problem and the hydrogen
atom. The more pragmatic person would argue that these models are of in-
terest since they serve as basic stepping stones to more difficult theories. The
people who study them daily would surely add that they are fascinating objects
on their own.

Of special significance to this text is the appearance of integrability in the
duality between superstrings on AdS5×S5 and conformal four-dimensional
N = 4 Super-Yang-Mills in the planar limit [1]. While these highly sym-
metric theories do not describe the everyday world around us, they are instru-
mental to our understanding of string theory and quantum field theory. The
presence of integrability allows for the use of powerful techniques usually not
applicable. The full solution of N = 4 is yet beyond our reach, but impressive
progress has been made in computing the energy of strings, or the so-called
conformal dimension in N = 4. The most efficient way to do so is through a
novel integrability-based formalism: the Quantum Spectral Curve (QSC) [2].

Using the QSC the full non-perturbative spectrum of N = 4 is now obtain-
able by anyone with an internet connection and a Mathematica license [3, 4].
The QSC has also been used to study Wilson lines [5], in conformal boot-
strap [6], in the computation of structure constants [7] and to investigate the
thermodynamics of string theory [8], to mention a few applications. The QSC
was subsequently generalised to the AdS4/CFT3 correspondence and used
therein with great success [9].

However, this thesis is not about the use of the AdS5×S5 QSC, nor is it
about AdS4. This thesis is about extending the QSC beyond these theories and
investigating the structures that underlie it.

To better understand the QSC and how we might promote it beyond the
realm of AdS5 and AdS4 we need to examine the foundation on which it is
built. This foundation is known as a Q-system; a collection of functions of one
complex parameter called Q-functions. Q-systems are objects of great gener-
ality, and they appear in a variety of different applications. It is only when we
severely restrict their analytic properties we can use them to describe specific
physical models. The defining feature of the QSC is that the Q-functions de-
scribing it are functions with branch cuts. It is by this feature we will define
the notion of QSC in this text.

The importance of Q-functions, or rather their operatorial counterpart, were
recognised by Baxter [10] more than 10 years before N = 4 was found from

7



compactifying 10D SYM. Q-operators have since their inception been inten-
sively studied in the maths and physics literature in a variety of contexts; they
appear in Yangians and quantum affine Lie algebras [11], they feature in the
study of conformal field theory [12–14] and they are intimately connected with
ordinary differential equations through the ODE/IM correspondence [15, 16].

Yet, in none of the applications listed above the Q-functions were granted
the analytic properties characterising the QSC. Thus as of writing, it remains
unclear exactly which Q-systems can be promoted to the world of QSC and
AdS/CFT. We currently only have a few isolated points where we understand
how to proceed, no landscape of theories has yet been established.

So a line of research emerges: Understand the algebraic relations that define
Q-systems for arbitrary symmetry algebras and find a clear recipe for how to
dress the Q-functions with analytic properties appropriate for AdS/CFT, or
if possible, beyond. We believe that pursuing these tasks simultaneously is
advantageous. Indeed, one should naturally expect there to be a non-trivial
interplay and lessons should carry over between both exercises.

Let us then detail the results that will be covered in this thesis. On the
algebraic side of Q-systems, the task of constructing Q-systems for simple-
laced algebras is tackled in Paper I based on intuition coming from ODE/IM.
The case of Q-systems for Dr is treated in detail in Paper II. Together with
the operatorial results presented in [17] Q-systems for algebras of type Dr are
now well functioning for compact rational spin chains, and hopefully ready to
be utilised in more challenging theories [18–20].

Generalisations of the QSC framework are considered in Paper IV. Here
a general axiomatic approach, called Monodromy Bootstrap, is detailed and
used to construct four different QSCs with underlying gl2|2 symmetry. Among
these models, one was identified as a putative candidate to describe the spec-
trum of planar string theory on AdS3×S3×T4. In Paper V this model is solved
in a weak coupling limit both numerically and analytically.

This thesis also includes another excursion into the land of spectrum cal-
culations. In Paper III eigenvalues of certain differential operators on the
squashed S7 are calculated. These eigenvalues describe masses of particles
when compactifying eleven-dimensional supergravity to AdS4. While the mo-
tivation for this project is different compared to the other parts of the thesis the
tools used have many similarities.

1.1 Thesis Outline
Part I is a review of relevant background. In Chapter 2 we recall the basics of
Lie algebras, including a short discussion of Lie superalgebras. We turn to the
infinite-dimensional Yangian in Chapter 3 using the RTT formalism. Finally,
we formulate the task of computing the spectrum of T-functions in Chapter 4.
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Here we consider the functional relations that T-functions satisfy and their
connections to Q-functions.

Part II is about the use of algebraic techniques to find the spectrum of inte-
grable models and special differential operators. Chapter 5 discusses how to
obtain relations among Q-functions by studying differential equations. Chap-
ter 6 reviews Q-systems with gln symmetry. In Chapter 7 we review the results
of Paper I and Paper II regarding Q-systems for systems with Dr-symmetry.
Chapter 8 contains a description of Q-systems for B2/C2, the results in this
chapter are new and not yet published. In Chapter 9 we review the results of
Paper III regarding the spectrum of operators on the squashed seven-sphere.
The final leg of Part II is Chapter 10 where we review Q-systems for super-
symmetric spin chains.

Part III is dedicated to the study of the Quantum Spectral Curve. In Chap-
ter 11 we very briefly recall the spectral problem before reviewing the AdS5×S5

QSC in Chapter 12. We discuss its definition and the main techniques on the
market. As a bonus, we also quickly discuss how to twist the QSC and produce
some results for twisted theories. Finally, Chapter 13 is dedicated to intro-
ducing a QSC conjectured to describe planar string theory on AdS3×S3×T4.
This curve was constructed in Paper IV and [21]. We review the construction
and how the QSC produces the crossing equations for the so-called dressing
phases. In Section 13.4 we review the results of Paper V in which the proposed
QSC was solved in a weak coupling regime.
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Part I:
Background





2. Lie Algebras

The most well-known symmetries to physicists are described using Lie alge-
bras. This chapter aims to set notation and introduce objects that will later
play a key role in our discussion of Q-systems. For a reader seeking to deepen
their knowledge, we refer to the excellent books [22, 23].

A Lie algebra g is a vector space equipped with an antisymmetric bilinear
map [·, ·] : g×g→ g known as the Lie bracket. Let T a be generators of g, we
will use notation

[T a,T b] = f ab
c T c , (2.1)

where f ab
c are the so-called structure constants. Here and in the follow-

ing we will use Einstein summation convention: repeated indices are to be
summed over unless explicitly stated. In addition to being antisymmetric, the
Lie bracket must also satisfy the Jacobi identity

[x, [y,z]]+ [y, [z,x]]+ [z, [x,y]] = 0 . (2.2)

The simplest choice of structure constants is f ab
c = 0. Such an algebra is

called abelian.
We will be interested in scenarios where the symmetry algebra acts on a

vector space V . This requires representations of g. Formally a representation
is a map g→End(V ) respecting the Lie bracket. When V is of finite dimension
n the representation of a generator is a n× n matrix. An important example
of a vector space is g itself. On this space we have the adjoint representation
ada(T b) = [T a,T b].

2.1 Simple Lie Algebras
There are a wide variety of different Lie algebras. We will be interested in the
simplest and most well-studied examples. An important class of Lie algebras
are simple Lie algebras. These are non-abelian Lie algebras with no nonzero
proper ideals. Recall that I is an ideal if [g, I]⊆ I. An ideal is proper if it is not
equal to g or 0.

2.1.1 The ABCD of Lie algebras
Let us now introduce some important Lie algebras which will play a role in
the following.
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The Lie algebra gln
A prototypical example of a Lie-algebra is gln. It is customary to denote the
generators as Ei

j with i, j = 1, . . . ,n. These generators satisfy the following
algebra

[Ei
j,Ek

l] = Ei
l
δ

j
k −Ek

j
δ

l
i , (2.3)

where δ i
j is the Kronecker delta. It is easy to verify that C = Ei

i commutes
with all other operators. The remaining operators, spanned by Ei

j, i ̸= j and
Ei

i−Ei+1
i+1 (no sum over i), form the simple Lie algebra sln, also called An−1.

The defining representation of gln is given by Ei
j 7→ ei

j where ei
j are the

standard matrices (ei
j)k

l = δ k
i δ

j
l . In the case of n = 2 we find explicitly

e1
1 =

(
1 0
0 0

)
, e1

2 =

(
0 1
0 0

)
, e2

1 =

(
0 0
1 0

)
, e2

2 =

(
0 0
0 1

)
.

The Lie algebras son and sp2r
Within gln we can find interesting subalgebras. The goal of this paragraph
is to construct the algebras son and sp2n in this way. Start by noticing that
τ(Ea

b) =−gbcEc
dgda with gacgcb = δ a

b also satisfy (2.3). More precisely, τ is
a Lie algebra homomorphism:

τ([x,y]) = [τ(x),τ(y)] . (2.4)

We think loosely about τ as "the negative transpose" of Ei
j. Requiring gi j =

±g ji we find τ2 = 1. Since τ squares to 1 it must have eigenvalues ±1, then
gln = gl

[0]
n ⊕gl

[1]
n with τ(gl

[i]
n ) = (−1)igl

[i]
n . The algebra gl

[0]
n forms a Lie alge-

bra by itself, it is spanned by elements

Fi
j = Ei

j−g jlEl
kgki . (2.5)

If gi j = g ji the algebra gl
[0]
n is a complexification of so(n). It is called Dr

if n = 2r and Br if n = 2r + 1. We can set gi j = −g ji only if n = 2r since
otherwise gi j is not invertible. In this case gl

[0]
n is called Cr; it is a complex

version of the symplectic algebra sp2r. The commutation relations of Fi
j reads

[Fi
j,Fk

l] = Fi
l
δ

j
k −Fk

j
δ

l
i +gikglmFm

j−g jlgkmFi
m

= Fi
l
δ

j
k −Fk

j
δ

l
i −gkig jmFm

l +gl jgimFk
m .

(2.6)

The defining representations fi
j of Dr,Br and Cr are inherited from those of

Ar. Using gi j to lower and raise indices according to

V i = gi jVj , Vi = gi jV j . (2.7)

we find

fi j = ei j∓ e ji , gi j =±g ji . (2.8)
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The Killing form
There exists a non-degenerate inner form on simple Lie algebras known as the
Killing form:

κad(T a,T b) = trada ◦ adb . (2.9)

This inner form satisfies an important invariance property

κad([x,y],z) = κad(x, [y,z]) , (2.10)

which is a direct consequence of the cyclicity of the trace.

2.1.2 Basic structure of Lie algebras
Having introduced some basic examples of simple Lie algebras we continue
to investigate their general structure.

Let h be a maximal commuting ad-diagonalisable subalgebra of g, h is
known as a Cartan subalgebra. We will denote a set of generators for this
algebra as {H i}r

i=1 where r is the rank of the algebra. For the rest of the gen-
erators we pick a basis in which the adjoint action of H i acts diagonally. We
label the generators not in the Cartan algebra as Eα with α an r-dimensional
vector such that

[H i,Eα ] = α
iEα . (2.11)

α are called roots, it turns out that there is only one generator per root.
Since a finite-dimensional algebra has a finite number of roots it is possible

to find a hyperplane that divides the roots into two sets, the roots in these two
sets are called positive respectively negative roots. From the non-degeneracy
of the Killing form it follows that for every positive root α there also exists a
negative root −α .

Using the Jacobi-identity one sees that Eα+β ∝ [Eα ,Eβ ], there is thus a
natural notion of adding roots. With this in mind, we define a simple root as a
positive root that cannot be obtained as a linear combination of the remaining
positive roots using only positive coefficients. There are exactly r positive
roots, we will use notation αa,a = 1, . . . ,r. As an example, for sln a choice of
generators corresponding to simple roots is given by

{E1
2,E2

3, . . .En−1
n} . (2.12)

2.1.3 Finite-dimensional representations of sl2
The structure of a simple Lie algebra is heavily constrained by sl2 repre-
sentation theory. This motivates a short reminder, let us use notation h =
E1

1−E2
2, e = E1

2, f = E2
1. The commutation relations are

[h,e] = 2e , [h, f ] =−2 f , [e, f ] = h . (2.13)

15



Let V be a vector space on which g acts. The vector space V , together with
the representation of g, is called a g-module. However, with a slight abuse of
terminology, V is usually called a representation. We will require that h acts
diagonally.

If our representation is to be finite there must exist a state |Λ⟩ ∈V such that
e |Λ⟩= 0, h |Λ⟩= Λ |Λ⟩. Such a state is called a highest weight state. All other
states in V are of the form f k |Λ⟩. This implies that all eigenvalues of hi are of
the form Λ−2k.

For the representation to be finite we must truncate the tower of states
f k |Λ⟩ setting f n+1 |Λ⟩ = 0 for some n. Killing f n+1 |Λ⟩ is only allowed if
we make sure there is no way back from f n+1 |Λ⟩ to the land of the liv-
ing. This means that we need to impose not only f n+1 |Λ⟩ = 0 but also
e f n+1 |Λ⟩ = (n+ 1)(Λ− n) f n |Λ⟩ = 0, so Λ must be a positive integer. This
classifies all finite-dimensional representations of sl2.

2.1.4 The Chevalley-Serre basis
Using the invariance of the Killing form it is possible to show that after proper
normalisation of Eα

[Eα ,E−α ] =
2
|α|2

α
iH i , (2.14)

with |α|2 = (α,α) = α iα i. Inspired by sl2 representation theory it is common
to introduce notation ha = (α∨a )

iH i, ea = Eαa , f a = E−αa with α∨a = 2
|αa|2

αa,
α∨a is called a coroot. This is convenient since now {ha,ea, f a} will form
an A1 algebra due to (2.14). The generators ha,ea and f a form a so-called
Chevalley-Serre basis. In this basis the commutation relations are

[ha,eb] =Cabeb , [ha, f b] =−Cab f b , [ea, f b] = δabha , (no sum). (2.15)

Cab is the Cartan Matrix. The Cartan matrix uniquely defines a simple Lie
algebra. The Cartan matrix can be computed as Cab = (α∨a ,αb).

The classification of all Cartan matrices is equivalent to the classification of
all simple Lie algebras. The result is 4 infinite series which we have already
met; Ar,Dr,Br and Cr as well as 5 exceptional algebras; E6,E7,E8,G2 and
F4. It is common to illustrate the Cartan matrix using a Dynkin diagram. A
Dynkin diagram for a Lie algebra of rank r has r nodes. To each node one
associates a root αa and draws CabCba, no sum, lines between node a and b.
If one root is longer this is indicated with an additional >, if both roots are of
the same length no decoration is needed. We collect Dynkin diagrams for all
simple Lie algebras we will encounter in Figure 2.1.
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Ar :

Dr :

Br :

Figure 2.1. Dynkin diagrams for all algebras we will consider.

2.2 Finite-Dimensional Representations
Although the algebras we will eventually aim to study in this thesis are infinite-
dimensional we will make ample use of finite-dimensional representations.
We will use this section to recall the basic structure of finite-dimensional rep-
resentations.

Let V be an irreducible representation. That is, the representation of g can-
not be brought to a block-diagonal form. To each and every state |ν⟩ in V we
can assign an element ν ∈ h⋆ such that

ha |ν⟩= ν(ha) |ν⟩ . (2.16)

ν is known as a weight, it might not label a state uniquely. Notice that α ∈
h⋆ since [ha,Eα ] = α(ha)Eα . The inner form allows us to identify h and
h⋆. With the explicit normalisation picked when constructing [Eα ,E−α ] this
identification dictates that

α(ha) = (α,α∨a ). (2.17)

All eigenvalues of ha on V must be integers, this we learned when studying
sl2. We therefore write ν = ∑

r
a=1 Λaωa,Λa ∈ Z with ωa defined by

(ωa,α
∨
b ) = δab . (2.18)

ωa are called fundamental weights and Λa Dynkin labels, we will occasionally
write ν = ∑a caωa = [c1c2 . . .cr].

Every finite-dimensional representation has a highest weight state |HWS⟩
defined by Eα |HWS⟩ = 0,α > 0. We can use the Dynkin labels of |HWS⟩
to label the representation. We will denote a representation as L(ν) or use
notation that indicates the dimension of the representation. For example,
L([1]) = 2. The representations L(ωa) are called fundamental representations.

When considering gln instead of sln we introduce λi as eigenvalues of Ei
i.

Using hi = Ei
i−Ei+1

i+1 as generators of sln the Dynkin labels are obtained as
Λa = λa−λa+1.

As an example consider g = Ar. The fundamental representation L(ω1) is
the defining representation, ei

j, the highest weight vector is e1 with ei standard
vectors, i.e ei

jek = eiδ
j

k . The remaining fundamental representations are found
as exterior products of L(ω1), namely L(ωa) = ΛaL(ω1). The highest weight
vector of L(ωa) is e1∧ e2 · · ·∧ ea.
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g h h∨

Ar r+1 r+1
Dr 2r−2 2r−2
Br 2r 2r−1
Cr 2r r+1

Table 2.1. Coxeter and dual Coxeter number for ABCD

Algebra Positive simple roots Positive roots

Ar εa− εa+1, a = 1, . . . ,r εa− εb a < b≤ r+1

Br
αa = εa− εa+1 a = 1, . . . ,r−1 εa± εb a < b≤ r

αr = εr εa a = 1, . . . ,r

Cr
αa = εa− εa+1 a = 1, . . . ,r−1 εa± εb a < b≤ r

αr = 2εr 2εa a = 1, . . . ,r

Dr
αa = εa− εa+1 a = 1, . . . ,r−1

εa± εb a < b≤ r
αr = εr−1 + εr

Table 2.2. Orthogonal basis for the weight lattices

The highest weight of the adjoint representation is called the highest root
θ . Let

θ =
r

∑
a=1

aaαa ,
2

(θ ,θ)
θ =

r

∑
a=1

a∨a α
∨
a . (2.19)

The numbers aa are Coxeter labels and c∨a are dual Coxeter labels. The Coxeter
number h and the dual Coxeter number h∨ are defined by

h = 1+
r

∑
a=1

aa , h∨ = 1+
r

∑
a=1

a∨a . (2.20)

We tabulate the (dual) Coxeter number for Ar,Br,Cr and Dr in table 2.1.
The lattice Q = spanZ{ωa}r

a=1 is known as the weight space of g. The root
space is a sublattice of Q. Indeed, we can explicitly write roots in terms of
fundamental weights as

αa = ωbCba . (2.21)

Thus the columns of the Cartan matrix allow us to read the decomposition of
simple roots in terms of fundamental weights.

It is often useful to describe Q using an orthogonal basis. The basis vectors
will be written as εa and they satisfy (εa,εb) = δab. Table 2.2 gives the positive
roots in terms of the orthogonal basis for all the cases we will need.
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Characters
Let ω and ν be weights of a Lie algebra g, we define the formal exponent eω

by the property eωeν = eω+ν . The character of a representation V is the sum

χ(V ) = ∑
λ∈V

mult (λ )eλ . (2.22)

We will often simply write χ(λ )≡ χ(L(λ )).

2.3 Oscillators
To describe representations more explicitly it turns out to be very useful to
introduce bosonic and fermionic oscillators, b and f respectively. They are
defined by

[ba,b
b] = δ

b
a , [ba,bb] = [ba,bb] = 0 , (2.23)

{fi,f
j}= δ

j
i , {fi,f j}= {fi,f j}= 0 , (2.24)

and [f,b] = 0. Here {·, ·} is the anti-commutator; {a,b} = ab+ ba. Using
these oscillators we can realize the generators of gln in two different ways

Ei
j = bib j . or Ei

j = fif j . (2.25)

This will be used when discussing Lie superalgebras.
We will in Chapter 7 need to understand spinor representations of Dr. In the

notation of this chapter, these representations are L(ωr−1) and L(ωr) for Dr.
We will for future convenience introduce notation S− = L(ωr−1),S+ = L(ωr).

To build the spinor representation we use all bilinears in fa and fa. In
particular, a Chevalley-Serre basis is

ea = fa+1fa , a < r , er =−fr−1fr , (2.26a)

f a = fafa+1 , a < r−1 , f r = fr−1fr , (2.26b)

ha =−fafa +fa+1fa+1 , a < r−1 , hr =−fr−1fr−1−frfr +1 .
(2.26c)

Given a vacuum |0⟩ such that fa |0⟩= 0 we construct a Fock space spanned by
all states of the form fA |0⟩ with A a multi-index. This is a reducible represen-
tation of Dr, it contains both L(ωr−1) and L(ωr). The highest weight vectors
of these representations are

|ωr−1⟩ ≡ fr |0⟩ , |ωr⟩ ≡ |0⟩ . (2.27)

From the observation that {ea, f a,ha}r−1
a generates slr it follows that we can

decompose the spinor representations into slr representations. Let V =L(ω1)slr
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then

S+ =

[ r
2 ]⊕

i=0

Λ
2iV , S− =

[ r−1
2 ]⊕

i=0

Λ
2i+1V . (2.28)

Another important property of spinors is that they are basic representations.
This means that all other fundamental representations can be recovered from
taking tensor products of spinor representations. In particular

S+⊗S+ = L(2ωr)⊕
[ r

2 ]⊕
m=1

L(ωr−2m) , (2.29)

S+⊗S− = L(ωr +ωr−1)⊕
[ r−1

2 ]⊕
m=1

L(ωr−2m−1) . (2.30)

2.4 Lie Superalgebras
Lie superalgebras are important generalisations of ordinary Lie algebras, they
describe symmetries relating bosons and fermions. For more information re-
garding superalgebras see [24, 25].

Mathematically a Lie superalgebra is a Z2-graded algebra g with a map
[·, ·} : g×g→ g which has to satisfy two properties. It needs to be super-skew

[x,y}=−(−1)|x||y|[y,x} , (2.31)

and it needs to satisfy the super-Jacobi identity

(−1)|x||z|[x, [y,z}}+(−1)|x||y|[y, [z,x}}+(−1)|y||z|[z, [x,y}}= 0 , (2.32)

where |x| = 0,1 is the grading of the element x ∈ g. We will call x even if
|x|= 0 and odd if |x|= 1.

The easiest way to memorise (2.32) is to note that it says that the adjoint
action is a derivation with a sign when passing odd elements through each
other, that is

[x, [y,z}}= [[x,y},z}+(−1)|x||y|[y, [x,z}} . (2.33)

Equivalence between (2.32) and (2.33) follows from (2.31).

glm|n
In this thesis, we will only need the Lie superalgebra glm|n. The generators of
glm|n are often enumerated as Ei

j, i, j = 1, . . .m+n with Z2 grading

|Ei
j|= |i|+ | j| mod 2 , |i|=

{
0 i≤ m
1 i > m

. (2.34)
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a

â

Figure 2.2. A Kac-Dynkin diagram for gl2|2 depicting the grading 11̂2̂2.

The super-commutator is given by

[Ei
j,Ek

l}= δ
j

k Ei
l− (−1)(|i|+| j|)(|k|+|l|)δ l

i Ek
j . (2.35)

An important subalgebra of glm|n is slm|n, this algebra is generated by Ei
j, i ̸=

j,Ei
i−(−1)|i|+|i+1|Ei+1

i+1 (no sum over i). We will also make use of psl(n|n)=
sln|n/C with C = Ei

i.

2.4.1 Highest weight representations
Let us split i = {a, â} with a = 1, . . . ,m and â = 1̂, . . . n̂, |a|= 0, |â|= 1. Given
an ordering between â and a we define a highest weight state |HWS⟩ of glm|n
as

Ei
j |HWS⟩= 0 , i < j . (2.36)

As an example, let us take gl2|2. A potential ordering is 11̂2̂2, we can graphi-
cally illustrate the grading using a Kac-Dynkin diagram, see Figure 2.2.

The eigenvalues of Ea
a and Eâ

â on |HWS⟩ will be named λa and νa

Ea
a |HWS⟩= νa |HWS⟩ , Eâ

â |HWS⟩= λa |HWS⟩ . (2.37)

It is often convenient to realise the superalgebra using oscillators, for glm|n
we have

Ea
b = aaab , Ea

b̂ = aafb , Eâ
b = faab , Eâ

b̂ = fafb . (2.38)

Consider as an example again gl2|2. Introduce the Fock vacuum |0⟩ such that
fa |0⟩= 0, aa |0⟩= 0. The defining representation is given by φ1 = f1 |0⟩ ,ψ1 =
a1 |0⟩ ,ψ2 = a2 |0⟩ ,φ2 = f2 |0⟩. We see that ψ1 is a highest weight state in, for
example, the grading 11̂2̂2 while φ1 is a highest weight state in, for example,
1̂122̂.
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3. Yangians

In the last chapter, we described the simple Lie algebras g = A,B,C,D. With
this background at hand, we now turn our attention to Yangians Y (g). Yan-
gians are fascinating objects that make an appearance in many separate in-
stances. The Yangian is the spectrum-generating algebra of integrable spin
chains. We will introduce spin chains in this chapter and study them in Part II.
Of its more outlandish applications we mention that it appears in the study of
the spectrum of string theory on AdS5×S5. It also makes an appearance in the
study of scattering amplitudes [26].

The Yangian admits three important realisations; Drinfeld’s first and second
realisation [27, 28] and the RTT realisation. We will only use the RTT formu-
lation, for readers interested in the other realisations see for example [29–31].
For further details regarding Yangians in the RTT framework see [32, 33].

3.1 The RTT Formulation
To describe the RTT formalism we first need to introduce rational R-matrices.
While rational R-matrices can be constructed for different representations we
will for the sake of this chapter only need those associated with the funda-
mental representation L(ω1). Rational R-matrices associated to L(ω1) are
rational functions of one parameter u, the spectral parameter, and acts as
R(u) : Cn⊗Cn→ Cn⊗Cn. They satisfy the Yang-Baxter equation

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) , (3.1)

and are invariant under the action of g

[xa⊗1+1⊗ xa,R12] = 0 , (3.2)

with xa generators in the representation L(ω1). The notation Rab means that
the R-matrix acts in space a and b. We will construct explicit R-matrices later
in this section.

To describe the relations that defines Y (g) we introduce a generating func-
tion T known as the monodromy matrix

T =
∞

∑
n=0

h̄n

un (t(n))
i
j⊗ ei

j , (t0)i
j = δ

i
j1 . (3.3)
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where (t(n))i
j eventually will generate the Yangian. Here h̄ is a new book-

keeping parameter. It is possible to set h̄ = 1, which is common in the maths
literature, or h̄ = i which is more common in the physics literature, we will
keep it arbitrary for now. In the context of integrability, the space on which ei

j

acts is called the auxiliary space and the space on which (tn)i
j acts is called the

physical space. Using the R-matrix and the monodromy matrix we can now
write down the RTT-relation

R12(u− v)T1(u)T2(v)−T2(v)T1(u)R12(u− v) = 0 . (3.4)

The (extended) Yangian Y (g) is the algebra generated by polynomials in
(t(n))i

j subject to (3.4). We will now proceed to find the R-matrices.

3.1.1 Y (gln)
Our first observation is that since L(ω1)⊗L(ω1)=L(2ω1)⊕L(ω2) and R com-
mutes with the action of g it follows that R must be written as R = a(u)PS +
b(u)PA. PS and PA are projectors onto the symmetric respectively antisym-
metric representation while a(u) and b(u) are rational functions of u. These
projectors are readily written using the permutation operator P. Using explicit
matrices we have

P= ei
j⊗ e j

i , Pei
j⊗ ek

l = ek
j⊗ ei

l , (3.5)

and PS = 1
2(1+P),PA = 1

2(1−P). To fix a(u) and b(u) one now requires
that R also satisfy Yang-Baxter. The result is explicitly

R = 1− h̄
u
P=

(u− h̄)
u

PS +
(u+ h̄)

u
PA . (3.6)

Having found the R-matrix the Yangian algebra follows from (3.4):

[T i
j(u),T k

l(v)] =
h̄

u− v

(
T k

j(u)T i
l(v)−T k

j(v)T i
l(u)
)
. (3.7)

This can also be written as a relation for the operators t(n) as

[(t(m+1))
i
j,(t(n))

k
l]−[(t(m))

i
j,(t(n+1))

k
l]

= (t(m))
k

j(t(n))
i
l− (t(n))

k
j(t(m))

i
l .

(3.8)

Note that the choice (t0)i
j = δ i

j made in 3.3 implies that

[(t(1))
i
j,(t(1))

k
l] = δ

k
j (t1)

i
l−δ

i
l (t(1))

k
j , (3.9)

and so (t(1))i
j satisfy the gln algebra.
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3.1.2 B,C and D
It is possible to give a unified treatment of Y (g) with g = B,C,D using the
RTT-formalism. The basic observation is that L(ω1)⊗L(ω1) contains 3 terms,
the R-matrix associated to L(ω1) must then be written as a sum of 3 operators.

To explicitly write down the R-matrix we use the fact, as explained in Sec-
tion 2.1.1, that Br ,Cr and Dr can be obtained from gln after introducing the
metric gi j. This allows us to work with matrices ei

j, i = 1, . . .n.
In addition to the permutation operator P we also need the "trace operator"

K

K= gik gl j ei
j⊗ ek

l , KK= nK . (3.10a)

The R-matrix is once again obtained by taking an ansatz R=∑λ τ(u)Pλ
ω1⊗ω1

with τ(u) a rational function of u and P projectors onto irreps. Solving Yang-
Baxter gives

R = 1− h̄
u
P+

h̄
u[−βh∨]

K , (3.11)

where h∨ is the dual Coxeter number, it is tabulated in table 2.1 and β = 1
for Dr and Br while β = 2 for Cr. We have also used standard notation f [n] =
f (u+n h̄

2).
The RTT relations become explicitly

[T i
j(u),T k

l(v)] =
h̄

u− v

(
T k

j(u)T i
l(v)−T k

j(v)T i
l(u)
)

− h̄
u− v−βh∨ h̄

2

(
gkigmnT m

j(u)T n
l(v)−gl jgmnT k

n(v)T i
m(u)

)
.

(3.12)

It is once again possible to verify that (t(1))i
j satisfy the commutation relations

of BCD. To see this one focus on the term h̄2

uv , this reproduces exactly the
second line of (2.6) up to some cosmetics due to the index structure of T .

Strictly speaking, the Yangian algebra (3.12) gives the extended Yangian
X (g) and not the Yangian. The reason is due to the presence of a large centre,
see for example [34]. This will not play a part in our discussion.

3.1.3 Y (glm|n)

We can also formulate supersymmetric Yangians for glm|n using the RTT for-
mulation [35]. The description turns out to be very similar to Y (gln), the
R-matrix is given as

R = 1− h̄
u
P , P=

n

∑
i, j
(−1)| j|ei

j⊗ e j
i , (3.13)
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where P is now the graded permutation operator. When verifying that (3.13)
satisfies Yang-Baxter it is imperative to use the correct conventions of tensor
products suitable for super Lie algebras. Explicitly one needs

(x⊗ y)(z⊗w) = (−1)|y||z|xy⊗ yw , (3.14)

which takes the grading into account. The extension to osp(m|n) is a straight-
forward generalisation of the BCD Yangian, see [36].

3.1.4 The transfer matrix
In our study of Lie algebras we encountered the Cartan algebra. While useful
the spectrum of h is rather dull. Luckily, in the Yangian there exist more
interesting commutative algebras. A particularly interesting one is obtained
from the so-called transfer matrix defined as

T(u) = tra T (u) . (3.15)

where the subscript a indicates that we are to take the trace over the auxiliary
space, not the physical space. T is important because it commutes with itself
for different values of the spectral parameter,

[T(u),T(v)] = 0 . (3.16)

This means that all elements in the series T(u) = ∑n
h̄n

un t(n) commutes. To
obtain (3.16) one traces the RTT relation (3.4) over both auxiliary spaces.

3.2 Representation Theory and Drinfeld Polynomials
With the definition of Y (g) taken care of we proceed to study the structure
emerging from the Yangian algebra. While certainly not obvious from the
RTT-relations used to define it, the Yangian has a surprisingly rich representa-
tion theory [37]. Many of its features are similar to those of Lie algebras, but
they generalise in non-trivial ways.

The main outcome of this section is the notion of Drinfeld polynomials [28].
They are polynomials describing finite-dimensional representations of Yan-
gians, thus playing the role of Dynkin labels in this new set-up. The Drinfeld
polynomials will come to play a crucial part in our study of rational spin chains
in Part II.

3.2.1 Representation theory of Y (gln)

Just as in our discussion of Lie algebras, we start by considering g = gln. A
representation of Y (gln) is a highest weight representation if there exist a state
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|λ ⟩ such that

T i
j |λ ⟩= 0 , i > j , T i

i |λ ⟩= λi(u) |λ ⟩ , (no sum over i) . (3.17)

This clearly mirrors the Lie-algebra definition, recall that |λ ⟩ is a highest
weight state of gln if it satisfy Ei

j |λ ⟩ = 0, Ei
i |λ ⟩ = λi |λ ⟩. For a Lie alge-

bra representation to be finite-dimensional we need Λi = λi−λi+1 ∈ N≥0 as
explained in Chapter 2. The analogue statement for Y (gln) is that a represen-
tation is finite-dimensional if, and only if, it is a highest weight representation
and there exists a polynomial Pa such that

Pa(u+ h̄
2)

Pa(u− h̄
2)

=
λa+1(u)
λa(u)

. (3.18)

The polynomials Pa are known as Drinfeld polynomials.
Let us construct a Drinfeld polynomial explicitly to see how this works in

practice. Consider the so-called Lax-matrix

L1,a(u,θ) = 1−
h̄

(u−θ)
Ei

j⊗ e j
i . (3.19)

The Lax matrix is nothing but a renormalised and shifted version of the R-
matrix, it satisfies RTT as a consequence of the Yang-Baxter equation for R. It
follows that we can use the Lax matrix as a monodromy matrix. To be precise
we have

T i
j = δ

i
j1−

h̄
(u−θ)

E j
i . (3.20)

We will now consider a finite-dimensional representation of gln. Introduce the
gln highest weight vector |λ ⟩. It satisfies Ei

j |λ ⟩= 0, i < j and Ei
i |λ ⟩= λi |λ ⟩

where we do not sum over i and λi−λi+1 = Λi ∈ Z≥0. Clearly |λ ⟩ is a HWS
of Y (gln), we find

λi(u) = 1− h̄
(u−θ)

λi , Pi =
(
(u−θ − h̄λi)

[Λi]D
)[Λi]

, (3.21)

where we recall that f [n]= f (u+n h̄
2) and we have introduced the fused product

f [a]D =

{
f [a−1] . . . f [−a+1] a≥ 1

1
f [a−1]... f [−a+1] a≤−1

. (3.22)

3.2.2 Finite-dimensional representations of Y (g)

When discussing representation theory of BCD it is very useful to pick an off-
diagonal form of gi j, we fix gi j = θi δi+ j,n+1. Common choices for θ are θi = 1
for g= Br,Dr and θi = sign(r− i) if g=Cr.
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A highest weight state of Y (g) is a state |λ ⟩ such that

T i
j |λ ⟩= 0 i > j , T i

i |λ ⟩= λi(u) |λ ⟩ , (no sum) . (3.23)

Furthermore, the representation is finite-dimensional if and only if there exist
polynomials Pa such that [38]

P+
a

P−a
=

λa+1(u)
λa(u)

, a < r , (3.24)

P+
r

P−r
=

λr+1(u)
λr−1(u)

, g= Dr ,
P
[ 1

2 ]
r

P
[− 1

2 ]
r

=
λr+1(u)
λr(u)

, g= Br ,
P[2]

r

P[−2]
r

=
λr+1(u)
λr(u)

, g=Cr .

(3.25)

Finite dimensional representations of Y (g) with g= Ar,Br,Cr or Dr are then
also characterised by a set of r Drinfeld polynomials Pa(u).

The simplest modules of the Yangians are those with minimal degree Drin-
feld polynomials, that is

Pa = (u−θ) , Pb̸=a = 1 , (3.26)

for some a = 1, . . . ,r. The modules described by (3.26) are the fundamental
modules of the Yangian algebra, we will denote them as Wa,1(θ) where the
index refers to the fact that Wa,1, when restricted to the underlying Lie algebra
g, always contains L(ωa). The modules Wa,1(θ) are special cases of Wa,s(θ),
so-called Kirillov-Reshetikhin modules. These are the natural generalisation
of L(sωa) for Yangians and they have Drinfeld polynomials

Wa,s(θ) : , Pa = (u−θ)[
s
ta ]D , Pb̸=a = 1 , (3.27)

with ta = 2
(αa,αa)

. Wa,s always contain L(sωa) but is in general a reducible
representation of g. For us, the most important example will be Dr, in this
case the fundamental KR modules decompose as

g= Dr , Wa,1 = L(ωa)+L(ωa−2)+L(ωa−4)+ . . . , a ̸= r−1,r , (3.28a)
Wa,1 = L(ωa) ,a = r,r−1 . (3.28b)

A very observant reader will notice the similarity between (3.28) and (2.29).
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4. Analytic Bethe Ansatz

In this chapter, we put focus on the transfer matrix T . We will seek out its
spectrum for various choices of auxiliary space, finding that these matrices
are related to each other through a system of relations known as a T-system.
Essentially the T-system is a system of equations generalising relations among
characters of g. As we will see the analogue with character can be taken even
further; the eigenvalues of transfer matrices can naturally be written using a
quantum generalisation of eigenvalues [39]. These quantum eigenvalues are
expressed as rational combinations of a set of polynomial q-functions satisfy-
ing a set of equations known as Bethe equations.

Section 4.1 discusses transfer matrices and T-functions for gl2. We derive
Hirota bilinear equations, the gl2 T-system, which we then proceed to solve us-
ing so-called Q-functions. The Q-functions are then used to find the spectrum
ofT after using a variation of the analytic Bethe ansatz [40]. Section 4.2 treats
the generalisation to ABCD. Finally, we present some outlook and comments
on the many areas we have not covered in Section 4.3.

An excellent review of T-systems is found in [41].

4.1 Transfer Matrices and T-Functions for Y (gl2)
Our goal in this section is to study transfer matrices of gl2 when the representa-
tion in the auxiliary space is a symmetric power of the defining representation.
We will consider the physical space to be H =

⊗L L(ω1), this is only a tech-
nical convenience. We will from now on refer to the physical space as a spin
chain.

The reason we set out on this quest is to find functional relations between
transfer matrices. That such relations can exist is hinted at by the underlying
Lie algebra. We know that χ(ω1)

2 = χ(2ω1) + χ(ω0) for sln, we are now
looking for the equivalent statement for the Yangian.

Our first task is to explicitly construct transfer matrices with L(sω1) as aux-
iliary space 1. Luckily, it is a simple generalisation of the rational R-matrix

L(s)
1a = (u+ s

h̄
2
)1− h̄ ei

j⊗Πs(E j
i) , (4.1)

1We will use sl2 notation for convenience
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where Πs(Ei
j) acts on L(sω1). Practically we can realize (4.1) by embedding

the Lax matrix into a 2s+1×2s+1 dimensional matrix as

L(s)
1a = Psω1

(
(u+ s

h̄
2
)1− h̄ ei

j⊗∆
s(e j

i)

)
Psω1 , (4.2)

with Psω1 the projector onto L([s]) and ∆n(x) = ∑
n
i=11⊗ . . .1︸ ︷︷ ︸

i−1

⊗x⊗1.

To now construct the transfer-matrix acting on H =
⊗L L(ω1) we simply

multiply L Lax matrices together to form

Ts(u) = tra L(s)
1,a(u)L

(s)
2,a(u) . . .L

(s)
L,a(u) . (4.3)

As advertised at the beginning of this Section we will now generalize the
character formula χ(ω1)

2 = χ(2ω1)+ χ(ω0) from χ to Ts. The non-trivial
part is that we need to take the spectral parameter into account.

The correct object to study isT+
1 T
−
1 . The reason for this is because at u = h̄

the R-matrix degenerates into a projector giving

PS (L
(1)
1 )−(L(1)

2 )+ = (L(1)
2 )+(L(1)

1 )−PS , (4.4)

PA (L
(1)
1 )+(L(1)

2 )− = (L(1)
2 )−(L(1)

1 )+PA . (4.5)

where we recall that we are using notation f± = f (u± h̄
2). This allows us to

compute

T−1 T
+
1 = tra T−a trb T+

b = tra,b

(PS +PA)︸ ︷︷ ︸
1

T−a T+
b


= tra,b(PS(T−a T+

b )PS)+ tra,b(PA(T−a T+
b )PA) ,

(4.6)

with P acting in the auxiliary spaces a,b. This result can be improved upon
by using

PS (L
(1)
1a )
−(L(1)

1b )
+PS = uL(2)

1,ab , (4.7a)

PA(L
(1)
1a )

+(L(1)
1a )
−PA = (u2− h̄2)PA , (4.7b)

which allows us to state the final result as

T+
1 T
−
1 = uLT2 +(u+ h̄)L(u− h̄)L . (4.8)

With more effort, these relations can be generalised to arbitrary s as

T+
s T
−
s =Ts+1Ts−1 +(u[s+1])L(u[−s−1])L , (4.9)

with boundary conditions T0 = uL. These are the functional equations we
sought.
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4.1.1 Solving gl2 Hirota
We now proceed to solve (4.9). We start by simplifying the equations slightly,
let us introduce a function Ts = σ [s+1]σ [−s−1]Ts. If we require

1
σ+σ−

= uL , σ =

(
1√
2h̄

Γ( u
2h̄ +

1
4)

Γ( u
2h̄ +

3
4)

)L

, (4.10)

then T satisfy the more compact equation

T+
s T−s = Ts+1Ts−1 +1 . (4.11)

We will refer to (4.11) as the Hirota equation. We remark that solving for σ

explicitly as done in (4.10) is usually unnecessary, the vital piece of informa-
tion is the functional relation.

The solution of (4.11) turns out to be remarkably simple, it is

Ts =

∣∣∣∣∣Q[s+1]
1 Q[−s−1]

1

Q[s+1]
2 Q[−s−1]

2

∣∣∣∣∣ , T0 =

∣∣∣∣Q+
1 Q−1

Q+
2 Q−2

∣∣∣∣= 1 , (4.12)

where Qa(u) are two functions of the spectral parameter. To verify this claim
we write the expression for Ts using index notation as Ts = εabQ[s+1]

a Q[−s−1]
b .

Here εab is the Levi-Civita symbol, it satisfies in particular the following
Plücker identity

ε
ab

ε
cd = ε

ac
ε

bd + ε
ad

ε
cb . (4.13)

Using this we find

T+
s T−s = ε

ab
ε

cdQ[s+2]
a Q[−s]

b Q[s]
c Q[−s−2]

d

= ε
adQ[s+2]

a Q[−s−2]
d ε

cbQ[s]
c Q[−s]

b + ε
acQ[s+2]

a Q[s]
c ε

bdQ[−s]
b Q[−s−2]

d

= Ts+1Ts−1 +1 ,
(4.14)

which shows (4.9).

4.1.2 QQ-relations and the spectrum of T
Having solved the functional equations we now attack the problem of describ-
ing the spectrum of Ts. The Hirota equations (4.9) are very general relations,
they will appear in a variety of very different settings. To go back to the case
of the Y (gl2) need to impose appropriate analytic properties on the two func-
tions Q1,Q2. This is the spirit of the analytic Bethe ansatz [40]. Guided by the
fact that Ts must be a polynomial we now introduce the analytic ansatz

Qa = σ qa , (4.15)
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where qa are polynomials in u. Using (4.10) they need to satisfy

W (q1,q2) = uL . (4.16)

Here

W (Q1,Q2) =

∣∣∣∣Q+
1 Q−1

Q+
2 Q−2

∣∣∣∣ , (4.17)

is the discrete Wronskian, sometimes called Casarotian.
We must at this stage understand the spectrum of Ts slightly better. Recall

that we are studying a physical space H =
⊗L L(ω1). An important property

of T is that it commutes with gl2, thus T takes the same value on every state

in a gl2 irrep inside H . Let us write H = ∑
[ L

2 ]
M=0 ca L([L−2M]). To calculate

the eigenvalue of Ts on L([L− 2M]) we set deg(q) = M, or in other words,
the degree of q1 counts the number of times we have to use α1 to go from
the vacuum weight nω1 to the state under consideration. This should give ca
number of solutions. Putting this on Mathematica one confirms that the num-
ber of solutions works out. We will in this thesis always rely on experimental
evidence when discussing the number of solutions, for a rigorous discussion
for gln (and glm|n) see [42–46].

There exist many other methods to solve for the spectrum of Ts, most will
at one point boil down to solving a set of rational equations known as Bethe
equations. Explicitly they read

M

∏
j=1
j ̸=i

ui−u j + h̄
ui−uh− h̄

=

(
ui +

h̄
2

ui− h̄
2

)L

. (4.18)

We end this section with a comment on how to find the Bethe equations from
(4.16). First parameterise q1 = ∏

M
i=1(u−ui). One simply shifts the Wronskian

relation two different ways, evaluates on zeros of q1 and divides the resulting
equations. Explicitly{

q[2]1 q2−q1q[2]2 = (u+)L ,

q1q[−2]
2 −q[−2]

1 q2 = (u−)L ,
=⇒

q[2]1

q[−2]
1

∣∣∣∣∣
q1=0

=−

(
u+ h̄

2

u− h̄
2

)L
∣∣∣∣∣∣
q1=0

.

(4.19)

4.1.3 Classical and quantum eigenvalues
In the previous subsection, we discussed how the spectrum of Ts can be ob-
tained by solving QQ-relations. In Chapter 2 we discussed the spectrum of the
Cartan subalgebra which, for example, can be described using characters. The
remaining part of this subsection will be dedicated to answering the question:
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Can we find a deformed version of classical characters that help us understand
Ts? The answer is, happily, confirmatory.

To this end we recall the character of gln with highest weight {λ1,λ2} =
{s,0}:

χs =
s

∑
n=0

xs−n
1 xn

2 = xs
1 +xs−1

1 x2 + . . .xs
2 =

xs+1
1 −xs+1

2
x1−x2

. (4.20)

These characters can be economically packaged into a generating function

1
1− tx1

1
1− tx2

=
∞

∑
s=0

ts
χs . (4.21)

In order to find an analogue of (4.20) and (4.21) our first objective is to elimi-
nate Q2 from (4.12), this can be accomplished using the QQ-relation (4.17):

Ts = Q[s+1]
1 Q[−s−1]

1

(
Q[−s−1]

2

Q[−s−1]
1

−
Q[+s+1]

2

Q[+s+1]
1

)

=
s

∑
n=0

(
Q[s−n]

1

Q[−s+n]
1

)[n+1](
Q[−n]

1

Q[n]
1

)[n−s−1]

.

(4.22)

This equation already shows clear similarities with (4.20), to get even closer
we introduce so-called quantum eigenvalues. They are defined as

Λ1 =
Q[2]

1

Q−1
, Λ2 =

Q[−2]
1
Q1

, (4.23)

using which (4.22) reads

Ts =
s

∑
n=0

(Λ
[s−n]D
1 )[n](Λ

[n]D
2 )[n−s] . (4.24)

A couple of examples are

T1 =
Q[2]

1
Q1

+
Q[−2]

1
Q1

= Λ1 +Λ2 , T2 = Λ
+
1 Λ
−
1 +Λ

+
1 Λ
−
2 +Λ

+
2 Λ
−
2 . (4.25)

It is of course cumbersome to carry all the additional labels around. To avoid
this extracurricular activity one can use the shift operator D with property
D f (u) = f (u+ h̄

2)D, f (u)D = D f (u− h̄
2) and introduce an operatorial version

of the quantum eigenvalues

Λ̂1 = DΛ1D , Λ̂2 = DΛ2D . (4.26)

We have the following compact formulas

1
1− Λ̂2

1
1− Λ̂1

=
∞

∑
s=0

DsTsDs , (4.27)

which provides us with a generalisation of (4.21).
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4.2 T-Systems and Bethe Equations
In principle, one could now try to repeat the analysis presented above for
the other Lie-algebras we have discussed so far. This task has been com-
pleted, for RSOS models, for An [47, 48]. Bypassing explicit constructions
a u-independent T-system was found in [49] and upgraded into a full-fledged
T-system in [50] using a "Baxterisation" process.

The resulting functional equations take a uniform shape for algebras where
all roots have the same length, these are known as simply-laced algebras. The
T-system becomes

T+
a,sT

−
a,s = Ta+1,sTa,s−1 + ∏

b: Iab=1
Tb,s , (4.28)

where Iab is the incidence matrix of g. We now have two labels a,s to specify
the auxiliary channel, these labels describe the KR module Wa,s(u) of Y (g).

In this thesis the only non-simply laced example we will consider is B2 ≃
C2, the T-system for this algebra is,

T [−2]
1,s T [2]

1,s = T1,s−1T1,s+1 +T1,2s , (4.29a)

T−2,2sT
+

2,2s = T2,2s−1T2,2s+1 + T−1,sT
+

1,s , (4.29b)

T−2,2s+1T+
2,2s+1 = T2,2sT2,2s+2 + T1,sT1,s+1 . (4.29c)

All other T-systems can be found in [41].
In Section 4.1 we solved the T-system using Q-functions. It is also possible

to solve it using only the fundamental T-functions, Ta,1, such formulas were
obtained for Ar in [51] and for BCD in [52].

4.2.1 Bethe equations
The diagonalization of T-functions can be reformulated in terms of Bethe
equations. These equations take a universal form in terms of the data defin-
ing the underlying Lie algebra [53]. To describe the equations we need the
symmetrized Cartan matrix Bab = (αa,αb). Let qa = ∏

Ma|i
i=1 (u−ua,i), then the

Bethe equations for a compact rational spin chain are given as [51, 54, 55]

r

∏
b=1

q[Bab]
b

q[−Bab]
b

∣∣∣∣∣
qa=0

=− P
[ 1
ta ]

a

P
[− 1

ta ]
a

∣∣∣∣∣∣
qa=0

, ta =
2

(αa,αa)
, (4.30)

with Pa Drinfeld polynomials.
In the case of simply-laced algebras Bab = Cab. In particular, we have the

well-known Ar equations

q[2]a q[−1]
a−1q[−1]

a+1

q[−2]
a q[+1]

a−1q[+1]
a+1

∣∣∣∣∣
qa=0

=− P+
a

P−a

∣∣∣∣
qa=0

, g= Ar . (4.31)
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For clarity, we also write down the non-simply laced case C2

q[2]1

q[−2]
1

q[−2]
2

q[2]2

∣∣∣∣∣
q1=0

=−
P+

1

P−1

∣∣∣∣
q1=0

,
q[4]2

q[−4]
2

q[−2]
1

q[2]1

∣∣∣∣∣
q2=0

=−
P[2]

2

P[−2]
2

∣∣∣∣∣
q2=0

. (4.32)

To find the spectrum of Ta,s it is possible to generalise the idea of quantum
eigenvalues from gl2 to g. To write compact formulas we introduce Qa defined
to satisfy the same Bethe equations (4.30) as qa but with −1 on the RHS.

Let us now list the resulting expressions for T1,1 for Ar and C2 [11,40,56].

g= Ar

Introduce Λa =

(
Q
[+]
a

Q−a

Q
[−2]
a−1

Qa−1

)[ r+3
2 −a]

and Qr+1 = Q0 = 1, then

T1,1 ∝

r+1

∑
a=1

Λa . (4.33)

The case of g=C2

Λ1 =
Q[4]

1

Q[2]
1

, Λ2 =
Q[4]

2
Q2

Q1

Q[2]
1

, Λ2̄ =
Q1

Q[−2]
1

Q[−4]
2
Q2

, Λ1̄ =
Q[−4]

1

Q[−2]
1

. (4.34)

One finds

T1,1 ∝ Λ1 +Λ2 +Λ2 +Λ1 , (4.35)

T2,1 ∝ Λ
−
1 Λ

+
2 +Λ

−
1 Λ

+
2
+Λ

−
1 Λ

+
1
+Λ

−
2 Λ

+
1
+Λ

−
2

Λ
+
1
. (4.36)

Pursuing similar formulas as the ones presented for arbitrary Ta,s, and also
more complicated representations, leads to tableaux sum formulas. Expres-
sions for gln were found in [51] and for BCD in [57–60].

4.3 Outlook
We have omitted many details and connections in this short introduction. We
have throughout our presentation focused on Q-functions and not Q-operators.
Q-operators relevant for Y (gln) are studied in [61, 62], partial generalisation
to BCD were obtained in [63, 64]. Q-operator also makes an appearance in
the study of 4D Chern-Simons-Theory [65, 66]. For a study of ABCDE in
this context see [67, 68]. T-systems also arise in many other contexts. For
example from the Thermodynamic Bethe Ansatz [69–71] and in wall-crossing
and computation of BPS spectra [72, 73].
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Part II:
Algebraic Methods
In this part, we start our study of Q-systems and their use in finding the spec-
trum of integrable models. The ultimate goal of this part is to try and develop
an algebraic framework for Q-systems with different types of symmetries. By
understanding the underlying algebraic structure we hope to develop a stable
ground from which more difficult problems can be attacked. We will mainly
compare our constructions against compact rational spin chains. Such chains
are of interest in various settings and serve as excellent tests that we are on the
right track.

Chapter 5 describes how the methods of ODE/IM can be used to deduce
relations among Q-functions. Chapter 6 serves as a review of gln Q-systems.
We will recall their defining QQ-relations and the Wronskian solution. Us-
ing Q-functions we discuss how to solve the gln T-system and rational spin
chains. Chapter 7 consider Q-systems for Dr and is based on Paper II. The
generalisation of QQ-relations from gln is described and we comment on how
to construct a covariant formalism. We briefly comment on T-functions and
the solution of rational spin chains. An extension of the methods to the case
of the non-simply laced algebra B2 ≃C2 is considered in Chapter 8. The re-
sults of Chapter 8 are new. In Chapter 9 we take a break from Q-functions
and consider differential equations on the squashed seven-sphere. Finally, we
consider supersymmetric Q-systems in Chapter 10.





5. Q-Functions from ODE/IM

The primary objective of this part is to construct Q-systems like the one found
for gl2 for other algebras. That is, we want to find a system of Q-functions such
that after imposing polynomial constraints naturally generalising W (q1,q2) =
1 we can reproduce the spectrum of integrable models. Q-systems constructed
for non-simply laced algebras are usually more involved. We will therefore
restrict attention to simply-laced algebras in this chapter.

Important progress towards finding a systematic way to construct Q-systems
came from studying relations between ordinary differential equations (ODE)
and integrable models (IM). This led to the so-called ODE/IM correspon-
dence [15, 16], first formulate for A1 and subsequently generalised to all other
simple Lie algebras [74].

In Section 5.1 we recall the basics of ODE/IM in the spirit of [75–77].
We explain how distinguished solutions to a specific linear differential oper-
ator are labelled by Lie algebra data and how to find Q-functions. In Section
5.2 we use relations among solutions to the differential operator to show how
certain Q-functions are composite objects, built from more fundamental Q-
functions associated with basic representations of the underlying Lie algebra.
Section 5.3 contains a summary and some further comments on Paper I.

For reviews and further references regarding ODE/IM see [78, 79].

5.1 ODE/IM
In ODE/IM one studies the solutions of very special differential operators.
Using the form of [80] a primitive example of such a differential operator is

L = ∂x +
ℓ

x
+

r

∑
a=1

ea +q(x,z)e0 , l ∈ h ,q(x,z) = xMh− z, M ∈ Z (5.1)

with e0 = λE−θ ,λ ∈ C, θ the highest root and h the Coxeter number 1.
It was proposed in [75] that to find relations among Q-functions one should

consider relations between vectors that solve (5.1). To be more precise, for
each fundamental representation of the Lie algebra one constructs solutions
singled out by their behaviour at infinity and identifies each component in a
distinguished basis with a Q-function. This was further developed and ex-
panded upon in [76,77] where a system of equations called the Ψ-system was
derived.
1λ can be interpreted as an evaluation parameter of an affine Lie algebra ĝ.
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5.1.1 Solutions and Q-functions
Equations of type (5.1) with ℓ = 0 and their connections to Q-functions for
simply-laced algebras are reviewed and studied in Paper I. Before we explain
the technical details let us outline what we will be doing. First, we will define
solutions ψ to (5.1), among these we will single out those that have the fastest
decay in a particular direction in the complex x-plane. Such solutions are
important because they are unique, this is so because we cannot add any other
solutions to them since that would alter the asymptotic behaviour. We will find
that the behaviour at infinity is controlled by eigenvalues of a matrix Λ and can
be described using Lie algebra data. We subsequently return to the origin in the
x-plane and define, up to a prefactor, Q-functions as ψ(0). This construction
is useful because we can now consider tensor products of solutions in various
representations. By finding two different tensor products that contain the same
irrep and have the same and the fastest possible decay at infinity these solutions
must be the same. This implies non-trivial polynomial identities among Q-
functions.

Let us now work out the details. First, let ψ(x,z) be a solution to (5.1) in
some representation of the g, that is

L (x,z,λ )ψ(x,z) = 0 . (5.2)

Introduce Hρ ∈ h such that α(Hρ) = (α,ρ) where ρ = ∑
r
a=1 ωa is the so-

called Weyl vector. Hρ satisfy

[Hρ ,ea] = ea , [Hρ ,e0] = (1−h)e0 , (5.3)

where h is the Coxeter number. An important property of the differential equa-
tion is

q−
n

hM Hρ

L (q
n

hM x,qnz,λ )q
n

hM Hρ

= q−
n

hM L (x,z,e2πin
λ ) , (5.4)

where q= e2πi M
M+1 . This is sometimes called a Symanzik rotation. Using these

rotations we can construct new solutions to (5.1), after rescaling λ 7→ e2πin λ ,
according to

ψ
[2n](x,z) = q−

n
hM Hρ

ψ(q
n

hM ,qnz) (5.5)
Let us now consider the behaviour of ψ at infinity. Using a gauge transfor-

mation one finds

pHρ

L p−Hρ

= p(x,z)
(

d
dS

+Λ+ . . .

)
, Λ =

r

∑
a=1

ea + e0 . (5.6)

where p = q
1
h ,S =

∫ x
0 p(x′)dx′. The matrix Λ is one of the main players in the

following. It is the spectrum of Λ that decides how fast a solution decreases.
For example, for the defining representation of sl3 with λ = 1,

Λ =

0 1 0
0 0 1
1 0 0

 . (5.7)
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Figure 5.1. Eigenvalues of Λ for the fundamental representations of A3.

Due to the property

γadHρ Λ = γΛ , γ = e
2πi

h , (5.8)

all eigenvalues lie on concentric circles. Furthermore, for a fundamental repre-
sentation L(ωa) one find |max eigenvalue(Λ)|= μa where μa is the a:th com-
ponent of the Perron-Frobenius vector of the incidence matrix Iab = 2δab−Cab.
Recall that the Perron-Frobenius vector is an eigenvector with the largest pos-
sible eigenvalue.

Consider g = Ar, we can now fix λ such that μ1 is an eigenvalue of Λ for
ψ ∈ L(ω1), concretely λ = 1. Thus there exist a solution ψ(1) such that at
x→ ∞ the unique fastest decaying solution behaves as

ψ(1) � e−μ
∫ x p(x′)p−Hρ

Uμ1 + . . . , ΛUμ1 = μ1Uμ1 . (5.9)

With this choice of λ there exists no fully real eigenvalue of magnitude μ2 for
Λ in L(ω2). However, γ±

1
2 μ2 are eigenvalues. We denote the solutions that

decays fastest along x = r γ±
1
2 ,r → ∞ as ψ±

(2). After this the story repeats it-
self, for L(ω3) there is a real eigenvalue and we define ψ(3) as the vector with
the fastest decay along x→ ∞, etc. We illustrate this behaviour in Figure 5.1.
In general, the asymptotic behaviour alternates between representations of ad-
jacent nodes on the Dynkin diagram.

We now finally define a Q-vector as

Q(a)(z) = z−
Hρ
hM ψ(a)(0,z) , Q[n]

(a)(z)≡ Q(a)(q
n
2 z) . (5.10)

In the rest of this chapter, we will now proceed as follows. We will find identi-
fications between naively different solutions of (5.1). Using this identification
we will find polynomial relations between different Q-vectors and their com-
ponents.
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5.2 Fusion of Basic Representations
In the standard approach, one now proceeds to derive functional relations of
the schematic form

ψ
+
(a)∧ψ

−
(a) =

r⊗
b=1: Iab=1

ψ(b) . (5.11)

These equations are known as the Ψ-system [76]. From the Ψ-system one can
deduce standard QQ-relations for simply-laced algebras [74] that leads to the
Bethe equation (4.30).

We will go about finding Q-systems in a slightly different manner. We will
consider solutions ψ

[n]
basic with basic labelling a basic representation, L(ω1) for

Ar and S± for Dr. By taking tensor products of these representations we will
construct solutions for all other fundamental representations, L(ωa). Care-
fully tuning the superscript we will find a solution with the same asymptotic
behaviour as ψ(a). By uniqueness of such a solution these two solutions must
thus agree and we will find a polynomial equation between Q(a) and shifted
combinations of Q(basic). We will treat gln as a warm-up example and then
consider Dr. For a discussion of the exceptional algebras E6,E7,E8 see Pa-
per I.

5.2.1 The case of sln
The basic representation of sln is L(ω1). We recall that from L(ω1) all other
fundamental representations are obtained as exterior products L(ωa)=ΛaL(ω1).

To promote this statement to Q-functions we first need to find the Perron-
Frobenius eigenvector of the incidence matrix Iab = δa+1,b + δa,b+1 and its
eigenvalues.

To find the eigenvectors and the eigenvalue we will use the identity [m+

2]q +[m]q = [2]q[m+1]q for the q-number [a]q =
qa−q−a

q− 1
q

. It follows that vq =

{[1]q, [2]q, . . . , [r]q} is an eigenvector of Iab with eigenvalue [2]q if [r+2]q = 0
which fixes q = e

πi
r+1 n,n = 1,2, . . . ,r. The Perron-Frobenius eigenvector cor-

responds to the eigenvector with the largest eigenvalues, thus µa = [a]
γ

1
2
,γ =

e
2πi
r+1 .

Let ψ(1) ∈ L(ω1) be a solution of (5.1). Consider the new solution

a⊗
b=1

ψ
[a+1−2b]
(1) (5.12)

to (5.1). Asymptotically it is an eigenvector of Λ with eigenvalue ∑
a
b=1 γ

a+1−2b
2 =

µa, see (5.5). Thus projecting it onto L(ωa) it must be proportional to ψ(a), we
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Figure 5.2. Dynkin diagram of Ar and association of Q-functions to fundamental
representations.

can adjust the proportionality to be equality. For Q-functions we have

P
L(ωa)⊗a L(ω1)

(
a⊗

b=1

Q[a−2b+1]
(1)

)
= Q(a) (5.13)

or equivalently, using index notation,

Qa1,a2,...,an =W (Qa1 ,Qa2 , . . .Qan) = |Q
[n+1−2b]
a |a=1,...,n

b=1,...,n
. (5.14)

This is the so-called Wronskian solution of the Q-system, we will discuss it
more in Chapter 6.

5.2.2 The case of Dr

We will now repeat the same argument for Dr. We first need the Perron-
Frobenius vector of the incidence matrix of Dr. The computation is essentially
equivalent to the one of gln, the result is

µa = [a]
γ

1
2
, µr−1 = µr =

1
2
[r−1]

γ
1
2
. (5.15)

with γ = e
2πi

h and we recall h = 2r−2, see 2.1. We learned in Section 2.3 that
we can construct all fundamental representations by taking tensor products
between two spinors. Consider therefore

ψ
[m]
(a) ⊗ψ

[−m]
(b) , a,b = r−1,r . (5.16)

From the identity
µr−1−m = (γ

m
2 + γ

−m
2 )µr , (5.17)

we learn that (5.16) have the same eigenvalue as ψ(r−1−m) by tuning m ≥ 1
properly. Thus by picking a,b properly and projecting upon L(ωa) we can
write Q-functions associated with vectors as polynomials in Q-functions as-
sociated with spinors, we note that this also includes the trivial representation
since γ

r−1
2 + γ−

r−1
2 = 0.

To write this in explicit formulas we introduce notation Ψ for the Q-functions
of the spinor representations and projectors Γ± such that Γ±Ψ∈ S± 2. To send

2The similarity in notation between ψ and Ψ is unfortunate.
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spinors into anti-symmetric tensors we need Γ-matrices ΓI with I a multi-index
appropriate for describing antisymmetric tensors and the matrix C giving us an
inner product for spinors. In particular, let us write

Ψ = Ψ
TC . (5.18)

We will give convenient descriptions of all these objects in Section 7.2.1. The
idea of "fusing" spinors to construct vectors is then finally formulated as

Ψ
[−r+1+|I|]

Γ
I
Γ
±

Ψ
[r−1−|I|] =V I , |I| ≤ r−2 (5.19)

Ψ
[−r+1]

Γ
±

Ψ
[r−1] = 1 . (5.20)

Furthermore, we notice that if we pick m smaller than the values prescribed
in (5.19) we find a solution in L(ωa) with an eigenvalue bigger than µa, but
such a solution does not exist. That means that projection onto this irrep must
vanish. This gives the following projection relations:

Ψ
[−m]

Γ
I
Γ
±

Ψ
[m] = 0 , |I| ≤ r−2 , m ∈ {−r+2+ |I|, . . . ,r−2−|I|} .

(5.21)

5.3 Summary
In this section, we have utilised the ODE/IM correspondence to find relations
between coefficients of vectors solving special differential equations. Follow-
ing [75] we interpreted these coefficients as Q-functions of integrable mod-
els. Using this identification we derived a set of algebraic equations relating
Q-vectors in fundamental representations to those of Q-vectors in basic repre-
sentations. Our main assumption in the following is that the relations derived
in Section 5.2 are universal. That is, they do not depend on the specifics of
the linear problem we started from 3. We will therefore after this chapter once
again use the notation f [n] = f (u+n h̄

2).
The relations we found are but a subset of all relations one can derive from

ODE/IM. In Paper I many more relations are studied and discussed. In that
paper, the idea of a Fused Flag was introduced to bring order and structure to
all relations. We will not explore this construction more in the rest of the text
since the equations we have obtained are sufficient. We refer to Paper I for
further details.

3An incomplete proof of this can be found in Paper I.
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6. Review of gln Q-Systems

In this chapter, we review gln Q-systems [81–83], see also Paper I for addi-
tional references and historical remarks. These are the most well-studied type
of Q-systems and will serve as inspiration for all other cases treated in this
thesis. Furthermore, gln Q-systems are very close to glm|n Q-systems which
we will need to formulate the QSC in Part III.

In Section 6.1 we present the primary results of this chapter: the gln Q-
system and its Wronskian solution which we already met in Chapter 5. In
Section 6.2 we put this formalism to use by solving the gln T-system and com-
pact rational spin chains.

6.1 gln QQ-Relations
A gln Q-system consists of functions QA satisfying

W (QAa,QAb) = QAab QA . (6.1)

Here A is a multi-index of {1,2, . . . ,n}, including also the empty set. We will
refer to (6.1) as QQ-relations or gln QQ-relations when we want to be more
specific. This formulation is a direct generalisation of the gl2 Q-system we
discussed in Part I. For gl2 we had two Q-functions, Q1,Q2. We now have
introduced a set of Q-functions for each of the fundamental representations of
gln, these are components of Q-vectors.

We will rescale the Q-functions to enforce

Q /0 = Q /0 = 1 . (6.2)

See Section 6.1.2 for further discussion of symmetries.

6.1.1 The Wronskian solution
We now turn to the task of solving (6.1) in terms of a basic set of Q-functions.
The solution is of course exactly the one already encountered in Chapter 5,

Qa1a2...am =W (Qa1 ,Qa2 , . . . ,Qam) . (6.3)

To show (6.3) from (6.1) is very useful to introduce differential forms. Take
an abstract differential basis θ a,θ a1a2...an ≡ θ a1 ∧ θ a2 · · · ∧ θ an and introduce
notation

Q(n) ≡ Q[n−1]
(1) ∧Q[n−3]

(1) ∧·· ·∧Q[−n+1]
(1) . (6.4)
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Furthermore, define the operation ⋆ by

⋆(θ a1...an) = ε
a1a2...an . (6.5)

We now generalise the Plücker identity we wrote down for εab in Chapter 4
to the case of arbitrary many indices. Using the differential form notation it
reads

⋆(a1∧·· ·∧an)b = ∑
i
⋆(a1 . . .ai−1∧b∧ai+1 . . .an)ai , (6.6)

with ai,b arbitrary one-forms.
With this technical tool in hand, the proof of (6.1) is but a calculation away.

We consider only Qabc, generalisation to arbitrary indices is straightforward.
Since only three indices enter we are free to restrict a to 1,2,3 and so we have
Q(1) = Qaζ a = Q1θ 1 +Q2θ 2 +Q3θ 3. Using the Plücker identities (6.6) gives

⋆ (Q[2]
(1)∧Q(1)∧θ

a)⋆ (Q(1)∧Q[−2]
(1) ∧θ

b)

= ⋆(Q[2]
(1)∧Q(1)∧Q[−2]

(1) )⋆ (Q(1)∧θ
a∧θ

b)

+⋆(Q[2]
(1)∧Q(1)∧θ

b)⋆ (Q(1)∧Q[−2]
(1) ∧θ

a) .

(6.7)

Translating (6.7) into the language of components reveals

Qabc = Wr(Qa,Qb,Qc) . (6.8)

6.1.2 Symmetries of gln Q-system
The Q-system exhibits 3 distinct types of symmetries: H-rotations, gauge
transformations and Hodge duality. Understanding these symmetries will be
crucial in Part III.

H-rotations
H-rotations are linear transformations

Qa→ Ha
bQb , QA→ (HA

B)[A−1]QB (Ha
b)+ = (Ha

b)− , (6.9)

where HA
B = |Ha

b|a∈A
b∈B

. We emphasise that Ha is h̄ periodic, a necessary con-

dition for the QQ-relations to be satisfied after the transformation.

Gauge transformations
Gauge transformations are u-dependent rescalings of Q-functions. There are
two independent such transformations. A convenient parameterisation of these
gauge transformations is given by

QA→ g[A]+ g[−A]
− QA . (6.10)

There is a slight overlap between gauge transformations and H-rotations when
H is proportional to the identity matrix.
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Hodge duality
Finally we have Hodge duality, it acts as

QA→ QA ≡ ε
ABQB . (6.11)

where the sum over multi-index is defined to be only over ordered sets. Hodge
duality is, as opposed to the other symmetries, a discrete symmetry.

6.2 The T-System and Spin Chains
Having obtained the Q-functions we now return to the glN T-system. We recall
that this is a set of functional identities of the form

T−a,sT
+

a,s = Ta,s+1Ta,s−1 +Ta+1,sTa−1,s , (6.12)

with boundary conditions Ta,−1 = 0,Ta,0 = 1.
The main observation is that we can solve these relations using the follow-

ing parameterisation

Ta,s = ⋆(Q
[s+ n

2 ]

(a) ∧Q
[−s− n

2 ]

(n−a) ) , (6.13)

In particular Ta,0 = Q
[a− n

2 ]

/0
. In components, this equation reads

Ta,s = Q
[s+ n

2 ]
A (QA)[−s− n

2 ] |A|= a . (6.14)

To verify this identity one uses the Plücker identity (6.6) yet again.

6.2.1 Compact spin chains
Let us now consider the task of solving compact rational spin chains. To find
the spectrum of a spin chain we need to impose proper analytic properties
on the Q-functions. There exists usually no systematic way of finding the
correct analytic properties to solve a specific problem. This part of the process
involves guesswork and comparison against known results. For spin chains
one can in principle deduce the correct analytic properties by studying Q-
operators [61]. We will not discuss Q-operators and will instead argue for
analytic properties by considering Bethe equations.

We recall that the Bethe equations of a rational gln spin chain

q[2]a

q[−2]
a

q−a+1

q+a+1

q−a−1

q+a−1

∣∣∣∣∣
qa=0

=− P+
a

P−a

∣∣∣∣
qa=0

, (6.15)

where Pa are Drinfeld polynomials characterising the representation we are
considering. In order to reproduce (6.15) from the Q-functions appearing in
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(6.1) one uses the analytic ansatz

QA = σ|A|qA ,
n−1

∏
b=1

σ
[−Cab]D
(b) = Pa , (6.16)

where qA needs to be polynomial. Identify q(a)= q←a, for example q(3)= q123.
Among the many QQ-relations, we find

W (qa,q←a−1,a+1) = Pa qa+1qa−1 . (6.17)

Using the same trick of shifting and evaluating at zeros of qa we recover (6.15).
The most efficient method to solve rational spin chains utilises supersym-

metric extensions [84]. We will here present a less powerful method but one
that easily generalises to the case of Q-systems for Dr and B2/C2 to be dis-
cussed in Chapter 7 and Chapter 8.

The trick is simply to solve W (Q1, . . . ,Qn) = 1. This gives the so-called
Wronskian Bethe Equation

W (q1,q2, . . . ,qn) =
r

∏
a=1

P[r+1−a]D
a . (6.18)

After fixing H-rotations (6.18) gives a discrete spectrum. However, in general
there will be too many solutions. The reason for this is that (6.18) alone cannot
guarantee polynomiality of qA. To ensure polynomiality we need also to verify
that the remaining QQ-relations are compatible with the prescribed structure.
Using W (Qa1 , . . . ,Qam) = Qa1,...,am and then (6.16) one finds that this requires

Remainder
(

W (qa1 ,qa2 , . . . ,qam)

∏
m−1
a=1 P[m−a]D

a

)
= 0 . (6.19)

We call these conditions kinematic constraints.
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7. Dr and Pure Spinors

We now turn to our main example of Q-systems outside of Ar, namely Dr.
The goal of this section is to review the construction of the Dr Q-system first
proposed in Paper I and subsequently detailed in Paper II. Our goal will not
be to reproduce these articles but to highlight some results and explain some
calculations in a simplified setting. Our approach is purely functional. We
remark that Dr Q-systems have also been studied using different methods. An
article by Ferrando, Frassek and Kazakov [17] detailing the structure of Q-
systems with Dr-symmetry appeared shortly before Paper I, see also [63]. It
is based on an operatorial construction of Q-functions and contains results,
among others, that overlap with those presented in this chapter.

We will take the same route as in Chapter 6 and start by giving QQ-relations
in Section 7.1. In Section 7.2 we review how to find the QQ-relations from the
construction of Chapter 5. In Setion 7.3 we find the character solution of the
D4 T-system. Finally, in Section 7.4 we describe how to find the spectrum of
compact rational spin chains with Dr symmetry.

We illustrate the Dr Cartan matrix, the Dynkin diagram as well as our la-
belling conventions in Figure 7.1.

7.1 The Pure Spinor Q-System
Based on the ODE/IM perspective presented in Chapter 5 and experience from
the gln Q-system from Chapter 6 we want to build a Q-system out of basic rep-
resentations. The two basic representations of Dr are the two spinor represen-
tations S+,S− and in Chapter 5 we found that we can find all other Q-functions
from these representations. Thus we are in the end left with 2r Q-functions to
study. This is still a large number, we expect there to only be r independent
functions, just as there are r qa-functions appearing in the Bethe equations. We

Dr :
1 2 r−2

r−1

r

C =



2 −1 0 . . .
−1 2 −1 . . .
0 −1 2 . . .
...

...
...

. . .
...

. . . 2 −1 −1

. . . −1 2 0

. . . −1 0 2



Figure 7.1. Dynkin diagram and Cartan matrix for Dr
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must therefore find a way to cut the number of independent spinor Q-functions
down to only r functions. This task will be accomplished in this section.

In Section 2.3 we wrote down an oscillator realisation of the spinor repre-
sentation and found that S+ and S− decompose into antisymmetric tensors of
slr. We will therefore use the form notation introduced in Chapter 6. Combin-
ing both S+ and S− into a Dirac spinor we write

Ψ =
r

∑
n=0

Ψ(n) , Ψ(n) = ΨA θ
A , |A|= n , (7.1)

where a = 1, . . .r and A is a multi-index containing a. Furthermore, when
writing ΨAθ A we only sum over ordered indices. For example, if r = 3 we
have Ψ(2) = Ψ12θ 12+Ψ13θ 13+Ψ23θ 23. With this notation we are now ready
to write down a Dr version of the gln Q-system.

7.1.1 Pure spinor QQ-relations
To build a Q-system out of the spinor components ΨA we constrain them to
satisfy

W (ΨAa,ΨAb) =W (ΨAab,ΨA) , (7.2)

We will call these relations pure spinor QQ-relations. They are to be supple-
mented with the quantisation condition

W (Ψ1,Ψ2, . . . ,Ψr) = Ψ
[r−2]D
/0 . (7.3)

These are the relations proposed in Paper II to generalise the gln Q-system.
We will shortly describe them in more detail, but we first turn to the analogue
of the Wronskian solution in gln.

As already mentioned we would like to express all our spinorial Q-functions
in terms of only r independent functions. In our current set-up those r-functions
are Ψa. Given Ψa it is possible to deduce Ψ /0 from the quantisation condition
(7.3). With Ψ /0 fixed Ψab is computed through the Wronskian relation

W (Ψab,Ψ /0) =W (Ψa,Ψb) , (7.4)

while all remaining Q-functions follow from

Ψ(2n) =
1
n!

Ψ(2)∧·· ·∧Ψ(2)

Ψ
n−1
/0

, (7.5a)

Ψ(2n−1) =
1

(n−1)!
Ψ(1)∧Ψ(2)∧·· ·∧Ψ(2)

Ψ
n−1
/0

. (7.5b)

The proof that (7.5) solves (7.2) can be found in Paper II, it uses the Plücker
identities (6.6) but is slightly lengthier than the gln version. The identities (7.5)
was employed already by Cartan [85] in a different but surprisingly related
setting. He called spinors satisfying these properties pure spinors, this is the
reason for our choice of name.
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7.2 Dr Covariant Formalism
In Chapter 5 we found how to "fuse" spinors into vectors. We will now outline
how this formulation leads to the Q-system presented in Section 7.1 and also
deduce the expected identity

V i1,i2...,ik =W (V i1 ,V i2 , . . .V ik) . (7.6)

This section is technical, and we will at many times try to take small shortcuts
to quickly reach the more important expressions. We refer to Paper II for a
complete treatment.

7.2.1 Spinors and their properties
To explicitly realize the spinor representations we can use the oscillator con-
struction of Section 2.3. We introduce the following notation

fa = Γ
a , fa = Γa . (7.7)

and use indices i ∈ {1,2, . . .r,−r,−r + 1, · · · − 1} and a ∈ {1,2, . . . ,r} as in
Chapter 3. Let us introduce an off-diagonal metric gi j = δ i+ j,0 and packages
Γa and Γa into Γi, in particular Γ−a = Γa. We notice that these Γ-matrices
satisfy the Clifford algebra {Γi,Γ j} = gi j. Let us also introduce the chirality
matrices Γ±. When acting on the basis θ introduced in (7.1) we have

Γ
a
θ

A = θ
aA , Γaθ

A = ∂aθ
A , Γ

±
θ

A =
1± (−1)|A|

2
θ

A , (7.8)

where ∂ is a fermionic derivative.
To construct ΓI with I a multi-index we simply anti-symmetrize single-

index Γ-functions. For example, Γi j = 1
2

(
ΓiΓ j−Γ jΓi

)
. Finally, C is con-

structed as

C =
(
Γ

r +Γ
−r) . . .(Γ1 +Γ

−1) , C θ
A = (−1)

(r−|A|)(r−|A|−1)
2 ⋆θ

A . (7.9)

where ⋆θ A = εAAθ A and A is the complement of A.

7.2.2 Finding the pure spinor Q-system
Let us recall the results from Chapter 5. We found that

Ψ
[−r+1+|I|]

Γ
I
Γ
±

Ψ
[r−1−|I|] =V I , |I| ≤ r−1 , (7.10a)

Ψ
[−r+1]

Γ
±

Ψ
[r−1] = 1 . (7.10b)

and

Ψ
[−m]

Γ
I
Γ
±

Ψ
[m] = 0 , |I| ≤ r−2 , m ∈ {−r+2+ |I|, . . . ,r−2−|I|} .

(7.11)

49



We want to verify that (7.10) and (7.11) imply the pure spinor QQ-system of
Section 7.1. To further simplify the presentation we will here focus on D4.

Using the relations ΨΓ+ Ψ = 0,ΨΓa Γ−Ψ = 0 it is immediate to verify the
parameterisation (7.5). Next, the spinor relations (7.4) follows from

Ψ
−

Γ
ab

Γ
+

Ψ
+ = Ψ

−
Γ

ab
Γ
−

Ψ
+ .

This leaves only the quantisation condition (7.3). To find this equation we
need the following computation

Ψ
[−m]

Γ
+

Ψ
[m]

= Ψ
[m]
1234Ψ

[−m]
/0 −Ψ

[m]
12 Ψ

[−m]
34 +Ψ

[m]
13 Ψ

[−m]
24 −Ψ

[m]
14 Ψ

[−m]
23 +(m↔−m)

= Ψ
[m]
/0 Ψ

[−m]
/0 ⋆

Ψ
[m]
(4)

Ψ
[m]
/0

−
Ψ

[m]
(2)∧Ψ

[−m]
(2)

Ψ
[m]
/0 Ψ

[−m]
/0

+
Ψ

[−m]
(4)

Ψ
[−m]
/0


=

Ψ
[m]
/0 Ψ

[−m]
/0

2
⋆

Ψ
[m]
(2)

Ψ
[m]
/0

−
Ψ

[−m]
(2)

Ψ
[−m]
/0

2

=


0 m = 0,1,2 ,
Ψ
[3]
(1)∧Ψ

[1]
(1)∧Ψ

[−1]
(1) ∧Ψ

[−3]
(1)

Ψ
[1]
/0 Ψ

[−1]
/0

m = 3 ,
,

(7.12)

from which we see that Ψ
[−3]

Γ+Ψ[3] = 1 indeed implies the quantisation con-
dition (7.3). This completes our derivation of the pure spinor Q-system from
the covariant formalism.

7.2.3 Vectors and spinors
Let us now discuss how to find the vectors V i which we defined in (7.10).
Using a very similar computation as (7.12) it is possible to find that

V a = ε
abcd Ψ

[2]
b ΨcΨ

[−2]
d

Ψ /0
, V ab = ε

abcd
Ψ

+
c Ψ
−
d . (7.13)

We find that this implies W (V a,V b) = V ab after using (7.3). How do we find
Va? There is a neat trick, we can see from (7.5) that

(∂a−µabθ
b)Γ+

Ψ = 0 , µab ≡
Ψab

Ψ /0
. (7.14)

This allows us to derive

Va = Ψ
[−2]

ΓaΓ
+

Ψ
[2] = µ

[2]
ab Ψ

[−2]
Γ

b
Γ
+

Ψ
[2] = µ

[2]
ab V b , (7.15)
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and gives a very useful relation

Va = µ
[m]
ab V b , m =−2,0,2 . (7.16)

Using this relation we can compute

W (Va,V b) = µ
+
acV

cb =Va
b , (7.17)

and in a similar fashion one finds, as was already announced,

V i1,i2,...,ik =W (V i1 ,V i2 , . . . ,V ik) . (7.18)

7.3 D4 Character Solution of the T-System
We recall the T-system for an algebra of type D4,

T−1,sT
+

1,s = T1,s+1T1,s−1 +T2,s , (7.19a)

T−2,sT
+

2,s = T2,s+1T2,s−1 +T1,sT3,sT4,s , (7.19b)

T−3,sT
+

3,s = T3,s+1T3,s−1 +T2,s , (7.19c)

T−4,sT
+

4,s = T4,s+1T4,s−1 +T2,s . (7.19d)

In [17] and Paper I a solution to this system was found using bilinear combi-
nations of Q-functions

T1,s = (V i)[−s−3]V [s+3]
i , T2,s =

1
2
(V i j)[−s−3]V [s+3]

i j , (7.20)

T3,s = Ψ
[−s−3]

Γ
−

Ψ
[s+3] , T4,s = Ψ

[−s−3]
Γ
+

Ψ
[s+3] . (7.21)

These relations can be rewritten in many different ways by the use of various
QQ-relations. For a variety of results see [17] and Paper II. Instead of simply
repeating the formulas from those papers, let us consider how one can go about
solving the T-system, this will also be important practice before Chapter 8.

We will discuss the so-called character solution of the system. The charac-
ter solution is given by constant Ta,s-functions encoding the decomposition of
the KR-module Wa,s into g-irreps. On the level of Q-functions, the character
solution amounts to setting

V i = Bix
u
h̄
i , no sum , (7.22)

with x−a =
1
xa

. To most easily find the character solution we use that

T1,m−3 = (V i)[−m]V [m]
i = 0 , m = 2,1,0 , T1,0 = (V i)[−3]V [3]

i = 1 . (7.23)
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These equations are consequences of (7.16). For example

(V i)[−2]V [2]
i = (V a)[−2](V b)[2]

(
µ
[2]
ab −µ

[−2]
ab

)
= (V [−2])a(V [2])b (W (Ψa,Ψb)

++W (Ψa,Ψb)
−)

= 0 ,

(7.24)

where the last line follows from (V a)[m]Ψa = 0 for m =−2,0,2, see (7.13).
Let us then write out the expression for T1,s, it becomes

T1,s =
4

∑
a=1

BaB−a(x
s+3
a +

1
xs+3

a
) . (7.25)

It is immediate to solve the equations T1,−3 = T1,−2 = T1,−1 = 0 and T1,0 = 1,

BaB−a =
εabcd(x2

b +
1
x2

b
)(xc +

1
xc
)(x0

d +
1
x0

d
)

|∆|
, ∆ = |x4−b

a +
1

x4−b
a
| , (7.26)

with no sum over a. Here |Mb
a | denotes the determinant of the matrix Mb

a . Let
us recall the character for L(sω1), it is given by

χ(sω1) =

∣∣xsδb,1+4−b + 1

x
sδb,1+4−b
a

∣∣
∆

, (7.27)

and so we find T1,s = χ(sω1). The same calculations for spinors reveals that
T3,s = χ(sω3),T4,s = χ(sω4). To find T2,s is now simply a bit of algebra. It
turns out to be more efficient to compute the difference T2,s−T2,s−1. Using
the solution (7.26) one obtains

T2,s−T2,s−1 = χ(sω2) , (7.28)

and the initial value T2,0 = 1. In conclusion, the character ansatz leads to

Ta,s = χ(sωa) , a = 1,3,4 , T2,s =
s

∑
m=0

χ(mω2) . (7.29)

This is indeed the decomposition of Wa,s(θ) over Dr.

7.4 Compact Rational Spin Chains
To solve a compact rational spin chain we employ the analytic ansatz

V I = σ|I|v
I , |I| ≤ r−2 , (7.30a)

ΨA = σr−1 ψA , |A| odd , ΨA = σr ψA , |A| even , (7.30b)
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with ψA and vI polynomial and no sums. Here the "dressing phases" σa satisfy

r

∏
b=1

σ
[−Cab]D
b = Pa . (7.31)

We then reformulate the quantization (7.3) and the basic QQ-relations (7.4) as

W (ψ1, . . . ,ψr) = ψ
[r−2]D
/0

r−1

∏
a=1

P[a]D
a , (7.32)

Pr W (ψa,ψb) = Pr−1W (ψab,ψ /0) . (7.33)

The first equation (7.32) was proposed in [17] to play the role of the Wronskian
Bethe equations of gln for Dr. But, as also noticed in [17], this equation is not
enough, it will generally produce too many solutions. The fix is to take (7.4)
into account. We furthermore note that in general one also needs to include
kinematic constraints. They arise from the fusion of spinors into vectors and
are given by

Remainder

(
W (ψa1 , . . . ,ψak)

ψ
[k−2]D
/0 ∏

r−1
b=r−k+1 P[b+k−r]

b

)
= 0 . (7.34)

Let us consider a homogeneous spin chain. We recall that a finite-dimensional
representation of Y (g) is specified by a set of Drinfeld polynomials. Given
these polynomials, we define

λmax =
r

∑
a=1

ωa degPa . (7.35)

This is the weight of the ground state of the spin chain. Let λ be the weight of
the state we want to consider. To fix the degree of ψa and ψ /0 we introduce

γa = ωr− εa , γ /0 = ωr , (7.36)

where εa is the orthogonal basis of Chapter 2. Then we have

deg(ψa) = (ωr−1,λmax +ρ)− (γa,λ +ρ) , (7.37)
deg(ψ /0) = (ωr,λmax +ρ)− (γ /0,λ +ρ) , (7.38)

where ρ = ∑
r
a=1 ωa is the Weyl vector. It was checked in Paper II that this

reproduces the spectrum of a rational spin chain to a moderately large length,
for example, all 1456 expected solutions for P1 = u7,Pb̸=1 = 1 was recovered.
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8. Q-System for B2/C2

In this chapter, we discuss the most basic example of a non-simply laced al-
gebra; B2 ≃C2. Q-systems for B2 ≃C2 have been discussed in the context of
ODE/IM [77] and a solution of the B2 ≃C2 T-systems using Wronskian like
expressions were found in [86]. Still, in comparison to simply-laced algebras,
B2 remains largely unexplored. The methods used in this section naturally
explain the connection between [77] and [86].

The goal of this Chapter is to show how a Q-system for B2 ≃ C2 can be
constructed as a natural generalisation of the Dr Q-system detailed in Paper II
and reviewed in Chapter 7. The results in this chapter are new and not included
in any of the attached papers.

In Section 8.1 we will define the B2 ≃C2 Q-system. Using the Q-functions
we will solve the T-system in Section 8.2. In particular, we give regarding the
character solution of the T-system. Thereafter in Section 8.3 we explain how
to build a Baxter equation. In Section 8.4 we solve some simple rational spin
chains and we conclude in Section 8.5.

8.1 Proposal for the B2 Q-System
Let us recall that B2 ≃C2 have two fundamental representations, the vector 5
and the spinor 4. We give the Dynkin diagram and the character of these two
representations in Figure 8.1.

We will use labelling similar to the one introduced for Dr: V i will be a
vector with i = 1,2,0, 2̄, 1̄ with ā = −a and Ψ a 4-dimensional spinor. There
is now only one type of spinor, we write it using the superspace notation as

Ψ = Ψ /0 +Ψaθ
a +

1
2

Ψabθ
ab . (8.1)

B2 :
1 2

χ([10]B2) = x1 +x2 +1+
1
x2

+
1
x1

,

χ([01]B2) =
√
x1
√
x2 +

√
x1√
x2

+

√
x1√
x2

+
1

√
x1x2

Figure 8.1. Dynkin Diagram for B2 and the character of 5 and 4 using the orthogonal
basis 2.2 .
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We will also need matrices C,g and γ i. We will define these as follows

γ
±1 = σ

∓⊗1 , γ
±2 = σ

z⊗σ
∓ , γ

0 =
1
2

σ
z⊗σ

z ,

C =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 , gi j =


0 0 0 0 1
0 0 0 1 0
0 0 2 0 0
0 1 0 0 0
1 0 0 0 0

 ,

where σ+ =

(
0 1
0 0

)
,σ− =

(
0 0
1 0

)
and σ z the standard Pauli matrix. With

the definitions taken care of we now proceed to construct the B2/C2 Q-system.
Inspired by the ODE/IM correspondence [77] and the covariant formulation of
Dr presented in Chapter 7 we propose the following covariant set of equations

Ψ
[−2]

γ
i
Ψ

[2] =V i , (8.2)

V i j ≡Wr(V i,V j) = Ψ
[−1]

γ
i j

Ψ
[1] . (8.3)

We immediately note that (8.2) and (8.3) are not independent. For them to
be consistent the following constraints must be satisfied

Ψ
[−1]

Ψ
[1] = 0 , Ψ

[−3]
Ψ

[3] = 1 . (8.4)

This looks very familiar to the quantization conditions we have encountered
previously, it is a good indication that we are on the right track. Let us also
note that if we write out Ψ

[−1]
Ψ = 0 in components we obtain

W (Ψ12,Ψ /0) =W (Ψ1,Ψ2) , (8.5)

which is nothing but the Dr QQ-relations we familiarised ourselves with in
Section 7.1. Indeed, it is not hard to see that Ψ1 and Ψ2 are the two only
independent functions since we can fix Ψ12 and Ψ /0 from (8.4).

8.2 The T-System and The Character Solution
We already wrote down the T-system for B2 ≃C2 in Section 4.2. Let us write
it here with slightly different notation as

T [−2]
5,s T [2]

5,s = T5,s−1T5,s+1 +T4,2s , (8.6a)

T−4,2sT
+

4,2s = T4,2s−1T4,2s+1 + T−5,sT
+

5,s , (8.6b)

T−4,2s+1T+
4,2s+1 = T4,2sT4,2s+2 + T5,sT5,s+1 . (8.6c)
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The subscript 5 and 4 is to remind us which representations are being traced
over in the auxiliary space.

From (8.4) it is reasonable to expect that Ψ
[−3−2s]

Ψ[3+2s] describes the spec-
trum of a transfer-matrix, see (7.20). This expectation turns out to be correct,
but with an amusing twist; it is equal to T5,s, not T4,s. The full T-system (8.6)
is solved by the following ansatz:

T5,s = Ψ
[−3−2s]

Ψ
[3+2s] , (8.7)

T4,s =V [−3−s]
i V i

[3+s]+
(−1)s

2
W [−3−s]W [3+s] , (8.8)

where W = Ψ
[−2]

Ψ[2] is simply short-hand notation. To verify this statement
is an algebraic exercise using the definition of Ψ.

8.2.1 The character solution
Having found a bilinear ansatz for the T-system we proceed to consider the
character solution. This section is slightly technical, anyone not interested in
the details can find the final result given in (8.14). As for D4 we take an ansatz
for the Q-functions in terms of xa. In our current case it is favourable to start
from the spinor Q-function

ΨA = AA
∏

r
a=1x

u
2h̄
a

∏a∈Ax
u
h̄
a

. (8.9)

Just as for D4 it is much easier to solve the constraints (8.4) than the full Q-
system to quickly obtain the character solution. We write

Ψ
[−3−2s]

Ψ
[3+2s] =

A0 A12(x
3
2+s
1 x

3
2+s
2 − 1

x
3
2+s
1 x

3
2+s
2

)+A1 A2(
x

3
2+s
2

x
3
2+s
1

−
x

3
2+s
1

x
3
2+s
2

) ,
(8.10)

Enforcing the constraints T5,−1 = 0,T5,0 = 1 fixes

A0A12 =
1
∆̃

1
√
x1x2

(x1−x2) , A1A2 =
1
∆̃

x1x2−1
√
x1x2

. (8.11)

where ∆̃ = |x3−b
a − 1

x3−b
a
|a=1,2
b=1,2

is Vandermonde-like factor. To find T4,s we start

by finding V i and W from their respective definitions in terms of Ψ, see (8.3)
and then use (8.7). We obtain the following expression

T5,s =
1

√
x1x2∆̃

(x1−x2)

x
s+ 3

2
1 x

s+ 3
2

2 − 1

x
s+ 3

2
1 x

s+ 3
2

2

+(x1x2−1)(
x

s+ 3
2

2

x
s+ 3

2
1

−
x

s+ 3
2

1

x
s+ 3

2
2

)


(8.12)
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and a significantly bulkier expression for T4,s. We can now verify that these so-
lutions indeed reproduce the correct Lie-algebra decomposition of KR-modules.
The trick to making this comparison easier is to write down the character in
the orthogonal basis of C2. Consider therefor a representation L([ab]C2) of C2
and associated with it λ = {a+ b,b}. The character of a finite-dimensional
representation of C2 is given by

χ(λC2) =
1
∆̃

∣∣∣∣∣∣∣
x

λ1+2
1 − 1

x
λ1+2
1

x
λ2+1
1 − 1

x
λ2+1
1

x
λ1+2
2 − 1

x
λ1+2
2

x
λ2+1
2 − 1

x
λ2+1
2

∣∣∣∣∣∣∣ . (8.13)

By considering [0s] and expanding the determinant we reproduce (8.12). For
T4,s it is useful to compute T4,s−T4,s−2. After some, rather long, algebra this
yields the following identification

T5,s = χ([0s]C2) , T4,s =
[ s

2 ]

∑
m=0

χ([s−2m,0]C2) . (8.14)

This agrees perfectly with the results in the literature [41].

8.3 A Baxter Equation
A happy surprise is that for B2/C2 one can find a powerful equation relating
Q-functions, quantum eigenvalues and fundamental T-functions. It was found
in [86] that one should consider the following generating functional

B =

(1−Λ
[−4]
1̄ D−2)(1−Λ

[−4]
2̄ D−2)(1−Λ

[−4]
2̄ Λ

[−6]
2 D[−4])(1−Λ

[−4]
2 D−2)(1−Λ

[−4]
1 D−2)

= 1−T [−4]
4,1 D−2 +T [−5]

5,1 D−4−T [−7]
5,1 D−8 +T [−8]

4,1 D−10−D−12

(8.15)

Where Λ are the quantum eigenvalues introduced already in Chapter 4, we
repeat them here and also highlight how they are connected to V i;

Λ1 =
Q[4]

4

Q[2]
4

=
(V 1)[4]

(V 1)[2]
, Λ2 =

Q[4]
5

Q5

Q4

Q[2]
4

=
(V 12)[3]

(V 12)[1]
V 1

(V 1)[2]
(8.16)

Λ1̄ =
Q[−4]

4

Q[−2]
4

=
(V 1)[−4]

(V 1)[−2] , Λ2̄ =
Q4

Q[−2]
4

Q[−4]
5
Q5

=
V 1

(V 1)[−2]

(V 12)[−3]

(V 12)[−1] .

With the expressions for Λ in hand we can now explicitly see what combi-
nations of our Q-functions are killed by the Baxter operator (8.15). Direct
computations yields

BV i = 0 , B (−1)
u
h̄ W = 0 . (8.17)
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This allows us to find explicit determinant representations of the T-functions
by expanding a trivial determinant. With notation Uλ = {V i,(−1)

u
h̄ W} and

writing
|abcde f |= |Ûλ

[g]|g=a,b,..., f
λ=1,2,...,6

. (8.18)

the T-functions are obtained as

T4,1 =
|620246|[−2]

|420246|[−2]
, T5,1 =

|640246|[−1]

|420246|[−1]
, (8.19)

with ā = −a. These are the Weyl type formulas of [86]. One can calculate
[0246810] = (−1)

u
h̄ .

8.4 Wronskian Bethe Equations
In this section, we study the spectrum of rational spin chains with B2 ≃ C2
symmetry. We will work with a generalisation of the Wronskian Bethe ap-
proach discussed for gln in Section 6.2 and Dr in Section 7.4.

We will consider the following Yangian representation, or spin chain,

H =
L4⊗

W4,1⊗
L5⊗

W5,1 . (8.20)

Where W4,1 = 4,W5,1 = 5 as g representations. This is a consequence of the
R-matrices we wrote down in Chapter 3. The analytic Bethe ansatz in this case
is

ΨA = σ5 ψA , V i = σ4 vi , (8.21)

where ψA and vi are polynomials of the spectral parameter u.
The Bethe equations for a rational spin chain are

q[2]4

q[−2]
4

q[−2]
5

q[−2]
5

∣∣∣∣∣
q4=0

=−
P+

5
P−5

,
q[4]5

q[−4]
5

q[−2]
4

q[−2]
4

∣∣∣∣∣
q5=0

=−
P[2]

5

P[−2]
5

. (8.22)

Write Ψ /0 = Q5 = σ5q5 and V 1 = Q4 = σ4q4, we reproduce (8.22) from (8.2)
and (8.3) by imposing

σ
+
5 σ
−
5

σ
+
4 σ
−
4

= P4 ,
σ4

σ
[2]
5 σ

[−2]
5

= P5 . (8.23)

To find the Wronskian Bethe equations we use the quantization condition
T5,1 = 1 and simplify it slightly using (8.5) to∣∣∣∣∣∣∣∣∣

ψ
[3]
/0 0 ψ

[−1]
/0 0

0 ψ
[1]
/0 0 ψ

[−3]
/0

ψ
[3]
2 ψ

[1]
2 ψ

[−1]
2 ψ

[−3]
2

ψ
[3]
1 ψ

[1]
1 ψ

[−1]
1 ψ

[−3]
1

∣∣∣∣∣∣∣∣∣= ψ
+
/0 ψ
−
/0 P4 P+

5 P−5 . (8.24)
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L 2 3 4 5 6 7
⊗LW4,1 3(0.04 s) 6(0.34 s) 20(1.08 s) 50(1.5 s) 175(10 s) 490(166.39)
⊗LW5,1 3(0.27) 7(1.13) 25(8.47) 81(86.15) - -

Table 8.1. Table of the number of solutions found from the Wronskian equation and
the time spent to find them.

The equation immediately teaches us one important fact: fusion of two spinors
gives a vector, this follows from the fact that P4 = (u+ h̄

2)
L(u− h̄

2)
L is indis-

tinguishable from P5 = uL.
Finally, we need a prescription to compute the degree of the spinor given

L4,L5 in (8.20) and the quantum numbers of the state we are considering. We
will use B2 notation and encode this information in a magnon vector M and a
highest weight λmax

λmax = L4 ω
∨
1 +L5 ω

∨
2 , M = M4 α

∨
1 +M5 α

∨
2 , (8.25)

The formula for the degree of the Q-functions can be written in a group the-
oretical way, let λa = {ω2,ω2−α2,ω2−α1−α2,ω2−α1−2α2} encode the
weights of the spinor representation. We find

deg(ψa) = (λa,M)+(ωa−λa,λmax +ρ
∨) , ρ

∨ =
2

∑
a

ω
∨
a . (8.26)

Recall that when we solved the Ar and Dr spin chains we needed to also
impose kinematic constraints. These constraints are of course also needed in
our current setup. They are found from (8.2) and (8.3) after plugging in the
analytical ansatz, the result is

Res

(
ψ

[−2]
γ iψ [2]

P5

)
= 0 . (8.27)

We put (8.24) on a standard laptop and asked Mathematica to solve these
equations, the result is shown in table 8.1. When solving for a spin chain with
nodes in the vector representation we also used (8.27).

8.5 Conclusions
A better understanding of B2 ≃C2 Q-systems should be of help in the Gaudin-
based approach to CFTs in 3 dimensions [87], another possible application is
in the study of fishnets and fishchains for ABJM [88–92]. Furthermore, the
Baxter equation looks amendable to the functional SoV approach [93–95]. So
far the functional SoV methods have not been extended beyond gln. It seems
that B2 ≃ C2 could be an ideal testing ground to understand more general
algebras.
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9. Operators on the Squashed Seven-Sphere

In this chapter, we take a break from the discussion of Q-systems. We will
instead discuss algebraic methods to obtain the spectrum for several different
operators on the squashed seven-sphere. This chapter is a review of Paper III
We will omit most technical details and only sketch the methods used.

Section 9.1 discusses eleven-dimensional supergravity and Freund-Rubin
[96] compactification. In Section 9.2 the squashed seven-sphere is introduced
and we outline how to use its coset space structure to our advantage. Finally,
in Section 9.3 we summarize the results of Paper III and comment on recent
related progress in the literature.

Many of the details regarding eleven-dimensional supergravity and com-
pactification are expertly reviewed in [97].

9.1 Eleven-Dimensional Supergravity
In eleven dimensions there exists a unique two-derivative N = 1 supergrav-
ity [98]. Eleven-dimensional supergravity of course naively fails to describe
the four-dimensional world around us. To build a realistic model we need to
explain how to deal with the seven extra dimensions present in the theory. One
way of resolving the issue is through compactification, wherein the additional
dimensions are compact and small, thus unnoticeable to the human eyes. In
eleven-dimensional supergravity it was realised by Freund and Rubin [96] that
it is possible to turn on background fields in such a way that compactification
happens spontaneously, i.e it is a consequence of Einstein’s equations. The
resulting space-time is of type AdS4×M7 with M7 a compact Einstein space.
Unfortunately, AdS4 does not seem to describe our world.

The question we would like to address in this chapter is that of finding
the mass spectra on AdS4. Starting from eleven-dimensional fields Φ one
considers a perturbation around their vacuum value, Φ = ⟨Φ⟩+ Φ̂. Let x be
coordinates on AdS4 and y coordinates on M7, the field Φ̂ is schematically split
as Φ̂(x,y) = Φ̂(x)Y (y) where Y are eigenvalues of the mass operators on M7.
For explicit expressions for the operators see [97]. For our purposes we need
only know that the differential operators appearing in M are the Laplace-de
Rham operator ∆p = dδ + δ d which acts on antisymmetric tensor, the Dirac
operator /D = −i/∇ which acts on spinors and the Lichnerowicz operator ∆L
which acts on symmetric traceless tensors. Here d is the exterior derivative,
δ = (−1)p ⋆ d⋆ its adjoint and the Lichnerowicz operator is obtained from
linearizing Einstein’s equations, see [97] for an explicit expression.
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9.2 The Squashed Seven-Sphere
When M7 is a coset-space G/H there exists a powerful method due to Salam
and Strathdee [99] to study differential operators, see also [97] for a review.
One splits the generators TA of G into Tā describing H and their orthogonal
complement Ta. Using Ta the action of a covariant derivative is given as

−TaY = ∇aY +
1
2

fa
bc

ΣbcY . (9.1)

where Σ are generators of Spin(7) for the relevant representation. The strength
of (9.1) is that it allows us to trade covariant derivatives for the generators Ta
and algebraic expressions.

We will be interested in the case when M7 is the squashed seven-sphere.
Luckily, the squashed seven-sphere is a coset manifold of type

G/H = Sp2×SpC
1/SpA

1 ×SpA+B
1 , (9.2)

where Sp2 is split as SpA
1 × SpB

1 and SpA+B
1 is the diagonal subgroup of SpB

1
and SpC

1 . Let us take an orthonormal basis, in [100] it was found that for the
squashed-seven sphere the structure constants fabc are given as

fabc =−
2
3

maabc , (9.3)

with aabc the octonion structure constants. aabc is a fully antisymmetric tensor
such that

aabc = 1 , abc = 456,041,052,063,162,135,243 . (9.4)

The octonion structure constants can be nicely encoded in 7 dimensional Γ-
matrices. Introduce A = {a,8} with a = 1, . . . ,8 then

(Γa)b
c = aabc , (Γa)b

8 = iδab , (Γa)8
b =−iδab . (9.5)

In particular, we can introduce the Killing spinor η such that

∇aη =−im
2

Γaη , ηη = 1 . (9.6)

In particular,

aabc = iη̄Γabcη . (9.7)

This allows us to derive expressions such as ∇abcd = mcabcd with cabcd =
1
6 εabcde f gae f g.

9.2.1 The spectrum of scalars and vectors
Let us review the typical steps in the computation treating the scalar and vector.
This computation can be found both in [97] and in Paper III. We repeat the step
here once again because they clearly illustrate the main technical tricks needed
for other more complicated operators. For a complementary method see [101].
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9.2.2 The scalar
Let Y be a scalar of Spin(7), we find ∆0 =−∇a∇a. Using (9.1) we thus have

∆0Y =−TaTaY . (9.8)

We can write TaT a = (CG−CH) with C the quadratic Casimir for either G or
H. This fixes the spectrum of scalars.

9.2.3 The vector
We now turn to vectors, let us introduce Ya such that ∆1Ya = λ 2

1 Ya and ∇aYa =
0. For vectors the Laplace-de Rham operator acts as ∆1Ya = −□Ya +Ra

bYb
with □ ≡ ∇a∇a. The squashed seven-sphere is an Einstein manifold with
Ra

b = 6m2Ya. By squaring (9.1) one derives that

□Ya +
2m
3

aabc∇bYc−6m2aab
cYc =−C2Ya , (9.9)

where the explicit value GH = 12
5 have been used. With this equation at hand

one find that
(λ 2

1 −CG)Ya =
2m
3

aabc∇bYc . (9.10)

At this stage, one uses the following trick: square the operator (DY )a = aabc∇bYc.
After some algebra it is revealed that

(D2Y )a−4m(DY )a−λ
2
1 Ya = 0 . (9.11)

Using (9.10) an algebraic equation on λ 2
1 is derived which is easily solved.

9.3 Results and Outlook
When considering more complicated operators compared to those of Sec-
tion 9.2 it becomes very convenient to decompose them into G2 irreps. Af-
ter this is performed the methods of Section 9.2 can be applied, although the
computations are significantly longer.

The accomplishments of Paper III was to find the eigenvalues of ∆0,∆1,∆2,∆3, /D1/2
and ∆L. Surprisingly, it was found that the number of eigenvalues was not
sufficient to distinguish all operators on the squashed seven-sphere found in
[102]. However, the full spectrum was recently obtained in [103], using an or-
thogonal method. It was found that the list of eigenvalues obtained in Paper III
is complete for the operators considered and that there are non-trivial multi-
plicities present 1. This recent progress opens up the possibilities of further
explorations of these models, see for example [105].

1See also [104].
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10. Review of Supersymmetric Q-Systems

We now return to Q-systems and integrable models. We will continue with
the theme of supersymmetry from Chapter 9 but now in the context of spin
chains [106, 107].

Supersymmetric Q-system were first introduced in [108], see also [109,
110]. We recall their definition in Section 10.1. As a warm-up for the Quantum
Spectral Curve, to be introduced in the next Part, we explain how to solve a
rational psu1,1|2 Q-systems in Section 10.2 using the methods of [111, 112].

10.1 Supersymmetric Spin Chains
To obtain a Q-system for glm|n from glm+n one can use a trick called fermioni-
sation (or "bosonisation") [113]. The prescription goes as follows: Let QM be
a glm+n Q-system, split the index M = {A, I}, |A|= m, |I|= n and define

QA|I = ε
JIQAJ . (10.1)

The functions QA|I form what we will call a glm|n Q-system. For future refer-
ence, we write the QQ-relations in this new notation:

W (QAa|Ii,QA|I) = QAa|I QA|Ii , (10.2a)

W (QAa|I,QAb|I) = QAab|I QA|I , (10.2b)

W (QA|Ii,QA|I j) = QA|I QA|Ii j . (10.2c)

It is standard to refer to the indices A as bosonic, so that for example Qa| /0 is
a bosonic Q-function, and the indices I as fermionic. This is only a naming
convention, there is nothing fermionic about Q-functions.

10.1.1 Symmetries
Symmetries of the supersymmetric Q-system follow naturally from the gln
system described in Chapter 6.

Rotations
We can rotate bosonic Q-functions and fermionic Q-functions independently.
The transformations are

Qa| /0 7→ (Hb)a
bQb| /0 , Q /0|i 7→ (Hf)i

jQ /0| j , (10.3)

and extend to other Q-functions in a natural way.
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m

n

Figure 10.1. The supersymmetric L-hook for sum|n, we associate Ta,s to each vertex.

Gauge-transformations
The supersymmetric Q-system stays invariant under the same type of gauge
transformations as its parent glm+n Q-system. Gauge transformations can be
parameterised as

QA|I 7→ g[|A|−|I||]1 g[−|A|+|I|]2 QA|I . (10.4)

Hodge duality
Finally, we have Hodge duality. This transformation acts as

QA|I 7→ QA|I = (−1)|A||I|εAA
ε

IIQA|I . (10.5)

Compact rational spin chains and their T-system
The T-functions of a compact supersymmetric spin chain are labelled as Ta,s.
The functional relations between Ta,s are the same as those of a glm+n system,

T+
a,sT

−
a,s = Ta+1,sTa−1,s +Ta,s+1Ta,s−1 , (10.6)

but the shape of the T-system must be modified to that of an L-hook, see
Figure 10.1. Intuitively we find two different infinite directions since in a
supersymmetric system we can consider an arbitrary number of symmetrised
bosons or an arbitrary number of antisymmetrised fermions.

10.2 The psu1,1|2 Spin Chain
Throughout this thesis, we have so far only considered compact rational spin
chains. In this section, we will take a look at a non-compact supersymmetric
spin chain.

We will consider the example of psu1,1|2, the reason for this choice is mainly
due to its relevance for AdS3×S3×T4 to be described in Chapter 13. Luckily,
the generalisation from psu1,1|2 to psu2,2|4 relevant for AdS5×S5 is relatively
straightforward.
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From this point on we set h̄ = i as is appropriate for AdS/CFT integrability.
To construct a representation of psu1,1|2 we use oscillators. Let us introduce

the notation

a1 = b† , a1 =−b , a2 = a , a2 = a† , (10.7)

which gives the following generators

E =

−bb† −bfa −ba
f†

ab
† f†

afb f†
aa

a†b† a†fa a†a


.

We will introduce the representation Vf which we define by its highest weight
state φ1 = |HWS⟩= f†

1 |0⟩where |0⟩ is the Fock vacuum a |0⟩= b |0⟩= fa |0⟩=
0. We note that since a†b† can act arbitrarily many times on |0⟩ the represen-
tation is infinite-dimensional.

10.2.1 Bethe equations
The Bethe equations of a non-compact supersymmetric spin chain depend on
the grading. To describe a spin chain with Hilbert space H =

⊗L
i=1Vf [114,

115] we introduce distinguished Q-functions qA|I = ∏
MA|I
i (u−ui

A|I) with MA|I
an integer. The so-called auxiliary equations are as follows

q+1|1
q−1|1

∣∣∣∣∣
q1| /0=0

=
q+1|1
q−1|1

∣∣∣∣∣
q /0|1=0

=
q+1|1
q−1|1

∣∣∣∣∣
q1|12=0

=
q+1|1
q−1|1

∣∣∣∣∣
q12|1=0

= 1 . (10.8)

While the remaining two equations, which we will call momentum-carrying,
are given as (

u− i
2

u+ i
2

)L q[2]1|1

q[−2]
1|1

q−/0|1
q+/0|1

q−12|1

q+12|1

∣∣∣∣∣∣
q1|1=0

=−1 , (10.9a)

(
u+ i

2

u− i
2

)L q[2]1|1

q[−2]
1|1

q−1| /0
q+1| /0

q−1|12

q+1|12

∣∣∣∣∣∣
q1|1=0

=−1 . (10.9b)

We will say that (10.9a) is in the su2 sector and (10.9b) is in the sl2 sector.

10.2.2 The Q-system
We now introduce the Q-system, it is composed of Qa| /0,Q /0|i,Qa|i,Q12|i,Qa|12
and Q12|12. The structure of the Q-functions mirrors that of representation the-
ory to some extent. The indices a can be thought about as describing compact
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λ̂ = λ +{1,0}
ν̂ = ν +{−1,0}

λ̂ = λ +{0,1}
ν̂ = ν +{0,−1}

Figure 10.2. Instructions for how to find the shifted weights for states either in the
grading 11̂2̂2 or 1̂122̂. For definition of weights see Section 2.4

directions while i describes non-compact directions. However, only finite-
dimensional transformations act on the Q-functions. We will henceforth set
Q /0| /0 = Q12|12 = 1.

To describe the spin chain we need to employ an analytic ansatz and specify
the generalisations of Drinfeld polynomials for super spin chains. We will be
very non-ambitious and avoid all definitions. By simply comparing against
(10.9a) and (10.9b) we find the following prescription

Qa| /0 =
1
uL qa| /0 , Q /0|i = uL q /0|i . (10.10a)

To prepare ourselves for the AdS5/CFT4 QSC we introduce the notation

Pa = Qa| /0 , Qi = Q /0|i , (10.11)

Pa = Qa| /0 =−ε
abQb|12 , Qi = Q /0|i =−ε

i jQ12| j . (10.12)

These functions have the following asymptotics

Pa ≃ Aau−λ̂a , Qi ≃ Biu−ν̂i−1 , Qa|i ≃ i
AaBi

λ̂i + ν̂i
u−λ̂a−ν̂i , (10.13)

where λ̂a and ν̂i are so called shifted weights. They are equal to the standard
weights of the state under consideration up to integer shifts. We summarise
the off-sets in Figure 10.2 for the two gradings considered so far.

10.2.3 Solving the sl2 sector
Let us consider a state of the schematic form

∣∣φ1D
Sφ1
〉

with D = a†b†. In this
sector we have

λ̂ = {2,1} , ν̂ = {−S−2,S−1} , (10.14a)

from which one can calculate

A1 A1 =−iS (S+1) , A2 A2 = iS (S+1) . (10.15)
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The first step to finding the full Q-system is to solve for a subset of func-
tions Qa,s called distinguished Q-functions. The distinguished Q-functions are
defined as

Qa,s = Q1...a|1...s . (10.16)

An important property of Qa,s is that they are rational functions of u. There
exists an efficient method due to Marboe and Volin to find Qa,s [111]. The idea
is to embed the Q-system of gl2|2 into a larger supersymmetric Q-system, we
will not need it to solve the sl2 sector.

Due to the high amount of symmetry it is possible to demand that P1,P2 are
even and P2,P1 odd, this forces

P1 =
A1

u2 , P2 =
A2

u
, P1 = A1u , P2 = A2 . (10.17)

It is not hard to find all distinguished Q-functions explicitly in this case,
they are given by Q2,0 Q2,1 Q2,2

Q1,0 Q1,1 Q1,2
Q0,0 Q0,1 Q0,2

=


c2

(u[2]D )2 ∇S+1(u[S]D)2 1
c

u2 −∇S(u[S]D)2 1
1 ∇S−1(u[S]D)2 1

 ,
where ∇ f = f+− f−. All other Q-functions follow now from QQ-relations.
Let us note that using the QQ-relation Q+

a|i = (δ b
a −PaPb)Q−b|i it is possible to

derive a 2-order finite difference equation for Q1|i. It takes the form

1
(P1P2)+

Q[2]
1|i−

(
1− (P1P1)+

(P1P2)+
+

1+(P1P1)−

(P1P2)−

)
Q1|i +

1
(P1P2)−

Q[−2]
1|i = 0 .

(10.18)

Using the form of P we find

(u+)2 Q[2]
1|1− (2u2−S(S+1)− 1

2
)Q1|1 +(u−)2 Q[−2]

1|1 = 0 , (10.19)

which is the famous sl2 Baxter equation and the functions ∇S(u[S]D)2 are
known as Hahn polynomials [32, 116–118].

67





Part III:
Quantum Spectral Curve
The AdS/CFT duality [119–121] is one of the most influential developments in
theoretical high-energy physics during the last three decades. Roughly it states
that string theory or M-theory on anti-de Sitter space is dual to a conformal
field theory. We will not review the correspondence, suffice it to say, the dual-
ity is very challenging to confirm. However, in specific settings progress has
been made due to an integrable structure. In these cases, powerful tools have
been developed that allow us to study the correspondence in detail. It is the
purpose of this chapter to explain and explore how the formalism of Q-systems
studied and developed in the previous part plays a key role in the integrability
approach to AdS/CFT. This will lead us to the most powerful way to tackle the
spectral problem of AdS/CFT to date, the Quantum Spectral Curve (QSC).

Integrability was first observed in the duality between type IIB superstrings
on AdS5×S5 and four-dimensional N = 4 Super Yang-Mills theory. We will
briefly review some aspects of integrability in this context in Chapter 11. This
review will be severely incomplete, luckily many of the key developments un-
til 2010 are expertly reviewed in [122] which we refer to for more details and
references. In Chapter 12 we will formulate the AdS5×S5 Quantum Spectral
Curve. Following the literature, we will investigate the curve in various limits.
For clarity we will reproduce a variety of well-known results. As a bonus,
we will also present some novel calculations for deformations of the curve.
In Chapter 13 we turn our attention to planar string theory on AdS3×S3×T4.
This theory is expected to be integrable, just like its higher dimensional cousin
AdS5×S5. We will describe a conjectured QSC from Paper IV and its predic-
tions.





11. Integrability in AdS/CFT

In this chapter, we introduce integrability in the context of AdS/CFT. A brief
recollection of the spectral problem in N = 4 and its relation to supersymmet-
ric spin chains is presented in Section 11.1. The road to the QSC is outlined in
Section 11.2. Section 11.3 mentions some of the advancements of integrability
in the AdS4/CFT3 correspondence.

11.1 N = 4 and AdS5/CFT4
Four-dimensional N = 4 SYM is a special theory in many ways. It has a
maximal amount of supersymmetry and it is conformal [123, 124], possess-
ing the superconformal symmetry psu(2,2|4). A pleasant fact is that we can
write down the N = 4 Langrangian explicitly. It is most easily obtained by
compactification of 10 dimensional N = 1 SYM [125]. The bosonic piece
reads

SN =4,bos =
1

2g2
YM

∫
d4x
(
−1

2
trF 2 + trDµΦID

µ
Φ

I− 1
2

tr[ΦI,ΦJ][Φ
I,ΦJ]

)
.

(11.1)
Here ΦI, I = 1, . . . ,6 are Lorentz scalars but vectors under the bosonic so6 ≃
su4 subalgebra, Dµ are covariant derivatives and Fµν is a field strength and
a singlet of so6. Both ΦI and Fµν are N ×N matrices of an su(N) gauge
group, this is the reason we took a trace in (11.1). We will often use the
complex scalars Z,X ,Y instead of ΦI . The fields ΦI and F combine with
additional fermions into a supermultiplet VF, sometimes called the singleton
representation. The components of VF are schematically

VF = {DnF+,DnF−,Dn
ψ

i,Dn
ψ i,D

n
Φ

I} . (11.2)

Here F± is the (anti)-self-dual piece of the field strength and ψ i,ψ i are (co)-
spinors transforming in the (dual-)defining representation of su4.

We will in the following focus on single trace operators. These are gauge-
invariant operators of schematic form O = tr W1W2 . . . with Wi ∈ VF. Confor-
mal invariance dictates that the two-point function is〈

O(x)O(y)
〉

∝
1

|x− y|2∆
, (11.3)

where ∆ is the conformal dimension of O . On a representation theory level ∆

is the eigenvalue of the dilation operator D∈ psu(2,2|4). At zero coupling the
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conformal dimension is simply the bare dimension of the operators, but has a
non-trivial dependence on the coupling when it is non-zero.

A remarkable simplification takes place when restricting to the so-called
planar limit; N→∞,gYM→ 0 while keeping the ’t Hooft parameter λ = g2

YMN
fixed. At one-loop level Minahan and Zarembo [1] showed that for the so6-
sector, which contains operators of type O = χI1,I2,...In tr

(
ΦI1ΦI2 . . .ΦIn

)
, find-

ing ∆ is the same problem as diagonalising an so6-spin chain. That is, the
one-loop contribution to ∆ is an eigenvalue of the Hamiltonian

H =
λ

16π2

L

∑
ℓ=1

(
Kℓ,ℓ+1 +2−2Pℓ,ℓ+1

)
. (11.4)

We note that this statement is non-trivial because integrability requires pre-
cisely the correct ratio between the coefficients of K and P and this number
cannot be fixed by appealing to so6-symmetry.

It was soon realized [126–129] that integrability extends to the full N = 4
theory at 1-loop. The spectrum of ∆ can thus be computed from supersymmet-
ric Bethe equations. For example, for operators of schematic type trZL−MXM ,
trZL−MψM or trDM

+ ZL there is only one Bethe equation(
ui +

i
2

ui− i
2

)L

=
M

∏
j=1
j ̸=i

(
ui−u j +i

ui−u j−i

)η

. (11.5)

with η = 1,0 respectively −1. The energy γ is computed from

γ = 2g2
M

∑
i=1

1
u2

i +
1
4

, (11.6)

where we have introduced yet another coupling constant commonly denoted
as g, it is defined by

g2 =
λ

16π2 =
g2

YMN
16π2 . (11.7)

The results from gauge theory were complemented by progress on the string
theory side. Using a coset-space formulation of the superstring [130] it was
realised that the equation of motion admits a Lax representation [131]. This
shows classical integrability of the superstring. The classical regime was then
brought to the quantum realm by focusing on large charge operators such as
the BMN operators [132]. For those operators it was possible to match string
and gauge theory results [133, 134].

11.2 ABA and TBA
Soon there is a growing amount of evidence that integrability could extend to
all loops. This led to the expectation that there should exist a set of Bethe
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equations generalising those of a rational super spin chain and smoothly inter-
polating between gauge theory and string theory. To this end, an Asymptotic
Bethe Ansatz (ABA) was developed and Bethe equations for the full theory
were proposed by Beisert and Staudacher [135]. The ABA contains two new
ingredients we have not yet seen in this thesis: the first is the Zhukovsky vari-
able x defined as

x+
1
x
=

u
g
. (11.8)

The second is the dressing phase σBES, constructed by Beisert, Eden and Stau-
dacher [117]. With these two new objects the Bethe equations for the one-loop
anomalous dimension (11.5) can be extended to all loops, and the resulting
equation is

(
x+i
x−i

)L

=
M

∏
j=1
j ̸=i

(
x+i − x−j
x−i − x+j

)η 1− 1
x+i x−j

1− 1
x−i x+j

σ
2
BES(xi,x j) . (11.9)

Here as usual x±i = x(ui± i
2 ) and the anomalous part of the conformal dimen-

sion is computed as

γ = 2ig

(
M

∑
i=1

1
x+i
− 1

x−i

)
. (11.10)

Beisert subsequently showed that these Bethe equations arise from a centrally
extended su2|2 S-matrix [136, 137]. This structure was also found from string
theory [138, 139].

11.2.1 Wrapping it up
As the name indicates ABA is only valid in the asymptotic regime when the
length of the single trace operator is large, L≫ 1. Thus it misses finite size
corrections [140,141]. However, corrections are also suppressed at weak cou-
pling and the ABA gives reliable results to a relatively high loop order. For the
simple operator O = trZD2Z, usually referred to as the (sl2) Konishi-operator,

γABA = 12g2−48g4 +336g6− (2820+288ζ3)g8 + . . . (11.11a)

γExact = 12g2−48g4 +336g6 +(−2496+576ζ3−1440ζ5)g8 + . . .
(11.11b)

where the exact result was first computed in [142]. It was shown in [143] that
the discrepancy between the ABA and the exact computation exactly corre-
sponds to finite size corrections known as Lüscher corrections.
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T+
a,sT

−
a,s = Ta,s+1Ta,s−1 +Ta+1,sTa−1,s

Ya,s =
Ta,s+1Ta,s−1
Ta+1,sTa−1,s

s

a

Figure 11.1. T-system and Y-system for the Mirror TBA of AdS5×S5.

To take finite size corrections into account a new method is needed, namely
the mirror Thermodynamic Bethe Ansatz (TBA) [144–146]1. For a pedagog-
ical introduction to TBA see for example [148]. The TBA equations that re-
place the ABA are a set of integral equations on a set of functions Ta,s. The
naming is no coincidence, Ta,s are natural generalisations of the T-functions
we encountered when considering spin chains. It is possible to show that the
TBA equations imply that T-functions satisfy the canonical T-system equa-
tions T+

a,sT
−

a,s = Ta+1,sTa−1,s +Ta,s+1Ta,s−1 and forces Ta,s to live on the T-hook
diagram seen in Figure 11.1. While the T-functions of the TBA satisfy the
same functional equations as those associated with a rational spin chain they
are no longer polynomial functions of u, but have complicated analytic proper-
ties. This makes it difficult to solve the T-system. It was therefore a great suc-
cess when the psu(2,2|4) T-system was reformulated in terms of Q-functions.
This task was accomplished in a series of papers [113, 149–151] culminating
with the formulation of the Quantum Spectral Curve [2].

11.2.2 The dressing phase
The dressing phase is the most complicated object that appears in the ABA,
unlike the other constituents it cannot be written as a rational function of the
Zhukovsky variable. Viewed as a function of u σBES(u,v) is a function de-
fined on a sheet with two branch cuts outside of which it is analytic. Analytic
continuation through the cuts is controlled by Janik’s crossing equation [152]

σ
γc
BESσBES =

y−

y+
x−− y+

x+− y+
1− 1

x−y−

1− 1
x+y−

. (11.12)

We illustrate the analytic structure of σBES and display the curve γc in Fig-
ure 11.2. This is all the information we will need regarding the dressing phase,
for a review of further properties and explicit expressions see [153].

1The name mirror theory is from [147]
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i
2 −2g

− i
2 −2g

γc

Figure 11.2. An illustration of the analytic structure of σBES and the curve γc. σBES
have 4-branch points at ± i

2 ±2g, we connect them with short branch cuts.

11.3 Beyond AdS5
Given the success of integrability in AdS5/CFT4 there exist many attempts
to extend the same methods to other string backgrounds. While not every
background is expected to allow for integrability [154] there are examples
beyond AdS5.

The most prominent example is the case of AdS4/CFT3, here integrability
makes an appearance in the duality between type IIA strings on AdS4×CP
and ABJM theory [155]. In this case, the underlying algebraic structure is
osp6|4. Integrability in the weak coupling limit was established in [156]. A
TBA was formulated in [157] and then reformulated as a QSC in [9, 158].

75



12. Review of the AdS5×S5 QSC

In the last section, we sketched how the spectral problem in AdS5× S5 ex-
hibits an integrable structure and can eventually be expressed in the language
of Q-functions as the Quantum Spectral Curve. We will now describe this
formalism in detail.

The main aim of this section is to introduce important aspects of the QSC in
the well-understood setting of N = 4 large N gauge theory. This will provide
us with the necessary background needed for Chapter 13.

The formalism of QSC is by now almost a decade old and there are a col-
lection of pedagogical introductions available to which we refer for further
details [159–161].

12.1 Formulation of the AdS5/CFT4 Quantum Spectral
Curve

The QSC is an analytic psu2,2|4 Q-system, it consists of QA|I where A and I
are subsets of {1,2,3,4}. Not all of the original 28 = 256 Q-functions are
non-trivial, we will from now on set Q /0| /0 = 1 and implement the p of psu with
Q /0| /0 = 1. We will utilise the following standard notation

Pa ≡ Qa| /0 , Pa ≡ Qa| /0 , Qi ≡ Q /0|i , Qi ≡ Q /0|i , (12.1)

which was already introduced for the psu1,1|2 spin chain in Section 10.2.
In the following, there will be a frequent need to use some basic QQ-

relations. For convenience, we recall the most important relations

Q+
a|i−Q−a|i = Pa Qi , Qa|iQ

a| j =−δ
j

i , Qa|iQ
b|i =−δ

b
a , (12.2a)

Qi =−PaQ±a|i , Pa =−QiQ±a|i , PaPa = QiQi = 0 . (12.2b)

The novel feature of the QSC Q-functions is their analytic properties. The
Q-functions of the QSC are functions with branch cuts; they live on an infi-
nite genus Riemann surface. Importantly there exists a gauge, which we will
henceforth assume, in which the analytic properties of the Q-functions are re-
markably simple. We will spend the rest of this section outlining the structure
of the Q-functions in this gauge.

The QSC formalism states that there exists a sheet on which Pa and Pa are
analytic outside of a short cut between ±2g in the u plane. We will write
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...

...Pa

∼
Pa

(a) Analytic Structure of Pa

...

...Qi

∼
Qi

(b) Analytic Structure of Qi

∼
Pa for analytic continuation of Pa through this cut. In general

∼
f will mean

analytic continuation around the point 2g on the real axis. It will turn out that
all cuts are quadratic, details are given in Subsection 12.1.1, hence we need
not distinguish if we crossed the cut from below or above and the notation f̃
is not ambiguous. The result of analytic continuation of Pa is encapsulated in
the Pµ system:

∼
Pa = µabPb ,

∼
Pa = µabPb ,

∼µab −µab = Pa
∼
Pb −

∼
PaPb , (12.3)

where µabµbc = δ c
a and µab is an anti-symmetric matrix with a tower of branch-

points at ±2g± in,n ∈ N. The analytic structure of Pa is illustrated in Fig-
ure 12.1a. Finally, we require that µab is a mirror-periodic function:

∼µab = µ [2]
ab . (12.4)

A common gauge choice in the literature is to require that Pf(µ) = 1.
The analytic structure of Qi nicely complements that of Pa, they are func-

tions analytic outside of a long cut: (−∞,−2g]∪ [2g,∞). If one prefers to
work with the defining sheet of Pa this implies that Qi is analytic in the upper

half-plane and
∼
Qi is analytic in the lower half-plane. We illustrate this struc-

ture in Figure 12.1b. The analogue of the Pµ-system is called the Qω-system,
it is given as

∼
Qi = ωi jQ j ,

∼
Qi = ω i jQ j ,

∼ω i j −ωi j = Qi
∼
Q j −Q j

∼
Qi . (12.5)

where ω is a periodic matrix defined as

ωi j = Q−
a|iµ

abQ−
b| j . (12.6)

Using the definition of ω and the relation Pa =−QiQ+
a|i it is possible to verify

that the Pµ system implies the Qω system and vice versa.
Both Pa and Qi are analytic in the upper half-plane, we require that the

same is true for all other Q-functions. The remaining analytic properties can
be deduced from those of Pa and Qi using QQ-relations. As an example let us
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find the cut structure of Qa|i on the defining short cut sheet. Formally inverting
the finite difference equation for Qa|i yields Qa|i =−∑

∞
m=0 D2m+1 PaQi which

shows that Qa|i has a ladder of branch points at ±2g− i
2 −in, n ∈ Z≥0.

12.1.1 Further details and technical comments
In this section, we make a few technical remarks regarding the QSC construc-
tion. They are meant to clarify some of the properties already introduced or
be of use at various stages when discussing large volume and weak coupling
in the following sections.

Quadratic cuts
All cuts of the AdS5 QSC are quadratic, this means that we travel to the same
sheet if encircle the branch point at 2g either clockwise or anti-clockwise. To
verify this claim we compute what happens if we cross the cut twice:

˜̃Pa =
∼
µab
∼
Pc = µab

∼
Pc = µabµ

bcPc = Pa . (12.7)

Here we used PaPa = 0, Pa
∼
Pa = 0 in the second step. We also immediately

have that µab have a quadratic cut from the Pµ system. The calculations for
Qi and ωi are identical.

A Baxter equation for Qi

It is possible to write down a finite difference equation for Qi with coefficients
built only from Pa and Pa, this was first noticed in [162]. To find the finite
difference equation we repeat the trick of expanding a trivial determinant∣∣∣∣∣∣∣∣∣∣

(Pa)[4] (Pa)[2] Pa (Pa)[−2] (Pa)[−4]

(P1)[4] (P1)[2] P1 (P1)[−2] (P1)[−4]

(P2)[4] (P2)[2] P2 (P2)[−2] (P2)[−4]

(P3)[4] (P3)[2] P3 (P3)[−2] (P3)[−4]

(P4)[4] (P4)[2] P4 (P4)[−2] (P4)[−4]

∣∣∣∣∣∣∣∣∣∣
= 0 . (12.8)

Using Qi =−PaQ±a|i and Q+
a|i−Q−a|i = PaQi we can recast this as an equation

on Qi.

T2 Q[4]
i −(T1−T2 P[2]

a (Pa)[4])Q[2]
i

+(T0 +T−1 Pa(Pa)[−2]−T−2 Pa(Pa)[−4])Qi

− (T−1 +T−2P[−2]
a (Pa)[−4])Q[−2]

i +T−2 Q[−4]
i = 0 .

(12.9)

Where Ta = |(Pb)[6−2c−θ(3−c+a)]|b=1,...,4
c=1,...,4

and θ is the Heaviside function
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The Symmetric Sector
The subalgebra preserving the complex scalar Z = Φ1 + iΦ2 is psu(2|2)2.
Operators invariant under the exchange of the two psu(2|2) are said to be in
the symmetric sector. Q-functions describing these operators can, with the use
of symmetry transformations, be brought to

Pa = χabPb , Qi = χi jQ j , χ =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 . (12.10)

Notice that χ is morally the matrix C in Chapter 7.

12.1.2 Monodromy Bootstrap
In [163] it was suggested that the structure of the QSC potentially can be
bootstrapped with a few axioms. This method was subsequently put to use in
Paper IV and there dubbed Monodromy Bootstrap.

To explain the idea of Monodromy Bootstrap we start by noticing that we
have not treated the upper half-plane and lower half-plane democratically. In-
deed, all our functions are upper half-plane analytic (UHPA) but not lower
half-plane analytic (LHPA).

To restore the broken symmetry we introduce two new LHPA Q-system:
QA|

I,QA
|I . We require that these systems are obtainable from QA|I by a sym-

metry transformation. We need two systems because due to the branch cut
there are two distinct away to travel to the lower-half plane: through the short
cut or around it. We refer to the choice of avoiding short cuts as physical kine-
matics and the choice of avoiding long cuts as mirror kinematics. Explicitly
we find

Qa| /0 = Qa|
/0 , Q /0|i = ωi j Q /0|

j , (physical kinematics) , (12.11a)

Qa| /0 = µab Qb
| /0 , Q /0|i = Q /0

|i , (mirror kinematics) . (12.11b)

To complete our journey around the branch point we also need to prescribe
what happens when we consider QA|

I in mirror kinematics and QA
I in physical

kinematics. We once again require that we can construct an UHPA system
using a symmetry transformation. The equations close by requiring that this
system is the Hodge dual Q-system QA|I .

Qa
| /0 = Qa| /0 , Q /0

|i = ωi jQ /0| j , (physical kinematics) , (12.12a)

Qa|
/0 = µab Qb| /0 , Q /0|

i = Q /0|i , (mirror kinematics) . (12.12b)

We have only written down symmetry transformations for a handful of func-
tions, the transformations of the remaining functions follow from the general
structure of symmetry transformations presented in Section 10.1.
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Let us now explain how to recover all expressions from Section 12.1. By
tracing the path around the branch point and making sure to always use Q-

functions in an appropriate gauge we obtain the expressions for
∼
P and

∼
Q from

(12.3) and (12.5). From (Qa
|i)
− = µabQ−b|i = ωi j(Qa| j)− we obtain (12.6).

Finally, we also need to find the discontinuity equations for µ and ω . This
equation is obtained after noting that (Qi

|a)
− does not have a cut on the real

axis. Let ∆( f ) =
∼
f − f , then

0 = ∆
(
(Qa

|i)
−)= ∆(ωi j(Q−)a| j) = (Qa| j)+∆

(
ωi j−

∼
QiQ j

)
. (12.13)

Since Qa|i is invertible this gives the discontinuity of ωi j in (12.5). The dis-
continuity of µ is obtained in the same way.

12.1.3 The spectral problem for single-trace operators
So far we have described the universal structure of the QSC. This information
is not enough to constrain the QSC to give distinct solutions, we need to im-
pose further analytic constraints. The exact form of these constraints depends
on what problem we would like to study, finding them can be challenging. In
some cases they can be derived from TBA or other independent methods, in
other scenarios, one is forced to resolve to guesswork.

In this section, we describe how to fix analytic properties to solve the spec-
tral problem for single trace operators in undeformed N = 4. We will discuss
twisted generalisations of this in Section 12.4. Historically the appropriate
analytic properties were in this case suggested by TBA.

For the spectral problem of single trace operators all Q-functions are re-
quired to have polynomial asymptotics. Explicitly

Pa ≃ Aa u−λ̂a , Pa ≃ Aa uλ̂a−1 , Qi ≃ Bi u−ν̂i−1 , Qi ≃ Biuν̂i , (12.14)

where λ̂a, ν̂i are shifted weights, see Section 10.2. A standard choice in the
literature is to work in the so-called non-compact ABA grading, we display
the shifted weights for this choice in Figure 12.2. Since the QSC describes the
spectrum at any coupling, ν̂i will in general not be an integer. It is possible to
find the asymptotic behaviour of all other Q-functions from the Q-system.

Due to the asymptotics (12.14) the QQ-relations at large u are polynomial,
this gives

AaAa = i
∏

4
i=1(λ̂a + ν̂i)

∏b̸=a(λ̂a− λ̂b)
, BiBi = i

∏
4
a=1(ν̂i + λ̂a)

∏ j ̸=i(ν̂i− ν̂ j)
, (no sum) . (12.15)

By definition, Pa is a single cut function with polynomial asymptotics. A
very useful property for such a function is that we can resolve the first branch
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λ̂ =
1
2
{J1+J2 − J3 +2,J1 − J2 + J3,

−J1 + J2 + J3 +2,−J1 − J2 − J3}

ν̂ =
1
2
{−∆+S1 +S2 −2,−∆−S1 −S2,

∆+S1 −S2 −2,∆−S1 +S2}

Figure 12.2. Map between quantum numbers and shifted weights in the non-compact
ABA grading.

...

...

u

x+ 1
x = u

g

Figure 12.3. We can resolve the first branch-cut using the Zhukovsky parameter x.

cut using the Zhukovsky parameter. We illustrate this parameterisation in Fig-
ure 12.3. A useful parameterisation of Pa valid for most states is [3]

Pa =
1

(gx)L

(
−λ̂a+L

∑
n=0

da,n(xg)n +
∞

∑
n=1

ca,s

(g
x

)n
)

, (12.16a)

Pa =

(
λ̂a−1

∑
n=0

dH
a,n(xg)n +

∞

∑
n=1

cH
a,n

(g
x

)n
)

, (12.16b)

which is a convergent series until the first branch points in the x-plane. The
factors of g have been inserted so as to have da,n � ca,s � O(g0) at weak
coupling.

12.2 The Large Volume Limit
Fully explicit analytic solutions of the QSC are not known. To solve the
equations we need to take some form of limit. Here we consider a large vol-
ume limit to reproduce the ABA. We discuss the large volume solution of the
AdS5×S5 QSC to prepare ourselves for the case of AdS3× S3×T4 discussed
in Paper IV and Paper V and reviewed in Section 13.3.5. The remainder of
this section essentially follows [163] up to some cosmetic rearrangements.

The large volume limit is ∆,J1 → ∞. The main assumption is that in this
limit Q-functions will scale in the same way as their asymptotics. Introducing
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ε = u−
∆

2 = u−
J1
2 we have the following scaling

Qa|i ≃


1 1 ε2 ε2

1 1 ε2 ε2

1
ε2

1
ε2 1 1

1
ε2

1
ε2 1 1

 , Pa ≃ {ε ,ε,
1
ε
,

1
ε
} , Qi ≃ {

1
ε
,

1
ε
,ε,ε} ,

(12.17)

as well as ω i j ∼ 1. In particular, this means that in large volume we find

µ12 ≃ Q−12|12ω
12 . (12.18)

12.2.1 Finding µ and ω

Let Q = ∏
N
i=1(u− ui) encode the zeros of µ

+
12 and define F2 = Q−

Q+
µ
[2]
12

µ12
. From

the fact that µ̃12
µ12

=
Q+

12|12

Q−12|12
=

Q+
12|

12

Q−12|
12 it follows that F is analytic outside of a short

cut on both the first sheet and the second sheet. In other words: F is a single-
valued function of the Zhukovsky variable without zeros or poles for |x| > 1

and with F(∞) = 1. It satisfies the Riemann-Hilbert problem F
∼
F = Q+

Q− from
which we can find F as

F =±
B(+)

B(−)
. (12.19)

Here B(±) and R(±) =
∼
B(±), are given as

B(±) =
N

∏
n=1

√
g

x∓k
(
1
x
− x∓k ) , R(±) =

N

∏
n=1

√
g

x∓k
(x− x∓k ) . (12.20)

This then allows us to fix ω12 and µ12. We also obtain an expression for Q12|12
from (12.17). Explicitly

ω
12

∝
f̄

f [2]
, µ12 ∝ Q− f f̄ [−2] , Q12|12 ∝ Q( f+)2 . (12.21)

The function f satisfies

f
f [2]

=
B(+)

B(−)
, f =

∞

∏
n=0

B[2n]
(+)

B[2n]
(−)

, f̄ =
∞

∏
n=0

B[−2n]
(−)

B[−2n]
(+)

. (12.22)

At this stage, we can also verify that the dispersion relation of N = 4 is
correctly encoded in the large volume solution. To do so we compute the large
u limit of Q12|12, using the shifted weights Q12|12 ≃ u−λ̂1−λ̂2−ν̂1−ν̂2 ≃ u∆−J1
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Figure 12.4. Analytic structure of σ , see (12.26).

and Q ≃ uN . The asymptotics of f is most easily obtained from (12.22). It
follows that

f ≃ u
ig∑

N
i=1

(
1

x+i
− 1

x−i

)
, ∆− J1−N = 2 i g

N

∑
i=1

(
1

x+i
− 1

x−i

)
, (12.23)

which reproduces the dispersion relation in (11.10).

12.2.2 Identifying the dressing phase
To obtain Pa we start by computing its analytic continuation using both UHPA
and LHPA Q-functions

∼
Pα ≃ Qα|12ω

12 ,
∼
Pα ≃

1
ω12 Qα|

12 . (12.24)

This implies that the combination
∼
P/ f [2] f [−2] have only one cut on the real

axis. Furthermore, the cut is quadratic and Pa is regular with polynomial
asymptotics so we can parameterise

Pα ∝ x−
L
2 Rα| /0Bα|12σ , Qα|12 ∝ x

L
2 Bα| /0Rα|12

f f [2]

σ
, (12.25)

where Rα| /0 =
∼
Bα| /0 contains the zeros of Pα on the first sheet. Bα|12 =

∼
Rα|12

contains the zeros of Pα on the second sheet and σ is a function satisfying

σ
∼
σ = f [2] f [−2]

, σ(∞) = 1 . (12.26)

We illustrate the analytic structure of σ in Figure 12.4.
All other functions can now be found with the use of QQ-relations, we will

refrain from giving them all explicitly, they can be found in [135]. However,
we do want to reproduce the ABA equation quoted in (11.9). From a Q-system
point of view this equation comes from

W (Q12|12,Q13|12) =Q1|12Q123|12

=⇒
Q[2]

12|12

Q[−2]
12|12

Q−1|12

Q+
1|12

Q−123|12

Q+
123|12

∣∣∣∣∣∣
Q12|12=0

=−1 , (12.27)
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in the case when there are no auxiliary excitation, R1| /0 = B1|12 = 1, and we
pick η = 1 in (11.9). To write down this equation we also need to find Q123|12.
Luckily, we are in the symmetric sector Q123|12 ∝ Q1|12. Then using the ex-
pressions obtained so far we have

Q[2]
12|12

Q[−2]
12|12

Q−1|12

Q+
1|12

Q−123|12

Q+
123|12

=

(
x−

x+

)L Q[2]

Q[−2]

(
σ+

σ−

)2

, (12.28)

which matches perfectly with (11.9) if we identify σ+

σ− = ∏
N
i=1 σBES(u,ui).

Let us take the time to verify that σ solves Janick’s crossing equation. This
is a straightforward application of (12.26):(

σ+

σ−

)γc

=
σ−

σ+

R−
(−)

R−
(+)

B+
(−)

B+
(+)

=
σ−

σ+

R−
(−)

R+
(−)

B−
(+)

B+
(+)

. (12.29)

So that after using the explicit expressions we find(
σ+

σ−

)γc(
σ+

σ−

)
=

N

∏
k=1

x−− x+k
x+− x+k

1
x− − x−k
1

x+ − x−k
=

R−
(−)

R(+)
(−)

B−
(+)

B+
(+)

. (12.30)

For a full derivation of the BES phase starting from σ see [164].

12.3 Weak Coupling Solution
In this section we describe how to solve the QSC at weak coupling. We will
focus on so-called twist-two operators.

There currently exist two different methods on the market to extract the
anomalous dimension at weak coupling. The first method is based on solving
the Pµ-system. It was originally developed for states in the sl2 sector [165]
and later streamlined and generalised to arbitrary states [118]. We describe
it in Section 12.3.3. The other method, first described in [166], is based on
constructing Qi and imposing regularity conditions. We will describe it in
Section 12.3.4.

When taking the weak coupling limit the cuts of Q-functions will collapse.
This leads to poles in various functions, as a very simple example consider

g(x− 1
x
) =

√
u−2g

√
u+2g≃ u− 2g2

u
− 2g4

u3 +O(g6) . (12.31)

Thus, although the Q-functions of the QSC are regular functions at finite cou-
pling in weak coupling calculations we deal with poles.

84



12.3.1 The sl2 sector
For clarity of exposition we will consider the following operators

OS = trZ DS Z +perm . (12.32)

The shifted weights controlling the asymptotics of the Q-functions are given
as

λ̂a = {3,2,1,0} , ν̂i = {−3,−2−S,S−1,0}− γ

2
{1,1,−1,−1} . (12.33a)

The ansatz (12.16) can be slightly simplified because the states under consid-
eration are parity invariant. This is reflected in the Q-system as

Pa(−u) = ga
b Pb(u) , (12.34)

with g a diagonal matrix.
At zero coupling the states trZDnZ are short, this is encoded in the QSC

by A1A1 ≃ A4A4 ≃ g2, B1B1 ≃ B4B4 ≃ g2. We will gauge-fix so that P1 ≃
g2,Q4 ≃ g2 .

12.3.2 The Q-system at zero coupling
The Q-system at zero coupling is that of a rational spin chain. To solve it we
can use the methods explained in Section 10.2.

In particular, for the operators trZDnZ it is possible to find all distinguished
Q-functions explicitly [118]. Since P(0)

1 = 0,Q(0)
4 = 0, we have Qa,0 = 0,a >

0,Qa,4 = 0,a < 4. Let us introduce notation c = S(S+1) then in a convenient
gauge the remaining distinguished Q-functions are

0 c2(c−2)2

(u[3]D )2 ∇S+2u[S]D 1 1

0 c2(c−2)
(u[2]D )2 −∇S+1(u[S]D)2 1 0

0 c(c−2)
u2 ∇S(u[S]D)2 1 0

0 (c−2) −∇S−1(u[S]D)2 1 0

1 uS ∇S−2(u[S]D)2 1 0


,

with ∇ f = f+− f−. The ordering is such that Q0,0 is in the lower left corner
and Q4,4 is in the upper right corner, see Section 10.2.

With the distinguished Q-functions at our disposal one proceeds to find Qi
and Qa|i. This can be done systematically by for example solving for Qi using
Q0,i and then obtaining Qa|1 using Qa,1. From this one easily constructs Pa
and Qa|i.

To construct µab at weak coupling we take an ansatz with

µ
(0)
ab = (Q(0)

ab|12)
−(ω(0))12 , (ω(0))i j = 2(ω(0))12

δ
i j
12 . (12.35)
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One then proceeds to impose the equations
∼
Pa = µabPb,

∼
Pa = µabPb, this fixes

∆1 and we can proceed to higher orders. Notice that (ω0)12 scales with g, for
the operators under consideration we have (ω0)12 ≃ 1

g4 .

12.3.3 Pµ-system approach
Using mirror periodicity we can rewrite the discontinuity of µab as

µ
[2]
ab = (δ c

a −PaPc)µcd(δ
d
b −PdPb) . (12.36)

From (12.2) it follows that this equation is automaticaly satisfied for µab =
Q−a|iQ

−
b| jh

i j for hi j any periodic function. The idea is to use that we already

know (Q(0)
a|i )
− which allows us to parameterise

µab =
1
2

Q(0)
ab|i jh

i j , hi j =
∞

∑
m=0

(h(m))i jg2m−4 . (12.37)

Inserting (12.37) into (12.36) and using Qab|i jQab|kl = 4δ kl
i j a finite difference

equation on (h(m))i j is obtained

(h(m))i j− ((h(m))i j)[2] =
1
4
(Q(0))ab|i jS(m)

ab , (12.38)

S(m)
ab =−

(
m−1

∑
n=0

g2n−4(δ c
a −PaPc)µ

(n)
cd (δ d

b −PdPb)

)∣∣∣∣∣
g2m−4

. (12.39)

The general solution is written as hi j = hi j
P +hi j

H with

(h(m)
P )i j =

1
1−D2

(
1
4
(Q(0))ab|i jS(m)

ab

)
, (h(m)

H )i j =
∞

∑
n=0

(φ
(m)
n )i jPn , (12.40)

where Pm≥1 = ∑
∞
n=−∞

1
(u+in)m ,P0 = 1 are periodic functions. To solve 1

1−D2

one must introduce so-called η-functions, see [167].
Since µ have a square-root cut on the real axis the combinations µ̃ +µ and

(µ̃−µ)

x− 1
x

do not have cuts on the real axis. This is very useful because it imposes

that these combinations cannot have poles at the origin, recall that all poles of
the QSC are due to the collapse of branch cuts. In other words, close to u = 0
we have

µ
[2]
ab +µab = reg , µ

[2]
ab −µab =

√
u−2g

√
u+2g× reg . (12.41)

Imposing these conditions fixes almost all of the coefficients φ . In particular,
the regularity constraint sets an upper limit of the degree of the pole that is
allowed to appear in µ [3].

One can now compute
∼
Pa in two different ways, either from

∼
Pa = µabPb or

from the ansatz (12.16) using x̃ = 1
x . By matching these two expansions we

can fix the remaining coefficients.
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12.3.4 Gluing Q
We can find Qa|i in essentially the same way as we found µ in the previous

section. Parameterise Q−a|i = (Q(0)
a| j)
−(b) j

i , then from Q−a|i− (δ b
a +PaPb)Q+

b|i =

0 we can solve for b perturbatively [166].
After this Qa|i can be constructed as the negative inverse transpose of Qa|i or

by repeating the same exercise for Qa|i. Having found Qa|i,Qa|i and with Pa,Pa

at hand we can construct Qi,Qi. We will construct them so that Qi = χi jQ j.
To now close the equations we can use the following trick: We know that

Q̃i have to be a LHPA function. Furthermore, it has to solve the same Baxter
equation (12.9) as Qi(−u) 1. It follows that Q̃i and Qi(−u) must be related by
an i-periodic matrix Gi

j,

∼
Qi(u) = Gi

jQ j(−u) . (12.42)

One can severely constrain the form of Gi
j by considering its asymptotics, we

refer [168] for details. In the case at hand it turns out that (12.42) implies
∼
Q1−α Q3(−u) [4] with α constant.

Having found Qi we can impose the same consistency equations that we
used when discussing Pµ , that is, at u = 0 we must have

∼
Qi +Qi = reg ,

∼
Qi−Qi =

√
u−2g

√
u+2g× reg . (12.43)

Imposing these conditions fixes all coefficients.

12.3.5 Explicit results
Implementing the above algorithm in Mathematica one finds perfect agree-
ment with known results [169]

∆1 = 8S1(S) , ∆2 =−16 (2S1 (S2 +S−2)−2S−2,1 +S−3 +S3) , (12.44)

with Sab... harmonic sums, see for example [170]. For Konishi, S = 2, one also
finds a perfect match with (11.11).

Of course, results for much higher loop orders are available in the literature.
We only wrote down these results to make an explicit comparison with conjec-
tured QSC for AdS3 to be presented in Chapter 13. Using the approach of the
Pµ-system the anomalous dimension for twist-two operators have been found
in terms of harmonic numbers up to seven loops [111, 171], see also [172].

In general, for large S limit the anomalous dimension scale as

γ ∼ f (g) log(S)+ . . . (12.45)

1To make this statement we have utilised both the fact that we have parity and that we are in the
symmetric sector. In more general cases one should consider Qi
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with f (g) the so-called scaling function, see [173] for a review. Interestingly,
f (g) is expected to be fully reproduced from ABA, that is, wrapping effects
does not contribute to f (g). We will come back to this in Chapter 13 where
we find something very different.

12.3.6 Numerical solution
To go beyond weak coupling we must generally give up on finding an analytic
solution and resort to numerical methods. An efficient method to solve the
QSC was proposed in [4]. Impressively, the method has been successfully
used to study the conformal dimension even for complex spin.

The ansatz for Pa takes the same form as in the weak coupling solution,

Pa =
cutP

∑
n=λ̂a

ca,n

xn , (12.46)

with cutP a fixed cut-off. Next we find Qa|i at large u as

Qa|i ≃
cutQai

∑
n=λ̂a+ν̂i

Ba|i,n
un . (12.47)

The coefficients Ba|i,n can be fixed from expanding Q+
a|i− (δ b

a −PaPb)Q−b|i at
large u. Take u0 ∈ (−2g,2g), after using the asymptotic expression to estimate
Qa|i

(
u0 +i(shQai+ 1

2)
)

for large shQai we can descend to the real axis by
using Q−a|i = (δ a

b +PaPb)Q+
b|i. Once we have obtained Qa|i(u0 +

i
2 ) it is pos-

sible to construct Qi on the cut using Qi = −PaQ+
a|i. On true solutions of the

QSC we must have that
∼
Q1(u)−αQ3(−u) = 0. To find this point in parameter

space we reformulate the gluing condition (12.42) as a minimization problem
for the quantity

S =
nbrPoints

∑
m=1

|Q̃1(um)−αQ3(−um)|2 , (12.48)

with um ∈ (−2g,2g) and nbrPoints the number of discrete points on the cut
we choose to evaluate at.

12.4 Twisting the Curve
The weak coupling expansion presented in the previous section can readily
be generalised to the case of the twisted QSC. The twisted QSC was first
described in [83] and has been used in for example [174,175] and to study the
fishnet limit of AdS5 [176].
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λ̂ = {3,2,2,−1}

ν̂

∣∣∣∣
g=0

= {−2,−3,0,−1}

Figure 12.5. Shifted weights and grading used for the su2 states in the Z2 orbifold.

As a non-trivial example of how to twist the QSC we will in this section
consider the simple case of adding a twist of −1, still preserving N = 2.
This is of interest because of recent endeavours to find integrable structures in
N = 2 theories [177, 178], see also [179].

The idea to twist and deform N = 4 to find new integrable modes has a long
history. Bethe equations of twisted N = 4 SYM was discussed in [180] and
the case of an orbifold was treated in detail in [181]. A twisted TBA relevant
for β -deformations and orbifolds was studied in [182–184] and Y-systems for
β -deformations and orbifolds are constructed in [185, 186].

12.4.1 Weak coupling results
Let us outline the orbifold construction very schematically, we refer to [181]
for details. We focus on the simplest possible case with a twist that squares to
1. In the twisted theory we can study operators of the form O = tr(γsW1W2 . . .WL)
with Wi ∈Vf and γ a new novel operator that implements the twist s = 0,1.

As an example we consider

O = trγ ZXX +perm , (12.49)

The presence of γ gives additional exponential prefactors in the asymptotics
of Q-functions, in our case we twist only the R-symmetry so that

Pa ≃ xiu
a Aau−λ̂a , Qi ≃ Biu−ν̂i , (12.50)

We will now fix the twist as

xa = {1,1,−1,−1} . (12.51)

To avoid branch cut ambiguities we will set xiu
3 = e−πu ,xiu

4 = eπu. We il-
lustrate the appropriate grading and the shifted weights in Figure 12.5. The
shifted weights of a twisted Q-system are computed as [83]

λ̂a = λa−∑
b≺a

δxa,xb +∑
i≺a

δyi,xa , ν̂i = νi−∑
j≺i

δyi,y j +∑
a≺i

δyi,xa . (12.52)
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Solving for the distinguished Q-functions at g = 0 one find up to overall
prefactors

1
(u[4]D )3 × (u4− 3

2 u2− 15
16)

1
(u[3]D )3 × (u2−1)u[3]D 1 1 1

xiu
3 ×

1
(u[3]D )3 ×u xiu

3
1

(u[2]D )3 ×u[2]D xiu
3 xiu

3 xiu
3

( 1
u[2]D

)3×1 1
u3 ×u u2− 1

4 u2− 1
2 u2− 3

4
1
u3 1 u3 u2− 3

4 0

1 0 0 0 0


From which all other Q-functions can be worked out. Using then the method
of Section 12.3.3 we computed the anomalous dimension to O(g12), the result
is

γ = 8g2−32g4 +256g6 +g8 (−2560+512ζ3−640ζ5)

+g10 (28672−4096ζ3−1536ζ
2
3 −5120ζ5 +13440ζ7

)
+g12

(
−344064−6144ζ

2
3 +75776ζ5 +24576ζ3

+46080ζ3ζ5 +41216ζ7−217728ζ9

)
+O(g14) .

(12.53)

We observe wrapping at g6 as compared to the ABA. Our results coincide
perfectly with the computation in [187].

As an additional exercise, we generalised also the twist-two operators dis-
cussed earlier. The distinguished Q-functions can be taken as

0 p1(u)
(u[3]D )3 ∇̃2∇S(u[S]D)S 1 1

0 xiu
3

p2(u)
(u[2]D )2 −i∇̃∇S(u[S]D)Sxiu

3 xiu
3 2xiu

3

0 1
u3 ×u ∇S(u[S]D)2 1 4

0 c−2 −∇S−1(u[S]D)2 1 0

1 u2 ∇S−2(u[S]D)2 1 0


where ∇̃ f = f++ f− and p1, p2 are polynomials fixed by QQ-relations. Ex-
plicitly computing S = 2,4,6, . . . ,58 for even S we found a perfect match
with [184]:

γ = g2
∆1 +g4

∆2 +g6
∆3 +g6

∆
wrapping
3 +O(g8) , (12.54)

with

∆
wrapping
3 = 64

S1(S)(S2(S−1)−S−2(S−1)−S−2(S+1)−S2(S+1))
S(S+1)

,

(12.55)
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and ∆1,∆2 given in (12.44). The undeformed ∆3 was calculated in [169]. We
notice that twisting the QSC does not alter the large S behaviour, we still have
the same scaling function.

12.5 Outlook
In this brief review of the AdS5×S5 QSC we have omitted many interesting
applications. We have fully failed to discuss the connection between QSC and
the classical spectral curve [188], we have not discussed small expansion in
S and analytic continuation in quantum numbers [162, 168, 189–192]. The
QSC has been successfully used to treat Wilson lines [5], the quark-anti quark
potential [193] and to compute the Hagedorn temperature [8, 194]. There has
also been widespread interest in trying to compute structure constants using
the formalism [7, 195–198].

There are many other areas in which the QSC could be of use. Q-functions
plays an important role in the computation of one-points functions [199–203],
for reviews see [204,205]. It would be exciting to extend the QSC to study de-
terminant operators along the line of [206]. More general twists than the ones
discussed in Section 12.4 are also of importance, this invites an exploration of
the QSC with Drinfeld-Reshetikhin twist following [207], see also [208]
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13. gl(2|2) QSC and AdS3/CFT2

We have already mentioned that integrability appears in the AdS4/CFT3 cor-
respondence, it is thus natural to look for further low-dimensional examples.
Since three is just around the corner from four this is where we will venture in
this chapter.

The most promising AdS3 spaces are those of the form AdS3×S3×M4 with
M4 =T4 or M4 = S3×S1. The superisometry algebra of AdS3×S3×S3×S1 is
d2,1;α ⊕ d2,1;α , here d2,1;α is a one-parameter exceptional superalgebra. Un-
fortunately, no Q-system has been formulated for this algebra. Luckily, there
exist a limit in which d2,1;α becomes psu1,1|2, in this case we are studying
AdS3×S3×T4. Since we understand psu Q-systems there is still a fighting
chance.

In Paper IV a method to construct QSCs when the underlying symme-
try group is gl2|2 was proposed. Using that method a conjectured QSC for
AdS3×S3×T4 was presented. The same curve was also proposed indepen-
dently in [21] at the same time. Subsequently, a TBA for AdS3×S3×T4 was
constructed in [209], it is an outstanding question if the QSC and TBA agree
or not.

In Section 13.1 we briefly review AdS3 integrability, for further information
see the review [210]. Thereafter in Section 13.2 we describe the procedure of
Monodromy Bootstrap. Section 13.3 is dedicated to the conjectured curve and
Section 13.4 discusses how to solve it at weak coupling. In Section 13.5 we
discuss the dressing phases of AdS3 in some more detail. Finally, Section 13.6
contains some conclusions and outlook.

13.1 ABA for AdS3×S3

Green-Schwarz actions for strings on AdS3×S3 were constructed in [211–214]
and shown to admit a Lax formulation in [215], see also [216]. From the Lax
matrix a set of finite gap equations were constructed. In AdS5 the finite gap
equations controlling the classical string are known to arise as a limit of spin
chain Bethe equations, it was soon realised that the finite gap equations of
AdS3 could be obtained in the strong-coupling limit of a novel d2

2,1;α spin
chain [115]. At zero coupling this spin chain decomposes into two separate
spin chains, unaware of each other existence, but when the coupling is turned
on they start interacting. The promotion from zero coupling to finite cou-
pling once again involves the introduction of the Zhukovsky variable. From
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the d2
2,1;α spin chain an exact centrally extended su2

1|1 S-matrix could be con-
structed [217], sharing many similarities with the centrally extended su(2|2)
S-matrix of N = 4, see also [218]. Bethe equations were finally obtained by
diagonalising the S-matrix [219]. The calculations were subsequently redone
for the case of a psu(1,1|2)2 spin chain with massive excitations expected to
describe AdS3×S3×T4 [220]. We write out the Bethe equations obtained at
the end of this section in (13.1) and (13.2).

In AdS3 one must deal not only with massive modes but also massless.
From a spin chain point of view, the massless sector is rather mysterious, al-
though some progress has been made [221, 222].

Focusing instead on the string theory side a non-perturbative S-matrix sat-
isfying Yang-Baxter and incorporating both massive and massless modes was
found from symmetry considerations [223–226], see also [227,228] for earlier
results on massive mixed flux and [229] for an alternative approach. Unfortu-
nately, we will not have much to say about massless modes and mixed flux.

In the case of massive scattering, there are two dressing phases: σ•• and
σ̂••. We divide the Bethe equations of the massive sector into two sets, one for
each psu1,1|2. We emphasise that these two sets of equations are still coupled.
We will call the first set the undotted sector, the Bethe equations of this sector
are written in an su2 grading, see Figure 13.1, and read [220]

1 =
K2

∏
j=1

y1,k− x+j
y1,k− x−j

K2̇

∏
j=1

1− 1
y1,k ẋ−j

1− 1
y1,k ẋ+j

, (13.1a)

(
x+k
x−k

)L

=
K2

∏
j=1
j ̸=k

x+k − x−j
x−k − x+j

1− 1
x+k x−j

1− 1
x−k x+j

σ
••(xk,x j)

2
K1

∏
j=1

x−k − y1, j

x+k − y1,k

K3

∏
x−k − y3, j

x+k − y3, j

(13.1b)

×
K2̇

∏
j=1

1− 1
x+k ẋ+j

1− 1
x−k ẋ−j

1− 1
x+k ẋ−j

1− 1
x−k ẋ+j

σ̂
••(xk, ẋ j)

2
K1̇

∏
j=1

1− 1
x−k y1̇, j

1− 1
x+k y1̇, j

K3̇

∏
j=1

1− 1
x−k y3̇, j

1− 1
x+k y3̇, j

,

1 =
K2

∏
j=1

y3,k− x+j
y3,k− x−j

K2̇

∏
j=1

1− 1
y3,k ẋ−j

1− 1
y3,k ẋ+j

. (13.1c)
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Figure 13.1. Grading used in the ABA for AdS3×S3×T4.

The second set of equations, which we will call the dotted sector, is written in
an sl2 grading. The equations are

1 =
K2̇

∏
j=1

y1̇,k− ẋ−j
y1̇,k− ẋ+j

K2

∏
j=1

1− 1
y1̇,kx+j

1− 1
y1̇,kx−j

, (13.2a)

(
ẋ+k
ẋ−k

)L

=
K2̇

∏
j=1
j ̸=k

ẋ−k − ẋ+j
ẋ+k − ẋ−j

1− 1
ẋ+k ẋ−j

1− 1
ẋ−k ẋ+j

σ
••(ẋk, ẋ j)

2
K1̇

∏
j=1

ẋ−k − y1̇, j

ẋ+k − y1̇,k

K3̇

∏
ẋ−k − y3̇, j

ẋ+k − y3̇, j

(13.2b)

×
K2

∏
j=1

1− 1
ẋ−k x−j

1− 1
ẋ+k x+j

1− 1
ẋ+k x−j

1− 1
ẋ−k x+j

σ̂
••(ẋk,x j)

2
K1

∏
j=1

1− 1
ẋ+k y1, j

1− 1
ẋ−k y1, j

K3

∏
j=1

1− 1
ẋ+k y3, j

1− 1
ẋ−k y3, j

,

1 =
K2̇

∏
j=1

y3̇,k− ẋ−j
y3̇,k− ẋ+j

∏

1− 1
y3̇,k x+j

1− 1
y3̇ x−j

. (13.2c)

While the equations are rather cumbersome in full generality they follow the
expected group theoretical structure of psu1,1|2⊕ psu1,1|2, we illustrate this
structure in Figure 13.1. Note in particular that if we were to send g→ 0
and assume that the dressing phases go to 1 the resulting Bethe equations are
simply those of two rational psu1,1|2 spin chains.

Finally, the anomalous dimension is computed from the standard formula

γ = 2ig
K2

∑
i=1

(
1

x+i
− 1

x−i

)
+2ig

K2̇

∑
i=1

(
1

ẋ+i
− 1

ẋ−i

)
. (13.3)

13.2 Monodromy Bootstrap
In Section 12.1.2 we described how the AdS5 Quantum Spectral Curve can
be found from a procedure we referred to as Monodromy Bootstrap. This idea
was fully developed for gl2|2 Q-systems in Paper IV. We will now review some
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∼
f

∗∼
f

Figure 13.2. Encircling the branch point at 2g clockwise
∼
f or anti-clockwise

∗∼
f gives

in general different results.

of the results of Paper IV. The method should extend naturally to theories of
type gln|n. For models with symmetry glm|n,m ̸= n further investigations are
needed, see [230–232].

Monodromy Bootstrap postulates that there exists an UHPA Q-system Q
with Qa| /0 functions with short cuts and Q /0|i functions with a long cut. While
we do not require that Qa| /0 or Q /0|i have a nice cut structure we do require that
there exist a gauge transformation such that Qa| /0 have short cuts and Q /0|i long
cuts. To restore the broken symmetry between the upper half-plane and the
lower half-plane we ask that there exist a symmetry transformation such that
we can find a LHPA Q-system using either physical or mirror kinematics. We
write schematically

Q↑ = ωĥ ·Q
↓
1 (physical kinematics) , Q↑ = µȟ ·Q

↓
2 (mirror kinematics) .

(13.4)

where ωĥ and µȟ are shorthand notation for the application of an H-rotation
ω/µ acting on fermionic/bosonic Q-functions and a gauge transformation
ĥ/ȟ.

There are now three options: Q↓1 = Q↓2 ,Q
↓
1 = (Q↓2)

⋆ or Q↓1 ̸= Q↓2 where ⋆
stands for Hodge duality. For the first two options this marks the end of the
procedure. For the last option one is forced to repeat the same argumenta-
tion, introducing yet another UHPA Q-system and connect it to Q↓1,Q

↓
2. Once

enough Q-systems have been introduced to close the procedure one now has
to study the implications for the Q-systems and the symmetry transformations
introduced. This was the main task of Paper IV.

A new technical complication not previously encountered in AdS4 or AdS5
is that Q-functions sometimes cannot have quadratic cuts, to account for this
we will introduce notation

∼
f for clockwise analytic continuation around the

branch point at 2g and
∗∼
f for anti-clockwise continuation around the same

point. We illustrate this in Figure 13.2.
In Paper IV the option Q↓1 = Q↓2 is called model A and Q↓1 = (Q↓2)

⋆ model
B. Schematically in these models analytic continuation of the Q-system reads

∼
Q = Q (Model A) ,

∼
Q = Q⋆ (Model B) . (13.5)
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When Q↓1 ̸= Q↓2 two models were introduced. They were called model C and
model D, they are schematically

∼
Q = Q̇⋆ ,

∼
Q̇ = Q⋆ (Model C) ,

∼
Q = Q̇ ,

∼
Q̇ = Q⋆ (Model D) , (13.6)

with Q̇ a new Q-system. When restricting attention to psu1,1|2 model C and
D coincides. It was conjectured in Paper IV that this model describes pla-
nar string theory on AdS3×S3×T4. We will spend the remaining part of this
chapter detailing this curve.

13.3 A Conjectured QSC for AdS3/CFT2
In this section, we present the conjectured QSC for the spectral problem of
strings on AdS3×S3×T4 in the presence of pure RR-flux explicitly. The pre-
sentation mirrors Section 12.1. We hope that this will ease the reading and
clarify the similarities and differences between AdS3 and AdS5.

We will opt to mainly use the notation of Paper V, which agrees with [21].
The reason for this choice is that the notation of Paper IV uses an additional
Hodge duality that is unnecessary to describe the AdS3 QSC, it was present
in Paper IV to make the comparison to the Hubbard model more natural. Fur-
thermore, the author expects that future explorations of the AdS3 curve will
use the notation of Paper V, making this choice the most natural.

At this stage, we are also faced with the difficult task of naming the QSC.
In the language of Paper IV the QSC is a type C/D curve, but this is not very
snappy. We will in the following simply write the AdS3 QSC with the under-
standing that it should be read as the Quantum Spectral Curve Conjectured to
describe AdS3×S3×T4 with pure RR-flux in the planar limit. We emphasise
that until a reliable comparison between the spectrum of AdS3×S3 and the
proposed QSC is performed it is fully possible that the curve must be modi-
fied, perhaps using twisting, or be fully discarded.

13.3.1 Formulation of the QSC
The AdS3 QSC is an analytic psu1,1|2⊕psu1,1|2 Q-system. To distinguish the
two different Q-systems we will decorate one set of them with dotted indices.
The full Q-system then consists of functions QA|K ,QȦ|K̇ with Q /0| /0 = Q /̇0| /̇0 =

Q12|12 = Q1̇2̇|1̇2̇ = 1. We will change the notation slightly from the AdS5×S5

case and write 1

Pa = Qa| /0 , Qk = Q /0|k , Pa =−ε
abQb|12 , Qk =−ε

klQ /0|l , (13.7)

1We will switch to using k instead of i in this section. The reason is that i̇ is very hard to read.
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as well as
Qa|k = ε

ab
ε

klQb|l . (13.8)

For future convenience, we note the most important QQ-relations

Q+
a|i−Q−a|i = PaQi , Pa = Q±a|k Qk , Qk = Q±a|k Pa , (13.9a)

Qa|iQ
a| j = δ

i
j , Qa|kQb|k = δ

b
a , PaPa = QiQi = 0 . (13.9b)

There exists a sheet, the defining sheet, on which the functions Pa,Pȧ,Pa,Pȧ

are analytic outside of a short cut in the u-plane stretching between ±2g. The
Pµ system is

∼
Pa = Pȧ µ

ȧ
a ,

∼
Pa = Pȧ

µȧ
a ,

∗∼
µa

ḃ−µa
ḃ = Pa

∼
Pḃ−

∗∼
PaPḃ , (13.10)

with µa
ċ µb

ċ = δ a
b and with another set of equations obtained by replacing

a↔ ȧ. In particular µa
ḃ is mirror-periodic, that is

∗∼
µa

ḃ = (µa
ḃ)[2] . (13.11)

The functions Qk,Qk̇,Q
k,Qk̇ are functions with a long cut, they satisfy the

Qω system

∗∼
Qk = ωk

l̇Ql̇ ,
∗∼
Qk = ω

k
l̇Q

l̇ ,
∼
ωk

l̇−ωk
l̇ = Qk

∼
Ql̇−

∗∼
QkQl̇ , (13.12)

where ω i
k̇ω j

k̇ = δ i
j. There exists another set of equations obtained by sending

k↔ k̇. ω is a periodic function, it is related to µ as

µa
ḃ = Q−a|k ω

k
l̇ (Q

ḃ|l̇)− , µ
a

ḃ = (Qa|k)−ωk
l̇Q−

ȧ|l̇ . (13.13)

13.3.2 Technical details
In this section, we comment on a few additional technical points.

Gauge transformations
We have not written the Pµ , nor the Qω-system, in its most general form. It
should be clear that if one performs two separate gauge transformations for
the dotted and undotted system this will in general not preserve the form of
these systems. The remedy to this in Paper IV was to introduce a prefactor r

in these systems, so that for example
∼
Pa = r Pȧµ ȧ

a. A way to avoid having
to worry about gauge factors is to only consider gauge invariant combinations
such as PaPb.
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Spinning around the branch points
In AdS5 we found that all branch cuts were quadratic. Since this is no longer
the case it would be desirable to have a compact formula for how to perform
analytic continuation around the branch point at 2g an arbitrary amount of
times. Expressions for this were found in [21]. Let us introduce

(µR)a
ḃ = µa

ḃ +Pa
∼
Pḃ , (ωR)k

l̇ = ωk
l̇−
∗∼
QkQl̇ . (13.14)

Note that these objects do not have cuts on the real axis by the Pµ and Qω-
systems. Let us then write

Wa
b = (µR)a

ċ(µR)ċ
b , Uk

l = (ωR)k
ṁ(ωR)ṁ

l . (13.15)

Using these objects one finds

∗∼
∗∼
Pa =Wa

bPb ,

∗∼
∗∼
Qk =Uk

lQl . (13.16)

13.3.3 Monodromy Bootstrap
Let us now outline how to reproduce the equations given in Setion 13.3.1 . We
start by introducing 4 different Q-systems: QA|I,QȦ|I,QA|İ,QȦ|İ where QA|I
and QȦ|İ are UHPA and QA|İ,QȦ|I LHPA. We require that there exist symmetry
transformations µ, µ̇,ω, ω̇ such that

Qa| /0 = Qa| /̇0 , Q /0|k = Q /0|l̇ ω
l̇
k , Qȧ| /̇0 = Qȧ| /0 , Q /̇0|k̇ = Q /̇0|l ω

l
k̇ , (p.k) ,
(13.17a)

Qȧ| /̇0 = µȧ
bQb| /̇0 , Q /̇0|k̇ = Q /0|k̇ , Qa| /0 = µa

ḃQḃ| /0 , Q /0|k = Q /̇0|k , (m.k) .
(13.17b)

Where p.k is short for physical kinematics and m.k is short for mirror kine-
matics. We can now quickly verify the formulas in Section 13.3.1.

The expressions for
∼
Pa and

∗∼
Qi follows immediately from (13.17). From

Q−ȧ|k = µb
ȧQ−b|k = ωk

l̇Q−
ȧ|l̇ we find (13.13). Finally, the discontinuity of ω

follows from ∆(Q−
a|k̇) = 0.

13.3.4 The spectral problem
It was proposed in Paper IV and [21] that for the spectral problem the asymp-
totic of all Q-functions should be powerlike

Pa ≃ Aau−λ̂a , Pȧ ≃ Aȧu−λ̂ȧ , Qk ∼ Bk u−ν̂k−1 , Qk̇ ∼ Bk̇u−ν̂k̇−1 . (13.18)
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In terms of the magnon-numbers of (13.1) and (13.2) we find

λ̂a = {
L
2
−K2 +K1 +1,−L

2
+K2−K3} , (13.19a)

λ̂ȧ = {
L
2
−K3̇,−

L
2
+K1̇ +1} , (13.19b)

ν̂k = {−
γ

2
− L

2
−K1−1,

γ

2
+

L
2
+K3} , (13.19c)

ν̂k̇ = {−
γ

2
− L

2
−K2̇ +K3̇,

γ

2
+

L
2
+K2̇−K1̇−1} . (13.19d)

We use the explicit labels appearing in the ABA for ease of comparison.

13.3.5 Large volume solution
To see if the structure proposed in the previous section have any chance of
reproducing the spectrum of AdS3×S3×T4 we must first verify that it can
reproduce the Asymptotic Bethe Ansatz equations presented in Section 13.1.
This exercise was carried out in Paper V and in [21]. We reproduce parts
of the calculation here to highlight the new features found but will keep the
discussion brief.

By large volume we mean taking L → ∞ and using the assumption that
Q-functions will scale as their asymptotics. The large volume derivation fol-
lows to a large extent that of AdS5 presented in Section 12.2. Once again we
introduces ε = u−

L
2 and find

Qa|k ∼ Qȧ|k̇ ∼
(

1 ε2

1
ε2 1

)
, Pa,Pȧ ∼ {ε,

1
ε
} , (13.20)

and so

µ1
2̇ ∼ Q−1|1Q−1̇|1̇ω

1
2̇ . (13.21)

Finding µ and ω

In the case of AdS3 we need one more assumption: µ1
2̇ should be a square-

root cut function in the large volume limit. Then we can repeat the same
calculation presented in Section 12.2.1. We write Qtot = Q2 Q2̇ for the zeros of
µ1

2̇ and µ1̇
2. Just as in AdS5 we introduce

R(±),2 =
K2

∏
k=1

√
g

x∓k
(x− x∓k ) , R(±),2̇ =

K2̇

∏
k=1

√
g

ẋ∓k
(x− ẋ∓k ) , (13.22)

and B(±),k =
∼
R(±),k and fk

f [2]k

=
B(+),k
B(−),k

. Then

µ1
2̇

∝ µ1̇
2

∝ Q−2 Q−2̇ ftot f [−2]
tot , ω

1
2̇ ∝ ω

1̇
2 ∝

f [−2]
tot

ftot
, ftot = f2 f2̇ . (13.23)
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Using that Q−1|2̇ ∝ ω 1̇
2 Q−1|1 we find Q1|1 and Q1̇|1̇ as

Q1|1 = Q2 f+tot , Q1̇|1̇ = Q2̇ f+tot . (13.24)

We note the strong similarities between these results and those of AdS5. We
should also mention that very similar structures appear in ABJM, see [158].

Dispersion relation
We can immediately reproduce the dispersion relation (13.3) using the same
arguments as in AdS5. From

Q1|1Q1̇|1̇ ≃ uγ+K2+K2̇ , (13.25)

and from the large u limit of ftot we obtain

γ = 2ig

(
K2

∑
k=1

(
1

x+k
− 1

x−k
)+

K2̇

∑
k=1

(
1

ẋ+k
− 1

ẋ−k
)

)
. (13.26)

Finding P
In the large volume limit the Pµ-system implies

∼
P1̇ ≃Q2

ω2
1̇Q−1̇|1̇ . (13.27)

This equation connects P from one system to Q in the other. This is how
the QSC encodes the preferred grading used in (13.1) and (13.2). Using also
expressions from (13.17) we deduce that Pa/ f [2]tot f [−2]

tot is a function with one
cut on the real axis. To handle the factor of f [2]tot f [−2]

tot we once again introduce
a function σtot such that

∼
σ totσtot = f [2]tot f [−2]

tot . (13.28)

We recognize by now σtot as the basic building block of the BES phase. All
other parts of Pa can only have a cut on the real axis. At this stage in the AdS5
derivation we could appeal to the quadratic cut nature of Pa to essentially finish
the computation. This is not possible in AdS3. To see that P1̇ cannot have a
quadratic cut we compute

∗∼
P1̇ ≃ Q+

1̇|1̇ω
1̇

2Q2 . (13.29)

We see that the shift of Q1̇|1̇ differs from (13.27), this is the reason the cut is
no longer quadratic.

At this time follows a little work to find the remaining Q-functions relevant
at large volume. We will refer to Paper IV and [21] for details and quote the
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results in terms of the gauge invariant combinations P1P2 and Q1Q2 in the
case when all auxiliary roots are turned off, K1 = K3 = K1̇ = K3̇ = 0,

P1P2
∝ x−L B(+),2 B(−),2 Σ

2
2Σ̂

2
2̇ σ

2
tot , (13.30a)

P1̇P2̇
∝ x−L B(+),2̇ B(−),2̇ Σ

2
2̇Σ̂

2
2 σ

2
tot , (13.30b)

Q1Q2
∝ xL B(+),2

B(−),2

1
B2
(−),2̇

( f [2]tot )
2

σ2
totΣ

2
2Σ̂2

2̇

, (13.30c)

Q1̇Q2̇
∝ xL

B(+),2̇

B(−),2̇

1
B2
(−),2

( f [2]tot )
2

σ2
totΣ

2
2̇Σ̂2

2
. (13.30d)

The additional phases Σ and Σ̂ are constrained by the following crossing equa-
tions

∼
Σ

2
Σ̂

2
∝

R(−)
R(+)

,
∼
Σ̂

2
Σ

2
∝

B(+)

B(−)
. (13.31)

Finally, let us compare against the AdS3 ABA. Written in terms of Q-
functions the two momentum-carrying equations are

Q[2]
1|1

Q[2]
1|1

(Q1Q2)−

(Q1Q2)+

∣∣∣∣∣∣
Q1|1=0

=−1 ,
Q[2]

1̇|1̇

Q[2]
1̇|1̇

(P1̇P2̇)−

(P1̇P2̇)+

∣∣∣∣∣∣
Q1̇|1̇=0

=−1 . (13.32)

Comparing against (13.1) and (13.2) we find the identifications

(σ••)2
∝

(Σ2)+

(Σ2)−
(σ2)+

(σ2)−
, (σ̂••)2

∝
(Σ̂2)+

(Σ̂2)−
(σ2)+

(σ2)−
. (13.33)

We will verify that this identification correctly solves the crossing equations
in Section 13.5.

13.4 Solving the Curve
In Paper V the AdS3 QSC was solved at weak coupling. In particular explicit
results were presented for operators with a similar structure to the operators
trZDNZ in N = 4. In this section, we explain the methods of Paper V and
the results obtained.

13.4.1 The sl2 operators
The operators under consideration in Paper V are the AdS3 cousins of twist-
two operators in AdS5. They are obtained in the QSC by setting K1 = K3 =

101



K1̇ = K3̇ = K2 = 0 and fixing K2̇ = S. We will refer to this choice as being in
the sl2 sector. The asymptotic of Pa and Pȧ are then given by

Pa ≃ {
A1

u2 ,A2 u} , Pȧ ≃ {A1̇
1
u
,A2̇} . (13.34)

In this sector we also can pick a gauge in which

Pa =−ε
abPb , Qk = ε

klQl . (13.35)

Furthermore, the states also exhibit parity symmetry. This means that the P-
functions satisfy

Pa(−u) = gb
a Pb(u) , Pȧ(−u) = gḃ

ȧ Pḃ(u) . (13.36)

with g,g constant diagonal matrices. As explained in Section 12.3.4 it is then

possible to obtain a set of gluing equations that relates
∗∼
Qk to Qk̇(−u). For

AdS3 the gluing takes the form

∗∼
Qk(u) = Nk

l̇Ql̇(−u) . (13.37)

We will henceforth require that N is strictly off-diagonal. This assumption
was argued from symmetry in Paper V, but it was never proven to be true. As
such, it remains an assumption.

Using the QQ-relations (13.9) one can use the gluing condition (13.37) to
deduce the form of µR. With a little bit of algebra one finds

(µR)a
ḃ =−Qa|k(u+

i

2
)εklNl

l̇Qċ|l̇(−u+
i

2
)ε ċḋgḃ

ḋ . (13.38)

13.4.2 The Q-system at zero-coupling
The Q-system at g = 0 is equivalent to two rational psu1,1|2 Q-systems. We
tackled solving these chains in Section 10.2. In particular, the undotted Q-
system is in a vacuum state. That is, all Q-functions are in this case simply
polynomials. The dotted system is instead in the sl2 sector which we solved
in Section 10.2.

13.4.3 Weak coupling solution
With the QSC solved at zero coupling we now need to understand how to
develop perturbation theory. The approach of Paper V is to try and once again
build Q-functions with quadratic cuts. To accomplish this we defined

Pa = (W ℓ)a
bPb , ℓ=

i

2π
log

x−1
x+1

. (13.39)
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Where P has a quadratic cut on the real axis. It thus follows that P can be
written as a series in x. However, it does not need to be bounded either from
below or from above. Thus in general

Pa =
∞

∑
n=−∞

da,n

xn . (13.40)

By inverting (13.39) one obtains the following identity

Pa =
∞

∑
n=0

(−ℓ)n

n!
logn(W )a

bPb . (13.41)

This implies that we can use W and P to parameterise Pa. Furthermore, given
(µR)ȧ

b it is possible to also construct Pȧ. Since both µ and W are functions
without cuts on the real axis they can be reliably parameterised as polynomials
in v≡ u

g close to the real axis.
The following strategy was then implemented: An ansatz for Pa, µR and W

was taken. From this Pa,Pȧ was reconstructed and re-expanded as functions
of u. Using the algorithm of Section 12.3.4 it is then possible to compute
Qa|k and Qȧ|k̇. From this data it is possible to once again find (µR)a

ḃ using
(13.38). Requiring that the reconstructed µR agrees with the initial ansatz
eventually closes the equations. For some explicit examples of all functions
see the Appendix of Paper V.

13.4.4 Numerical solution
To develop a numerical algorithm one can use the fact that

∗∼
Pa can be computed

both from x→ 1
x but also from

(W
∗∼

l)a
b(µR)b

ċPċ =
∞

∑
n=−∞

d̃a,n

xn , (13.42)

assuming one stays close enough to the cut on the real axis.
One then follows the same steps as in Section 12.3.6 to build Q+

a|k,Q
+
ȧ,k̇

close to the cut. From these objects one constructs µ and uses a minimisation
algorithm to find where the differences da,k− d̃a,−k vanishes exactly.

13.4.5 Results
Studying S = 2,4,6,8 the following all S guess was produced in Paper V

γ = 8g2 H1 +g3 384
35π

H2
1 +g4

(
∆

N =4
2 − 512

21π2 H3
1

)
+O(g5) . (13.43)
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These results were obtained with analytical methods and agree with high ac-
curacy numerics.

The proposal (13.43) has intriguing, and perhaps, unpleasant properties.
The first observation is that we find the N = 4 in the slightly unorthodox limit
π → ∞. It is tempting to believe that what we are observing is a deformation
of the N = 4 result by wrapping effects coming from new massless particles
not previously present.

Assuming we can trust (13.43) we are faced with the puzzling statement
that there is no good cusp limit due to the additional log(S) coming in at higher
orders. This is problematic since in the strong coupling regime it is expected
that γ ≃ log(S). From our discussion of twisted QSC in Section 12.4 it does
not seem easy to fix this by implementing twist. This issue surely requires
further study.

13.5 The Massive Dressing Phases
A topic that has received interest lately is what dressing phases should appear
in the ABA for AdS3×S3×T4. The main constraint on the dressing phases
is crossing equations. For the phases appearing in the AdS3×S3×T4 massive
ABA the crossing equations were obtained in [224]. Let us define two new
phases by stripping away a BES factor

σ
•• = Σ

••
σBES , σ̂

•• = Σ̂
••

σBES . (13.44)

Then the crossing equations read

((Σ••)2)γc(Σ̂••)2 =
R+
(−)

R+
(+)

R−
(+)

R−
(−)

, ((Σ̂••)2)γc(Σ••)2 =
B+
(+)

B−
(−)

B+
(−)B

−
(+)

. (13.45)

It is now an easy task to see that the QSC reproduces these crossing relations.
Recall from Section 13.3.5 that Σ•• = Σ+

Σ− , Σ̂
•• = Σ̂+

Σ̂−
and then using (13.33)

we reproduce (13.45). It should be noted that the QSC crossing equations are
stronger than (13.45). This is so because they postulate that upon descending
from the defining sheet we arrive at a new sheet with only one branch cut.
This is very different from how for example σtot behaves under crossing, see
(13.28). Indeed, the absence of additional cuts on the second sheet is reminis-
cent of what happens in the strong-coupling expansion of AdS5.

13.5.1 Old and new solutions of the dressing phases
By studying quantum corrections to classical string theory in the same vain as
in AdS5 [188,233–235] an expansion of the AdS3 dressing phase at strong cou-
pling was made in [236]. Another proposal, different from the first, was made
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in [237] by solving the crossing equations. This proposal was recently argued
to be inconsistent and subsequently modified in [238]. The QSC construction
is not compatible with the dressing phases of [237] nor [186], while [238]
satisfy all necessary analytic requirements. It remains to verify if the QSC
predicts the phases of [238]. Such an analysis should be complemented with
explicit solutions of large L states, something that has not yet been attempted.

13.6 Outlook
There exist many interesting directions related to the AdS3 QSC that deserves
further study. The most pressing questions are how to include massless modes
and to see if the curve agrees or not with the TBA. For massless mode there
now exist interesting results from TBA [239]. It would be highly desirable to
make contact with CFT, see [240]. An important generalisation would be to
allow for NSNS-flux [241]. It would be very interesting to study the Hagedorn
temperature following [242].

The superalgebra psu1,1|2 also makes an appearance in the AdS2/CFT1 cor-
respondence. Here an ABA has been formulated and investigated [243, 244].
There also exists an S-matrix [245, 246] and progress in understanding mass-
less modes [247, 248] but it is still unclear if all these methods give the same
results. It is natural to investigate if it is possible to conjecture a QSC for
AdS2/CFT1 following the ideas in this section.
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Svensk Sammanfattning

Mänskligheten har vid tillkomsten av denna avhandling observerat fyra funda-
mentala naturkrafter: elektromagnetisk växelverkan, svag växelverkan, stark
växelverkan samt gravitation. De tre första kan beskrivas med hjälp av kvant-
fältsteori, en teori kompatibel med både speciell relativitetsteori och kvant-
mekanik. Gravitation på stora skalor hanteras med allmän relativitesteori, men
denna formalism bryter samman vid de skalor där kvanteffekter inte längre
kan ignoreras. Att finna den teori som korrekt beskriver både gravitation samt
kvantfältsteori i vår värld är den moderna teoretiska fysikens största utmaning.

Vid nuvarande tidpunkt är strängteori den främsta kandidaten. Strängteori
beskriver både kvantfältsteori samt gravitation, men det är ännu inte etablerat
om den beskriver vårt universum då vi saknar experimentella bevis. Sträng-
teori är därmed förpassad till en matematisk modell vid skrivande stund. Ly-
ckligtvis är det en fascinerande modell, det är väl värt att studera strängte-
ori och dess konsekvenser såsom supersymmetri oberoende av huruvida detta
beskriver världen som omger oss eller inte. Att inte försöka belysa varje hörn
av en teori kompatibel med både gravitation och kvantmekanik vore tjänstefel.

En av de största upptäckterna inom matematisk fysik i modern tid är att
strängteori och kvantfältsteori är intimt besläktade. AdS/CFT dualititen lär oss
att strängteori i Anti-de Sitter, en speciell krökt geometri, är ekvivalent med
en konform fältteori i en dimension lägre. Det mest välstuderade exemplet
av denna dualitet är mellan strängteori på AdS5×S5 och fyra-dimensionell
N = 4 Super-Yang-Mills, en ytterst symmetrisk kvantfältsteori.

Att studera strängteori och kvantfältsteori är dock utmanande. Nuvarande
tekniker tillåter oss endast i allmänhet att utforska dessa teorier i speciella
gränser. Lyckligtvis är det så att N = 4 och dess duala strängteori uppvisar
integrabilitet. Med hjälp av metoder och redskap grundade i integrabilitet
utvecklades runt 2010 en kraftfull ny formalism: Quantum Spectral Curve
(QSC). Med QSC är det möjligt för vem som helst med en dator och till-
gång till Mathematica att beräkna det exakta energispektrat av N = 4. Det är
anmärkningsvärt att QSC beskriver aspekter av både strängteori samt kvant-
fältsteori perfekt. QSC har sedan dess formulering även använts i flera andra
sammanhang. För att nämna några få applikationer har QSC varit av använd-
ning vid studier av defekter, deformationer och vid beräkningar av så-kallade
strukturkonstanter.

Denna avhandling syftar till att öka vår förståelse för den bakomliggande
formalismen till QSC samt att försöka applicera formalismen i nya teorier,
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framförallt för strängteori på AdS3×S3×T4. QSC bygger på analytiska Q-
system, detta är en samling av så kallade Q-funktioner som beror på en kom-
plex variabel och är relaterad via en samling av QQ-relationer. Q-funktioner
är ett mycket allmänt koncept; dessa funktioner har studerats i vitt skilda
sammanhang. Dessa funktioner är viktiga inte bara inom strängteori utan
även inom statisk fysik och i ren matematik. Det som skiljer Q-funktioner
i AdS/CFT från sina kusiner är att de har mycket unika analytiska egenskaper;
de är funktioner som lever på en komplicerad tvådimensionell yta. I de flesta
andra sammanhang där Q-funktioner studeras beskrivs de vanligtvis av mer
välkända funktioner som polynom eller trigonometriska funktioner. Syftet
med denna avhandling är att bättre förstå hur Q-funktioner kan generaliseras
och hur de Q-funktioner som är relevanta för AdS/CFT är relaterade till de
mer typiska Q-funktioner som är av intresse inom andra områden. Genom att
studera detta problem förväntas framsteg inom både matematik och fysik. En
fullständig teori kring Q-funktioner för godtyckliga superalgebror kommer in-
nebär att större förståelse för i vilka sammanhang integrabilitet kan förväntas
inom AdS/CFT samt även belysa hur objekt såsom Yangians kan generaliseras
bortom de välkända modeller som studerats intensivt under de senast årtion-
den.

I de bifogade artiklarna generaliseras både analytiska samt algebraiska as-
pekter av Q-system och nya modeller för låg-dimensionell AdS/CFT föres-
lås. I Artikel I samt Artikel II undersökes hur Q-system kan appliceras i inte-
grerbara system som uppvisar en symmetrialgebra av typ so2r. I dessa fall kan
Q-systemet parameteriseras av spinorer med anmärkningsvärda egenskaper.
Med de tekniker som utarbetas i dessa artiklar är det möjligt att finna spek-
trat för mycket långa spinkedjor. Detta är användbart i många olika delar av
matematisk fysik.

I Artikel IV samt Artikel V konstrueras Q-system som potentiellt kan beskriva
strängteori på AdS3×S3×T4. Detta mål uppnås genom att studera hur Q-
system med komplicerade analytiska egenskaper kan kopplas samman med
hjälp av symmetriargument. En algoritm för att lösa dessa Q-system i en
svagkopplingsgräns utvecklas och appliceras, både anaytiskt och numeriskt.
Från denna algoritm finner vi information som förhoppningsvis kommer vara
användbart för att effektivt kunna beskriva den CFT som är dual till strängteori
på AdS3×S3×T4.

I Artikel III används algebraiska tekniker för att studera spektrat hos differ-
entialoperatorer på en deformerad sju-sfär. Detta är intressant då dessa oper-
atorer beskriver massan hos partiklar på AdS4, en effektiv teori som uppkom-
mer efter kompaktifiering av supergravitation i elva dimensioner.
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