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Abstract: We take a major step towards computing D-dimensional one-loop ampli-
tudes in general gauge theories, compatible with the principles of unitarity and the color-
kinematics duality. For n-point amplitudes with either supersymmetry multiplets or generic
non-supersymmetric matter in the loop, simple all-multiplicity expressions are obtained for
the maximal cuts of kinematic numerators of n-gon diagrams. At n = 6, 7 points with max-
imal supersymmetry, we extend the cubic-diagram numerators to encode all contact terms,
and thus solve the long-standing problem of simultaneously realizing the following proper-
ties: color-kinematics duality, manifest locality, optimal power counting of loop momenta,
quadratic rather than linearized Feynman propagators, compatibility with double copy as
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well as all graph symmetries. Color-kinematics dual representations with similar properties
are presented in the half-maximally supersymmetric case at n = 4, 5 points. The result-
ing gauge-theory integrands and their supergravity counterparts obtained from the double
copy are checked to reproduce the expected ultraviolet divergences.
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1 Introduction

In a variety of situations, perturbative computations in gravitational theories have been
reduced to double copies of gauge-theory building blocks. The double-copy notion has
expanded into a rich research program of steadily growing scope which unravels surprising
connections between different types of quantum field theories and string theories. The
reader is referred to the reviews [1, 2] and the white paper [3] for an overview.

The gravitational double copy is crucially driven by the color-kinematics duality in
gauge theories [4] and dramatically improved our structural understanding of and compu-
tational reach for gravitational scattering amplitudes. A well-established manifestation of
the color-kinematics duality and gravitational double copy is based on an organization of
loop integrands in terms of diagrams with trivalent vertices or cubic graphs for short.

In the loop integrand of gauge theories, each cubic graph is decorated by Feynman
propagators, color factors and kinematic numerators. These numerators depend on po-
larization data and momenta and furnish the loop integrals with structure that cannot
be straightforwardly read off from the graph. The color-kinematics duality is manifest if
the kinematic numerators share both the symmetry properties and, crucially, the Jacobi
identities of the corresponding color factors. Gravitational loop integrands then follow
from their gauge-theory counterparts by trading the color factors for another copy of such
kinematic numerators, possibly from a different gauge theory [5].

The general existence of gauge-theory numerators at loop level that satisfy all kine-
matic Jacobi relations is of conjectural status, but it has been broadly observed for different
theories of varying spacetime dimension and with or without supersymmetry. For super-
Yang-Mills (SYM) theory with maximal supersymmetry, Jacobi-satisfying numerators are
for instance known at the four-point level through four loops [5–8] and for five-point ampli-
tudes at least through two loops [9, 10]. Five- and six-loop non-planar four-point integrands
are known in the literature [11, 12], but finding the corresponding Jacobi-satisfying numer-
ators remains a technically difficult open problem. However, for maximally supersymmetric
form factors there are substantial results for such representations through five loops [13–16].

The state of the art for higher-multiplicity one-loop amplitudes, which admit color-
kinematics duality and the double copy, depends on propagator choices and spacetime
dimension. In ten-dimensional SYM [17, 18], five-point numerators are compatible with
standard Feynman propagators quadratic in loop momentum [19]. However, supergrav-
ity loop integrands at n ≥ 6 points in D ≥ 4 dimensions are until now only available in a
double-copy form where the propagators are linearized with respect to loop momenta [20] as
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prescribed by ambitwistor string theories [21, 22]. For the one-loop six-point SYM numer-
ators found in the literature [20], the conversion to the traditional quadratic propagators
breaks some of the kinematic Jacobi identities. An interesting variant of kinematic Jacobi
relations was solved by the six- and seven-point SYM numerators on quadratic propagators
in ref. [23], but it remains an open problem to derive one-loop supergravity double-copy
integrands from these representations beyond five points.

The apparent challenges of finding Jacobi-satisfying numerators, both for four-point
amplitudes at five loops and beyond [11, 12], and for one-loop amplitudes at six points
and beyond [20, 23], begs the question whether the standard color-kinematics duality and
double copy [5] are limited to low multiplicities and loop orders, or if these challenges are
only of technical nature to be resolved by further progress.1 We here provide evidence in
support of the latter.

In this work, we overcome the mentioned one-loop obstacles and present six- and
seven-point numerators for external gluons in ten-dimensional SYM. These numerators
satisfy all kinematic Jacobi identities and graph symmetries, belong to diagrams with
quadratic propagators, and double copy to type II supergravity integrands with any com-
bination of external gravitons, Bµν-fields and dilatons. Furthermore, the numerators are
local and written in dimension-agnostic notation using polarization vectors and linearized
field strengths. As a crucial new ingredient in comparison to earlier D-dimensional numer-
ators at n ≥ 6 points, we encounter inverse propagators in the (one-particle irreducible)
n-gon numerators. There is no known smoking gun for these contact terms in string-theory
approaches2 which might be part of the reasons that the numerators in this work have not
been constructed before.

Corresponding numerators of maximally supersymmetric gauge theories in D < 10
dimensions follow from straightforward dimensional reduction. We have crosschecked the
result by computing the ultraviolet (UV) divergences in D = 8 and D = 10 for the six-
point supergravity amplitude obtained from double copy. The correct D = 8 result is
obtained through a delicate interplay of the parity even and parity odd parts of the gauge-
theory numerators, and the calculation relies on the transparent UV properties of Feynman
integrals with quadratic (rather than linearized) propagators.

At one loop, half-maximally supersymmetric n-point integrands are known to inherit
structural properties of the corresponding maximally supersymmetric (n+2)-point inte-
grands [30, 31]. Accordingly, the new results of ten-dimensional SYM provide informa-

1Note that in certain cases color-kinematics duality is simpler to manifest in four dimensions, where
numerators either can be built using Gram determinants [9, 24], or can be found to admit compact one-
loop all-multiplicity formulae for maximally-helicity-violating amplitudes [25] and for self-dual Yang-Mills
theory [26, 27]. Furthermore, in any dimension, the loop-level double copy admits a generalized form [28],
where the need for kinematic Jacobi identities and cubic graphs is relaxed, and this was used in the
construction of the five-loop supergravity integrand [11, 29].

2We nevertheless borrow the characteristic t8-tensor (defined in eq. (3.4)) known from string amplitudes
to organize the Lorentz-contractions of the linearized field strengths in the n-gon numerators. Together
with the complete dihedreal symmetry we impose, this led to compact ansaetze with considerably fewer
free parameters for the D-dimensional polarization dependence in comparison to earlier field-theory con-
structions.
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tion that allows us to explicitly construct the six-dimensional four- and five-point gauge-
theory numerators that preserve eight supercharges and manifest color-kinematics dual-
ity on quadratic propagators. In the literature, Jacobi-satisfying four-point numerators
for half-maximal supersymmetry have previously been computed at one [32, 33] and two
loops [34, 35], both for four-dimensional external gluons and manifest four-dimensional
supersymmetry. For gluons in D ≥ 4 dimensions, kinematic Jacobi relations of the earlier
four-point numerators in ref. [31] were tied to linearized propagators [20].

Finally, as a first stepping stone towards obtaining one-loop numerators beyond seven
points, we provide compact all-multiplicity expressions for n-gon numerator contributions
to the maximal cuts with general internal matter. The n-gon is the basis diagram of the one-
loop integrand at n points in the sense that it determines all other diagrams via kinematic
Jacobi identities [36, 37]. The maximal cuts are derived by sewing cubic trees for gauge
theories with any number of supercharges between 0 and 16. Tentative supersymmetry
cancellations are manifested via simple relations between traces over the vector and spinor
representations of the Lorentz group, akin to the forward-limit construction of gauge-theory
numerators in ref. [38].

As a guide to the reader: kinematic numerators that satisfy all the same Jacobi iden-
tities as the color factors will be referred to as BCJ numerators. Furthermore, we will use
the following acronyms for the theories of chief interest to this work:

SYM denotes a generic supersymmetric Yang-Mills theory;
MSYM denotes the maximal SYM theories that preserve 16 supercharges;
1/2-MSYM denotes the half-maximal SYM theories that preserve 8 supercharges.

This work is organized as follows: in section 2, we review the color-kinematics duality
and double copy for one-loop amplitudes, as well as the method of generalized unitarity
and state sewing. In section 3, we review the needed kinematic building blocks for maxi-
mal supersymmetry, including Lorentz traces of linearized field strengths and multiparticle
polarizations, which are key ingredients for compact BCJ numerators. In section 4, we
spell out the new results for BCJ numerators for MSYM in D ≤ 10 dimensions. Based
on compact general formulae for maximal-cut contributions with any number of external
gluons, we present local six- and seven-point one-loop BCJ numerators that respect all
graph symmetries, obey expected loop-momentum power counting, and belong to cubic
graphs with standard (quadratic) Feynman propagators. In section 5, we carry out impor-
tant consistency checks by explicitly computing the UV divergences of MSYM and type II
supergravity amplitudes up to six points. In section 6, we present similar perfected numer-
ators for four- and five-point one-loop amplitudes in (D ≤ 6)-dimensional 1/2-MSYM and
crosscheck the UV divergences of the supergravity integrands obtained from the double
copy. Conclusions and outlook are given in section 7, followed by four appendices with
further details that complement the main text.

2 Review: color-kinematics duality and unitarity at one loop

Consider a one-loop n-point amplitude for a generic purely-adjoint SYM theory in D space-
time dimensions. The color-dressed amplitude can be written as a sum over all cubic n-point
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one-loop graphs,3

A1-loop =
∑

G∈cubic

∫ dD`
iπD/2

1
SG

CGNG

DG
, (2.1)

where for each cubic graph G the color factor CG is given by the contraction of structure
constants fabc associated to the vertices, and D−1

G is the product of Feynman propagators
associated to each internal edge. The kinematic numerator NG encodes the remaining non-
trivial kinematic data — polarizations, external momenta and loop momenta. In principle,
the numerators can be obtained from conventional Feynman rules, after resolving contact
vertices into cubic ones, for instance using auxiliary fields in the adjoint representation of
the gauge group. However, by relaxing the use of Feynman rules and auxiliary fields, we
are free to find more beneficial properties and explicit formulae for the numerators. Fi-
nally, the symmetry factor SG removes the overcounting coming either from the sum over
redundant graph permutations or from the integral phase space of each graph.

2.1 Color-kinematics duality and double copy

The color factors associated with different graphs obey linear relations. In particular, if we
have a triplet of graphs that differ by only one internal edge, then their color factors are
related by the Jacobi identity,

C


1

2

− C


2

1

 = C


1

2

 , (2.2)

where the notation assumes insertions of structure constants where cubic vertices are ex-
posed, and the connected lines represent contractions over adjoint indices. An amplitude
is said to satisfy the color-kinematics duality if its kinematic numerators satisfy the same
identities as the color factors [4, 5],

N


1

2

−N


2

1

 = N


1

2

 . (2.3)

We call the duality satisfying kinematic numerators BCJ numerators, and a loop integrand
constructed out of BCJ numerators is called a BCJ representation (of the loop integrand).

At loop level, a generic constructive derivation of BCJ numerators is currently unknown
(apart from the one-loop ambitwistor construction [20] leading to linearized propagators),
instead one typically needs to proceed using an ansatz-based approach. A major advantage
of the BCJ representation is that gavitational amplitudes can be obtained with minimal

3For later convenience, we use a somewhat non-standard overall normalization and remove the coupling.
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work. If a set of BCJ numerators is known, say ÑG, then one can simply replace the color
factors CG → ÑG in eq. (2.1) to obtain a gravitational amplitude,

M1-loop =
∑

G∈cubic

∫ dD`
iπD/2

1
SG

ÑGNG

DG
. (2.4)

The two copies of numerators, ÑG and NG, can be identical to each other, or encode
different external and internal particles, or belong to entirely different gauge theories.
Thus the double copy has the potential to give a large variety of different gravitational
amplitudes. See the review [1] for a comprehensive discussion on known examples of color-
kinematics duality and double-copy constructions.

The color-factor Jacobi relations can be systematically reduced as in eq. (2.2), and a
minimal basis can be obtained. For n-point amplitudes at tree level, a well-known minimal
basis corresponds to the set of half-ladder graphs with legs 1 and n fixed, which is often
called the Del Duca-Dixon-Maltoni (DDM) basis [36]. At one loop, a similar minimal DDM
basis consists of the set of n-gon graphs, or equivalently all one-particle irreducible (1PI)
cubic graphs. Because of color-kinematics duality, the BCJ numerators can be expressed
in same DDM-type bases. Thus for one-loop n-point amplitudes, the n-gon numerators
provide the independent BCJ basis numerators.

In the following, n-gon basis numerators will be denoted by N12...n, where the subscript
specifies the external-leg ordering (12 . . . n). More generally, we will use NA1A2...Am with
m < n to denote the numerator of a one-particle reducible (1PR) graph with an m-gon
structure. Each word Ai of length greater than one represents a dangling tree connected
to the m-gon whose structure will be specified by nested brackets. The external-leg order-
ing is simply given by the concatenation A1A2 . . .Am with all the brackets removed. For
example, N[12]345 stands for the five-point box numerator in which leg 1 and 2 appear in
a dangling three-point tree, and we will also encounter six-point box numerators N[[12]3]456
and N[1[23]]456 associated with four-point trees.

2.1.1 Color-ordered gauge-theory amplitudes
The kinematic numerators are not unique and usually contain a large amount of redun-
dancy, which is called generalized gauge freedom. It is useful to assemble gauge-invariant
color-ordered amplitudes to check if free parameters are indeed part of the gauge redun-
dancy. A one-loop single-trace color-ordered gauge-theory amplitude is given by

A1-loop
gauge (1, 2, . . . , n) =

∫ dD`
iπD/2

[
N12...n(`)

`2(`+k1)2(`+k12)2 . . . (`+k12...n−1)2 + . . .

]
, (2.5)

where k12...i = k1 + k2 + . . . + ki, and the ellipsis includes all cubic 1PR graphs that are
compatible with the prescribed color ordering. We make a global choice for the position
of the loop momentum ` for all graphs, to be located between legs 1 and n such that all
loop propagators are of the form 1/(`+k12...i)2. With this choice the integrand in eq. (2.5)
can be made to algebraically satisfy linearized gauge invariance εi → ki (in D ≤ 10 and
D ≤ 6 for MSYM and 1/2-MSYM, respectively). In this paper, we will not discuss one-
loop double-trace amplitudes since they are obtained from linear combinations of their
single-trace counterparts [39].
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2.1.2 Crossing symmetry

We demand the numerators to satisfy the same symmetry properties as the color factors
under relabeling of external legs. Suppose the n-gon basis numerator N12...n is known, then
any other basis numerator is obtained by simply relabeling the external legs,

Nρ(1)ρ(2)...ρ(n) = N12...n
∣∣
i→ρ(i) , ρ ∈ Sn , (2.6)

where the position of loop momentum is unchanged under the permutation ρ. The n-gons
have a dihedral symmetry Dn, and we expect the numerators to satisfy the same symmetry.
Namely, the action of Dn includes cyclic shifts and reflections, which act non-trivially on
the loop momentum,

Ni,i+1,...,n,1,2,...,i−1(`) = N12...n(`− k12...i−1) ,
N1,n,n−1,...,2(`) = (−1)nN12...n(−`− k1) . (2.7)

The properties (2.6) and (2.7) are equivalent to imposing manifest crossing symmetry for
the integrand. Imposing the above constraints significantly reduces the number of free
parameters in the numerator functions.4 After imposing color-kinematics duality, all other
numerators of 1PR graphs are related to the n-gons through Jacobi identities. Note that
for one-loop graphs, the 1PR numerators inherit a complete set of crossing-symmetry
requirements from the n-gons via the kinematic Jacobi relations.

For non-planar gauge-theory and gravity integrands, as given in eqs. (2.1) and (2.4),
a good global notion of loop momentum is difficult to obtain. This is sometimes referred
to as the “labeling problem” as it is unclear how to assign a loop momentum ` such that
required cancellations (from gauge redundancy) between different graphs happens alge-
braically, without shifting ` locally for each graph. Since the kinematic Jacobi relation (2.3)
relates planar and non-planar graphs it is not possible to work under the assumption that
` is fixed, instead one must allow for local shifts in ` in order to make sure that all possible
Jacobi relations are satisfied. The labeling problem is well-understood in the field-theory
limit of closed-string amplitudes, where one can extract certain global definitions of loop
momenta in gravitational loop integrands from a canonical dissection of the string world-
sheet [40], also see [41] for a discussion in the context of the color-kinematics duality.

We may sidestep the labeling problem by imposing the full crossing symmetry. The
three graphs that form a Jacobi triplet, as in eq. (2.3), may have different loop-momentum
labelings, but due to the dihedral part of the crossing symmetry we can always perform
local shifts of ` for individual graphs to align them. With the crossing symmetry imposed
all the kinematic Jacobi identities can be considered to hold by construction, as they are
simply used to define the reducible numerators. The nontrivial part of construction is
instead delegated to the matching of the ansatz with the physical information coming from

4Strictly speaking, the crossing symmetry of the integrand is not necessary, since the crossing symmetry
of the full amplitude can be recovered after integration. However, relaxing it would lead to a proliferating
number of free parameters related to the position of the loop momentum, since the Jacobi relations will
explore numerators with arbitrarily shifted `. Moreover, imposing the crossing symmetry of the amplitudes
would involve integration, which is more difficult to accomplish in practice.
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unitarity cuts. Cuts both in gravity and for color-dressed non-planar gauge theory can be
conveniently performed using the crossing symmetric numerators, as it is now easy to shift
` to align it with the loop momentum in the cut expressions. See appendix A for a more
detailed discussion.

2.1.3 Supersymmetry

Incorporating supersymmetry brings further simplification to kinematic numerators. In the
presence of maximal supersymmetry, i.e. 16 supercharges in gauge theory [17, 18] or 32 su-
percharges in supergravity [42], it is expected that one can find numerator representations
where the highest power of loop momentum for an m-gon MSYM subgraph is no worse
than (m−4) [43, 44]. For type II supergravity one expects twice that number, 2(m−4),
consistent with the no-triangle property [45] and the double copy. Hence, the one-loop n-
point MSYM amplitudes can be written as linear combinations of scalar boxes and higher
(m≤n)-gon tensor integrals of rank (m−4). We require that our MSYM BCJ numerators
manifest this good power counting, implying that triangles, bubbles and tadpoles are ab-
sent. As a consequence, one can find box numerators Nmax

A1A2A3A4
that are independent of

loop momentum, and must be totally symmetric under permutations of the arguments Ai,

Nmax
A1A2A3A4 = Nmax

Aρ(1)Aρ(2)Aρ(3)Aρ(4)
, ρ ∈ S4 , (2.8)

such that no triangle numerators are generated by anti-symmetrization of the arguments
via the Jacobi identity.

For half-maximal supersymmety with 8 supercharges [18], one can find integrand rep-
resentations where m-gon numerators have at most (m−2) powers of loop momentum.
This implies that triangle and bubble graphs now contribute [39, 46]. At the one-loop
level, we expect that one can impose a no-tadpole5 condition, Nhyp

A1A2
= Nhyp

A2A1
, on bub-

ble numerators. As indicated by the superscript, we here consider numerators with only
hypermutiplets running in the loop, as these are sufficient for obtaining general multiplet
contributions, see section 6.

Crossing symmetry and color-kinematics duality reduce the ansatz to a single unknown
basis numerator, N12...n, and all the remaining numerators are related by relabeling and
Jacobi identities. The assumptions of good power counting and no-triangle (no-tadpole)
property further significantly simplify the ansatz. Although these assumptions are not
strictly necessary, whenever it is possible to impose strict power counting it will greatly
simplify the computation.6 In sections 4 and 6, we give the maximal-cut contributions
to n-gon numerators of MSYM and 1/2-MSYM as closed all-multiplicity formulae, with
the aforementioned properties. Hence, an ansatz will only be required for the remaining
leftover numerator terms, which vanish on the maximal cut.

2.2 Unitarity cuts

While the color-kinematics duality does an excellent job of relating numerators to one
another, the numerators still need to be constrained further using physical input from

5Two-loop amplitudes with internal hypermutiplets, however, give rise to certain tadpole diagrams [34].
6See ref. [47], where color-kinematics duality is realized using worse-than-naive power counting.
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the desired theory. This is most conveniently done by matching the numerators against
gauge-invariant generalized unitarity cuts [39, 46, 48].

At one loop, generalized unitarity cuts are relatively straightforward to construct di-
rectly by sewing together tree amplitudes of appropriate states. For a gauge-theory am-
plitude we may without loss of generality assume that external legs follow a certain color
ordering. Then to calculate the cut associated with a (generally non-cubic) graph G with
edges E(G) and vertices V (G), we take

CutG =
∑

states
of E(G)

∏
v∈V (G)

A(v) , (2.9)

where A(v) = Atree(v) are color-ordered tree amplitudes, and the “tree” superscript is
suppressed throughout this section to avoid cluttering. Gauge invariance requires that the
momenta associated to all edges of G must satisfy on-shell conditions.

2.2.1 Polarization variables

We will mainly consider one-loop amplitudes with external gluons, but allow arbitrary
(massless) matter to run in the loop. To obtain maximal cuts associated with n-gon
diagrams at n points, we need to use color-stripped three-point amplitudes for the gluon
self-coupling, as well as the interactions with fermions and scalars,

A(1g, 2g, 3g) = − ε1 · f2 · ε3 − (ε2 · k3)ε1 · ε3 , (2.10a)

A(1ψ, 2g, 3ψ) = −1
2 χ̄1/ε2χ3 = − χ̄1��f 2ξ3 − (ε2 · k3)χ̄1ξ3 , (2.10b)

A(1s, 2g, 3s) = − ε2 · k3 , (2.10c)

where the polarizations εi and the spinor wavefunctions χi satisfy the transversality condi-
tions εi ·ki = 0 and massless Dirac equations /kiχi = 0, respectively. In eq. (2.10b), we have
massaged the fermion amplitude into a slightly unconventional form by introducing another
spinor ξi = /qχi

2q·ki , through the use of a null reference momentum q, such that /kiξi = χi.
In both the fermion and pure-gluon amplitude we have exposed a linearized field strength
fµνi = kµi ε

ν
i −kνi ε

µ
i . The natural contractions between a vector vµ, or tensor fµνi , and Dirac

gamma matrices are defined as

/v = vµΓµ , ��f i = 1
4f

µν
i Γµν = 1

2
/ki/εi , (2.11)

where Γµν = 1
2(ΓµΓν − ΓνΓµ). We will mainly work in even dimensions d, where Γµ are

2d/2× 2d/2 matrices subject to the Clifford algebra ΓµΓν + ΓνΓµ = 2ηµν , and where we can
introduce the chiral gamma matrix

Γ = i−d/2+1Γ0Γ1 . . .Γd−1 , (2.12)

to obtain the chiral projectors P± = 1
2(1Dirac±Γ). Left- and right-handed Weyl spinors χl

and χr satisfy P−(χl, χr) = (χl, 0) and P+(χl, χr) = (0, χr).
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The state sum on each internal edge includes a sum over particle types crossing the
edge as well as a sum over polarization states for those particles. Focusing on SYM, the
sum over states will generally be split into vector, fermion, and scalar components,

vector:
∑

states
εµ−`ε

ν
` = ηµν − `µqν + `νqµ

` · q
, (2.13a)

fermion:
∑

states
χ−`χ̄` = −/̀ , (2.13b)

scalar:
∑

states
1 = 1 . (2.13c)

In the presence of chiral fermions, the state sum (2.13b) is supplemented by a chiral projec-
tor P±. The null reference momentum q introduced through eq. (2.13a) for the gluon state
sum will cancel out in the final expression for the cut, except for a contribution equivalent
to the Faddeev-Popov ghost running in the loop. We adopt the regularization scheme that
all the external momenta and polarizations are strictly in d ∈ N dimensions, and the loop
momentum ` is in non-integer dimensions D = d−2ε. All internal bosonic and fermionic
polarizations are defined in Ds > D dimensions. We will take the smooth limit Ds = d

after all the Lorentz and gamma-matrix algebra has been performed. This prescription is
similar to FDH [49], but carried out in general dimensions.

2.2.2 State sewing for internal gluons

The state sewing for n-gon maximal cuts for 1PI graphs is straightforward to perform using
the expressions eq. (2.10) for three-point tree amplitudes. We align all tree amplitudes
such that the state sewings are between the last leg of one amplitude and the first of the
next. First, the sewing for scalars corresponds to trivial multiplication. For gluonic states,
the sewing of two three-point amplitudes is effectively implemented by repeated matrix
products of linearized field strengths fj , for example,∑

states
across `2

A(`g1, 2g,−`
g
2)A(`g2, 3g,−`

g
3) = ε`1 ·

[
(ε2 ·`2)1Vec−f2

]
·
[
(ε3 ·`3)1Vec−f3

]
·ε−`3 , (2.14)

where 1Vec = (δνµ) is the identity matrix. The gluons labelled by ±`gj will later on be
associated with the edges of an n-gon diagram carrying momenta `j = `+ k12...j . Notably,
the q-dependence in the state sum (2.13a) drops out since both three-point amplitudes are
gauge invariant. Therefore, we can effectively use ∑states ε

µ
−`ε

ν
` → ηµν to sew all but the

last edge. For the final state sewing, on the last edge `n, one encounters two cases of tensor
structures sandwiched between two polarizations:∑

states
ε`n ·ε−`n = d− 2 = tr(1Vec)− 2 , (2.15a)∑

states
ε`n ·fi ·fj ·. . .·ε−`n = tr (fifj . . .) +O(q ·ki) +O(q ·εi) . (2.15b)

The first case gives the trace of the state projector, d−2, which is q-independent. As
indicated, in the second case one potentially has terms linear in the independent variables
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q · ki and q · εi. However, by gauge invariance, the unitarity cut must be independent of
the reference vector q. These terms are bound to drop out in the full cut expression, due
to kinematic identities applied to the coefficients. Therefore, it is legitimate to simply use
ηµν in all state sums that involve the linearized field strengths, and to effectively drop the
contributions of q ·ki and q ·εi in eq. (2.15b).

The maximal cut of a box (the quadruple cut) with a gluon loop is a good example
for the simple structure of cuts constructed in this manner,

Cut
vec


1 `1 2

`2

3`34

`4 	

 =
∑

states
A(−`g4, 1g, `

g
1)A(−`g1, 2g, `

g
2)A(−`g2, 3g, `

g
3)A(−`g3, 4g, `

g
4)

= tr
4∏
i=1

[
(εi ·`i)1Vec − fi

]
− 2

4∏
i=1

εi ·`i , (2.16)

where the last term comes from the −2 in eq. (2.15a), which is equivalent to the Faddeev-
Popov ghost contribution. Here and after, we assume that all external momenta are out-
going, and ` runs anti-clockwise in the loop as indicated by the arrow. The edges that are
intersected by a dashed line indicate cut propagators.

2.2.3 State sewing for arbitrary internal states

The state sewing of fermions requires manipulations of gamma-matrix identities. Since our
external particles are all gluons, the final result should be given by Lorentz dot products
and traces. The chiral matrix Γ is defined using only the first d gamma matrices following
eq. (2.12). The chiral trace results in a d-dimensional totally antisymmetric Levi-Civita
tensor (following ’t Hooft and Veltman [50]),

tr(ΓΓµ1Γµ2 . . .Γµd) = i(−2i)d/2εµ1µ2...µd , 0 6 µi 6 d−1 , (2.17)

which projects out all the extra-dimensional components of the contracting vectors and
satisfies the Schouten (over-antisymmetrization) identity

ε[µ1µ2...µdvµd+1] = 0 . (2.18)

We also define for convenience the following notations when the Levi-Civita tensor is con-
tracted with vectors and linearized field strengths,

εd(v1, v2, . . . , vd) = εµ1µ2...µdv
µ1
1 vµ2

2 . . . vµdd ,

εµd(v2, . . . , vd) = εµµ2...µdv
µ2
2 . . . vµdd , (2.19)

εd(. . . , fi, . . .) = 2 εd(. . . , ki, εi, . . .) .

Further details on computing the fermionic cuts are relegated to appendix B.
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Using the above sewing method, we can immediately write down the n-gon maximal
cut contributed by a spectrum of nv gluons, ns scalars, nl left-handed and nr right-handed
chiral fermions running in the loop,

Cut
ni

 1

2

3 4

`1

`2

`3

n

`n

	


= nvtr

n∏
i=1

(
(εi · `i)1Vec − fi

)
+ (ns − 2nv)

n∏
i=1

(εi · `i)

− nl + nr
4 tr

n∏
i=1

(
(εi · `i)1Dirac − ��f i

)
+ nl − nr

4 tr
[
Γ/ε1/̀1

n∏
i=2

(
(εi · `i)1Dirac − ��f i

)]
, (2.20)

with the dimensional dependence encoded in the traces of the two identity matrices 1Vec and
1Dirac, namely, tr(1Vec) = d and tr(1Dirac) = 2d/2. A convenient closed formula to evaluate
both parity even and odd gamma traces is given in ref. [38]. Significant simplifications
happen for various supersymmetric configurations, which we will elaborate in sections 3, 4
and 6 below. The same expression can also be obtained by further cutting the forward-limit
integrand constructed in ref. [38].

2.2.4 Beyond maximal cuts

The construction of non-maximal cuts associated with 1PR diagrams is also straightfor-
ward: we just insert higher-point tree amplitudes following the prescribed color ordering.
For example, the following one-mass box cut at five points can be computed by

Cut


`2

1

2 3

`3

4`45

`5 	

 =
∑

states
A(`5, 1g, 2g,−`2)A(`2, 3g,−`3)A(`3, 4g,−`4)A(`4, 5g,−`5) ,

(2.21)

where the state sum is computed in the same way as discussed above. Even with the
inclusion of higher-point amplitudes, the process of resolving the product of trees into the
generalized unitarty cut can be greatly simplified by picking appropriate kinematic bases
for the tree amplitudes. In this work, we use a representation for tree-level amplitudes
that is particularly well suited to one-loop unitarity constructions [51]: the polarizations
of the first and last particle in a particular color ordering, which can be either fermions or
gluons, always appear as the beginning and end of a chain of field-strength contractions.
The sewing process is thus identical to the maximal-cut case, and we will get various
Lorentz traces of fi in the result. The major difference is that the prefactors of the traces
become more complicated. They are no longer simply εi · `i, but instead include terms
like εi · fj · · · pm where i and j are external labels, and pm can be either a loop or external
momentum.

Once the target expressions (2.9) for cuts are calculated from tree amplitudes, we can
assemble our numerators associated with the relevant one-loop diagrams into the same
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cuts. Imposing these two assemblies of a given cut to match results in constraints on the
numerator ansatz. Continuing with the one-mass-box example, the cut can be constructed
from numerators as

Cut


`2

1

2 3

`3

4`45

`5 	

 =
[

N12345
(`5 + k1)2 +

N[12]345
(k1 + k2)2

]
`22=`23=`24=`25=0

. (2.22)

The two terms on the right correspond to the two ways of blowing up the four-point contact
vertex while preserving the color ordering. Matching the cuts in all physical channels is
a necessary and sufficient condition for obtaining valid diagram numerators of an ampli-
tude [39, 46]. We will consider cuts of gravity integrands in appendix A.

In practice, if a theory has manifest `m−k power counting for m-gon numerators, one
only needs to check cuts down to k-gons, namely, box cuts for MSYM and bubble cuts for
1/2-MSYM. We demonstrate this point by showing that the integrands that satisfy the
above condition are gauge invariant. To start with, the gauge variation εi → ki does not
increase the power of `. It can only interact with propagators through turning εi · ` into
ki · `, which can then be expressed in terms of inverse propagators 1

2(`2i − `2i−1)− ki·k1...i−1
and feeds down to a lower-gon topology. Let us illustrate an important implication for
MSYM as an example theory. The box numerators of MSYM are independent of `, such
that their gauge variation cannot generate triangles, namely, the gauge variations can only
land and get canceled on boxes at most. Therefore, matching box cuts guarantees the
gauge invariance for MSYM.

For generic theories, if we match all possible cuts down to tadpoles, then the only terms
we might miss are those with no propagators. However, these terms integrate to zero in
dimensional regularization, so we can freely add a compensating term to the numerator
without changing the amplitudes. This is only a concern for theories with higher-derivative
operators, which are beyond the scope of the current work.

3 Kinematic building blocks for maximal supersymmetry

In this section, we review the kinematic building blocks that yield the compact BCJ nu-
merators in later sections. The kinematic numerators of MSYM may contain both parity
even and odd parts,

Nmax = Nm-even +Nm-odd , (3.1)

and a relative minus sign for the opposite chirality. At n points, the parity even parts of
MSYM n-gon numerators will involve traces over linearized gluon field strengths in special
combinations of vector- and spinor-representations of the Lorentz group to be reviewed in
section 3.1. The numerators of lower-gon topologies in turn are most conveniently repre-
sented via local multiparticle polarizations, see section 3.2. Gauge theories with maximal
supersymmetry are chiral only in ten dimensions. Thus the parity odd part Nm-odd is
proportional to the Levi-Civita tensor ε10 and absent in lower dimensions.
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3.1 Lorentz traces for maximal supersymmetry

In the construction of d-dimensional gauge-theory integrands from ambitwistor-string meth-
ods [20–22, 38, 52], the forward limits in gluons and gluinos introduce traces over linearized
field strengths in the vector and spinor representations of SO(1, d−1), respectively. By
eq. (2.20) with nv = nl = 1 and ns = nr = 0, the loop integrand of ten-dimensional MSYM
can be conveniently expressed in terms of the following fine-tuned linear combination of
vector and Dirac-spinor traces [38]:

tr(max)(f1f2 . . . fn) = 2
[
tr(f1f2 . . . fn) (3.2)

− 1
4n+1 f

µ1ν1
1 fµ2ν2

2 . . . fµnνnn tr
(
Γ[10]
µ1ν1Γ[10]

µ2ν2 . . .Γ
[10]
µnνn

)]
.

We use Γ[10]
µ to denote Dirac gamma matrices in ten dimensions and Γ[10]

µν is defined in
eq. (2.11).7 Using the Clifford algebra and the spinor trace tr

(
Γ[10]
µ Γ[10]

ν
)

= 32ηµν , one can
show that the combination of traces in eq. (3.2) vanishes up to length three,

tr(max)(f1) = tr(max)(f1f2) = tr(max)(f1f2f3) = 0 , (3.3)

and reduces to the famous t8-tensor at four points,

tr(max)(f1f2f3f4) = t8(f1, f2, f3, f4) , (3.4)

t8(f1, f2, f3, f4) = tr(f1f2f3f4)− 1
4tr(f1f2)tr(f3f4) + cyclic(2, 3, 4) ,

which is symmetric in {f1, f2, f3, f4}. We will see in section 4 that eq. (3.3) leads to the
improved ` power counting for MSYM.

At higher multiplicity, we adapt the group-theory decomposition of traces [53, 54]
to the Lorentz group and decompose tr(max) into matrix commutators of fj and totally
symmetric tensors t2n,

t2n(f1, f2, . . . , fn) = 1
(n−1)!

∑
ρ∈Sn−1

tr(max)(f1fρ(2) . . . fρ(n)) . (3.5)

For example, one can show that [38]

t12(f1, f2, f3, f4, f5, f6) = 1
24tr(f1f2)t8(f3, f4, f5, f6) + (1, 2|1, 2, 3, 4, 5, 6) . (3.6)

Here and below, the notation + (1, 2, . . . , k|1, 2, . . . ,m) denotes a sum over all the permu-
tations of the form  1 2 · · · k k+1 k+2 · · · m

↓ ↓ · · · ↓ ↓ ↓ · · · ↓
i1 i2 · · · ik jk+1 jk+2 · · · jm

 , (3.7)

7We note that the tr(max) structure arises naturally when a ten-dimensional gauge supermultiplet is
running in the loop, see [38] for a demonstration from the forward-limit perspective. In particular, tr(max)

in this work has the following relation with the vector and spinor traces denoted by trV and trS in the
reference:

tr(max)(f1f2 . . . fn) = 2 trV(1, 2, . . . , n) − trS(1, 2, . . . , n) .
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where (i1, . . . , ik, jk+1, . . . , jm) is a permutation of (1, 2, . . . ,m) that satisfies ia < ia+1 and
ja < ja+1. In all, there are

(m
k

)
such permutations, for instance

(6
2
)

= 15 terms in eq. (3.6).
At five and six points, the group-theoretical decomposition yields

tr(max)(f1f2f3f4f5) = 1
2 t8(f1, [f2, f3], f4, f5) + (2, 3|2, 3, 4, 5) , (3.8)

tr(max)(f1f2f3f4f5f6) = t12(f1, f2, f3, f4, f5, f6) (3.9)

+ 1
6
[
t8(f1, [[f2, f3], f4], f5, f6) + t8(f1, [[f4, f3], f2], f5, f6) + (2, 3, 4|2, 3, 4, 5, 6)

]
+ 1

4
[
t8(f1, [f2, f3], [f4, f5], f6) + t8(f1, [f2, f4], [f3, f5], f6)

+ t8(f1, [f2, f5], [f3, f4], f6) + (2, 3, 4, 5|2, 3, 4, 5, 6)
]
,

and a similar expression for tr(max)(f1f2 . . . f7) in terms of t8 and t12 tensors can be found in
appendix C. The brackets [fi, fj ]µν = fµλi (fj)λν − fνλi (fj)λµ refer to matrix commutators
of linearized field strengths. The relative factors of vector and spinor traces in tr(max)
drastically simplify the group-theory decomposition of [53, 54] at any multiplicity n since
terms with n−2 nested brackets vanish by eq. (3.3). Moreover, the reflection property
tr(max)(f1f2 . . . fn) = (−1)ntr(max)(fn . . . f2f1) only allows for terms with an even (odd)
number of brackets if n is even (odd).

Although the definition (3.2) of tr(max) involves gamma matrices in d = 10, after
converting spinorial traces to vectorial ones, tr(max) no longer refers to the number of
spacetime dimensions. Namely, as combinations of Lorentz traces, tr(max) takes the same
form under dimensional reductions. Thus, tr(max) written in terms of tr(fi . . .) provides a
compact and dimension-agnostic way to package external gluon polarizations of MSYM in
any D 6 10. On the other hand, the MSYM is chiral specifically in ten dimensions. There
exist parity odd terms contributed by chiral traces of gamma matrices, which lead to a
ten-dimensional Levi-Civita tensor in pure gluon numerators. Such terms are absent for
MSYM in lower dimensions, which are always non-chiral.

3.2 Multiparticle polarizations

As we will see, the numerators of 1PR diagrams admit compact representations in terms of
multiparticle polarizations εµP, f

µν
P labelled by ordered sets P = 12 . . . p. They descend from

multiparticle superfields in the pure-spinor formalism [55] by extracting the components
as in [56], and we will discard the contributions from external fermions in this work.
Multiparticle polarizations and superfields were already used in earlier one-loop numerators
for 1PR diagrams [10, 19, 20, 23, 51], and they form the backbone of the n-point BCJ
numerators at tree level in [56, 57], see [58] for a review.

To begin with a brief review of the key equations, the two-particle polarization and
field strength are given by

εµ12 = (ε1 ·k2)εµ2 − (ε2 ·k1)εµ1 + 1
2(ε1 ·ε2)(k1 − k2)µ ,

fµν12 = (ε1 ·k2)fµν2 − (ε2 ·k1)fµν1 + [f1, f2]µν (3.10)
= kµ12ε

ν
12 − kν12ε

µ
12 − (k1 ·k2)(εµ1 εν2 − εν1ε

µ
2 ) ,
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where we use the notation k12...p = k1+k2+ . . .+kp for multiparticle momenta here and
below. The three-particle polarization and field strength are defined as

εµ123 = 1
2
[
(ε12 ·k3)εµ3 − (ε3 ·k12)εµ12 + ε12,νf

νµ
3 − ε3,νf

νµ
12

]
− kµ123h123 ,

fµν123 = kµ123ε
ν
123 − (k12 ·k3)εµ12ε

ν
3 − (k1 ·k2)(εµ1 εν23 − ε

µ
2 ε
ν
13)− (µ↔ ν) , (3.11)

where h123 = 1
12ε1,µf

µν
2 ε3,ν+cyclic(1, 2, 3). Their four-particle counterparts are for instance

reviewed in section 6.1 of [38].
The multiparticle field strength can appear on the same footing as the linearized field

strength in t8-tensors. Kinematic factors like t8(f12, f3, f4, f5) will be used to express
numerators of 1PR diagrams at five points and beyond. In addition, t8-tensors can also be
dressed with multiparticle polarizations. For example, we will later use

tµ8 (1, 2, 3, 4, 5) = εµ1 t8(f2, f3, f4, f5) + cyclic(1, 2, 3, 4, 5) ,
tµ8 (12, 3, 4, 5, 6) = εµ12t8(f3, f4, f5, f6) + εµ3 t8(f12, f4, f5, f6) + εµ4 t8(f12, f3, f5, f6)

+ εµ5 t8(f12, f3, f4, f6) + εµ6 t8(f12, f3, f4, f5) . (3.12)

In general, we can define the vectorial generalization of the t8-tensor as

tµ8 (A,B,C,D,E) = εµAt8(fB, fC, fD, fE) + cyclic(A,B,C,D,E) , (3.13)

where {A,B,C,D,E} are generic multiparticle labels.

4 BCJ numerators with maximal supersymmetry

With the kinematic building blocks established, we turn our attention to the construction
of multiparticle BCJ numerators in MSYM at one loop. From the discussion of section 2.1,
we know that a BCJ-numerator representation can be specified in terms of only the n-
gon numerator Nmax

12...n. This numerator must match the n-gon maximal cut, but will also
contain contact degrees of freedom that are set to zero by the maximal-cut conditions.

For the parity even sector, the generic maximal cut given in eq. (2.20) is already
crossing symmetric. We can directly lift it off the cut and realize it as part of the n-gon
numerators. We further specialize to ten dimensions and MSYM, which has a particle
spectrum given by nv = 1, (nl, nr) = (1, 0) or (0, 1) depending on the chirality, and ns = 0.
Doing so in eq. (2.20), we find that the n-gon maximal cut is seeded by terms involving
tr(max)(fi . . .) with at least four field strengths in the trace. The n-gon maximal cut sets
all of the inverse propagators `2i = (`+k12...i)2 to zero. Thus all contact terms will carry
at least one factor of `2i . This leads us to the general form of parity even MSYM n-gon
numerators,8

Nm-even
12...n =

n−4∑
k=0

(−1)n−k
[
tr(max)(fk+1 . . . fn)

k∏
j=1

εj · `j + (1, 2, . . . , k|1, 2, . . . , n)
]

+O(`2i ) terms that vanish on the maximal cut . (4.1)
8Note that there is a factor of 2 difference between the numerators given here and the maximal cut (2.20)

due to our normalization of one-loop amplitudes.
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The truncation to k ≤ n−4, which manifests the `n−4 power counting of n-gon numerators,
is due to the vanishing of tr(max) below length four according to eq. (3.3).

While the numerator eq. (4.1) manifestly matches the n-gon maximal cut, the lower-gon
numerators that are generated via Jacobi relations require specific choices of the contact
terms to satisfy their own maximal cuts. To see how this works, consider the k = n−4 terms
from eq. (4.1) with ε1 and ε2 not in the Lorentz traces, and the terms they generate on the
(n−1)-gon by applying the Jacobi relation on the edge between 1 and 2, Nm-even

12...n −Nm-even
21...n =

Nm-even
[12]...n . In the resulting numerator Nm-even

[12]...n for the (n−1)-gon with the [12]-dangling tree,
we have the following contribution with ε1 and ε2 not in the traces,

tr(max)(f3f4f5f6)
[
(ε1 ·`1)(ε2 ·`2)− (ε1 ·`′1)(ε2 ·`′2)

] n∏
j=7

εj ·`j + (3, 4, 5, 6|3, 4, . . . , n)

=
[
tr(max)(f3f4f5f6)

n∏
j=7

εj ·`j + (3, 4, 5, 6|3, . . . n)
][

(ε1 ·`2)(ε2 ·k1)−(ε1 ·k2)(ε2 ·`2)
]
, (4.2)

where `′1 = `2 and `′2 = `2−k1 are the edge momenta in the cyclic ordering 213 . . . n. Since
`1 and `′2 are not edge momenta in the (n−1)-gon, we have rewritten the ε · ` terms using
the actual edge and external momenta in the second line.

This expression does not obey the gauge invariance of legs 1 or 2, even on the support
of the maximal cut of the dangling tree (`22 = · · · = `2n = s12 = 0) since (k1−k2) · `2 can be
chosen as the irreducible product that is not removed by the cut conditions. The failure
of the gauge invariance provides strong guidance for which contact terms are needed. For
instance, it is straightforward to see that including a contact term in the n-gon numerator,

− 1
4`

2
1(ε1 · ε2)tr(max)(f3f4f5f6)

n∏
j=7

(εj · `j) + (3, 4, 5, 6|3, 4, . . . , n) ⊂ Nm-even
123... , (4.3)

compensates for the gauge variation of eq. (4.2) on the dangling tree maximal cut. We will
indeed encounter eq. (4.3) as a contribution to the six-point numerator in eq. (4.11) below.

Continuing the analysis to deeper topologies sheds light on all of the required contact
terms. By iterating the above process, one can show that the gauge variations contain at
least a length-four tr(max)(fifjfkfl). It is thus natural to conjecture that the ansatz for
O(`2i ) contact terms will at least be proportional to a length-four tr(max). We will show
up to seven points that, under the assumption of color-kinematics duality and manifest
` power counting, gauge invariance on cuts will uniquely fix the physical amplitudes and
color-ordered integrands. Although individual numerators might still feature undetermined
free parameters after we have used all the constraints, they are part of the generalized gauge
freedom and will cancel at the level of color-ordered loop integrand. We expect that this
procedure will yield BCJ representations at any multiplicity, though it will be important
to check its compatibility with the no-triangle property under repeated Jacobi identities in
each case.

It is more difficult to perform an in-depth multiplicity-agnostic analysis on the parity
odd sector. The Schouten identity (2.18) makes disentangling (ε · `)(ε · `) and `2(ε · ε) terms
into a minimal basis difficult for all but the simplest cases. As such, we limit our current
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Figure 1. Box and pentagon numerators at four and five points. Here and below, we label the
loop momenta in a diagram only when the corresponding numerator depends on them.

investigation only to the six-point parity odd terms, and leave seven points and beyond to
a future study.

4.1 Recap at four and five points

Since the highest power of loop momentum in local kinematic numerators of MSYM is
`n−4, the O(`2i ) terms in eq. (4.1) are absent for four- and five-point numerators, and the
maximal cuts give the full results. The relevant diagrams are shown in figure 1. Reading off
the n = 4, 5 parity even part from eq. (4.1) and the n = 5 parity odd part from eq. (2.20),
we get9

Nmax
1234 = tr(max)(f1f2f3f4) , (4.4)

Nmax
12345 =

[
ε1 ·`1tr(max)(f2f3f4f5) + cyclic(1, 2, 3, 4, 5)

]
− tr(max)(f1f2f3f4f5)

+ 1
16ε10(`1, ε1, f2, f3, f4, f5) . (4.5)

One can use eqs. (3.4) and (3.8) to replace tr(max) with t8-tensors such that the numerators
reduce to a more familiar form,

Nmax
1234 = t8(f1, f2, f3, f4) , (4.6)

Nmax
12345 = `µt

µ
8 (1, 2, 3, 4, 5)− 1

2
[
t8(f12, f3, f4, f5) + (1, 2|1, 2, 3, 4, 5)

]
+ 1

16ε10(`1, ε1, f2, f3, f4, f5) , (4.7)

where we have picked ` = `5 for the pentagon numerator, further expanded out the εi ·`i
factors via `i = `+k12...i and repackaged into multiparticle field strengths defined in sec-
tion 3.2. Here, we of course have full agreement with the known results [19, 20, 38]. Finally,
the box numerator with legs 1 and 2 in a dangling tree is obtained by a Jacobi identity,

Nmax
[12]345 = Nmax

12345 −Nmax
21345 = −t8(f12, f3, f4, f5) . (4.8)

9We note that the parity odd terms that appear at five points and beyond cannot be obtained by
turning the gamma matrix trace in tr(max) into a chiral trace. In the current work, we solve the parity
odd contribution by imposing color-kinematics and cut conditions following section 2.2. See ref. [38] for an
alternative treatment from the forward-limit perspective.
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Figure 2. Non-vanishing topologies for six-point numerators.

The parity odd term can be inferred from the last line of the cut in eq. (2.20), enjoys per-
mutation invariance ε10(`1, ε1, f2, f3, f4, f5) = ε10(`2, ε2, f1, f3, f4, f5) by momentum con-
servation and therefore does not contribute to the box numerator as expected.

4.2 The six-point parity even numerators

Six-point one-loop integrands of MSYM can be written in terms of numerators of five
topologies, shown in figure 2: a hexagon, a pentagon, and three different types of boxes.
Applying the discussion at the beginning of this section to the six-point case, we find that
we only need contact corrections on the hexagon of the form

εi · εjtr(max)(fafbfcfd)⊗ {`2i−1, `
2
i , `

2
j−1, `

2
j} . (4.9)

By imposing dihedral symmetry D6 on the contributions of eq. (4.9) to Nm-even
123456 , we arrive

at the five-parameter ansatz

Nm-even
123456

∣∣∣
`2i

= ε1 ·ε2(a1`
2
2 + a2`

2
1 + a1`

2
6)tr(max)(f3f4f5f6)

+ ε1 ·ε3(a3`
2
3 + a4`

2
2 + a4`

2
1 + a3`

2
6)tr(max)(f2f4f5f6)

+ ε1 ·ε4a5(`21 + `26)tr(max)(f2f3f5f6) + cyclic(1, 2, 3, 4, 5, 6) , (4.10)

where the expected ε1 · ε4 ⊗ {`23, `24} terms are generated as images of the `26 and `21 terms
under the cyclic permutations. First, imposing gauge invariance on the maximal cuts of
the pentagon in figure 2 obtained from Nm-even

123456 − Nm-even
213456 uniquely fixes a2 = −1

4 , as in
eq. (4.3). Then, the no-triangle Jacobi relations (2.8) between box numerators relate the
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remaining coefficients of eq. (4.10) to a2. The resulting parity even hexagon numerator is

Nm-even
123456 =

[
ε1 ·`1ε2 ·`2tr(max)(f3f4f5f6) + (1, 2|1, 2, 3, 4, 5, 6)

]
(4.11)

−
[
ε1 ·`1tr(max)(f2f3f4f5f6) + cyclic(1, 2, 3, 4, 5, 6)

]
+ tr(max)(f1f2f3f4f5f6)

+ 1
40
[
ε1 ·ε2 (3`22 − 10`21 + 3`26)tr(max)(f3f4f5f6)

+ ε1 ·ε3 (`23 − 3`22 − 3`21 + `26)tr(max)(f2f4f5f6)

− ε1 ·ε4 (`21 + `26)tr(max)(f2f3f5f6) + cyclic(1, 2, 3, 4, 5, 6)
]
.

After unpacking the traces via eqs. (3.4), (3.8) and (3.9) with t12 given by eq. (3.6), each
term in the numerator features a factor of t8 contracting linearized field strengths and their
commutators.

The lower-topology numerators can be extracted from the hexagon via the kinematic
Jacobi relations as in section 2.1, and repackaged into the multiparticle field strengths from
section 3.2. The pentagon numerator is (see eq. (3.12) for the definition of tµ8 (12, 3, 4, 5, 6))

Nm-even
[12]3456 = −`µtµ8 (12, 3, 4, 5, 6) + 1

2
[
t8(f123, f4, f5, f6) + cyclic(3, 4, 5, 6)

]
+ 1

2
[
t8(f12, f34, f5, f6) + (3, 4|3, 4, 5, 6)

]
+ 1

20
(
2`·(k1 + k2 − k3)− s13 − s23

)[
ε1 ·ε3t8(f2, f4, f5, f6)− (1↔ 2)

]
+ 1

20
(
2`·(k1 + k2 − k4)− s12 + s45 + s46

)[
ε1 ·ε4t8(f2, f3, f5, f6)− (1↔ 2)

]
+ 1

20
(
2`·(k1 + k2 − k5)− 2s12 + s56

)[
ε1 ·ε5t8(f2, f3, f4, f6)− (1↔ 2)

]
+ 1

20
(
2`·(k1 + k2 − k6)− 3s12

)[
ε1 ·ε6t8(f2, f3, f4, f5)− (1↔ 2)

]
, (4.12)

where sij...=(ki+kj+ . . .)2 and ` points from leg 1 to 6. The numerators of the three
D6-inequivalent box diagrams are

Nm-even
[[12]3]456 = t8(f123, f4, f5, f6)− 1

10s123
[
ε1 ·ε3 t8(f2, f4, f5, f6)− (1↔ 2)

]
− 1

20s123
[(
ε1 ·ε4 t8(f2, f3, f5, f6)− (1↔ 2)

)
+ cyclic(4, 5, 6)

]
, (4.13a)

Nm-even
[12][34]56 = t8(f12, f34, f5, f6)

+ 1
20(s12 + s34)

[(
ε1 ·ε3 t8(f2, f4, f5, f6)− (1↔ 2)

)
− (3↔ 4)

]
, (4.13b)

Nm-even
[12]3[45]6 = t8(f12, f3, f45, f6)

+ 1
20(s12 + s45)

[(
ε1 ·ε4 t8(f2, f3, f5, f6)− (1↔ 2)

)
− (4↔ 5)

]
. (4.13c)

By construction, this representation satisfies the hexagon maximal cut and each numerator
is gauge invariant on its maximal cuts, including those with dangling trees. We have
furthermore explicitly checked that the representation matches the pentagon and box cuts
(with dangling trees pulled into the contact amplitude), as calculated via section 2.2.
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4.3 The six-point parity odd numerators and gauge anomaly

At six points, the parity odd contribution to the hexagon numerator N123456 consists of one
Lorentz dot product and one Levi-Civita tensor. We can put parity odd contributions of
this type into a minimal basis by recursively using momentum conservation and Schouten
identities (2.18) such that

(1) k6 does not appear;

(2) k1 ·k5 and ε6 ·k1 do not appear;

(3) ε1 always contracts with the Levi-Civita tensor;

(4) ε2 ·k1 does not appear.

Note that the last two properties are due to Schouten identities (2.18). The most general
ansatz for Nm-odd

123456 that contains one dot product, one Levi-Civita tensor and at most two
powers of ` is composed of the following types of terms,

εi ·` ε10(`, k4, ε5) , εi ·` ε10(k5, ε5) , εi ·kj ε10(`, k4, ε5) , εi ·kj ε10(k5, ε5) ,
εi ·εj ε10(`, k5, ε4) , `2i ε10(k4, ε6) , ki ·kj ε10(`, k3, ε6) , ki ·kj ε10(k4, ε6) , (4.14)

where, for example, ε10(`, k4, ε5) refers to all possible contractions with one loop momen-
tum, four external momenta out of the five independent ones, and five polarizations.10

In the minimal basis specified by (1) to (4) above, the ansatz contains in total 339 free
parameters.

After imposing the dihedral crossing symmetry D6, we solve for the parameters in the
ansatz by matching the hexagon, pentagon and box cuts following the generic prescription
given in section 2.2. Similar to the parity even sector, we also get a unique solution. The
resulting hexagon numerator is

Nm-odd
123456 = 1

96
[
ε2 ·`2 ε10(`1, ε1, f3, f4, f5, f6)

+ ε1 ·`1 ε10(`2, ε2, f3, f4, f5, f6) + (1, 2|1, 2, 3, 4, 5, 6)
]

+ 1
384

[
ε1 ·`1 ε10(f2, f3, f4, f5, f6) + cyclic(1, 2, 3, 4, 5, 6)

]
− 1

192
[(
ε10(`3, ε3, [f1, f2], f4, f5, f6) + cyclic(1, 2, 3)

)
+ (1, 2, 3|1, 2, 3, 4, 5, 6)

]
+ 1

64
[
`21 ε10(ε1, ε2, f3, f4, f5, f6) + cyclic(1, 2, 3, 4, 5, 6)

]
. (4.15)

We note that the `2i appearing in the last line live in D = 10−2ε dimensions. Since the cut
matching is carried out in the minimal basis, various Schouten identities have been used.
When the loop momentum is involved in such identities, it will be put into strictly ten

10One may question if terms like ki ·` ε10(`, k3, ε6) should be considered. We do not include them since
the relation 2ki ·` = `2

i − `2
i−1 − 2ki ·k1...i−1 makes them formally violate the ` power counting. Even if we

include them, they will eventually be set to zero by imposing cut conditions and crossing symmetry.
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dimensions (see appendix D). Thus there is an ambiguity in µ2-terms, the −2ε dimensional
contribution of `2, which would affect the behavior of the hexagon gauge anomaly.

Using Jacobi identities, we can obtain numerators of 1PR diagram topologies. The
pentagon numerator is most conveniently written in terms of two-particle polarizations,

Nm-odd
[12]3456 = − 1

48ε10(`, ε12, f3, f4, f5, f6)− 1
96
[
ε10(`, ε3, f12, f4, f5, f6) + cyclic(3, 4, 5, 6)

]
+ 1

192
(
2`·(k1+k2)− s12

)
ε10(ε1, ε2, f3, f4, f5, f6) , (4.16)

and there is only one nonzero box topology,

Nm-odd
[[12]3]456 = − 1

192s123ε10(ε1, ε2, f3, f4, f5, f6) ,

Nm-odd
[12][34]56 = Nm-odd

[12]3[45]6 = 0 . (4.17)

Before moving on, we note that the strategy used here to obtain a minimal basis in
the presence of Levi-Civita tensors only works for a single power of dot products. In other
words, there is no straightforward uplift of (1) to (4) above to decompose seven-point parity
odd numerators to a kinematic basis, which would be a more involved task.

It is well known that the gauge symmetry of ten-dimensional MSYM is anomalous at
six points [59, 60]. Thus, we consider the gauge variation ε1 → k1 of the six-point color
ordered amplitude, and find that the hexagon diagram in D = 10−2ε dimensions supports
the gauge anomaly

A1-loop
MSYM(1, 2, 3, 4, 5, 6)

∣∣∣
ε1→k1

= 1
192ε10(f2, f3, f4, f5, f6)I10−2ε

6 , (4.18)

I10−2ε
6 =

∫ d10−2ε`

iπ(10−2ε)/2
(−µ2)

`21`
2
2`

2
3`

2
4`

2
5`

2
6

= 1
5! ,

where µ2 = `2−`2(10) is the −2ε dimensional contribution of `2. We can then identify
ε10(f2, f3, f4, f5, f6) as the linearized anomaly appearing in the path integral, and the full
anomaly Tr(F 5) affecting higher-point gauge variations follows as the non-abelian comple-
tion.11 In other words, we do not need any higher-point calculations to determine the full
anomaly. Because our numerators manifest crossing symmetry, we observe the same gauge
anomaly for all external legs.

In contrast, string-based methods single out one external leg that carries an anomalous
ghost picture [19, 20, 61, 62]. For such calculations, the gauge anomaly also reflects an
obstruction to the cyclic invariance of color-ordered one-loop amplitudes. We can reproduce
this behavior by adding µ2 terms to our hexagon numerator in order to push all the gauge
anomalies to a single leg. On the other hand, we will show in appendix D that imposing
crossing symmetry fixes the µ2-term ambiguity, and results in a unique crossing symmetric
gauge anomaly as shown above.

11Here Tr acts on Lie algebra generators, and F 5 is defined using wedge products.
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4.4 The seven-point numerators

Moving on to seven points, we seed the heptagon, as shown in figure 3, with eq. (4.1) at
n = 7, just like in all the previous cases,

Nm-even
1234567 =

[
ε1 ·`1ε2 ·`2ε3 ·`3tr(max)(f4f5f6f7) + (1, 2, 3|1, 2, 3, 4, 5, 6, 7)

]
−
[
ε1 ·`1ε2 ·`2tr(max)(f3f4f5f6f7) + (1, 2|1, 2, 3, 4, 5, 6, 7)

]
+
[
ε1 ·`1tr(max)(f2f3f4f5f6f7) + cyclic(1, 2, 3, 4, 5, 6, 7)

]
− tr(max)(f1f2f3f4f5f6f7) + δNm-even

1234567 , (4.19)

where δNm-even
1234567 collects all contact-term contributions with a factor of `2j . However, un-

like at lower points, the cancellation of gauge variations combined with color-kinematics
relations no longer has a unique solution for δNm-even

1234567. We organize the contact-term
contributions according to the number of field strengths appearing in the tr(max)(. . .)

δNm-even
1234567 = δN

tr(f5)
1234567 + δN

tr(f4)
1234567 (4.20)

and find a 30-parameter freedom in the terms δN tr(f4)
1234567 with length-four traces. The terms

δN
tr(f5)
1234567 with length-five traces in turn are uniquely fixed by the color-kinematics duality

and linearized gauge invariance, and are given by

δN
tr(f5)
1234567 =− 1

40(ε1 · ε2)(3`27 − 10`21 + 3`22)tr(max)(f3f4f5f6f7)

− 1
40(ε1 · ε3)(`27 − 3`21 − 3`22 + `23)tr(max)(f2f4f5f6f7)

+ 1
80(ε1 · ε4)

[
(−`27 + 2`21 + 4`22 + 2`23 − `24 + `25 + `26)tr(max)(f2f3f5f6f7)

+ (`24 − 2`25 + `26)tr(max)(f2f3f6f7f5)
+ (2`21 + 4`22 + 2`23 − `24 + 2`25 − `26)tr(max)(f2f3f7f5f6)

− (`27 + 2`21 + 2`23 + `24 + `25 + `26)tr(max)(f2f3f7f6f5)
]

+ cyclic(1, 2, 3, 4, 5, 6, 7) . (4.21)

The free parameters in δN
tr(f4)
1234567 originate from the following ansatz with 630 rational

parameters Ai,j,k, Bi,j,k and Ci,j,k,

δN
tr(f4)
1234567 = (ε1 ·ε2)

7∑
k=3

7∑
i,j=1
i 6=k−1

Ai,j,k (εk ·`i) `2j tr(max)(f4)

+ (ε1 ·ε3)
7∑

k 6=1,3

7∑
i,j=1
i 6=k−1

Bi,j,k (εk ·`i) `2j tr(max)(f4)

+ (ε1 ·ε4)
7∑

k 6=1,4

7∑
i,j=1
i 6=k−1

Ci,j,k (εk ·`i) `2j tr(max)(f4)

+ cyclic(1, 2, 3, 4, 5, 6, 7) , (4.22)
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Figure 3. The loop momentum orientation of the heptagon.

where the tr(max)(f4) are over the four field strengths not appearing as separate polar-
ization vectors, and the restricted sum over i is due to εk · `k−1 = εk · `k. Imposing full
crossing symmetry, color-kinematics duality and gauge invariance leads to 600 independent
constraints on Ai,j,k, Bi,j,k, Ci,j,k and still leaves 30 of the parameters undetermined. We
have explicitly checked that these remaining parameters cancel from all unitarity cuts and
color-ordered integrands of MSYM, and they furthermore drop out from the gravity cuts
obtained from the numerators in section 5.2 and the techniques reviewed in appendix A
below. Thus, these 30 parameters are attributed to the generalized gauge freedom which
does not affect the resulting amplitudes.

Using the 30 free parameters, we can pick out a representation that highlights point-
to-point patterns. One such choice is to force the contact terms to match the six-point
hexagon contact terms, eq. (4.11), as closely as possible and then finding a solution that
minimizes the size of the remaining terms

δN
tr(f4)
1234567 = 1

40(ε1 ·ε2)(3`27−10`21+3`22)
[
ε3·̀ 3 tr(max)(f4f5f6f7)+(3|3,4,5,6,7)

]
+ 1

40(ε1 ·ε3)(`27−3`21−3`22+`23)
[
ε4·̀ 4 tr(max)(f2f5f6f7)+(4|4,5,6,7)

]
− 1

40(ε1 ·ε4)(`27+`21+`23+`24)
[
ε5·̀ 5 tr(max)(f2f3f6f7)+(5|5,6,7)

]
+ 1

40(ε1 ·ε3)(ε2 ·`2)(3`27−5`21−5`22+3`23)tr(max)(f4f5f6f7)

+ 1
40(ε1 ·ε4)(`27−3`21−3`22+`23)

[
ε2·̀ 2 tr(max)(f3f5f6f7)+(2↔ 3)

]
+ 1

360(ε1 ·ε2)
[
tr(max)(f4f5f6f7)

(
9(ε3 ·`1)(5`22−3`27)+(ε3 ·`7)(60`27−72`22)

)
+tr(max)(f3f5f6f7)

(
(ε4 ·`1)(27`22−9`27)+(ε4 ·`7)(30`27−39`22)−3`27(ε4 ·`2)

)
+tr(max)(f3f4f6f7)

(
9(ε5 ·`1)(`22+`27)+2(ε5 ·`2)(5`22−8`27)+(ε5 ·`7)(10`27−16`22)

)
+tr(max)(f3f4f5f7)

(
−9(ε6 ·`1)(`22−3`27)+(ε6 ·`2)(30`22−39`27)−3`22(ε6 ·`7)

)
+tr(max)(f3f4f5f6)

(
(ε7 ·`1)(45`27−27`22)+(ε7 ·`2)(60`22−72`27)

)]
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+ 1
360(ε1 ·ε3)

[
tr(max)(f4f5f6f7)

(
(ε2 ·`7)(−27`21+72`22−42`23)

+(ε2 ·`3)(72`21−27`22−42`27)
)

+tr(max)(f2f5f6f7)
(
3(ε4 ·`1)(20`21−9`22−6`23−`27)

+(ε4 ·`7)(−60`21+39`22−18`23+30`27)

+(ε4 ·`2)(9(3`23+`27)−33`21)
)

+tr(max)(f2f4f6f7)
(
(ε5 ·`1)(30`21−19`22−19`23+17`27)

+(ε5 ·`2)(−21`21+10`22+27`23−10`27)

−2(ε5 ·`7)(15`21−8`22+`23−5`27)+(ε5 ·`3)(3`21−10`22+4`27)
)

+tr(max)(f2f4f5f7)
(
(ε6 ·`1)(10`21−21`22−10`23+27`27)

+(ε6 ·`2)(−19`21+30`22+17`23−19`27)

+2(ε6 ·`3)(8`21−15`22+5`23−`27)+(ε6 ·`7)(−10`21+3`22+4`23)
)

+tr(max)(f2f4f5f6)
(
−3(ε7 ·`2)(9`21−20`22+`23+6`27)

+(ε7 ·`3)(39`21−60`22+30`23−18`27)

+(ε7 ·`1)(9(`23+3`27)−33`22)
)]

+ 1
720(ε1 ·ε4)

[
tr(max)(f3f5f6f7)

(
−3(ε2 ·`7)(6`21−6`22−28`23+17`24+9`26)

+(ε2 ·`4)(36`21−18`22+20`24−27`25+`27)+(ε2 ·`3)(36`21−20`24−22`27)

−27(ε2 ·`5)(`24−2`25+`26)−27(ε2 ·`6)(`25−2`26+`27)
)

+tr(max)(f2f5f6f7)
(
3(ε3 ·`4)(28`21+6`22−6`23−9`25−17`27)

+(ε3 ·`7)(−18`22+36`23+`24−27`26+20`27)+(ε3 ·`1)(36`23−22`24−20`27)

−27(ε3 ·`5)(`24−2`25+`26)−27(ε3 ·`6)(`25−2`26+`27)
)

+tr(max)(f2f3f5f7)
(
(ε6 ·`1)(20`21−54`22+20`23−`24+9`25−9`26+27`27)

+(ε6 ·`3)(20`21−54`22+20`23+27`24−9`25+9`26−`27)
−54(ε6 ·`2)(`21−2`22+`23)+(ε6 ·`7)(−20`21−8`23+22`24)

+(ε6 ·`4)(−8`21−20`23+22`27)
)

+tr(max)(f2f3f6f7)
(
(ε5 ·`1)(60`21−54`22+38`23−24`24−9`25+7`27)

−54(ε5 ·`2)(`21−2`22+`23)+(ε5 ·`3)(−18`21−54`22+18`24+9`25+51`27)

+4(ε5 ·`7)(−15`21+`23+6`24+5`27)
)

+tr(max)(f2f3f5f6)
(
(ε7 ·`3)(38`21−54`22+60`23+7`24−9`26−24`27)
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−54(ε7 ·`2)(`21−2`22+`23)+4(ε7 ·`4)(`21−15`23+5`24+6`27)

+(ε7 ·`1)(−54`22−18`23+51`24+9`26+18`27)
)]

+cyclic(1,2,3,4,5,6,7) . (4.23)

We also include the full heptagon numerator, with all free parameters left unfixed, as an
ancillary file in the arXiv submission.

We leave it to future work to identify the analogous contact terms `2j in (n ≥ 8)-point
numerators that go beyond the simple expression (4.1) for the maximal cuts. Already at
eight points, we expect a hierarchy of contact terms — contributions with either one factor
of (εa ·εb)`2j or bilinears (εa ·εb)(εc ·εd)`2j`2k.

5 UV divergences

In this section, we evaluate the UV divergences for MSYM and type II supergravity up to
and including six points that follow from the BCJ numerators given in the previous section.
The subsequent UV divergences for MSYM and type IIB supergravity in d = 8 reproduce
matrix elements of the supersymmetric counterterms Tr(F 4) and R4, respectively. The
d = 10 UV divergences in turn reproduce matrix elements of Tr(D2F 4 + F 5) for MSYM
and vanish for both type IIA and IIB supergravity. In this way, our numerators and their
double copy are severely crosschecked.

We shall give a more detailed discussion of the maximally supersymmetric UV di-
vergences in the critical dimension d = 8. Since the MSYM numerators for m-gons are
polynomials of degree `m−4, the d = 8 UV divergences only receive contributions from
scalar boxes,

∫ dD`
iπD/2

1
`2(`+K1)2(`+K12)2(`+K123)2

∣∣∣UV

D=8−2ε
= 1

3!× ε , (5.1)

where the squares of the external momenta K1,K2,K3 may be nonzero, and we employ
shorthands K12...j = K1+K2+ . . .+Kj . In supergravity, the double copy of MSYM numer-
ators leads to a maximum power of `2m−8 in m-gon numerators, such that all diagrams
with 4 ≤ m ≤ n contribute to the UV divergence at n points. More specifically, pentagons
exclusively contribute through their rank-two tensor part ∼ Tµν2 ,

∫ dD`
iπD/2

T0 + `µT
µ
1 + `µ`νT

µν
2

`2(`+K1)2(`+K12)2(`+K123)2(`+K1234)2

∣∣∣UV

D=8−2ε
= ηµνT

µν
2

4!× 2ε , (5.2)

and hexagons through the quartic order in `,

∫ dD`
iπD/2

`µ`ν`λ`ρ
`2(`+K1)2(`+K12)2(`+K123)2(`+K1234)2(`+K12345)2

∣∣∣UV

D=8−2ε

= 1
5!× 4ε(ηµνηλρ + ηµληνρ + ηµρηνλ) . (5.3)
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More generally, an m-gon contributes through the order of `2m−8,∫ dD`
iπD/2

`µ1`µ2 . . . `µ2m−8

`2(`+K1)2(`+K12)2 . . . (`+K12...(m−1))2

∣∣∣UV

D=8−2ε

= (2m−9)!!
(m−1)!× 2m−4ε

η(µ1µ2ηµ3µ4 . . . ηµ2m−9µ2m−8) , (5.4)

where the symmetrization of η(µ1µ2 . . . ηµ2m−9µ2m−8) = (ηµ1µ2 . . . ηµ2m−9µ2m−8 +. . .)/(2m−8)!
is normalized such that (2m−9)!!η(µ1µ2 . . . ηµ2m−9µ2m−8) gathers all the (2m−9)!! inequiva-
lent permutations with unit coefficient. Note that none of these leading UV contributions
depends on the ordering of the external momenta K1,K2, . . . ,Km of the m-gon since they
arise from the M = 0 contribution of eq. (6.16) in ref. [63].

The evaluation of subleading UV divergences in dimensions d = 10, 12, . . . is combi-
natorially more involved but does not pose any conceptual challenges. These subleading
divergences are sensitive to the cyclic ordering of the Ki as reviewed in section 6.3 of
ref. [63], and we will follow the conventions of the reference.

5.1 UV divergences in maximally supersymmetric SYM

The d = 8 UV divergences of MSYM solely arise from box diagrams. Using eq. (5.1) and
the box numerators given in section 4, we can write the UV divergences as

εA1-loop
MSYM(1, 2, 3, 4)

∣∣∣UV

D=8−2ε
= 1

6 t8(f1, f2, f3, f4) = 1
6s12s23A

tree
YM(1, 2, 3, 4) , (5.5)

εA1-loop
MSYM(1, 2, 3, 4, 5)

∣∣∣UV

D=8−2ε
= −1

6

[
t8(f12, f3, f4, f5)

s12
+ cyclic(1, 2, 3, 4, 5)

]
, (5.6)

εA1-loop
MSYM(1, 2, 3, 4, 5, 6)

∣∣∣UV

D=8−2ε
= 1

6

[ 1
s123

(Nmax
[[12]3]456
s12

+
Nmax

[1[23]]456
s23

)
+
Nmax

[12][34]56
s12s34

+
Nmax

[12]3[45]6
2s12s45

+ cyclic(1, 2, 3, 4, 5, 6)
]
, (5.7)

together with a similar formula for seven points. At five points, we have used eq. (4.8) for
the box numerator. At six points, one can effectively substitute the box numerators with

Nmax
[[12]3]456 → t8(f123, f4, f5, f6) ,

Nmax
[12][34]56 → t8(f12, f34, f5, f6) , (5.8)

Nmax
[12]3[45]6 → t8(f12, f3, f45, f6) ,

within the d = 8 UV divergence. Namely, we only keep the t8-tensors that depend on
multiparticle field strengths in the parity even numerators given in eq. (4.13) and discard
the parity odd parts in eq. (4.17). The contact terms in these numerators take the form of
εi·εjt8(fa, fb, fc, fd) as well as ε10(εi, εj , fa, fb, fc, fd), and they drop out in the assembly of
the six-point UV divergence in eq. (5.7), with non-trivial cancellations between the parity
even terms in the one-mass and two-mass boxes.

The parity odd contributions also drop out from the ten-dimensional UV divergences
of MSYM at one loop. Physically, the dropouts of parity odd UV divergences in d = 8, 10
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at all multiplicities are due to the absence of maximally supersymmetric counterterms with
parity odd gluon components at the mass dimensions of Tr(F 4) and Tr(D2F 4+F 5).

To better organize the UV divergences, we introduce an (n−3)! dimensional vector of
tree-level and one-loop color-ordered MSYM amplitudes,

AAAtree
YM(n) = Atree

YM(1, α, n−1, n) , AAA1-loop
MSYM(n) = A1-loop

MSYM(1, α, n−1, n) , (5.9)

with permutations α ∈ Sn−3 of 2, 3, . . . , n−2.12 We have checked that, up to and including
n = 7 points, the residues of the 1

ε poles in eqs. (5.5) to (5.7) follow the generic pattern

εAAA1-loop
MSYM(n)

∣∣∣UV

D=8−2ε
= −1

6 P
PP 2(n) ·AAAtree

YM(n) . (5.10)

Furthermore, the d = 10 UV divergences are given by

εAAA1-loop
MSYM(n)

∣∣∣UV

D=10−2ε
= 1

120M
MM3(n) ·AAAtree

YM(n) , (5.11)

which is also checked up to seven points.13 Here, PPP 2(n) and MMM3(n) are (n−3)! × (n−3)!
matrices whose entries are respectively degree 2 and 3 polynomials in Mandelstam variables
with rational coefficients. The explicit form of PPP 2 andMMM3 up to n = 7 can be found in [64].
Namely, we have checked that the UV divergences of our BCJ representations of one-loop
MSYM amplitudes in d = 8 and d = 10 reproduce the α′2ζ2- and α′3ζ3-contributions
to open-superstring tree amplitudes [65, 66]. These subleading orders in the low-energy
expansion are well known to feature the matrix elements of the supersymmetric Tr(F 4)
and Tr(D2F 4+F 5) interactions.

5.2 Type IIA/IIB supergravity from double copy and UV divergences

Knowing the BCJ numerators for one-loop gauge amplitudes, we can directly construct the
supergravity amplitudes through the double copy. By choosing either the same or opposite
chirality for the fermions in the two copies of MSYM in eq. (2.4), we obtain the numerators
N of type IIA or IIB supergravity,

NIIA = (Nm-even +Nm-odd)(Ñm-even − Ñm-odd) ,
NIIB = (Nm-even +Nm-odd)(Ñm-even + Ñm-odd) . (5.12)

The gravitational UV divergences coincide with the low-energy limits of the closed-string
genus-one amplitudes [67–69]. The four-point string and supergravity amplitudes are
known from [6], and superspace representations of higher-point string amplitudes encod-
ing any combination of external bosons and fermions can be found in [70] at five points
and [71] at six points. As another non-trivial check to our main results, we verify the

12As a vector indexed by the permutation α(2), α(3), . . . , α(n−2), the entries of AAAtree/1-loop are lexico-
graphically ordered.

13At seven points, we computed eqs. (5.10) and (5.11) using only the parity even numerators given in
section 4.4. Up to six points, we have also checked that the parity odd terms indeed drop out of the UV
divergence in d = 8 and 10.
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matching of UV divergences and low-energy limits for up to six external IIB gravitons,
following the prescription (5.12) with N = Ñ . The UV divergences of these amplitudes in
the critical dimension d = 8 are checked to reproduce the (n ≤ 6)-point matrix elements
of the maximally supersymmetric R4 operator.

We will write the UV divergences of supergravity in terms of the coefficients of the
highest tensor power of ` in pentagon and hexagon BCJ numerators,

Nµ = Nmax
12345

∣∣
`µ

= ∂

∂`µ
Nmax

12345 ,

Nµν = Nmax
123456

∣∣
`µ`ν

= 1
2

∂2

∂`µ∂`ν
Nmax

123456 , (5.13)

Nµ
[12] = Nmax

[12]3456
∣∣
`µ

= ∂

∂`µ
Nmax

[12]3456 ,

where the `-derivatives act on all of `1, `2, . . . , `n in the n-gon numerators. In the notation
on the left-hand sides, we are exploiting the fact that the coefficients of the highest powers
of ` in our BCJ numerators do not depend on the ordering of external legs, for example,
Nmax

123456
∣∣
`µ`ν

= Nmax
136425

∣∣
`µ`ν

and Nmax
[12]3456

∣∣
`µ

= Nmax
5[12]364

∣∣
`µ
. One would otherwise find that

after using Jacobi identities to obtain the numerators of lower-gon topologies, the terms
with highest power of ` do not cancel, which would conflict with the power counting of our
BCJ numerators.

At four and five points, we have

εM1-loop IIB
4

∣∣∣UV

D=8−2ε
=
∣∣t8(f1, f2, f3, f4)

∣∣2 , (5.14)

εM1-loop IIB
5

∣∣∣UV

D=8−2ε
=
[∣∣t8(f12, f3, f4, f5)

∣∣2
s12

+ (1, 2|1, 2, 3, 4, 5)
]

+ 1
2N

µηµνÑ
ν ,

where the factors of 1
3! and

1
4! in the box and pentagon UV divergences (5.1) and (5.2) are

compensated by the fact that all the 3! and 4! cyclically inequivalent orderings of the box
and pentagon corners yield the same UV contributions. Similarly, factors of 5! cancel in
the hexagon contribution to

εM1-loop IIB
6

∣∣∣UV

D=8−2ε
=
[ |Nmax

[[12]3]456|
2

s12s123
+
|Nmax

[[13]2]456|
2

s13s123
+
|Nmax

[[23]1]456|
2

s23s123
+ (1, 2, 3|1, 2, . . . , 6)

]

+
[ |Nmax

[12][34]56|
2

s12s34
+
|Nmax

[13][24]56|
2

s13s24
+
|Nmax

[14][23]56|
2

s14s23
+ (5, 6|1, 2, . . . , 6)

]

+ 1
2

[Nµ
[12]ηµνÑ

ν
[12]

s12
+ (1, 2|1, 2, . . . , 6)

]
+ 1

4N
µν(ηµνηλρ + ηµληνρ + ηµρηνλ)Ñλρ . (5.15)

In eqs. (5.14) and (5.15) and below, the notation |t8|2 and |N |2 instructs to multiply the
enclosed polarization-dependent expression by a second copy with εj → ε̃j and is unrelated
to complex conjugation. The type IIA counterparts of eqs. (5.14) and (5.15) can be obtained
through a sign flip in the parity odd contributions to the Ñ , cf. eq. (5.12).
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The eight-dimensional UV divergences eqs. (5.14) and (5.15) apply to arbitrary com-
binations of external gravitons, B-fields and dilatons. We shall now specialize to external
gravitons where the parity odd components and the UV divergences are particularly con-
strained.

The parity odd parts of the type IIA and IIB numerators arise from the crossterms in
eq. (5.12), i.e.

NIIA/B ∣∣
odd = Nm-oddÑm-even ∓Nm-evenÑm-odd . (5.16)

In the type IIB case, the parity odd terms Nm-evenÑm-odd + Ñm-evenNm-odd do not con-
tribute to UV divergences of external gravitons (as opposed to B-fields or dilatons) in
d = 8.14 At five points, this can be easily checked using the explicit form (4.7) for the pen-
tagon numerators. For six gravitons, we have checked numerically that parity odd terms
indeed drop out from eq. (5.15). We expect that this feature holds to all multiplicities. In
other words, it is sufficient to use

NIIB ∣∣
even = |Nm-even|2 + |Nm-odd|2 (5.17)

to compute the d = 8 UV divergence for external gravitons. The double copy of the parity
odd contributions will produce products of two Levi-Civita tensors, which can be turned
into Gram determinants,

εd(v1, . . . , vd)εd(w1, . . . , wd) = − det
[
vi · wj

]
d×d ,

εµd(v1, . . . , vd−1)ηµνενd(w1, . . . , wd−1) = − det
[
vi · wj

]
(d−1)×(d−1) . (5.18)

Note that the minus sign on the right-hand side is due to the Minkowskian signature.
We have checked up to six points that the purely gravitational UV divergence of type

IIB supergravity in d = 8 can be written compactly as

εM1-loop IIB
n gravitons

∣∣∣UV

D=8−2ε
=
(
ÃAAtree

YM(n)
)T ·SSS0(n) ·MMM3(n) ·AAAtree

YM(n) , (5.19)

for external gravitons. Here, ÃAAtree
YM(n) is another (n−3)! dimensional vector of color or-

dered MSYM amplitudes, ÃAAtree
YM(n) = Atree

YM(1, α, n, n−1) with permutations α ∈ Sn−3 of
{2, 3, . . . , n−2}. Comparing with AAAtree

YM(n) given in eq. (5.9), we switch the last two fixed
external legs n−1, n such that the entries of SSS0(n), the field-theory KLT or momentum
kernel [72–74], are given by polynomials of Mandelstam variables (with all-multiplicity
formulae in the references).

The kinematic factor in eq. (5.19) agrees with the α′3ζ3 coefficient of type IIB closed-
superstring tree-level amplitudes [66], which corresponds to a single insertion of a super-
symmetric R4 operator. At tree level, the expression (5.19) applies to the α′3ζ3 order for

14The five-point UV divergences eq. (5.14) in eight dimensions for instance comprise parity odd terms
in the type IIA case with four external gravitons and one external B-field as well as in the type IIB case
with three external gravitons and two external B-fields. In both case, we treat the one-loop amplitude as
an analytic function in D and defined the UV divergence at d = 8 as the residue at D = 8 − 2ε. We refer
to parity and B-field components in ten spacetime dimensions and do not perform a dimensional reduction
on the external states.
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arbitrary external states of the type IIB supergravity multiplet including those configu-
rations that violate the U(1) R-symmetry of the α′ → 0 limit. However, eq. (5.19) as a
one-loop expression (for UV divergences in supergravity or low-energy limits of string am-
plitudes) only applies to external states of vanishing overall U(1) charge such as n gravitons.
For U(1)-violating components such as UV divergences of one dilaton and (n−1) gravitons,
there are additional rational prefactors relative to the tree-level contribution ∼ ζ3. Such
relative factors play an essential role for S-duality properties of the low-energy effective
action of type IIB superstrings, see for instance [70, 75] and [76, 77] for discussions at
genus one and genus two, respectively.

We have verified up to six points that our integrands lead to vanishing ten-dimensional
UV divergences for both type IIA and IIB supergravity, reflecting the absence of maximally
supersymmetric counterterms D2R4+R5. This is known to be a straightforward conse-
quence of maximal supersymmetry, and it has been discussed from several perspectives in
e.g. refs. [78–80].

As the final check to our gravity numerators, we have verified that our gravity inte-
grands are gauge invariant on all the spanning cuts. At seven points, we have furthermore
verified that the cuts in type IIA/B supergravity calculated using the double-copy numer-
ators are independent of the free parameters discussed in section 4.4. We compute the
gravity cuts via the standard procedure of summing relabeled numerators along with un-
cut propagators for all diagrams that share a pole structure with the cut [5, 28, 29]. It is
explained with explicit examples in appendix A.

6 Results for half-maximally supersymmetric theories

In this section, we present one-loop BCJ numerators in gauge theories with half-maximal
supersymmetry (i.e. 8 supercharges) [18], later called 1/2-MSYM for short. The resulting
amplitudes capture supermultiplets with half-maximal supersymmetry running in the loop.
In six dimensions, half-maximal supersymmetry can be realized in a hypermultiplet that
consists of one chiral fermion and two scalars, or in a vector multiplet that consists of one
gluon and two chiral fermions. We write their contribution to the kinematic numerators as

hyp(1,0) : Nhyp = Nh-even +Nh-odd , vec(1,0) : Nvec = Nv-even +Nv-odd ,

hyp(0,1) : Nhyp = Nh-even −Nh-odd , vec′(0,1) : Nvec′ = Nv-even −Nv-odd , (6.1)

where we have further separated the parity even and odd contributions. The multiplet hyp
and hyp (vec and vec′) have opposite chiralities, where the subscript (1, 0) and (0, 1) denote
the R-symmetry representations.15 Meanwhile, the dimensional reduction of the MSYM
gauge multiplet to six dimensions is non-chiral and carries (1, 1) R-symmetry. It can be
decomposed into two hypermultiplets and one vector multiplet of the opposite chirality,

Nmax = Nvec + 2Nhyp , (6.2)
15The hyp(1,0) multiplet is sometimes called “half-hyper” to emphasise that it encodes only two fermionic

and two bosonic on-shell states.
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Figure 4. The BCJ numerators associated with the cubic graphs in the left panel (a) conspire
to cancel the propagator s−1

123 that diverges in the phase space of four on-shell momenta. After
cancellation of their divergent propagator, the contributions of external bubbles may be visualized
as “snail graphs” drawn in the right panel (b).

where Nmax = Nm-even is given in section 4. The contributions from vector and hypermul-
tiplets are thus related by

Nv-even = Nmax − 2Nh-even , Nv-odd = 2Nh-odd . (6.3)

In the following, we will focus on the case of a hypermultiplet running in the loop since
the contributions from vector multiplets can be reconstructed via eq. (6.3).

As we will see, the n-point numerators in 1/2-MSYM take a form very similar to
the (n+2)-point numerators in MSYM. However, the presence of triangle and bubble
topologies in 1/2-MSYM causes additional subtleties. It is inevitable that Jacobi identities
will relate triangles to bubbles in external legs with a formally divergent propagator, for
example, s−1

123 in the four-point diagrams of figure 4a. They must be canceled by the
same Mandelstam variable in the numerator and become the contact graphs shown in
figure 4b. A consistent regularization prescription where these cancellations can be carried
out was proposed by Minahan [81]: we first relax the n-point momentum conservation by
introducing an additional soft massless leg with momentum p,

k1 + k2 + . . .+ kn = p , p2 = 0 . (6.4)

As a result, we can only use the Mandelstam identity s12...n = 0 of an (n+1)-point mo-
mentum phase space in the numerators until all the potentially divergent propagators like
s−1

12...n−1 are canceled.16 We can then set p = 0 and arrive at a regular integrand that only
contains contact graphs like in figure 4b.

6.1 Kinematic building blocks and maximal cuts

Just like in MSYM, the kinematic numerators in 1/2-MSYM can be conveniently expressed
in terms of some particular combinations of vector and spinor traces. We define [38]

tr(hyp)(f1f2 . . . fm) = − 1
2× 4m f

µ1ν1
1 fµ2ν2

2 . . . fµmνmm tr
(
Γ[6]
µ1ν1Γ[6]

µ2ν2 . . .Γ
[6]
µmνm

)
, (6.5)

16We can still use the original n-point momentum conservation in ε ·k, ` ·k since they are irrelevant to
cancelling the divergent propagators.
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with antisymmetrized combinations Γ[6]
µν of 8×8 Dirac gamma matrices Γ[6]

µ in six dimensions
subject to tr

(
Γ[6]
µ Γ[6]

ν
)

= 8ηµν . As the subscript suggests, tr(hyp) will be used to express
integrands with a hypermultiplet running in the loop. The examples up to length five are
given below,

tr(hyp)(f1) = 0 , tr(hyp)(f1f2) = −1
2tr(f1f2) , tr(hyp)(f1f2f3) = −1

2tr(f1f2f3) ,

tr(hyp)(f1f2f3f4) = −1
2tr(f1f2f3f4) + 1

4 t8(f1, f2, f3, f4) , (6.6)

tr(hyp)(f1f2f3f4f5) = −1
2tr(f1f2f3f4f5) + 1

8
[
t8(f1, [f2, f3], f4, f5) + (2, 3|2, 3, 4, 5)

]
.

They will be used to express BCJ numerators up to five points.
The n-gon maximal cut contributed by a hypermultiplet can be obtained from the

general formula (2.20) by setting (nl, nr) = (1, 0) or (0, 1), ns = 2 and nv = 0. After
converting the spinor traces in d = 6 for the parity even contribution to vector traces via
eq. (6.6), we get dimension-agnostic expressions that also apply to four-dimensional SYM
with eight supercharges17

Nh-even
12...n =

n−2∑
k=0

(−1)n−k
[
tr(hyp)(fk+1 . . . fn)

k∏
j=1

εj · `j + (1, 2, . . . , k|1, 2, . . . , n)
]

+O(`2i ) terms that vanish on the maximal cut . (6.7)

Here, the parity even maximal cut has been identified as part of the n-gon numerator
because it already manifests the full dihedral crossing symmetry. The nonzero length-two
and length-three traces lead to the `n−2 power counting for 1/2-MSYM instead of `n−4 for
MSYM. To determine the O(`2i ) contact terms, one can make a generic ansatz and then
solve it by matching all the lower-gon cuts constructed from tree amplitudes. Alternatively,
just like in the MSYM case, we can solve the ansatz by imposing linearized gauge invariance
on the cuts. We note that the gauge variation of the maximal-cut part in eq. (6.7) contains
at least a length-two tr(hyp). Since the O(`2i ) contact terms are introduced to cancel the
gauge variation on lower-gon cuts, it is natural to conjecture that the O(`2i ) contact terms
will also contain at least a length-two tr(hyp).18

One can similarly consider a vector multiplet running in the loop. The SUSY decom-
position (6.3) implies that the n-gon maximal cut can be obtained by the replacement
tr(hyp) → tr(vec) in eq. (6.7), where

tr(vec)(f1f2 . . . fm) = tr(max)(f1f2 . . . fm)− 2 tr(hyp)(f1f2 . . . fm) . (6.8)

17Similar to eq. (4.1) for MSYM, we rescaled the numerator by a factor of 2 compared with eq. (2.20).
18The regularization of external bubbles via eq. (6.4) may require us to expand out certain traces such

that not every term features a length-two trace, as we will see explicitly in eqs. (6.12) and (6.21). However,
the ansatz proposed here is still sufficient since it turns out that bubble cuts will be automatically satisfied
for all the cases we have considered. Thus we do not need new structures in the ansatz.
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At low multiplicities, we have,

tr(vec)(f1) = 0 , tr(vec)(f1f2) = tr(f1f2) , tr(vec)(f1f2f3) = tr(f1f2f3) ,

tr(vec)(f1f2f3f4) = 1
2 t8(f1, f2, f3, f4) + tr(f1f2f3f4) . (6.9)

The approach that determines contact terms from gauge invariance on cuts is agnostic to
whether we use tr(hyp) or tr(vec) in the maximal cut. It suggests that under our current
assumption of O(`2i ) contact terms, the prescription tr(hyp) → tr(vec) can be applied to the
full numerator. This holds for all the explicit examples shown later in this section. By
construction, the union of one vector and two hypermultiplets in the loop will reproduce
the parity even part of the MSYM result (4.1).

6.1.1 Three-point numerators and regularization

Because of the power counting Nhyp
12...n ∼ O(`n−2), there are no O(`2i ) contact terms at two

and three points. Hence, the maximal cut already gives the full result for the bubble at
two points and the triangle at three points known from [31],

Nhyp
12 = tr(hyp)(f1f2) , (6.10)

Nhyp
123 =

[
ε1 ·`1tr(hyp)(f2f3) + cyclic(1, 2, 3)

]
− tr(hyp)(f1f2f3)− 1

4ε6(`, ε1, f2, f3) ,

where we already reinstated the parity odd contribution at three points from eq. (2.20).
The numerator for the external bubble with [12]-dangling tree is [31]

Nhyp
[12]3 = Nhyp

123 −N
hyp
213 = −tr(hyp)(f12f3) , (6.11)

where no momentum-conservation relations have been used for the parity even part. This
graph has a formally divergent propagator s−1

12 . To consistently cancel this spurious pole, we
evaluate the trace of f12f3 in a momentum phase space with non-zero sij , corresponding
to an additional soft leg in the regularization (6.4). In this way, the external bubble
numerator (6.11) takes the form [81]

Nhyp
[12]3 = 1

2s12 ε1 ·ε2 ε3 ·k1 −
1
2s123

[
ε1 ·ε2 ε3 ·k1 + cyclic(1, 2, 3)

]
. (6.12)

Now the first term cancels the s12 in the denominator from one of the bubble propagators,
and the second term drops out as s123 = 0 even in the presence of the additional soft leg.
Finally, we collect all the graphs that are compatible with the ordering (1, 2, 3) and arrive
at the color ordered amplitude

A1-loop
hyp (1, 2, 3) =

∫ dD`
iπD/2

[
Nhyp

123
`21`

2
2`

2
3

+ ε1 ·ε2 ε3 ·k1
2`22`23

+ ε2 ·ε3 ε1 ·k2
2`21`23

+ ε3 ·ε1 ε2 ·k3
2`21`22

]
, (6.13)

where `i = `+k1+ . . .+ki. By virtue of the resolution of spurious poles in sij , this expres-
sion is regular and gauge invariant at the level of the loop integrand.
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6.2 The four- and five-point numerators

Starting from four points, we need to work out the `2i contact terms in the n-gon numerators
in eq. (6.7). We use the same strategy as in the MSYM case: we make a general ansatz that
respects the full dihedral crossing symmetry, scales as `n−2 and contains at least one factor
of `2i in each term. All the other numerators are then obtained through Jacobi identities
and relabelings, among which we require the tadpole numerators to vanish.

To solve for the remaining free parameters, we turn to the constraints imposed by
lower-gon cuts. In particular, we require that all the lower-gon cuts are gauge invariant
(for the parity odd terms, the cuts are taken strictly in d = 6). The contact terms in
the n-gon numerators are thus chosen to compensate the gauge variation when fewer loop
momenta are on-shell. This consideration guides us to write down a natural ansatz. Our
strategy is different from the usual unitarity-cut method, which requires the lower-gon cuts
to match the product of tree amplitudes. Of course, we have done the calculation using
both methods and found agreeing results.

Very interestingly, at both four and five points, the physically relevant part of our
ansatz can be completely fixed after imposing the triangle cuts to be gauge invariant.
In other words, bubble cuts will be satisfied automatically and thus do not give further
constraints. At four points, there are no free parameters left; at five points, the remaining
free parameters belong to the generalized gauge freedom and drop out in the color ordered
integrands.19

While the above procedure in principle works for both the parity even and odd parts,
we will face the same technical difficulty for the parity odd parts encountered in MSYM.
We can only meaningfully match cuts (or check gauge invariance) in a minimal basis of
kinematic variables. However, in the presence of Levi-Civita tensors and two (or more)
Lorentz dot products, it is a challenge to attain a minimal basis by exhaustive application
of Schouten identities (2.18). We will present the four-point parity odd result, and leave
n ≥ 5 points to the future.

6.2.1 The four-point parity even numerators

According to the all-multiplicity result (6.7), we write the parity even box numerator as

Nh-even
1234 =

[
ε1 ·`1ε2 ·`2tr(hyp)(f3f4) + (1, 2|1, 2, 3, 4)

]
(6.14)

−
[
ε1 ·`1tr(hyp)(f2f3f4) + cyclic(1, 2, 3, 4)

]
+ tr(hyp)(f1f2f3f4) + δNh-even

1234 ,

where δNh-even
1234 contains all the O(`2i ) contributions. Similar to the discussion for MSYM

given at the beginning of section 4, we start from an ansatz with D4 crossing symmetry

δNh-even
1234 = ε1 ·ε2(a1`

2
1 + a2`

2
2 + a2`

2
4)tr(hyp)(f3f4) (6.15)

+ ε1 ·ε3a3(`21 + `22)tr(hyp)(f2f4) + cyclic(1, 2, 3, 4) ,
19When constructing numerators for external-bubble graphs, we need to consistently apply the regular-

ization (6.4) such that the divergent propagators in such graphs get canceled before matching the cuts and
performing gauge variations. The simplest three-point example has been given in section 6.1.1. The details
for four and five points will be given in later sections.
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and only allow for inverse propagators `2i adjacent to the polarization vectors in the dot
product, cf. eq. (4.9). The three rational parameters a1, a2, a3 are uniquely fixed by im-
posing gauge invariance of the triangle cut,

Cut

 `3

`2

`4

2

1

3

4

	


εi→ki

=
[
Nh-even

1234
(`4 + k1)2 +

Nh-even
[12]34

(k1 + k2)2

]
`2=`22=`23=0

εi→ki

= 0 , (6.16)

leading to the following result for the parity even box numerator,

Nh-even
1234 =

[
ε1 ·`1ε2 ·`2tr(hyp)(f3f4) + (1, 2|1, 2, 3, 4)

]
(6.17)

−
[
ε1 ·`1tr(hyp)(f2f3f4) + cyclic(1, 2, 3, 4)

]
+ tr(hyp)(f1f2f3f4)

− 1
24
[
ε1 ·ε2(6`21 − `22 − `24)tr(hyp)(f3f4) + cyclic(1, 2, 3, 4)

]
− 1

24
[
ε1 ·ε3(`21 + `22)tr(hyp)(f2f4) + cyclic(1, 2, 3, 4)

]
.

The numerators of lower-gon topologies can be obtained using kinematic Jacobi identities
and conveniently expressed in terms of Lorentz traces and multiparticle fields. The tadpole
numerators obtained from repeated antisymmetrization of Nh-even

1234 vanish as expected. The
triangle numerator with leg 1 and 2 in a dangling tree reads

Nh-even
[12]34 = −`µ

[
εµ12tr(hyp)(f3f4) + εµ3 tr(hyp)(f12f4) + εµ4 tr(hyp)(f12f3)

]
+ 1

6
[
`·(k1+k2−k3)

(
ε1 ·ε3tr(hyp)(f2f4)− ε2 ·ε3tr(hyp)(f1f4)

)
+ (3↔ 4)

]
+ 1

12s12
[
ε1 ·ε3tr(hyp)(f2f4)− ε2 ·ε3tr(hyp)(f1f4)− (3↔ 4)

]
+ 1

2
[
tr(hyp)(f123f4) + tr(hyp)(f124f3) + tr(hyp)(f12f34)

]
, (6.18)

and the two-mass bubble with [12] and [34] dangling trees is given by

Nh-even
[12][34] = tr(hyp)(f12f34) + s12

6
[
ε1 ·ε3 tr(hyp)(f2f4)− ε2 ·ε3 tr(hyp)(f1f4)− (3↔ 4)

]
. (6.19)

The triangles and two-mass bubbles do not contain any divergent propagators, and thus
we can freely apply four-point momentum conservation to their numerators.

Because of the divergent propagators in external-bubble graphs, we should follow the
regularization (6.4) while computing their numerators from Jacobi relations. In particular,
we cannot use four-point momentum conservation in the Mandelstam variables. For ex-
ample, we consider the two external-bubble graphs that contain the divergent propagator
s−1

123,

Nh-even
[[12]3]4 = Nh-even

1234 −Nh-even
2134 −Nh-even

3124 +Nh-even
3214 (6.20a)

= tr(hyp)(f123f4)− 1
12s123

[
2ε1 ·ε3 tr(hyp)(f2f4) + ε1 ·ε4 tr(hyp)(f2f3)− (1↔ 2)

]
,

Nh-even
[1[23]]4 = Nh-even

1234 −Nh-even
1324 −Nh-even

2314 +Nh-even
3214 = Nh-even

[[12]3]4

∣∣∣
1↔3

. (6.20b)
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The box numerators in the first line of eq. (6.20a) are obtained by relabeling eq. (6.17),
and we have used the regularization (6.4) in passing to the second line (which also carries
over to the other bubble numerator Nh-even

[1[23]]4 related by a relabelling). By combining the
two graphs in eq. (6.20), the divergent propagator s−1

123 is cancelled, as depicted in figure 4,

Nh-even
[[12]3]4

s12s123
+
Nh-even

[1[23]]4
s23s123

= 1
8
(
ε1 ·ε4ε2 ·ε3 + ε1 ·ε2ε3 ·ε4 − 2ε1 ·ε3ε2 ·ε4

)
(6.21)

+ 1
24s12

[
6ε4 ·k3(ε1 ·ε2 ε3 ·k1 − 2ε1 ·ε3 ε2 ·k1) + 2ε1 ·ε3tr(f2f4) + ε1 ·ε4tr(f2f3)− (1↔ 2)

]
+ 1

24s23

[
6ε4 ·k1(ε2 ·ε3 ε1 ·k3 − 2ε1 ·ε3 ε2 ·k3) + 2ε1 ·ε3tr(f2f4) + ε3 ·ε4tr(f1f2)− (2↔ 3)

]
.

After removing the spurious divergence s−1
123 we can freely apply four-point momentum

conservation to contact bubble graphs like eq. (6.21).20 Note that the cancellation of s−1
123

from the combination of the two diagrams in eq. (6.21) has been studied in [30, 31] at the
level of Berends-Giele currents.

One can now verify that our integrand satisfies all the bubble cuts. Since we derive
these numerators by only using information on the box and triangle cuts, the bubble cuts
provide important checks to our results. Furthermore, we have also checked that the color-
ordered loop integrand is gauge invariant, where the loop momentum is put at the same
position across all the graphs involved. Both the bubble cuts and gauge invariance check
can only be performed after removing divergent propagators in all the external-bubble
graphs.

6.2.2 The four-point parity odd numerators

For parity odd contributions to the four-point box numerator, the maximal cut is given
by the last line of eq. (2.20). To obtain the crossing symmetric numerators, one can make
a general ansatz like the one in eq. (4.14) while converting the ten-dimensional six-point
expressions ε10(ka+2, εb+2) to six-dimensional four-point terms ε6(ka, εb). Alternatively, one
can further exploit the similarity between (n+2)-point MSYM and n-point 1/2-MSYM and
convert the ten-dimensional six-point numerators eq. (4.15) to an improved ansatz

Nh-odd
1234 = a1

[
ε1 · `1 ε6(`2, ε2, f3, f4) + ε2 · `2 ε6(`1, ε1, f3, f4) + (1, 2|1, 2, 3, 4)

]
+ a2

[
ε1 · `1 ε6(f2, f3, f4) + cyclic(1, 2, 3, 4)

]
+ a3

[(
ε6(`1, ε1, [f2, f3], f4) + cyclic(1, 2, 3)

)
+ (1, 2, 3|1, 2, 3, 4)

]
+ a4

[
`21 ε6(ε1, ε2, f3, f4) + cyclic(1, 2, 3, 4)

]
. (6.22)

20We note that using four-point relations like k4 = −k1 − k2 − k3 and s13 = −s12 − s23 prematurely in
earlier stages may cause a failure in removing the divergence of s−1

123.
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We then impose the full dihedral crossing symmetry and solve the ansatz by matching the
box and triangle cuts, which gives the unique solution,

Nh-odd
1234 =− 1

16
[
ε1 · `1 ε6(`2, ε2, f3, f4) + ε2 · `2 ε6(`1, ε1, f3, f4) + (1, 2|1, 2, 3, 4)

]
− 1

64
[
ε1 · `1 ε6(f2, f3, f4) + cyclic(1, 2, 3, 4)

]
+ 1

32
[(
ε6(`1, ε1, [f2, f3], f4) + cyclic(1, 2, 3)

)
+ (1, 2, 3|1, 2, 3, 4)

]
− 1

16
[
`21 ε6(ε1, ε2, f3, f4) + cyclic(1, 2, 3, 4)

]
. (6.23)

The triangle numerators are again obtained from Jacobi identities,

Nh-odd
[12]34 = 1

8 ε6(`, ε12, f3, f4) + 1
16
[
ε6(`, ε3, f12, f4) + ε6(`, ε4, f12, f3)

]
− 1

16`·(k1+k2) ε6(ε1, ε2, f3, f4) , (6.24)

and lead to vanishing two-mass bubble numerators Nh-odd
[12][34] = 0. By carefully using the

regularization (6.4) while applying the Jacobi identities, we get the external-bubble nu-
merator,

Nh-odd
[[12]3]4 = Nh-odd

1234 −Nh-odd
2134 −Nh-odd

3124 +Nh-odd
3214 = 1

32s123 ε6(ε1, ε2, f3, f4) , (6.25)

where the overall vanishing factor s123 cancels the formally divergent propagator s−1
123 of the

external bubble and thus gives a regular integrand. We have checked that our regularized
integrand satisfies all the bubble cuts, as well as the vanishing of tadpole numerators.

As an important check to our result, we take the gauge variation ε1 → k1 and indeed
find the expected gauge anomaly in D = 6−2ε,

A1-loop
hyp (1, 2, 3, 4)

∣∣∣
ε1→k1

= − 1
32ε6(f2, f3, f4)I6−2ε

4 , (6.26)

I6−2ε
4 =

∫ d6−2ε`

iπ(6−2ε)/2
(−µ2)
`21`

2
2`

2
3`

2
4

= 1
3! ,

where µ2 = `2−`2(6) is the extra-dimensional component of `2. Because our numerators
manifest crossing symmetry, we observe the same gauge anomaly for all external legs.

6.2.3 The five-point parity even numerator

At five points, the maximal-cut part of the parity even numerator can be directly read off
from eq. (6.7),

Nh-even
12345 =

[
ε1 ·`1ε2 ·`2ε3 ·`3tr(hyp)(f4f5) + (1, 2, 3|1, 2, 3, 4, 5)

]
(6.27)

−
[
ε1 ·`1ε2 ·`2tr(hyp)(f3f4f5) + (1, 2|1, 2, 3, 4, 5)

]
+
[
ε1 ·`1tr(hyp)(f2f3f4f5) + cyclic(1, 2, 3, 4, 5)

]
− tr(hyp)(f1f2f3f4f5) + δNh-even

12345 ,
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where δNh-even
12345 gathers all contact terms with a contribution of `2j . Guided by the gauge-

invariance argument, we consider the ansatz that features two or three linearized field
strengths in a trace,

δNh-even
12345 = δN

tr(f3)
12345 + δN

tr(f2)
12345 . (6.28)

This resembles the organization of the contact terms in the maximally supersymmetric
seven-point numerator in eq. (4.20) with four or five factors of fi in tr(max)(. . .). In the
same way as the color-kinematics duality and gauge invariance were found to select a unique
tr(f5) contribution (4.21), we find a unique answer for tr(f3) contact terms in eq. (6.28),

δN
tr(f3)
12345 = 1

24
[
ε1 ·ε2(6`21 − `22 − `25)tr(hyp)(f3f4f5) + cyclic(1, 2, 3, 4, 5)

]
(6.29)

+ 1
24
[
ε1 ·ε3(`21 + `22 + 2`24)tr(hyp)(f2f4f5) + cyclic(1, 2, 3, 4, 5)

]
.

The leftover terms can be organized in a 120-parameter ansatz analogous to eq. (4.22),

δN
tr(f2)
12345 = (ε1 ·ε2)

5∑
k=3

5∑
i,j=1
i 6=k−1

αi,j,k (εk ·`i) `2j tr(hyp)(f2) (6.30)

+ (ε1 ·ε3)
5∑

k 6=1,3

5∑
i,j=1
i 6=k−1

βi,j,k (εk ·`i) `2j tr(hyp)(f2) + cyclic(1, 2, 3, 4, 5) ,

where tr(hyp)(f2) in both lines refers to the field strengths that are not represented by
the accompanying (εa ·εb)(εk ·`i), and i = k−1 is again excluded by εk ·`k−1 = εk ·`k. We
then constrain the rational parameters αi,j,k, βi,j,k in eq. (6.30) by imposing full dihedral
symmetry, vanishing tadpoles, as well as gauge invariance on all the box and triangle cuts.
This still leaves 13 of the αi,j,k, βi,j,k parameters undetermined which may be viewed as
the 1/2-MSYM-analogue of the 30-parameter family of seven-point BCJ numerators for
MSYM described in section 4.4.

In spite of the 13 free parameters for tr(f2) contact terms, we proceed to computing
bubble numerators using Jacobi identities under the regularization (6.4). We find that
even in the presence of these free parameters, all the potentially divergent propagators are
canceled, and the bubble cuts are satisfied automatically. Thus they do not give further
constraints, and we have checked that these free parameters indeed drop out of the gauge
invariant color-ordered amplitude, already at the integrand level. Therefore, these 13
parameters correspond to generalized gauge freedom. Here we present the result with the
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13 free parameters set to zero,

δN
tr(f2)
12345 = 1

48
[
ε1 ·ε2

(
2(`22 − 6`21)ε5 ·`5tr(hyp)(f3f4)− 2(`22 − 3`25)ε5 ·`1tr(hyp)(f3f4)

− `22ε4 ·`5tr(hyp)(f3f5)− `25ε4 ·`2tr(hyp)(f3f5)− 2(6`21 − `22 − `25)ε4 ·`4tr(hyp)(f3f5)
+ 2(`22 + `25)ε4 ·`1tr(hyp)(f3f5)− 2(6`21 − `25)ε3 ·`3tr(hyp)(f4f5)

+ 2(3`22 − `25)ε3 ·`1tr(hyp)(f4f5)
)

+ cyclic(1, 2, 3, 4, 5)
]

+ 1
48
[
ε1 ·ε3

(
2(`24 − `21)ε5 ·`2tr(hyp)(f2f4)− 2(`21 + `22 + 2`23)ε5 ·`5tr(hyp)(f2f4)

+ (2`21 − 2`24 + `25)ε4 ·`2tr(hyp)(f2f5) + (2`22 + `23 − 2`24)ε5 ·`1tr(hyp)(f2f4)
+ `22ε4 ·`5tr(hyp)(f2f5)− 2(`22 − `24)ε4 ·`1tr(hyp)(f2f5) + `21ε5 ·`3tr(hyp)(f2f4)
− 2(`21 + `22 + 2`25)ε4 ·`4tr(hyp)(f2f5)− `23ε2 ·`5tr(hyp)(f4f5)− `25ε2 ·`3tr(hyp)(f4f5)

− 2(3`21 + 3`22 − 2`23 − 2`25)ε2 ·`2tr(hyp)(f4f5)
)

+ cyclic(1, 2, 3, 4, 5)
]
. (6.31)

The full result that includes all the 13 free parameters is given in an ancillary file of the
arXiv submission.

6.2.4 UV divergences of half maximally SYM

As a crosscheck for our results, we first show that the integrands reproduce the correct UV
divergences of 1/2-MSYM in d = 4 and d = 6. Since ourm-gon numerators are polynomials
of degree `m−2, the UV divergence in d = 4 only receives contributions from bubbles. By
a naive dimensional analysis based on our bubble numerators and the measure dD`, we
expect it to be absorbed by the field renormalization of Tr(F 2). The UV divergence in
d = 6 receives contributions also from triangles. However, it is bound to vanish since
the only counterterm compatible with dimensional analysis is Tr(F 3), which cannot be
supersymmetrized. In the n-gon basis numerator, the terms that can source a bubble or
triangle topology are proportional to `n−2 and `n−3, which only involve traces of length
two and three, respectively. For these terms, tr(hyp) and tr(vec) only differ by a factor of −2
according to eqs. (6.6) and (6.9). We have verified for n ≤ 5 that our integrands indeed
give the expected UV behavior [82],

εA1-loop
1/2-MSYM(1, 2, . . . , n)

∣∣∣UV

D=4−2ε
= −n−2

2 (nhyp−2nvec)Atree
YM(1, 2, . . . , n) ,

εA1-loop
1/2-MSYM(1, 2, . . . , n)

∣∣∣UV

D=6−2ε
= 0 , (6.32)

where nhyp and nvec are the numbers of hyper and vector multiplets in the loop. We note
that the parity odd contribution drops out from the UV divergences in d = 4, 6 due to
the absence of counterterms as we have explicitly verified at n = 3, 4 using eq. (6.10) and
eq. (6.25). Thus we do not need to specify the chirality in eq. (6.32).

6.3 Half-maximal supergravities and UV divergences

We can double copy BCJ numerators of 1/2-MSYM to construct loop integrands for half-
maximal supergravities (with 16 supercharges). By choosing different gauge-theory copies,
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we obtain supergravities with different particle contents in the loop [34]:

hyp(1,0) ⊗ hyp(1,0) = tensor(2,0) , vec(1,0) ⊗ vec(1,0) = graviton(2,0) + tensor(2,0) ,

hyp(1,0) ⊗ hyp(0,1) = vec(1,1) , vec(1,0) ⊗ vec′(0,1) = graviton(1,1) . (6.33)

The two inequivalent graviton multiplets graviton(2,0) and graviton(1,1) in the right column
are chiral and non-chiral, respectively, and both columns feature a self-dual tensor multiplet
tensor(2,0). The two hypermultiplets in the double copy hyp(1,0) ⊗ hyp(1,0) both transform
in a non-complex representation of the gauge group in order to avoid overcounting degrees
of freedom [83].

The double copy between a half-maximal vector and adjoint hypermultiplet results in
a gravitino multiplet. For adjoint fermions, supersymmetry is compatible with the color-
kinematics duality only if they reside in a vector multiplet, and consequently the gravitino
from double copy must be in a graviton multiplet [32]. In other words, local supersymmetry
is incompatible with stand-alone massless gravitinos, unless made massive through some
symmetry breaking. Here, we merely view them as formal objects that interpolate the
difference in particle contents between maximal and half-maximal supergravities.

We start with the double copy of two hypermultiplets both with the same chirality,
hyp⊗ hyp, and the opposite chirality, hyp ⊗ hyp,

N1/2-IIA = (Nh-even +Nh-odd)(Ñh-even − Ñh-odd) ,
N1/2-IIB = (Nh-even +Nh-odd)(Ñh-even + Ñh-odd) . (6.34)

We label the resulting theories as 1/2-IIA and 1/2-IIB instead of their particle contents
as in eq. (6.33) since the integrands can be obtained as the low-energy limit of the type
IIA and IIB string amplitudes compactified on a K3 manifold [30, 31, 84–86]. The gravity
integrand after double copy still has graphs with bubbles on external legs, which contains
divergent propagators. Similar to 1/2-MSYM, the divergent propagators will cancel under
the regularization (6.4) among the graphs that share the same divergence. For example,
at four points, the three dangling trees [[12]3], [1[23]] and [[31]2] will conspire to cancel the
divergent propagator s−1

123. The fact that gravity integrands are free of such divergences
is already a highly nontrivial check to our results. We have also verified down to bubbles
that the cuts of the supergravity integrand obtained through double copy of the five-point
numerators in section 6.2.3 are gauge invariant and independent of the free parameters,
see appendix A for further details.

The double copy of 1/2-MSYM leads to a maximal power of `2m−4 in m-gon nu-
merators, which contributes to the UV divergence in d = 4 through the coefficient of
`µ1 . . . `µ2m−4 . Even though the double copies eq. (6.34) yield supergravity numerators
for any combination of external gravitons, B-fields and dilatons, we shall focus on the
n-graviton components in this section. When calculating the UV divergence for pure
gravitons, the parity odd part of N1/2-IIA/IIB drops out, so that we can effectively use

N
1/2-IIA
n gravitons = |Nh-even|2 − |Nh-odd|2 ,

N
1/2-IIB
n gravitons = |Nh-even|2 + |Nh-odd|2 . (6.35)
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Up to four points, the contributions from |Nh-even|2 and |Nh-odd|2 to the four-dimensional
UV divergence for external gravitons differ only by a sign. Both of them are proportional
to matrix elements of the supersymmetrizable R2 counterterm, which can be realized as a
double copy between (super-)Yang-Mills and a single insertion of the Tr(F 3) operator [87],21

M tree
R2 (n) =

(
ÃAAtree

YM(n)
)T ·SSS0(n) ·AAAtree

F 3 (n) . (6.36)

The (n−3)!-component vector AAAtree
F 3 (n) = Atree

F 3 (1, α, n−1, n) with α ∈ Sn−3 refers to a BCJ
basis of color-ordered matrix elements of Tr(F 3), and the objects ÃAAtree

YM(n) and SSS0(n) are
specified below eq. (5.19).

Similar to the gauge-theory case, only length-two and length-three traces over lin-
earized field strengths contribute to the gravity UV divergences in d = 4 and 6, respec-
tively. After including the vector-multiplet loop using eqs. (6.3), (6.6) and (6.9), we have
verified up to four points that

εM
1/2-IIA
n gravitons

∣∣∣UV

D=4−2ε
= (nhyp − 2nvec)2M tree

R2
∣∣
n gravitons , (6.37a)

εM
1/2-IIB
n gravitons

∣∣∣UV

D=4−2ε
= 0 , (6.37b)

where the hyper and vector multiplets are of opposite chiralities. In addition, we have
checked that the parity even contribution |Nh-even|2 for five external gravitons yields the
R2 matrix element (6.36) with coefficient 1

2(nhyp − 2nvec)2, consistent with the average of
both lines in eq. (6.37).

On the other hand, the UV divergence in d = 6 from both |Nh-even|2 and |Nh-odd|2 is
expected to vanish due to the absence of supersymmetrizable R3 counterterms:

εM
1/2-IIA
n gravitons

∣∣∣UV

D=6−2ε
= εM

1/2-IIB
n gravitons

∣∣∣UV

D=6−2ε
= 0 , (6.38)

which we have checked up to four points for |Nh-odd|2 and five points for |Nh-even|2.

7 Conclusion and outlook

In this paper, we have fulfilled a long-standing quest in constructing one-loop higher-
multiplicity BCJ numerators with desirable properties in various SYM and supergravity
theories. We present the first BCJ numerators for six- and seven-point SYM amplitudes
with maximal supersymmetry, where the supergravity double copy can be correctly per-
formed using conventional Feynman propagators quadratic in loop momenta. The key to
achieve this was to identify simple D-dimensional kinematic building blocks for generic
gauge theories that manifest many of the properties that we require. Our main results can
be summarized as follows:

• Using basic building blocks, we provided compact all-multiplicity formulae for the
maximal-cut contribution to one-loop n-gon numerators by sewing three-point am-
plitudes; see eq. (2.20) for the expression in generic (S)YM theories as well as eqs. (4.1)
and (6.7) for the maximally and half-maximally supersymmetric cases.

21We normalize the operator such that Atree
F3 (1, 2, 3) = −2(ε1 ·k2)(ε2 ·k3)(ε3 ·k1).
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• We constructed for the first time one-loop BCJ numerators at multiplicites n = 6, 7,
for MSYM valid in D ≤ 10 dimensions, which have standard (quadratic) Feynman
propagators, respect all graph symmetries and double copy to consistent supergravity
numerators; via kinematic Jacobi identities they give numerators for other cubic
graphs (see e.g. eqs. (4.11) and (4.15) for the n = 6 case).

• Similarly, we constructed one-loop BCJ numerators for 1/2-MSYM in D ≤ 6 dimen-
sions at multiplicities n = 4, 5 (see e.g. eqs. (6.17) and (6.23)), and we discussed
double copies to several supergravity theories.

• As a check of the supergravity integrands obtained from the double copy of our SYM
numerators, we explicitly computed their UV divergences: eight- and ten-dimensional
ones up to n = 6 in the MSYM case (see for instance eq. (5.19)) as well as four- and
six-dimensional ones up to n = 5 in the 1/2-MSYM case (see e.g. eq. (6.37)).

Our results open up various new directions for further investigations. With compact
one-loop integrands available, an important next step would be to analytically integrate
them, beyond the UV divergences computed here. This would provide valuable new data for
the analytic structure of one-loop (supersymmetric) gauge-theory and gravity amplitudes
in general dimensions.

It would also be very interesting to apply our method to higher-point numerators, e.g.
n ≥ 8 in MSYM and n ≥ 6 in 1/2-MSYM. Starting from the all-n formulae for the maximal-
cut contributions, we expect that the remaining terms can found such that the numerators
become compatible with kinematic Jacobi identities, linearized gauge invariance and all
non-maximal cuts. However, the increased computational complexity in fixing higher-
multiplicity numerators from an ansatz for the contact terms makes it desirable to refine
the approach: can one optimally compose the information from unitarity, color-kinematics
duality and gauge invariance?

On general grounds, we expect that explicit expressions for non-maximal cuts are not
needed in the construction, instead imposing gauge invariance for these cuts appears to
be sufficient for fixing the amplitude. Indeed, we explicitly confirmed this property for the
parity even contributions of the amplitudes that we computed for MSYM and 1/2-MSYM.
Only imposing gauge invariance on all non-maximal cuts down to boxes and bubbles,
respectively, guarantees that the integrands produce correct cuts. It would be desirable to
study how one could even further boost the power of gauge invariance and color-kinematics
duality for constructing one-loop integrands in various (S)YM theories.

Another open question is to connect our results to other one-loop numerators such as
those obtained from pure-spinor methods [19, 23] or ambitwistor strings/forward-limits of
CHY formulae [20–22, 38, 52, 88]:

• It would be interesting to embed the maximal-cut part of our n-gon numerators for
D = 10 SYM into pure-spinor superspace and to connect with the BRST-covariant
building blocks of [89, 90]. In this way, one could infer valuable extra information
on the contributions beyond the maximal cut from spacetime supersymmetry and
generalize the field-strength traces in our numerators to external fermions.
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• Traditional ambitwistor-string formulae for one-loop integrands involve propagators
linear in the loop momentum `, and their conversion to quadratic propagators has
been discussed from a variety of perspectives [63, 91–97]. We hope that our numera-
tors may help to clarify how the recombination of linearized propagators to quadratic
ones can be made to preserve both the color-kinematics duality and locality.

Last but not least, the methods of this work call for applications to higher-point inte-
grands at two loops in general spacetime dimensions. Two-loop five-point BCJ numera-
tors are available in terms of four-dimensional spinor-helicity variables [9] and pure-spinor
superspace expressions [10]. The latter can be converted to dimension-agnostic gluon-
polarizations that share the characteristic t8-tensors of our one-loop numerators through
the “effective components” of ref. [77]. At six points, however, the planar two-loop inte-
grands in the literature are limited to four-dimensional expressions without known BCJ
representations [98–100].

As the first step towards constructing dimension-agnostic two-loop six-point integrands
with manifest color-kinematics duality, we have computed double-pentagon and hexa-box
numerators quadratic in loop momenta that obey maximal cuts by uplifting our sewing
procedure for three-point amplitudes. The real challenge is then to go beyond these max-
imal cuts via ansätze based on t8-tensors, color-kinematics duality and linearized gauge
invariance. The two-loop showcases of terms beyond the maximal cuts will be much richer
than the one-loop examples in this work, so we expect the ongoing studies at two loops to
provide crucial guidance for the general structure of multiloop BCJ numerators. Based on
the reasoning of ref. [101], it is even conceivable that the aspired two-loop numerators could
fuel string-amplitude computations, going beyond the recent five-point genus-two results
in [77, 102, 103].
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A Constructing gravitational cuts

In this appendix, we provide a more detailed description of the unitarity checks of the
supergravity integrands in sections 5.2 and 6.3. Verifications of loop integrands via unitarity
cuts follow well-established techniques, see for instance [5, 28, 29] or section 3 of the lecture
notes [104], and we review the key ideas relevant to our one-loop examples for the sake of
a self-contained presentation.

Given a set of gravity numerators through double copy, one efficient way to check their
validity is to verify if all the cuts of the gravity amplitudes satisfy the expected physical
properties. In fact, we only need to consider the spanning set of cuts, which contains all
the information of the other cuts. Since our numerators have manifest power counting and
no-triangle (no-tadpole) properties, the quadruple cuts or box cuts (two-particle cuts or
bubble cuts) are the spanning sets for MSYM (1/2-MSYM). Similar to the color-ordered
cuts in gauge theories discussed in section 2.2, we can construct cuts by assembling all the
numerators together with the uncut propagators of the graphs that contribute to the cut.
The only difference in gravity is that the cut is now unordered, such that we need to sum
over permutations of external legs with loop momentum fixed by the cut condition.

To illustrate the idea, we consider the following one-mass box cut at six points as an
example. This is one of the three permutation-inequivalent topologies of spanning cuts for
maximal supergravities at six points,

Cut

 `

1

32 4

56

`3

`4

`5

	

 =
[

|Nmax
123456|2

(`+k1)2(`+k12)2 + perm(1, 2, 3)
]
`2=`23=`24=`25=0

+
[
|Nmax

[12]3456|
2

s12(`+k12)2 +
|Nmax

1[23]456|
2

s23(`+k1)2 + cyclic(1, 2, 3)
]
`2=`23=`24=`25=0

+
[
|Nmax

[[12]3]456|
2

s12s123
+ cyclic(1, 2, 3)

]
`2=`23=`24=`25=0

, (A.1)
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where `i = `+k12...i. There is a total of 15 graphs in the sum, corresponding to the cubic-
diagram expansion of the five-point tree-level amplitude M(`, k1, k2, k3,−`3) in the upper-
left corner of eq. (A.1). We follow the notation of eq. (5.15) for the gravity numerators
|Nmax

... |2, and the gauge-theory numerators are given in sections 4.2 and 4.3. Note that
the parity odd contributions from the ε̃i enter with an additional minus sign for type IIA
supergravity.

In the 15 graphs of eq. (A.1), we have lined up the labelling of loop momenta such
that the edge between legs 1 and 6 carries momentum `. All the other numerators are
then obtained by permuting external legs but with the position of ` fixed. For instance,
Nmax

1[23]456 is obtained from Nmax
[12]3456 via cyclic permutation 1 → 2, 2 → 3, . . . , 6 → 1 with

`→ `+k1, following eq. (2.7).
One can similarly construct the other two topologies of six-point box cuts,

Cut

 `

1

2 3

4

56

`2

`4

`5

	

 , Cut

 `

1

2 3

4

56

`2

`3

`5

	

 , (A.2)

both of which are contributed by 9 graphs, where the numerators are evaluated under the
cut conditions `2 = `22 = `24 = `25 = 0, respectively `2 = `22 = `23 = `25 = 0 in the routing
of loop momenta in eq. (A.2). Since our numerators are crossing symmetric, the spanning
set of cuts can be formed from relabelings of the above three box cuts.

For half-maximal supergravities, the spanning cuts consist of bubbles. For example,
at four points the following two topologies of bubble cuts form the spanning set,

Cut


1

2

4

3

`

`2

	

 , Cut


1

2
3

4

`

`3

	

 , (A.3)

under the requirement of manifest crossing symmetry. We note that the regularization in
eq. (6.4) is needed when computing the external-bubble cut to reach a finite result.

At tree level, double copy leads to a theory that is separately invariant under the
gauge transformations εµ → εµ + kµ (at fixed ε̃ν) and ε̃ν → ε̃ν + kν (at fixed εµ). The
symmetric (antisymmetric) combination of these transformations corresponds to linearized
diffeomorphisms of the graviton polarization (linearized gauge transformations of the B-
field polarization) within the tensor product εµε̃ν . At loop level, these invariances hold
explicitly on cuts [105].

We have checked that the double copy of the six- and seven-point numerators of MSYM
in section 4 and the four- and five-point numerators of 1/2-MSYM in section 6 gives rise to
gauge invariant gravity cuts. More specifically, this has been verified for every topology of
quadruple cuts in the maximally supersymmetric case including eqs. (A.1) and (A.2) and
every topology of bubble cuts in case of half-maximal supersymmetry including eq. (A.3).
Given the non-trivial gauge variation of the contact terms proportional to εa ·εb`2j in our
basis numerators, gauge invariance of a spanning set of cuts strongly validates our results.
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B Fermion n-gon cut

We consider the same n-gon cut as in eq. (2.20), but now with a chiral fermion running
in the loop. Using the three-point tree-level amplitude given in eq. (2.10b), where both
fermions are represented by the χ spinor, we get

Cutfermion
n-gon = −

∑
states

n∏
i=1

A(`ψi−1, i
g,−`ψi )

= −
(
−1

2

)n ∑
states

n∏
i=1

χ̄`i−1/εiχ−`i = − 1
2n tr

(
P±

n∏
i=1

/εi/̀i
)
, (B.1)

where χ̄`0 = χ̄`n , and the chiral projectors P± are defined in the discussion around
eq. (2.12). Choosing two consecutive terms in this chain of gamma matrices, we can
show that

/εi−1/̀i−1/εi/̀i = /εi−1/̀i−1
[
(2εi ·`i)1Dirac − /ki/εi

]
− `2i−1/εi−1/εi

= 2 /εi−1/̀i−1
[
(εi ·`i)1Dirac − ��f i

]
− `2i−1/εi−1/εi . (B.2)

Since `2i−1 = 0 on the maximal cut, we effectively have the prescription to replace all but
one /εi/̀i by 2

[
(εi ·`i)1Dirac − ��f i

]
. This leads to

Cutfermion
n-gon = −1

2tr
[
P±/ε1/̀1

n∏
i=2

(
(εi ·`i)1Dirac − ��f i

)]
(B.3)

= −1
4tr
[
/ε1/̀1

n∏
i=2

(
(εi ·`i)1Dirac − ��f i

)]
∓ 1

4tr
[
Γ/ε1/̀1

n∏
i=2

(
(εi ·`i)1Dirac − ��f i

)]
,

which gives the parity odd contribution as shown in eq. (2.20). There are no further obvious
simplifications that can be used. The parity even contribution, however, can be written in
a more symmetric form. We need to use the following identity that holds on the maximal
cut,

tr
[
/ε1/̀1

n∏
i=2

(
(εi ·`i)1Dirac − ��f i

)]
= tr

[ n∏
i=1

(
(εi ·`i)1Dirac − ��f i

)]
+O(`2i ) . (B.4)

In fact, we can obtain the parity even contribution in a more direct manner by using
both types of spinors χ and ξ in the three-point amplitudes in eq. (2.10b). For this choice,
the state sum is given by

∑
states

ξ−`χ̄` = − 1
2q ·`/q

∑
states

χ−`χ̄` = /q/̀

2q ·` (B.5)

with lightlike reference momentum q. The n-gon cut is given by

Cutfermion
n-gon = −

∑
states

n∏
i=1

[
(εi ·`i)χ̄`i−1ξ−`i − χ̄`i−1��f iξ−`i

]
= −tr

[
P±

n∏
i=1

(
(εi ·`i)1Dirac − ��f i

) /q/̀i
2q ·`i

]
. (B.6)
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We now pick two consecutive terms from the product in the above equation and commute
the first /q to become adjacent to the second one such that /q/q = 0,(

(εi−1 ·`i−1)1Dirac − ��f i−1
) /q/̀i−1

2q ·`i−1

(
(εi ·`i)1Dirac − ��f i

) /q/̀i
2q ·`i

=
(
(εi−1 ·`i−1)1Dirac − ��f i−1

)(
(εi ·`i)1Dirac − ��f i

) /q/̀i
2q ·`i

+O(q ·ki) +O(q ·εi) , (B.7)

where O(q·ki) and O(q·εi) collect terms proportional to q·ki and q·εi, which are generated
by the commutator [/q,��f i+1] = q·ki+1/εi+1 − q·εi+1/ki+1. First setting aside these terms, we
effectively have∑states χ̄ξ → 1Dirac for all internal fermions but the last one. Consequently,
the parity even contribution can be written as

Cutfermion
n-gon

∣∣∣
even

= −1
2tr
[
/q/̀n

2q ·`n

n∏
i=1

(
(εi ·`i)1Dirac − ��f i

)]
+O(q ·ki) +O(q ·εi)

= −1
4tr
[ n∏
i=1

(
(εi ·`i)1Dirac − ��f i

)]
. (B.8)

To obtain the final result, we commute /q to the end and cycle it back to the original position.
This process will generate a manifestly q-independent contribution {/q, /̀n}/(2q·`n) = 1 and
potentially also separate terms of the form O(q ·ki) and O(q ·εi) from the commutators of
/q with ��f i. However, all the q dependence from q ·ki and q ·εi must cancel out identically,
since cuts are gauge invariant quantities and cannot depend on the reference vector. Thus
for the last state sum, we effectively have ∑states χ̄ξ → 1

21Dirac and reproduce the parity
even part of eq. (B.3). This is exactly the state-sum rule used by ref. [38] to obtain the
forward limit.

C The explicit form of the seven trace tr(max)

In order to unpack the maximal-cut contribution eq. (4.19) to the heptagon numerator of
MSYM, one can decompose the seven-point instance of the tr(max) defined in eq. (3.2) into

tr(max)(f1f2f3f4f5f6f7) = 1
2
[
t12(f1, f[2,3], f4, f5, f6, f7) + (2, 3|2, 3, 4, 5, 6, 7)

]
+ 1

12
[
t8(f1, f[[[2,3],4],5], f6, f7) + t8(f1, f[[2,[3,4]],5], f6, f7) + t8(f1, f[2,[[3,4],5]], f6, f7)

+ t8(f1, f[2,[3,[4,5]]], f6, f7) + (2, 3, 4, 5|2, 3, 4, 5, 6, 7)
]

+ 1
12
[(
t8(f1, f[[2,3],4], f[5,6], f7) + t8(f1, f[[2,3],4], f[5,7], f6)

+ t8(f1, f[[2,3],4], f[6,7], f5) + (2↔ 4)
)

+ (2, 3, 4|2, 3, 4, 5, 6, 7)
]

+ 1
8
[
t8(f1, f[2,3], f[4,5], f[6,7]) + t8(f1, f[2,3], f[4,6], f[5,7])

+ t8(f1, f[2,3], f[4,7], f[5,6]) + (3|3, 4, 5, 6, 7)
]
, (C.1)

where the t12-tensor is given by eq. (3.6). Here we have used the shorthand notation
f[i,j] = [fi, fj ], f[[i,j],k] = [[fi, fj ], fk], etc., to compactify the expression. See eqs. (3.8)
and (3.9) for its five- and six-point counterparts.
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D Analysis of the µ2 term freedom of the hexagon numerator

In this appendix, we shall demonstrate that µ2-term deformations of the parity odd hexagon
numerator eq. (4.15) of MSYM are incompatible with manifest crossing symmetry. There
are five independent Levi-Civita identities that contain `2-terms that may affect the anomaly
considered in section 4.3. We have the 11-term Schouten identity (2.18)

0 = `µε10(ε1, ε2, ε3, ε4, ε5, ε6, k3, k4, k5, k6) + cyclic(`, ε1, ε2, ε3, ε4, ε5, ε6, k3, k4, k5, k6) ,
(D.1)

plus four more similar ones obtained by swapping the four momenta k3, k4, k5, k6 for any
of the five independent momenta. The loop momentum involved in this relation is strictly
in ten dimensions. Thus if we contract it with another `µ in the context of dimensional
regularization, we get

0 = `2(10)ε10(ε1, ε2, f3, f4, f5, f6)− ε1 ·` ε10(`, ε2, f3, f4, f5, f6) + ε2 ·` ε10(`, ε1, f3, f4, f5, f6)

+ 2
[
ε3 ·` ε10(`, ε1, ε2, k3, f4, f5, f6)− k3 ·` ε10(`, ε1, ε2, ε3, f4, f5, f6) + cyclic(3, 4, 5, 6)

]
,

(D.2)

where `2(10) = `2−µ2 such that the identity holds after integration. However, when consid-
ering the strict d = 10 integrand, we can freely add the Levi-Civita identities without the
µ2 term, since the strict d = 10 cuts are not sensitive to the extra-dimensional momentum.
Or, equivalently, we can freely add the µ2 terms. Thus it is legitimate to add the following
five terms with free parameters αi to the hexagon numerator,

δNm-odd
123456 = µ2

[
α2ε10(ε1, ε2, f3, f4, f5, f6) + α3ε10(ε1, ε3, f2, f4, f5, f6) (D.3)

+ α4ε10(ε1, ε4, f2, f3, f5, f6) + α5ε10(ε1, ε5, f2, f4, f3, f6) + α6ε10(ε1, ε6, f2, f4, f3, f5)
]
.

If we require that δNm-odd
123456 respects the crossing symmetry of the hexagon numerator, then

it sets all the αi = 0. Thus, if the crossing symmetry is manifest in the hexagon numerator
(without relying on Levi-Civita identities), there is no freedom to modify the µ2 terms and
the anomaly will be unique.
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