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Conformal symmetry is ubiquitous in physics. It emerges in a variety of situations from critical
phenomena, through condensed matter systems and jets at the LHC to string theory. Conformal
field theories (CFTs) describe the universal behavior underlying these very different setups. An
efficient and powerful way to study CFTs is represented by the conformal bootstrap. This
non-perturbative technique allows constraining a CFT just relying on its own symmetries
and a set of consistency conditions such as unitarity, crossing symmetry and the operator
product expansion.In this thesis, we discuss applications of analytic bootstrap techniques to
holographic superconformal field theories, which possess an additional space-time symmetry,
known as supersymmetry, besides the conformal one. Through the AdS/CFT correspondence,
these theories are dual to quantum gravity in AdS such that the analysis of CFT correlators
gives access to gravitational amplitudes in curved space-time. We will see how the existence
of a protected sector in such theories greatly simplifies the problem and allows us to bootstrap
these observables.In this work, we devote our attention to the study of four-point functions in
N=4 super Yang Mills (SYM) and in N=2 theories in four dimensions. In the first part of the
thesis, we review the basics of superconformal algebra and superspace and then we introduce the
main analytic bootstrap tool, the Lorentzian inversion formula. In the second part, after a brief
description of the spectrum of N=4 SYM and its holographic realization in AdS, we focus on the
correlator of four gravitons. We thoroughly analyze this four-point function in the supergravity
approximation and as an expansion at large central charge. We conclude with a discussion of less
supersymmetric correlators involving so-called quarter-BPS operators. In the last part instead,
we change the setting and we study correlators of spinning operators belonging to the flavor
current multiplet in N=2 superconformal theories.  By using analytic superspace techniques, we
build the four-point function of gluon superfields and, from that, we extract correlators of all
component fields, including the four-current one. In the end, we comment on the existence of
an AdS double copy connecting these gluon amplitudes with their gravitational counterpart in
N=4 SYM.
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“Reserve your right to think, for even to think wrongly
is better than not to think at all.”

Hypatia of Alexandria
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1. Introduction

Imagine you have a camera and you see the same image no matter how
much you zoom in or zoom out. This situation seems quite unusual,
and you could think that the object you are looking at would be rather
special. In fact it is. If, now, we translate this observation in a quantum
field theory (QFT) language, the object that you are observing is noth-
ing more than a scale-invariant theory. Scale invariance is, in general,
the hallmark of a bigger symmetry group, the conformal group.
In d spacetime dimensions, this is identified with SO(d, 2) or SO(d+1, 1),
depending if we are in Lorentzian or Euclidean signature respectively. A
QFT enjoying this property is called a conformal field theory, or CFT,
for short. CFTs are ubiquitous in physics, from condensed matter to
quantum gravity. They are defined by a set of local operators O∆,`,
dubbed primaries, each of which is further classified by its conformal di-
mension ∆ and Lorentz spin `. Spacetime derivatives of these primaries
generate operators with larger dimensions named descendants. Another
extraordinary property of CFTs is that their operators have a convergent
Operator Product Expansion (OPE). This means that when two oper-
ators, Oi and Oj , approach one another, their product can be written
as a sum of the primaries of the theory, Ok, weighted with a coefficient,
λOiOjOk , and this sum is well defined. Apart from this unknown num-
ber, consistency with conformal invariance fixes the form of the OPE.
Consequently, three-point couplings of descendants are completely de-
termined in terms of OPE coefficients of the respective primaries.
OPE coefficients, together with the dimensions and spins of the primary
operators, represent the OPE data and they completely define a CFT;
in the sense that they are all the information entering the correlation
functions of local operators: the natural observables in a CFT. Confor-
mal symmetry is powerful enough to completely fix the form of two- and
three-point functions, hence the first dynamical objects to study are four-
point correlators. Computing and analysing these four-point functions
are the main focus of this thesis.

A very special class of conformal theories are those represented by
holographic CFTs, which arise at the d-dimensional boundary of some
(d+ 1)-dimensional theory in Anti de Sitter (AdS) spacetime. The pre-
cise relation between the CFT and the bulk AdS theory is encoded in
the AdS/CFT correspondence [1–3] or gauge/gravity duality : a duality
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between a quantum gravity in AdSd+1 and the CFTd living on its bound-
ary. By dual we here mean that the two theories have identical Hilbert
spaces and that they share the same symmetries.

|ψ(t→ −∞)〉

ρ π
20

t

D

O |0〉

Figure 1.1. Euclidean AdS in global coordinates; the boundary is approached
as ρ→ π

2 . This is equivalent to a CFT in radial quantization. Time translation
in the bulk translates to the action of dilation in the CFT, so that energies in
AdS get mapped to conformal dimensions.

Let us briefly see how this correspondence is realized. As depicted in
Fig 1.1, we can think of AdS as an infinite cylinder, where time runs
vertically. In this picture, a specific time slice can be mapped to a fixed
radius in the corresponding radially quantized CFT and an operator O,
at the origin in the CFT, can be taken to define a state in the infinite
past of AdS. Since the action of the Hamiltonian in the bulk becomes the
dilatation in the CFT, it is reasonable to expect that the mass, m, of an
AdS state is related to the dimension, ∆, of the dual operator. Indeed

∆(∆− d) = m2R2, (1.1)

where R is the radius of AdS.
We can formulate the AdS/CFT correspondence in more precise terms
as [3]

〈ei
∫
∂AdS

h̄iOi〉CFT =

∫
AdS

DhieiS[h]
∣∣∣
hi|∂AdS=h̄i

. (1.2)

That is as an equality between the generating functional of the CFT
correlators and the path integral of the on-shell AdS action, evaluated
on the field configurations that reduce to the sources h̄i at the AdS
boundary.

Given the constraints we are requiring, it is not obvious which CFTs
are good to describe theories of quantum gravity and in the past decades
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there has been tremendous progress in understanding what are the min-
imal requirements for a CFT in order to see the emergence of an AdS
dual [4–11]. To explore these ideas, it is convenient to consider a family
of theories characterisable by a small expansion parameter 1

N , such that
at N → ∞ the theory is described by some generalized free fields.1 In
the case of the theory studied in Part II, this parameter will be related to
the rank of the SU(N) gauge group. Operators can then be classified as
single- or multi-trace, depending on the number of traces they are made
of under this gauge group. By analogy, yet with a slight abuse of nota-
tion, we will refer to single- and multi-trace operators also in the generic
examples discussed below, even in the absence of a specified gauge group.
In [6], it has been conjectured that any strongly coupled, large N CFTs,
where all single-trace operators with spin greater than two have a para-
metrically large dimension ∆ ∼ ∆gap � 1, are dual to a local, weakly
coupled, effective field theory (EFT) of gravity in AdS.
Let us analyse this statement more carefully. First of all, a large N
parameter in the CFT allows for a loop perturbative expansion on the
gravity side and it permits us to identify single-trace operators with
single-particle states. The requirement on the spin spectrum can be
understood considering that all the known consistent, local effective the-
ories of gravity have at most spin-two particles. Therefore, we expect
that any other single-trace operator should decouple at low energies.
This effect is obtained by having a large ∆gap, which guarantees that
massive states, with m ∼ ∆gap

R — see (1.1) — are separated from the
rest of the spectrum. In Part II, we will identify these states with string
excitations. Finally, let us comment that recently [13], this conjecture
has been made more quantitative by deriving two-sided bounds on the
EFT Wilson coefficients in terms of ∆gap.

Examples of CFTs, that satisfy these conditions and provide a UV-
complete theory of gravity, are typically realized in the string theory
context. These cases require not only conformal symmetry but also su-
persymmetry and are, effectively, superconformal field theories (SCFT).
To account for this additional set of symmetries, it is necessary to en-
large the AdS space by a compact internal manifold, whose size is the
same as the AdS size. In this thesis, we will focus at first on the pro-
totypical and original realization of AdS/CFT [1], namely the duality
between N = 4 Super Yang-Mills (SYM) and type IIB string theory on
AdS5×S5. In particular, we will consider the regime in which the CFT is
strongly coupled, thus dual to weakly coupled gravity on the AdS side.
N = 4 SYM is believed to be the sole theory, with at most spin-one

1In [12], it has been shown that it is actually possible to break factorization of some
correlators at large N and still have a holographic dual with now a strongly coupled
matter sector.
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particles, showing maximal supersymmetry in four dimensions and it is
conformally invariant at the quantum level, i.e. its β-function does not
receive any radiative corrections. Starting from N = 4 SYM, we can add
D-branes and break some supersymmetry, landing on a N = 2 SCFT. In
some regimes, this, together with other realizations, can be interpreted
as a gauge theory in AdS, opening new possibilities for holographic in-
vestigations. Towards the end of the thesis, we will analyse this example
and we will unveil connections to N = 4 SYM.

Just as the main common interests of QFT in flat space — at least
in high energy experiments — are S-matrix amplitudes, in holographic
theories we will focus on CFT correlators. These are, in fact, the AdS
analogue of flat-space amplitudes, to which they reduce in appropriate
limits. This similarity can be used as inspiration to investigate whether
or not analogous properties and simplifications, like those we observe
in flat space, exist in the CFT. Questions one might ask are: can we
use unitarity to relate loop amplitudes to tree-level ones and how? It is
possible to construct amplitudes via dispersion relations? There exists
a relation between gauge and gravity theories similar to flat-space color-
kinematics duality and double copy? The answer is going to be that
holographic CFTs enjoy most of these properties or adaptations thereof.

The strategy to explore these aspects will be using all the symmetries
and consistency conditions of the theory, such as unitarity, crossing and
causality (in Lorentzian configurations), to constrain observables and
CFT data. This approach goes under the name of conformal bootstrap.
The original bootstrap idea goes back to the 60s and early 70s, but after
the original works [14, 15], it stayed quiescent until 2008, when the au-
thors of [16] found an efficient numerical implementation of the bootstrap
equation. The main motivation for their work was the phenomenologi-
cal need to constrain technicolor-like theories, targeting a natural light
Higgs, together with a dynamical explanation for flavour. This work
renewed the interest in the conformal bootstrap and paved the way for
the development of techniques to “solve” the bootstrap equation, both
numerically [17] and analytically [18–20].
In this thesis, we will focus on the analytic side of the story, or the light-
cone bootstrap [21–26]. The hope of the analytic approach is to eventually
have full control and explicit results for theories at strong coupling, which
are almost unattainable by other means. And, given the correspondence,
perhaps someday, one could hope to understand quantum gravity based
on the full non-perturbative comprehension of the boundary CFT.
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1.1 An invitation: bootstrapping the quantum
an-harmonic oscillator

To explain the ideas behind the bootstrap philosophy, let us look at an
easy, yet powerful, application: the quantum oscillator with a quartic
potential [27]. Its Hamiltonian is given by

H = p2 + V (x) , V (x) = x2 + λx4 , (1.3)

where λ is the coupling constant, which should not necessarily be small,
and x and p are the position and momentum operators satisfying the
canonical commutation relation

[x, p] = i . (1.4)

Let us denote by |E〉, the energy eigenstates such that

H |E〉 = E |E〉 , E ∈ R . (1.5)

For simplicity let us define the expectation value on these energy eigen-
states as 〈E| · · · |E〉 ≡ 〈 · · · 〉. In this basis, it is straightforward to show
that, for any operator O:

〈[O, H]〉 = 0 , (1.6)

and in particular

〈[xa, H]〉 = 0 , (1.7a)
〈[xap,H]〉 = 0 . (1.7b)

Using the definition of H in (1.3), and after some simple commutator
algebra, the relation (1.7a) gives

〈xap〉 =
i

2
a 〈xa−1〉 . (1.8)

The second one is slightly more complicated

0 = 〈[xap,H]〉 = 2ia〈xa−1p2〉+ a(a− 1) 〈xa−2p〉︸ ︷︷ ︸
(1.8)

−i〈xaV ′(x)〉

= 〈xaV ′〉+ 2a(〈xa−1V 〉 − E 〈xa−1〉)− (a− 2)3

2
〈xa−3〉 ,

(1.9)

where we have used p2 = H − V (x) and (x)n = Γ(x+n)
Γ(x) is the Pochham-

mer symbol. Substituting the explicit form of the potential as in (1.3),
(1.9) gives a recurrence relation for the expectation value of powers of x
in terms of the energy eigenvalue E

λ 〈xa〉+
a− 2

a− 1
〈xa−2〉 − Ea− 3

a− 1
〈xa−4〉 − (a− 5)3

4(a− 1)
〈xa−6〉 = 0 . (1.10)
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Since we know that 〈x0〉 = 1 and 〈xn〉 = 0 for n odd, any expectation
value of xn, with n even, can be computed from E and 〈x2〉 using the
recursion (1.10). Now, inspired by the bootstrap idea, we aim to find an
efficient way to bound these two unknown data, E and 〈x2〉, by means of
symmetry constraints. In the usual case, we would require the four-point
function to be crossing symmetric. In this simplified example, we will
ask for the easier positivity condition

〈O†O〉 ≥ 0 . (1.11)

With O =
∑
i cax

a, ca ∈ C, this becomes

Nmax∑
a,b=0

c∗acbMab ≥ 0, Mab ≡ 〈xa+b〉 , (1.12)

where Nmax is the parameter controlling the size of the matrix and can
be tuned in the numerical implementation. Putting all this together, our
bootstrap problem reads(

E, 〈x2〉
)

allowed ⇐⇒ Ma,b < 0 , (1.13)

where imposing that the matrix is positive semi-definite is equivalent
to (1.12). As one can see from the plots below, we were able in this way
to carve out regions in parameter space and isolate islands of allowed
values, smaller and smaller as Nmax increases. From this very simple
example we can already appreciate that by resorting to symmetries and
consistency conditions, we can highly constrain our theory, no matter
what the coupling is.

(a) λ = 1 (b) λ = −5

Figure 1.2. (E, 〈x2〉) parameter space with varying λ and matrix size. On the
left, the island shrinks as Nmax increases. On the right, the ground state and
the first excited state can be resolved.
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1.2 Analytic conformal bootstrap
The essence of the conformal bootstrap is represented by the bootstrap
equation, which encodes the consequence of conformal invariance and
crossing symmetry on correlation functions. In its easiest formulation,
one can consider the four-point correlator of identical scalar fields φ.2
Conformal symmetry fixes its functional form up to an unknown theory-
dependant function,

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
G(u, v)

(x2
12x

2
34)

∆φ
, (1.14)

where ∆φ is the conformal dimension of the operator, x2
ij = (xi − xj)2

and we have defined the CFT cross-ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (1.15)

Using the OPE, one can decompose G(u, v) as the sum over all possible
exchanged primaries O, with dimension ∆ and spin `,

G(u, v) =
∑
O
a∆,`g∆,`(u, v) ,

a∆,` = λ2
φφO > 0 ,

(1.16)

where g∆,` are the conformal blocks and an explicit expression is known
in two and four dimensions [28]. Now, associativity of the OPE requires

=〈φ(x1)φ(x2)φ(x3)φ(x4)〉 〈φ(x1)φ(x2)φ(x3)φ(x4)〉

O

φ(x4)

φ(x3)

φ(x1)

φ(x2)

∑
O

φ(x1)

φ(x2) φ(x3)

φ(x4)

∑
O O

λφφO

λφφO

λφφOλφφO
=

=
1

(x2
12x

2
34)∆φ

∑
a∆,`g∆,`(u, v) 1

(x2
14x

2
23)∆φ

∑
a∆,`g∆,`(v, u) .

This is the well-known bootstrap equation. To understand the power and
the implication of this relation, let us consider a simple example: a free
scalar in AdS. The corresponding CFT is a mean field theory (MFT) or

2Here, and throughout the thesis, we are working in d > 2. d = 2 CFTs are special
and deserve a completely separate treatment.
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generalized free fields, a generalization of free theory in which correlators
are given by the sum over all possible products of two-point functions.
In this case,

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

(x2
12x

2
34)

∆φ

(
1 + u∆φ +

u∆φ

v∆φ

)
. (1.17)

By expanding in conformal blocks, it is possible to determine the spec-
trum and OPE coefficients of the exchanged operators [29]. They are
the identity, ∆ = 0 and ` = 0, and “double-trace” operators constructed
out of the original field φ. They take the schematic form

[φφ]n,` = φ�n∂µ1 · · · ∂µ`φ , with ∆n,` = 2∆φ + 2n+ ` . (1.18)

As shown above, crossing requires

G(u, v) =
(u
v

)∆φ

G(v, u) . (1.19)

Now expand the RHS in conformal blocks and substitute (1.17) in the
LHS. What we get is

1

u∆φ
+ 1 +

1

v∆φ
=

1

v∆φ

1 +
∑
n,`

an,`g∆,`(v, u)

 .

1 [φφ]n,`

(1.20)

The first thing to notice is that on the LHS, in the limit of u � 1,
we have a power law divergence. This should somehow be reproduced
by the sum on the right. However, in this limit the blocks behave as

g∆,`(v, u)
u�1−−−→ log u , (1.21)

and this means that, to reproduce the u−∆φ divergence, we cannot have a
finite number of operators in the sum, and, that the sum cannot converge
uniformly. Let us better analyse these convergence issues. First of all,
one can show that the sum over the twists, τ = ∆ − ` = 2∆φ + 2n,
converges, so the problems should come from the spin sum. Indeed, by
studying the large spin asymptotic in the regime |u| � |v| � 1, i.e.
the double lightcone limit, one can prove that the sum over ` does not
converge uniformly around u ' 0. Nevertheless, one can define the sum
in a region where it is well defined and then analytically continue it.
In this way, in [19] it was proved that the sum over the double-trace
operators with large spin actually reproduces the u−∆φ divergence.

The take-home message of this example is that the divergent be-
haviour, as u → 0, of the s-channel OPE is controlled by the sum over
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operators at large ` in the t-channel OPE. In [19], the authors pointed
out that this property applies more broadly, away from mean field the-
ory, and has precise implications for the spectrum of a theory. Consider
again the crossing equation (1.19), now for a generic scalar four-point
function. By expanding in blocks on both sides, we obtain

1 +
∑
τ,`

aτ,`u
τ
2 g̃τ,`(u, v) =

(u
v

)∆φ

1 +
∑
τ,`

aτ,`v
τ
2 g̃τ,`(v, u)

 , (1.22)

where we have re-defined g∆,`(u, v) = u
τ
2 g̃τ,`(u, v), to make explicit the

behaviour at u ' 0. In the small u limit, the infinite sum to the right
should reproduce the identity contribution on the LHS. Remarkably, this
requirement is enough to predict the existence of an infinite family of
operators with twist τ = 2∆φ + 2n as `→∞ and OPE coefficients3

aτ,` = aMFT
n,` +O

(
1

`

)
. (1.23)

Besides the MFT explicit example, to have an intuition of why we need
this class of operators, observe that in (1.22), the identity contribution
on the LHS does not have any v dependence. To reproduce it with the
infinite sum, we expect that v−∆φ+ τ

2 = 1, i.e. τ = 2∆φ. And a more
careful analysis can show that the behaviour we should require is indeed
τ = 2∆φ + 2n, n ∈ N. The details of the proof can be found in [19] —
see also [18,20] for similar results.
But one can say even more about the OPE data of the theory. In the case
where, in the tower of double-trace operators, there is an operator for
each spin, one can fix the dependence of the correction to the dimensions
and OPE coefficients at large `. The first corrections, turn out, in fact,
to be controlled by the operator, in the OPE, with minimal twist τm 6= 0,
which can be for instance the stress-tensor, as

τ → 2∆φ + 2n+
γn
`τm

,

aτ,` → aMFT
n,` +

cn
`τm

.
(1.24)

To conclude, we cannot refrain from noticing the similarity with scat-
tering theory in flat space. In fact, in the CFT we have found that an
infinite tower of operators with large spin in the t-channel OPE is needed
to reproduce poles in the s-channel. But this is similar to what happens
to a tree-level scattering amplitude. When decomposed in partial waves,

3Notice that for this argument to hold true, there should exist a gap between the
identity and the dimensions of the other operators. In d > 2, this is guaranteed by
unitarity bounds.
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only the poles in one channel are manifest and are controlled, in the
other channel at high-energy and large angular momentum [30], by an
infinite sum. Not by chance, the theory of complex-angular momenta
and the Froissart-Gribov formula inspired another great advancement in
the analytic bootstrap: the Lorentzian inversion formula [31].

1.3 Outline
The thesis is organized into three main parts. In Part I we introduce
some general background material and the technical tools needed for the
rest of the discussion. We start with a brief description of superconfor-
mal field theories, their algebra and representations, with a particular
focus on N = 2 and N = 4 supersymmetry. Then we present a very
convenient formulation of these theories in terms of superspaces. We
conclude by reviewing the Lorentzian inversion formula: a key ingredi-
ent in the analytic bootstrap program and an essential element in the
derivation of the results appearing in this thesis.
In Part II we specify to the maximally supersymmetric CFT in four
dimensions: N = 4 Super Yang-Mills. We first describe its spectrum
and we fix the form of correlation functions of protected operators just
relying on symmetries. Then we proceed to explore its connection to
quantum gravity in AdS, we provide a few details on this holographic
realization and the underlying dictionary. In Chapter 5 we study in
depth the four-point function of the stress-tensor scalar superprimary,
the supergraviton. We review the solution of the superconformal Ward
Identities and we show how the knowledge of the protected spectrum is
enough to fix the supergravity correlator in the large N and infinite ’t
Hooft coupling regime. Similar reasonings allow us to bootstrap the cor-
relator at one loop (N−4) and eventually to infer part of it at all loops.
Following the results in Paper I and II — reviewed in Paper III — we in-
terpret these findings as consequences of unitarity in AdS. The last part,
based on Paper IV, contains a description of correlators of quarter-BPS
operators.
Finally, in Part III, we devote our attention to the exploration of gauge
theories in AdS by looking at the dual N = 2 SCFTs, presenting the
results in Paper V. Using superspace techniques, we construct the four-
point function of flavour current superfields in terms of the one of the
scalar superprimaries (supergluons), adapting a construction known for
N = 4. The Part ends with some comments on the existence of an AdS
double copy relating supergluon correlators in N = 2 and supergraviton
ones in N = 4 and on how to realize it for spinning correlators in posi-
tion space.
A graphical summary and some concluding remarks, flashing possible
future directions, are collected in the final chapter.
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Part I:
Background material
Analytic bootstrap techniques have shown to be incredibly powerful
when applied to superconformal field theories and they have led to tremen-
dous progress in understanding and constraining these theories in various
spacetime dimensions [32–40]. In this thesis we will focus in particular
on four-dimensional SCFTs with N = 2 and N = 4 supersymmetry.

To set conventions and properly introduce theories exhibiting super-
conformal symmetry, in this introductory part we will review the nec-
essary background material. First of all, we will briefly explain what
a superconformal algebra is and how to construct its representations.
In doing so, we will get acquainted with specific protected operators,
whose correlation functions are going to be the main focus of the rest of
this thesis. To make symmetries manifest, we will then introduce a new
language suitable to phrase our problems, the one of superspace.

In the second part, we will review the main analytic bootstrap tool
we will use throughout our discussion: the Lorentzian inversion formula.
This will give us a way to extract OPE data of operators exchanged in the
four-point function, in terms of an easier object: the double discontinuity
(dDisc) of the correlator.





2. Superconformal field theories

Given the vast amount of symmetries, superconformal field theories are
the perfect playground to apply the bootstrap philosophy. This is, how-
ever, not an isolated example. SCFTs are, in fact, studied and con-
structed with lots of different methods and they appear in a variety of
physics contexts. As we have mentioned before, they are connected to
gravity through the AdS/CFT correspondence, they can describe the-
ories with no Lagrangians [41–43], they can be studied with localiza-
tions [44–46] and integrability [47]. They can exhibit dualities, enhanced
symmetries, like the existence of a chiral algebra — a protected subsector
in N = 2 theories [48] — and generalizations of usual symmetries, like
invertible and non-invertible higher-form symmetries [49–54].
They are at the cross-road of diverse approaches and fields. This makes
SCFTs very interesting to study, since we can look at the same problem
from very different, and sometimes complementary, perspectives. Such
a multilateral approach surely benefits from a knowledge of the theory
just based on symmetries, which does not rely on any specific, theory-
dependent, realization. In this section, we will focus exactly on that.

2.1 Superconformal algebra
In four dimensions, the conformal group is made of six Lorentz trans-
formationsMµν , four translations Pµ and special conformal transforma-
tions Kµ and one dilatation D. It is thus identifiable with SO(5, 1) in R4

and SO(4, 2) in M4. For convenience, let us introduce spinor notation
for the Poincaré and special conformal generators

Pαα̇ = σµαα̇Pµ , K̃α̇α = σ̄µα̇αKµ ,

M β
α = −1

4
i(σµσ̄ν) β

α Mµν , Mα̇
β̇ = −1

4
i(σ̄µσν)α̇β̇Mµν ,

(2.1)

where the conventions for Pauli matrices are those of [55].
In the presence of supersymmetry, this algebra gets enlarged by the

generators of supersymmetric transformations: Qiα and Q̄α̇i, where i
runs from one to N , amount of supersymmetry. In four dimensions, for
non-gravitational theory, N ranges from 1 to 4. Q and Q̄ have scaling
dimensions 1

2 and they have non-vanishing anticommutator

{Qiα, Qα̇j} = 2δijPαα̇ . (2.2)
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In order to close the superconformal algebra, one also needs to add con-
formal supercharges Sαi and S̄α̇i, with conformal dimension −1

2 , such
that

{Sα̇i, Sαj } = 2δij K̃
α̇α . (2.3)

Both the supersymmetry and conformal supercharges transform under
an additional symmetry, which is part of the algebra, the R-symmetry.
It acts on the i, j indices and it coincides with u(N )R for N = 1, 2, 3
and su(N )R for N = 4.

All together, these generators form a Lie superalgebra, su(2, 2|N ) for
N = 1, 2, 3 and psu(2, 2|4) for N = 4. Representations can be labelled
by the bosonic subalgebra

so(3, 1)︸ ︷︷ ︸
(2j,2̄)

× so(1, 1)︸ ︷︷ ︸
∆

×(s)u(N )R . (2.4)

Consequently, we will denote a generic representation as [2j, 2̄]
R
∆. For

the cases treated in this thesis, namely N = 4 and N = 2, we will specify
the R-symmetry representations by the Dynkin labels [q, p, q̄] for the first
case. While for the latter, we further split u(2)R = su(2)R × u(1)r and
we denote the representations with (2jR; r). In this notation and for the
cases under consideration, the quantum numbers of the supercharges are

Q ∈ [1; 0]
(1;−1)
1
2

, Q̄ ∈ [0; 1]
(1;1)
1
2

, for N = 2 , (2.5a)

Q ∈ [1; 0]
[1,0,0]
1
2

, Q̄ ∈ [0; 1]
[0,0,1]
1
2

, for N = 4 . (2.5b)

2.2 Superconformal representations and unitarity
bounds

Unitary representations are constructed starting from a superprimary,
which is an operator satisfying

Sαi |O〉 = 0 , S̄α̇i |O〉 = 0 . (2.6)

Notice that, given the commutation relation (2.3), a superprimary is in
particular a conformal primary, i.e. it satisfies

Kαα̇ |O〉 = 0 . (2.7)

Superdescendants are obtained from superprimaries through the action
of the Q and Q̄ supercharges. Given the anticommutation relation (2.2),
some of these superdescendants reduce, in particular, to usual conformal
descendants, namely states obtained by the action of Pαα̇ on a primary.
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Moreover, due to the fermionic nature of the supercharges, in a given
supermultiplet we will find a finite number of conformal primaries. In
particular, if no other simplification occurs, a multiplet will generically
contain 24N states. These are called long multiplets.
What are these possible simplifications and where do they come from?
We know that, for generic unitarity CFTs, requiring the norm of the
states to be non-negative imposes strong constraints on the conformal
dimensions of the operators. In four dimensions, these unitarity bounds
read

∆ = 0 for identity ,
∆ ≥ 1 for scalars ,
∆ ≥ 1 + j for j > 0, ̄ = 0 ,

∆ ≥ 2 + j + ̄ for j̄ 6= 0 ,

(2.8)

where for symmetric traceless tensors (j = ̄) we will identify ` = j + ̄.
Operators saturating the bounds are null vectors and their dimension is
protected from receiving quantum corrections. Examples of these oper-
ators are free scalars and fermions, conserved currents and the stress-
tensor Tµν .

When we add supersymmetry, even stronger constraints appear. Sup-
pose there exists a function of the quantum numbers f(j, ̄,R-charges),
such that

∆ ≥ f(j, ̄,R-charges) , (2.9)

where the precise form of this function depends on the amount of su-
persymmetry. The operators with dimensions strictly bigger than this
function can be identified with the long operators mentioned above. Rep-
resentations exactly saturating the inequality, contain some null vec-
tors and they are referred to as operators at threshold. In the usual
case without supersymmetry, the story would end here. In the case of
SCFT, instead, one can still find other isolated allowed representations.
These form short multiplets and they obey definite shortening condi-
tions. Based on the combination of Q’s and Q̄’s annihilating the states,
different types of shortenings exist. Since the action of the supercharges
on a certain state gives zero, these multiplets are truncated and hence
the name short. They are also often called half-, quarter-, . . . BPS op-
erators, depending on the number of Q’s and Q̄’s annihilating them.
Among them, let us display two special ones [56, 57]: the stress-tensor
multiplet in N = 4 in Fig. 2.2 and the multiplet of conserved flavour
(global) currents in N = 2 in Fig. 2.1. The latter begins with the scalar
Oab2 , where a = 1, 2 is the SU(2)R index. Then they follow two gluinos
λaα and λ̄aα̇, the flavour current Jµ and two complex scalars of opposite
U(1)r R-charge W and W. The N = 4 supermultiplet starts with a
scalar superprimary O2 and it contains the SU(4)R-symmetry current
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O2 = [0;0]
(2;0)
2

λα = [1;0]
(1;−1)
5/2 λ̄α̇ = [0;1]

(1;1)
5/2

Q Q

W = [0;0]
(0;−2)
3 W = [0;0]

(0;2)
3

Q Q

Jµ = [1;1]
(0;0)
3

QQ

Figure 2.1. The conserved current multiplet in N = 2.

O2 = [0;0]
[0,2,0]
2

[1;0]
[0,1,1]
5/2 [0;1]

[1,1,0]
5/2

Q Q

[0;0]
[0,0,2]
3

[2;0]
[0,1,0]
3

[0;0]
[2,0,0]
3

[0;2]
[0,1,0]
3

Q Q

[1;1]
[1,0,1]
3

QQ

[1;0]
[0,0,1]
7/2 [0;1]

[1,0,0]
7/2

Q Q

[2;1]
[1,0,0]
7/2 [1;2]

[0,0,1]
7/2

Q QQ Q

L = [0;0]
[0,0,0]
4 L̄ = [0;0]

[0,0,0]
4

Q Q

Tµν = [2;2]
[0,0,0]
4

QQ

Figure 2.2. The stress-tensor multiplet in N = 4.

J SU(4)
µ = [1;1]

[1,0,1]
3 and the stress-tensor Tµν . At the top, we also find

the self-dual and anti-self-dual Lagrangians L and L̄, which carry oppo-
site bonus U(1)Y charge [58].

2.3 Superspace
When studying a quantum field theory, one would like to have a language
in which symmetries are manifest. This can be obtained by the use of
spaces in which a specific symmetry is realized geometrically through
coordinate transformations [59]. As a very concrete example, consider
Minkowski spacetime M4 with coordinates xµ. Under a Poincaré trans-
formation

xµ → x′µ = Λµνx
ν + aµ , (2.10)
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invariant observables in the theory are explicitly left unchanged. A way
to visualize that these are the “best” coordinates, is by considering the
coset realization of Minkowski spacetime

M4 =
P

SO(3, 1)
= (xµ) . (2.11)

In words, this means that M4 can be written as the quotient of the
Poincaré group P by its Lorentz subgroup, such that the full space is
covered starting from a point and applying a Poincaré transformation,
with points, related by a Lorentz transformation, identified.
Similar coset constructions turn out to be particularly convenient when
supersymmetry is introduced. To make supersymmetry manifest, one
has to enlarge Minkowski spacetime by anticommuting Grassmann vari-
ables θαi and θ̄iα̇, i = 1, · · ·,N , suited coordinates for a new space, a
superspace.
Then, similarly as before, one can construct various realizations of a su-
perspace by identifying it with a coset of the corresponding supergroup
quotiented by an appropriate subgroup. For instance, we can define

R4|4N =
superPN

SO(3, 1)× SU(N )
=
(
xµ, θαj , θ̄

j
α̇

)
≡ z , (2.12)

the superspace obtained by quotienting the superPoincaré group with
N supersymmetry by the product of the Lorentz and R-symmetry sub-
group. An element of this coset can be parametrized by

Ω(z) = exp
[
i
(
−xµPµ + θαi Q

i
α + θ̄iα̇Q

α̇

i

)]
. (2.13)

In this supermanifold, we can introduce covariant derivatives

Di
α =

∂

∂θαi
+ iσµαα̇ θ̄

α̇i ∂

∂xµ
, (2.14a)

Dα̇i = − ∂

∂θ̄α̇i
− iθαi σ

µ
αα̇

∂

∂xµ
. (2.14b)

A supersymmetric transformation is obtained by the action

X = exp
[
iεαi Q

i
α + i ε̄iα̇Q

α̇

i

]
, (2.15)

and to derive the expression for Q and Q as differential operators acting
on the supermanifold, we need to consider the infinitesimal variation δz.
This is determined by

Ω−1(z)XΩ(z) = Ω−1(z)Ω(z + δz) , (2.16)
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which, by means of the Baker-Campbell-Hausdorff formula, returns

δxµ = −iεαi σ
µ
αα̇θ̄

α̇i − i ε̄α̇iθαi σ
µ
αα̇ , (2.17a)

δθαi = εαi , (2.17b)

δθ̄iα̇ = ε̄iα̇ . (2.17c)

With the variations, we can finally compute the generators1

Qiα =
∂

∂θαi
− iσµαα̇ θ̄

α̇i ∂

∂xµ
, (2.18a)

Qα̇i = − ∂

∂θ̄α̇i
+ iθαi σ

µ
αα̇

∂

∂xµ
. (2.18b)

It is easy to verify that this representation satisfies the anticommuta-
tor (2.2)

{Qiα, Qα̇j} = 2iδijσ
µ
αα̇∂µ ,

Pµ = i
∂

∂xµ
.

(2.19)

After having introduced coordinates and the action of transformations,
the last piece we have to define is what is a field in superspace, or a
superfield. It is an object depending on the superspace coordinates and
it can be expanded in component fields using (2.13)

O(x, θ, θ̄) = O(x) + iθαi (QiαO)(x) + iθ̄iα̇(Q
α̇

i O)(x)

+
1

2
θαi σ

µ
αα̇θ̄

α̇j
(
Qβiσµββ̇Q

β̇

j + 2iδij∂µ
)
O(x) + · · ·

(2.20)

Counting all the possible θ, θ̄ combinations, we can conclude that a
generic superfield contains 24N states and it corresponds to a long mul-
tiplet. As we have seen in the previous section, this number is reduced
in the presence of shortening conditions. In this superspace language,
shortening is imposed through the action of the covariant derivatives
in (2.14). This is the correct choice because they are D and D that im-
pose constraints as operator equations, whose action is equivalent to the
application of Q and Q to all the component fields.2 This should not be
confused with the imposition of invariance under supersymmetry, which
is instead realized just by requiring that a certain expression vanishes
under the action of Q and Q.3

1Notice the sign difference with respect to the covariant derivatives in (2.14).
2Moreover since covariant derivatives and supercharges anticommute,

(–)
DO is a super-

symmetric invariant constraint.
3I would like to thank Andrea Manenti to clarify this point to me.
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As a simple example of how this shortening works, consider a N = 1
supersymmetric theory. Here we can define a chiral superfield by requir-
ing

Dα̇O(x, θ, θ̄) = 0 . (2.21)

It is clear that this constraint imposes relations among the various com-
ponent fields, which become dependant, thus effectively reduced in num-
ber. However, dealing with a superspace with a constraint is not very
convenient and one would like to have a formulation of a chiral theory
with unconstrained fields. This is achievable by defining a new coordi-
nate

zµ = xµ + iθασµαα̇θ̄
α̇ ,

Dα̇z
µ = 0 ,

(2.22)

so that by considering fields just depending on it, O(x, θ, θ̄) ≡ O(z, θ),
the constraint (2.21) is trivially satisfied. Notice that the θ̄ dependence
is now hidden in the definition of zµ, but there is no longer an explicit
one. Since we have defined new coordinates, it makes sense to define a
new superspace arranging for this additional symmetry. This is obtained
by changing the subgroup in the quotient (2.12) to include half of the
supertranslations

C4|2 =
superP1

{Mµν , Qα̇}
, (2.23)

this is called chiral superspace.
This is an emblematic example of how different superspaces can be

better suited to describe a specific system based on the symmetries of
the problem. Finding the most appropriate superspace is possibly more
important when dealing with extended supersymmetry and when we
add conformal symmetry. In particular, for SCFTs and certain classes
of BPS operators, it can be shown that it is useful to adopt the so-
called harmonic and analytic superspaces. In the next chapters, we
are going to see a realization of these in the context of N = 4 SYM
and in N = 2 SCFTs. In doing that, our focus will be on showing
how the superspace formalism makes some computations achievable and
some properties manifest. We refer to [59, 60] for a proper and detailed
treatment.
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3. Lorentzian inversion formula

As we have seen in the introduction, studying correlators in Lorentzian
kinematics can make singular behaviours manifest and predict very gen-
eral properties of CFTs. Another feature, which is obscured in Euclidean
signature but emerges in Lorentzian one, is analyticity in spin. This is
intimately tied to the non-vanishing of certain correlators at time-like
separated points, which is evidently achievable only in Lorentzian kine-
matics.

For simplicity, let us consider the four-point function of four generic
scalar operators of dimension ∆i

〈O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)〉 = K{∆i}(xi) G(z, z̄) , (3.1)

with

u = zz̄ , v = (1− z)(1− z̄) (3.2a)

K{∆i} =
1

(x2
12)

1
2 (∆1+∆2)(x2

34)
1
2 (∆3+∆4)

(
x2

14

x2
13

) 1
2 ∆34

(
x2

24

x2
14

) 1
2 ∆12

,

(3.2b)

where ∆ij = ∆i − ∆j . We will assume that these operators transform
under an additional global symmetry — this is going to be relevant in
Sec. 6. Therefore, we can further expand G in a basis of independent
tensor structures Tk, corresponding to the allowed representations ex-
changed in the OPE under this global symmetry,

G(z, z̄) =
∑
k

TkGk(z, z̄). (3.3)

Apart from the conformal block expansion we have seen in (1.16), each
Gk(z, z̄) admits a decomposition in a complete basis of single-valued func-
tions F∆,`, the principal series representation. These functions, often
called conformal partial waves, have integer spin but complex dimension
∆ = 2 + iν with ν ∈ R. This allows us to transform the sum over the
dimensions of the exchanged operators into an integral

Gk(z, z̄) = δ∆1,∆2δ∆3,∆4 +

∞∑
`=0

∫ 2+i∞

2−i∞

d∆

2πi
ck(∆, `)F∆,`(z, z̄) , (3.4)
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where the first term represents the identity contribution, if present, and
we assume to work in dimension d = 4. The partial wave function can
be written as a combination of conformal blocks

F∆,` =
g

(∆12,∆34)
∆,`

2
+

Γ(4−∆− 1)Γ(∆− 2)

2Γ(∆− 1)Γ(2−∆)

κ̃
(∆12,∆34)
4−∆+`

κ̃
(∆12,∆34)
∆+`

g
(∆12,∆34)
4−∆,` ,

(3.5a)

κ̃
(∆12,∆34)
h =

Γ
(
h+∆12

2

)
Γ
(
h−∆12

2

)
Γ
(
h+∆34

2

)
Γ
(
h−∆34

2

)
2π2Γ(h)Γ(h− 1)

, (3.5b)

where g(∆12,∆34)
∆,` (z, z̄) represents the conformal block with generic exter-

nal dimension. In four dimensions, it is given by

k
(∆12,∆34)
h (z) = zh 2F1

(
h− ∆12

2 , h+ ∆34

2 ; 2h; z
)
, (3.6a)

g
(∆12,∆34)
∆,` (z, z̄) =

zz̄

z − z̄

(
−1

2

) (̀
k

(∆12,∆34)
∆+`

2

(z) k
(∆12,∆34)
∆−`−2

2

(z̄)− (z ↔ z̄)
)
.

(3.6b)

The function ck(∆, `) in (3.4) can not be generic, since it should recover
the usual OPE decomposition. This can be shown to be guaranteed if
ck(∆, `) has the form

ck(∆, `) ∼
∆→∆ex

λO1O2OexλO3O4Oex

∆ex −∆
, (3.7)

with poles at the location of physical exchanged operators Oex and
residues proportional to the OPE coefficient. Using the orthogonality
of F∆,`(z, z̄), we can invert (3.4) to get

ck(∆, `) = N(∆, `)

∫
d2z

∣∣∣∣z − z̄zz̄

∣∣∣∣2 F∆,`(z, z̄)Gk(z, z̄) , (3.8)

where notice that at this stage we are still Euclidean, the integration
is over z̄ = z∗, and ` is an integer. This is sometimes called Euclidean
inversion formula.

It is possible to show [31] that by a contour deformation, requiring
analytic continuation to the Lorentzian region, similar to the Froissart-
Gribov procedure in S-matrix, ck(∆, `) can be obtained “dispersively”.
Here, this means that ck(∆, `), corresponding to the s-channel OPE,
can be obtained as the sum of some functions of the two other chan-
nels and these functions depend on a new dispersive object, the double
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discontinuity :

ck(∆, `) = ctk(∆, `) + (−1)`cuk(∆, `) , (3.9a)

ctk(∆, `) =
κ̃

(∆12,∆34)
∆+` (−2)`

2

∫ 1

0

dz

z2

dz̄

z̄2
[(1− z)(1− z̄)]

∆34−∆12
2 ×

× k(∆12,∆34)
2−h (z)k

(∆12,∆34)
h+` (z̄) dDisc

[
z̄ − z
zz̄
Gk(z, z̄)

]
,

(3.9b)

with h = ∆−`
2 . The u-channel cuk can be obtained from ctk by replacing

∆1 ↔ ∆2 and Gk(z, z̄) with

((1− z)(1− z̄))−
∆34

2 (MT
1↔2)kk′

[
Gk′
(

z

z − 1
,

z̄

z̄ − 1

)]
∆1↔∆2

, (3.10)

where Mi↔j is the change of basis matrix between the original tensor
structures and the one with the indices i and j exchanged

Ti↔jk′ = (Mi↔j)k′k Tk . (3.11)

Moreover, differently from the Euclidean inversion formula, now both
ctk and cuk are analytic in spin and the integration is over a Lorentzian
domain, in which z and z̄ are taken to be independent. This makes (3.9a)
a Lorentzian inversion formula. Performing the contour deformation,
one has to be careful in order to drop contributions at infinity. Regge
boundness of the correlator allows us to do that and the specific scaling
behaviour in the Regge limit is reflected in the fact that the inversion
above is valid for ` > 1.1
The main difference between the Euclidean and Lorentzian inversion
formula is that the latter expresses OPE data in terms of the double
discontinuity. This is defined as the difference between the Euclidean
correlator and its two possible analytic continuations around z̄ = 1,
namely

dDisc [Gk(z, z̄)] = cos (πα)Gk −
1

2
eiπαG	k −

1

2
e−iπαG�k ,

α =
∆34 −∆12

2
.

(3.12)

One can show that this definition corresponds to the kinematic configu-
ration in Fig. 3.1 and encoded in the double commutator [31,61]

dDisc[Gk(z, z̄)] = −〈Ω|[O4(x4),O1(x1)] [O2(x2),O3(x3)]|Ω〉
2K∆i

(xi)
. (3.13)

The power of the Lorentzian inversion formula relies on the fact that the
1Remark: higher orders in a large N expansion can suffer from worse ambiguities,
thus reducing the regime of validity to a larger though finite number of low spins [34].
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4

1
3

2

Figure 3.1. Lorentzian kinematic configuration reproducing the double com-
mutator. We analytically continue from the Euclidean region (all x2

ij are space-
like) to the Lorentzian configuration where x1 is in the past of x4 and x2 in
the future of x3. In this way, x2

14 and x2
23 become time-like, while all the other

invariants stay space-like.

double discontinuity is an easier object to compute with the respect to
the full correlator. This is because only certain contributions have non-
vanishing dDisc and thus enter non-trivially in the inversion integrals.
For instance, dDisc suppresses the contribution from exact double-trace
operators (1.18). For theories at large N , this suppression remains true
also at order 1

N2 and it implies that only information about single-trace
operators is needed, at leading order, to define the four-point functions.
The double commutator is simpler, yet it allows us to fully reconstruct
the correlator, modulo low-spin ambiguities, through the position-space
dispersion relation, worked out in [62]. There, the correlator is retrieved
as an integral over double discontinuities over two different OPE chan-
nels.

As a final comment, let us mention that the Lorentzian inversion for-
mula easily reproduces the large spin results we have seen in the intro-
duction and, making the spin “analytic”, it gives a concrete explanation
of why operators lie on Regge trajectories — curves in the (∆, `)-plane.

3.1 Technical details
The efficient way to use the inversion formula, inspired by the original an-
alytic bootstrap approaches, is to re-express the correlator Gk(z, z̄) (3.3)
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in terms of its crossed-channel version [31,34,63]

Gk(z, z̄) =
u

∆1+∆2
2

v
∆2+∆3

2

(MT
1↔3)kk′ [Gk′(1− z, 1− z̄)]∆1↔∆3

, (3.14)

with the same transformation performed in cuk .
In this setup, the terms with non-vanishing dDisc we will encounter are

dDisc

[(
1− z̄
z̄

)λ]
=

(
1− z̄
z̄

)λ
2 sin(πλ) sin(π(λ+ α)) , (3.15a)

dDisc [logn(1− z̄)] = 2π2n(n− 1) logn−2(1− z̄)
+ lower powers of log(1− z̄) , (3.15b)

where notice that log(1 − z̄) has a vanishing dDisc. As a consequence,
the relevant integrals (3.9b) are going to be of the form∫ 1

0

dz̄

z̄2
(1− z̄)

∆34−∆12
2 k∆12,∆34

h+` (z̄) z̄−
∆34

2 dDisc
[
f̃(1− z̄)

]
×∫ 1

0

dz

z2
(1− z)

∆34−∆12
2 k

(∆12,∆34)
2−h (z)f(x(λ̃), z(λ̃), log z) ,

(3.16)

with f̃(1− z̄) as in (3.15), for some function f depending on the variables

x(λ̃) = z−
∆34

2

(
z

1−z
)λ̃, z(λ̃) = z−

∆34
2 zλ̃ and possible log z.

We will now report some results for the relevant integrals used in the
following, more details can be found in Appendix D of Paper IV.

I∆12,∆34
(λ) =

∫ 1

0

dz̄

z̄2
(1− z̄)αk(∆12,∆34)

h+` (z̄) z̄−
∆34

2 dDisc

[(
1− z̄
z̄

)λ]

=
2Γ(2(h+ `))Γ

(
h+ `− ∆34

2 − λ− 1
)

sin(πλ)Γ(λ+ 1)

Γ
(
h+ `− ∆12

2

)
Γ
(
h+ `− ∆34

2

)
Γ
(
h+ `+ ∆34

2 + λ+ 1
)

× sin(πα+ πλ) Γ(α+ λ+ 1)

=
2π2Γ(2h+ 2`)Γ

(
h+ `− ∆34

2 − λ− 1
)

Γ
(
h+ `− ∆12

2

)
Γ
(
h+ `− ∆34

2

)
Γ
(
h+ `+ ∆34

2 + λ+ 1
)

× 1

Γ(−λ)Γ(−α− λ)
, (3.17)

where in the second line we have assumed λ < 0 and α defined in (3.12).
The Γ functions are well defined for the considered values of λ and ∆i. In
ck(∆, `), this implies that the z̄ integral just provides the spin dependence
of the extracted OPE data and does not contain information about the
twist of the possible exchange operators. This information is encoded
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in the z → 0 behaviour of the other integral. In the following, we will
encounter three different types of z-integrals

I∆12,∆34

1 (λ) =

∫ 1

0

dz

z2
(1− z)αk(∆12,∆34)

2−h (z)

(
z

1− z

)λ
z−

∆34
2 , (3.18a)

I∆12,∆34

2 (λ) =

∫ 1

0

dz

z2
(1− z)αk(∆12,∆34)

2−h (z)zλz−
∆34

2 , (3.18b)

I∆12,∆34

3 (λ) =

∫ 1

0

dz

z2
(1− z)αk(∆12,∆34)

2−h (z)
log z

z
∆34

2

(
z

1− z

)λ
. (3.18c)

In all these cases λ has to be considered positive and we are assuming
h ∈ N, h ≥ 1.2 Let us start from

I∆12,∆34

1 = −
πr∆12,∆34

h,λ sin
(
π
(
h+ λ− ∆34

2

))
sin(2πh) sin(πλ) sin(π (α+ λ))

×
sin
(
π
(

∆12

2 + h
))

sin
(
π
(

∆34

2 + h
))

sin
(
π
(

∆34

2 + h− λ
)) ,

(3.19)

where we have collected ratios of Γ’s appearing throughout these com-
putations in a single function

r∆12,∆34

h,λ =
Γ
(
h+ ∆12

2 − 1
)
Γ
(
h+ ∆34

2 − 1
)
Γ
(
h− ∆34

2 + λ− 2
)

Γ(2h− 3)Γ(λ)Γ
(

∆12

2 −
∆34

2 + λ
)
Γ
(
h+ ∆34

2 − λ
) . (3.20)

This integral develops poles for certain values of h, depending on the ex-
ternal dimensions. For example for all equal operators, ∆12 = ∆34 = 0,
we find simple poles for h = λ+ 1 + n, n ∈ N with residues

Resh=λ+1+nI0,0
1 (λ) = −r0,0

λ+n+1,λ . (3.21)

For the second kind of integral we get

I∆12,∆34

2 =
Γ
(

1
2(−∆12 + ∆34 + 2)

)
Γ
(
−∆34

2 − h+ λ+ 1
)

Γ
(
−∆12

2 − h+ λ+ 2
) (3.22)

× 3F2

(
−∆12

2 − h+ 2 , ∆34

2 − h+ 2 , −∆34

2 − h+ λ+ 1
4− 2h , −∆12

2 − h+ λ+ 2
; 1

)
.

By exploiting identities for the generalized hypergeometric function, we
can locate the poles. Again for external equal dimensions, these are at
h = λ+ n+ 1, n ∈ N with residues

Resh=λ+n+1I0,0
2 (λ) = (−1)n+1r0,0

λ+n+1,λ . (3.23)

2When solving these integrals spurious poles can appear at half-integer values of h.
We will ignore them having in mind that they can be cancelled by adding a reflected
block with h→ 1− h [31, 34].
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The last integral is more challenging and we do not have a generic for-
mula. Yet, for ∆12 = ∆34 = 0 with λ > 0 and h ≥ 1

I0,0
3 =

−π2r0,0
h,λ

sin2(π(λ− h))
+
π tan(πh) sin(π(h+ λ)))rh,λ

2 sin2(πλ) sin(π(λ− h)

(
Hh−λ +Hλ+h

− 2Hh −
1

λ+ h− 2
− 1

λ+ h− 1
− 1

λ+ h
+

1

λ− h
+

2

h− 1
+

2

h

)
,

(3.24)

where Hn =
∑n
k=1 1/k is the n-th harmonic number. Notice the appear-

ance of double poles: these are the signatures of anomalous dimensions
as we will be clearer when we apply these formulas to theories at large
N .
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Part II:
N = 4 Super Yang-Mills
N = 4 Super Yang-Mills (SYM) represents, so far, the only known ex-
ample of a maximally supersymmetric conformal field theory in four
dimensions. In the last decades, it attracted lots of attention for its con-
nection to gravity and string theory. It represents in fact the original
example of the AdS/CFT duality, as formulated in [1], and it is still one
of the best grounds where to test its validity. In this Part, we will first
introduce the theory by its Lagrangian and field content. In Sec. 4.2,
we will briefly review the connection between N = 4 SYM and type IIB
string theory and eventually we will focus on the low energy regime of the
gravity theory, type IIB supergravity. Once specialized to this approx-
imation, we will study in detail four-graviton amplitudes by looking at
the dual O2’s correlator. In the concluding section, we will instead look
at less supersymmetric four-point functions by allowing for quarter-BPS
scalars as external operators.





4. Generalities

Let us start with a very general description of N = 4 SYM from the
perspective discussed in Sec. 2.1 and 2.2. N = 4 SYM admits a unique
fundamental massless multiplet, the gauge or vector multiplet, which is
composed of

Field Range SU(4)R

Real scalars ϕM (x) M = 1, · · · 6 [0,1,0]

Weyl fermions λmα (x) m = 1, · · · 4 [1,0,0]

Gauge field Aµ(x) [0,0,0]

Given the presence of Aµ in the multiplet, the other elementary fields
have to transform in the adjoint representation of the gauge group, which
in this thesis, we identify with SU(N) — other realizations appear in the
literature [64–67]. The corresponding central charge is

c =
N2 − 1

4
. (4.1)

In terms of the elementary fields, the N = 4 SYM Lagrangian looks
like [68–70]

LSYM = tr
{
− 1

2g2
YM

FµνF
µν +

θYM

8π2
FµνF̃

µν − iλ̄mσ̄Dµλm

+ gYMΣ
Mmn

λm
[
ϕM , λn

]
+ gYMΣMmnλ̄

m
[
ϕM , λ̄n

]
−Dµϕ

MDµϕM +
g2

YM

2

∑
M,N

[
ϕM , ϕN

]2 }
,

(4.2)

where sums over repeated indices are understood and we have intro-
duced the gauge covariant derivative Dµ = ∂µ + iAµ, and Σ, Σ are six-
dimensional Clifford matrices implementing the isomorphism SO(6)R '
SU(4)R — see Appendix A of Paper IV for our conventions. From the
form of the Lagrangian, we can immediately see that there are no mass
terms and in four dimensions all the couplings are dimensionless. This
fact makes N = 4 SYM a scale-invariant theory at least at the classi-
cal level. Remarkably, this property holds also at the full quantum level,
i.e. the β-function vanishes exactly so that the full superconformal group
SU(2, 2|4) is an exact quantum symmetry of the theory.
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The last interesting feature we would like to stress about N=4 SYM
is that it enjoys S-duality [71–73]. Under this duality the theory with
complexified coupling

τ =
θYM

2π
+

4πi

g2
YM

, (4.3)

gets mapped to the theory with gauge group SU(N)/ZN and gauge
coupling τ = − 1

τ . Non-local observables are sensitive to the differ-
ence in the gauge group, while many other observables, like correlation
functions of half-BPS operators, are invariant under this transforma-
tion. If we combine the S-duality transformation with the symmetry for
θYM → θYM+2π (T-duality: τ → τ+1) we get SL(2,Z) transformations,
defined as

τ → aτ + b

cτ + d
, ad− bc = 1 , a, b, c, d ∈ Z . (4.4)

Recently, it has been possible to discover new properties and make inter-
esting developments concerning a special class of integrated correlators
of protected operators, exploiting their manifest invariance under these
SL(2,Z) transformations [74–79].

4.1 Spectrum of operators and correlation functions
As we have seen in Sec. 2.1, multiplets correspond to unitary irreducible
representations of SU(2, 2|4). We can distinguish between short and non-
protected (or long) multiplets. We will denote the latter by A∆

[q,p,q̄],(j,̄)

and their dimensions should satisfy the unitarity bound

∆ ≥ max

(
2 + 2j +

3

2
q + p+

q̄

2
, 2 + 2̄+

3

2
q̄ + p+

q

2

)
. (4.5)

Among the protected multiplets we would like to spend a few words
on half- and quarter-BPS operators, whose correlators we will study in
the following. We will denote their supermultiplet as B[q,p,q] [57] and
the corresponding superconformal primaries Opq. These are scalars with
protected dimension ∆ = 2q + p, transforming in the [q, p, q] of SU(4)R.
When q > 0, the superprimary is annihilated by four supercharges and
it corresponds to a quarter-BPS operator. When q = 0, four additional
supercharges have vanishing action, thus giving a half-BPS shortening
condition. For ease of notation, we will re-define these operators as
Op0 ≡ Op. In both cases, the superprimaries can be constructed out
of the fundamental scalar fields ϕM . To do that it is convenient to use
an index-free notation in which all R-symmetry indices are contracted
with additional auxiliary vectors. Explicitly, all SO(6)R fundamental
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indices are contracted with a six-dimensional complex vector yM and all
SU(4)R (anti)fundamental indices with a four-vector Sm (Sm), where one
can pass from one to the other by using the Dirac matrices appearing
in (4.2)

ymn ≡ yMΣMmn , ȳmn ≡ yMΣMmn .

To ensure the right transformation properties, these polarizations are
not free, rather they have to satisfy

y · y = 0 , S · S = 0 , yS = 0 , ȳS = 0 . (4.6)

Finally, if we denote with the collective variable S = (S, S, y), a generic
half- or quarter-BPS operator has the form

Opq(S) ≡ (Opq)
m1···mq
n1···nq ,M1···Mp

Sm1
· · ·SmqSn1 · · ·SnqyM1 · · · yMp . (4.7)

It is possible to re-extract back the tensor form, by applying some dif-
ferential operators, interior to the constraints. Examples can be found
in [80–83]. To illustrate this formalism and the content in terms of ϕM ,
let us give the explicit form for the two operators we will consider in the
following. The half-BPS operator with minimal dimension ∆ = 2

O2(x, y) =

√
2

N2 − 1
tr
(
T I1T I2

)
ϕM1

I1
ϕM2

I2
yM1

yM2
, (4.8)

where we always fix the normalization in such a way that the two-point
function is unit normalized and we denote with T I the SU(N) generators.
The quarter-BPS operator we will look at, which is also the easiest non-
vanishing one, has a richer structure [84,85]

O02(x,S) =

√
3

3(N2 − 4)(N2 − 1)

(
Odt

02(x,S) +
2

N
Ost

02(x,S)

)
.

(4.9)
It is composed of two pieces, the first one, which is dominant at large
N , is a double-trace operator — it can be written as the product of two
SU(N) traces — the second term, instead, depends only on one single
trace over the gauge group. Their exact form is given by

Odt
02 = tr

(
ϕM1ϕM2

)
tr
(
ϕM3ϕM4

)
S · ΣM1M3

· S S · ΣM2M4
· S

Ost
02 = tr

(
ϕM1ϕM2ϕM3ϕM4

)
S · ΣM1M2 · S S · ΣM3M4 · S .

(4.10)

The advantage of using an index-free notation is that correlation func-
tions can then be written in terms of a complete basis of tensor structures
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made of elementary building blocks1

yij = yi · yj , Sij = Si · Sj ,
Yi1i2··· = tr(yi1 ȳi2 · · · ) , Jikj1···j2p = Siyj1 · · · ȳj2pSk ,
Eijkl = εmnpqS

m
i S

n
j S

p
kS

q
l , Kikj1···j2p+1

= Siyj1 · · · yj2p+1
Sk ,

E ijkl = Eijkl|S→S , Kikj1···j2p+1
= Kikj1···j2p+1

|S→S
y→ȳ

.

(4.11)

Using this basis makes handling SU(4)R indices and big representations
much easier and expressions more compact. For instance, the two-point
function of generic scalars can be elegantly written as

〈O[q,p,q̄]
∆ (x1,S1)O[q̄,p,q]

∆ (x2,S1)〉 =
(y12)p(S12)q(S21)q̄

(x2
12)∆

. (4.12)

This formalism turns out to be very convenient also for higher-point
functions. As in usual CFT, the form of three-point functions is com-
pletely determined, apart from a number, by conformal symmetry and,
in this case, R-symmetry as well, which fixes the possible combinations
of (4.11) appearing. The first correlator containing dynamical informa-
tion is the four-point function.
Consider the correlator of four generic half- or quarter-BPS operators
Opiqi(xi,Si). Since the external operators transform non trivially un-
der R-symmetry, Nstr different SU(4)R representations are going to be
exchanged, i.e. the ones sitting in the intersection

([q1, p1, q1]⊗ [q2, p2, q2]) ∩ ([q3, p3, q3]⊗ [q4, p4, q4]) . (4.13)

In our index-free formalism, this implies that the correlation function
can be expanded in Nstr independent tensor structures Tk, built out of
the building blocks in (4.11). In formulas, this reads

〈Op1q1Op2q2Op3q3Op4q4〉 = K2q1+p1,··· ,2q4+p4

Nstr∑
k

TkGk(z, z̄) , (4.14)

where the z, z̄ cross-ratios and the kinematic prefactor are defined in (3.2).
Concretely, the explicit form of the tensor structures can be obtained by
starting from an ansatz, built upon appropriate products of the mono-
mials in (4.11), and then by rotating to a basis of eigenvectors of the
SU(4)R Casimir operators with corresponding eigenvalues defining the
representation they belong to. In our cases of interest, we considered the

1For six or more points, one also has to consider the Levi-Civita tensor
εMNPQRS y

M
i y

N
j y

P
k y

Q
l y

R
my

S
n .
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quadratic and the quartic Casimir, represented in terms of derivatives of
S as [86]

C2(∂S) =
1

2
LMN L

NM ,

C4(∂S) =
1

2
LMN L

NP LPQL
QM ,

(4.15)

with LMN , generators of SU(4)R,

LMN = L1,MN + L2,MN ,

Li,MN = −
(
yiM

∂

∂yNi
− yiN

∂

∂yMi

)
− Smi ΣMN

n
m

∂

∂Sni

− SimΣMN
m
n

∂

∂Sin
.

(4.16)

Then we can define the Tk associated with the [q, p, q̄] representation
exchanged in the (12)-OPE as the structure satisfying

Cr(∂S1
, ∂S2

)Tk(S1, . . . ,S4) = Cr Tk(S1, . . . ,S4) , r = 2, 4 , (4.17)

with eigenvalues [87]

C2 = p (q̄ + q + 4) +
1

4

(
3q̄2 + 2(q + 6)q̄ + 3q(q + 4)

)
+ p2 ,

C4 =
(q̄ + 2p+ q)

2
(q̄ + 2p+ q + 8)

2

16
− (q − q̄)2

(q̄ + q + 2)
2

8

+
3 (q̄ + 2p+ q) (q̄ + 2p+ q + 8)

2
+

(q̄ (q̄ + 2) + q(q + 2))
2

4
.

(4.18)

This concludes the general description of operators and correlation func-
tions just based on superconformal symmetry. In the next section, we
will see what else we can say when we resort to the AdS/CFT corre-
spondence and we relate operators and correlators to the dual states and
amplitudes in AdS.
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4.2 The AdS/CFT correspondence
The duality between N = 4 SYM with SU(N) gauge group and type
IIB string theory on AdS5×S5 represents the original formulation of the
correspondence [1]. This can be schematically summarized as

4d N = 4 SYM with SU(N)
gauge group and

gYM gauge coupling

10d type IIB string theory
on AdS5 × S5 with string
coupling gs and length

√
α′

=g2
YM

gs ,

=λ = g2
YMN

R4

(α′)2 .

We have denoted with R = RAdS5 = RS5 and λ is called the ’t Hooft
coupling. As we have stressed in the introduction, the first thing to check
for establishing a duality between two theories, is to look whether the
symmetries on both sides match or not. We know from Sec. 2.1, that the
bosonic subgroup of SU(2, 2|4) is made of the conformal group and the
R-symmetry SU(4)R ' SO(6)R. On the gravity side, the first group can
be identified with the isometries of AdS5, while the second one represents
exactly the symmetries of the 5-sphere. So the symmetries add up and,
as we will soon see, also the spectrum of the two theories coincides.

In the scheme above, we have listed the various CFT parameters and
how they are related to the string theory couplings. No matter what are
their values, the correspondence is conjectured to be valid. Yet, most
of the time, it is convenient to focus on specific limits. One can, for
instance, take N large, but keep λ fixed. This is called the ’t Hooft limit
and in this regime the gravity theory becomes weakly coupled and admits
a perturbative expansion in gs, such that corrections in inverse even
powers of N correspond to different genera on the string side. Starting
from this limit, one can further take λ→∞, but N still the largest scale.
This is often called the supergravity approximation, since it is equivalent
to having a small string length, `s ∼

√
α′, compared to the AdS radius,

such that strings become effectively point-like particles. In this limit,
which is the one we will focus on, 1

N2κ corrections can be interpreted as
(κ− 1)-loops in the supergravity theory.

Now that we have introduced these limits, we can go back to discuss
the spectrum and see which operators are relevant in the various regimes
and how CFT operators are related to gravity fields in AdS. Let us start
with protected single-trace operators

Op(x, y) = tr(y · φ)p , (4.19)
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X1 X2 X

Figure 4.1. Two examples of AdS tree-level Witten diagrams: an exchange
(left) and a contact (right) diagram. The shaded gray area corresponds to the
bulk of AdS, while the circle represents its boundary. A propagator connecting
a point Pi ∈ ∂AdS and a point Xj in the bulk is called a bulk-to-boundary
propagator. Lines between two bulk points define bulk-to-bulk propagators.

which are dual to supergravity fields [1, 88]. For p = 2, this operator is
exactly the superprimary of the stress-tensor multiplet in Fig. 2.2, there-
fore is interpreted in AdS as a supergraviton. In the same multiplet, we
can further identify the stress-tensor itself with the AdS metric fluctu-
ations, the R-symmetry current with the gauge field, the combination
L+ L̄ with the dilaton Oφ and L−L̄ with the axion OC . The operators
with p > 2 can be identified as coming from the Kaluza Klein reduction
on the S5 of the 10d supergravity fields. Actually, in order to be truly
dual to single-particle states in AdS, the single-trace operators (4.19)
have to be “corrected” by a combination of multi-trace operators, sup-
pressed at large N — see [89, 90] for details. BPS operators, which are
instead genuinely multi-trace at large N , are composite states in AdS.
They appear at the edge of the continuum spectrum and therefore they
are sometimes called threshold-bound states. We will see an example in
Sec. 6. Finally, long single-trace operators with ∆ ∼ λ 1

4 , like the Konishi
∼ tr

(
ϕMϕM

)
, correspond to type IIB massive string states. These oper-

ators acquire a parametric large dimension in the supergravity limit, so
they decouple from the spectrum of the theory, leaving only a finite num-
ber of protected single-trace operators. This fact is going to be essential
to bootstrap the correlation function of four O2’s in the next section.

Finally, let us comment on the relation between correlators and AdS
“amplitudes”. In the introduction, we have seen the defining relation of
the AdS/CFT correspondence (1.2), i.e. the equality between the gen-
erating functional of CFT correlators and the AdS partition function,
which, in the regime we are interested in, coincides with the action of
type IIB supergravity reduced on the S5. This identification gives us a
recipe for how CFT correlation functions are related and can be com-
puted starting from the various vertices appearing in the AdS action.
This results in a set of rules, similar to Feynman ones, which can be
summarized in Witten diagrams [3]. Two examples are shown in Fig. 4.1.
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5. O2’s four-point function

In this chapter, we will retrace the main stages in the study of the cor-
relators involving the stress-tensor superprimary. The first part of the
discussion, concerning the protected contribution to the correlator, the
solution of the Ward identities and the superspace analysis, does not rely
on any dynamical information and it is valid for any regime of N = 4
SYM, either at weak or strong coupling. Yet, we will always have in
mind the connection to supergravity and eventually we will specialize in
the large N , λ→∞ limit.

5.1 Superconformal Ward identities
The superprimary of the stress-tensor multiplet defined in (4.8) is a scalar
in the [0, 2, 0] of SU(4)R. Satisfying half-BPS shortening conditions, it
has protected dimension ∆ = 2 and consequently protected two-point
function. These non-renormalizability properties extend to higher-point
functions [58,91–95]. In particular three-point functions of two half-BPS
operators with any another BPS operators are fixed by supersymmetry
and are exact and independent of the coupling. Three-point functions
of two half-BPS with a generic long and four-point function of four half-
BPS operators are just partially non-renormalizable and they will depend
only on one non-protected function. For the correlator of four O2’s this
means

〈O2(x1, y1)O2(x2, y2)O2(x3, y3)O2(x4, y4)〉 =
y2

12y
2
34

(x2
12x

2
34)2
G(z, z̄;α, ᾱ) ,

(5.1)
where yij is defined in (4.11) and we have introduced the SU(4)R sym-
metry cross-ratios

σ = αᾱ =
y13y24

y12y34
, τ = (1− α)(1− ᾱ) =

y14y23

y12y34
. (5.2)

The undetermined function G(z, z̄;α, ᾱ) can be expanded in conformal
blocks (3.6) and R-symmetry blocks as

G(z, z̄;α, ᾱ) =
∑
n,m

∑
∆,`

C(∆, `;m,n)Yn,m(α, ᾱ) g
(0,0)
∆,` (z, z̄) . (5.3)
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Each tensor Yn,m(α, ᾱ) accounts for one of the six representations ex-
changed in [0, 2, 0]⊗ [0, 2, 0]

[n−m, 2m,n−m] , n = 0, 1, 2 , m = 0, 1, . . . , n , (5.4)

and it is defined as

Yn,m(α, ᾱ) = (−1)n−mg
(0,0)
−n−m,n−m

(
1

α
,

1

ᾱ

)
. (5.5)

The decomposition in (5.3) is not completely satisfying since it is not
fully taking into account the underlying superconformal symmetry and
the half-BPS nature of the operators. What we would prefer is a decom-
position able to reflect these symmetries and in terms of a possible super-
symmetric version of the blocks, some superblocks packing together the
contributions of each superconformal multiplet exchanged in the OPE
of O2 × O2. Remarkably for 〈O2O2O2O2〉, and all half-BPS operators,
such a decomposition exists and superblocks are known. Let us see how
it works in detail. First of all, we know which multiplets are present in
the OPE of two half-BPS stress-tensor multiplets [81,95,96]

B[0,2,0] × B[0,2,0] ∼ 1 + B[0,2,0] + B[0,4,0] + B[2,0,2] +

∞∑
`=0

C[0,0,0],`

+

∞∑
`=0

C[0,2,0],` +

∞∑
`=0

C[1,0,1],` +
∑
∆,`

A∆
[0,0,0],` ,

(5.6)

where apart from the identity, we have the half-BPS multiplet B[0,4,0],

with a double-trace superprimary Odt
4 =

√
2

N4−1

[
tr(y · φ)2

]2 and the
quarter-BPS one in the [2, 0, 2], we have introduced in (4.9). Then we
find the semi-short multiplets C with different shortening conditions:
C[0,0,0],` has twist two and contains higher-spin currents while C[0,2,0],`

and C[1,0,1],` contribute at twist four. Finally A are long, non-protected
operators in the singlet of SU(4)R.
In [81,97], it has been found a solution of superconformal Ward Identities
— the constraints imposed by superconformal invariance —

G
(

1

α
,

1

ᾱ
;α, ᾱ

)
= k , (5.7a)

G
(
z,

1

ᾱ
;α, ᾱ

)
= k +

(
α− 1

z

)
f̂(z, α) . (5.7b)

These requirements can be trivially satisfied by parametrizing the four-
point function as

G(z, z̄;α, ᾱ) = k + G f̂ (z, z̄;α, ᾱ) +R(z, z̄;α, ᾱ)H(z, z̄) , (5.8)
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with

G f̂ =
(ᾱz − 1)(αz̄ − 1)

((
α− 1

z

)
f̂(z, α) +

(
ᾱ− 1

z̄

)
f̂(z̄, ᾱ)

)
(z − z̄)(α− ᾱ)

−

(αz − 1)(ᾱz̄ − 1)
((
ᾱ− 1

z

)
f̂(z, ᾱ) +

(
α− 1

z̄

)
f̂(z̄, α)

)
(z − z̄)(α− ᾱ)

,

(5.9a)

R = (zα− 1)(z̄α− 1)(zᾱ− 1)(z̄ᾱ− 1) . (5.9b)

The constant k and the one-variable function f̂ are protected and com-
pletely determined by their value at zero coupling. In particular, f̂(z)
can be interpreted as the four-point function of a protected subsector of
the theory described by a 2d chiral algebra [48] — see also Sec. 6.1.
Thus the interacting information is enclosed in the reduced correlator
H(z, z̄). Notice that it does not depend on the R-symmetry cross-ratios,
this is because the R prefactor effectively makes H a four-point func-
tion of operators of dimension (2 + 2) and R-charge (2 − 2), thus a
singlet. Quite specially, in terms of the original decomposition (5.3) in
R-symmetry representations, H is exactly proportional to the [0, 4, 0]
contribution

G(z, z̄;α, ᾱ)|Y2,2
= u2H(z, z̄) . (5.10)

A price we pay to have the nice decomposition (5.8) is thatH is no longer
crossing symmetric on its own and it transforms as

H(u, v) =
u2

v2
H(v, u) + 1− u2

v2
+

1

c

v − u
v2

, (5.11)

where the central charge c has been defined in (4.1). The additional
pieces depend on the form of k and f̂ , which we recall is fixed by tree-
level computations. By means of the Wick contractions

y1 · φI(x1) y2 · φJ(x2) =
y12

x2
12

δIJ , I, J = 1, . . . , N2 − 1 , (5.12)

we can indeed compute the free theory result

Gfree(u, v;σ, τ) = 1 + u2

(
σ2 +

τ2

v2

)
+
u

c

(
σ +

τ

v
+ στ

u

v

)
, (5.13)
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and using (5.7), it is straightforward to get

k = 3

(
1 +

1

c

)
, (5.14a)

f̂(z, α) =
z
(
z2 − 4z + 2

)
(z − 1)2

+
z(2z − 3)

c(z − 1)
(5.14b)

+ α

(
z2
(
z2 − 2z + 2

)
(z − 1)2

− z2

c(z − 1)

)
,

Hfree(z, z̄) = 1 +
1

v2
+

1

c

1

v
. (5.14c)

The functions appearing in (5.8) admit an expansion in superblocks [81].
For f̂ , in terms of one-variable blocks

f̂(z, α) =
∑
n=0,1

∞∑
`=0

bn,` yn(α) g
(0,0)
` (z) , (5.15)

with
yn(α) = k

(0,0)
−n

(
1

α

)
,

g
(∆12,∆34)
` (z) = z

1
2 ∆34 k

(∆12,∆34)

`− 1
2 ∆34+1

(z) .

(5.16)

While the reduced correlator can be expanded as

H(z, z̄) =
∑
∆,`

a(∆, `)G∆,`(z, z̄) , (5.17)

where the superconformal block is defined as

G∆,` = (zz̄)−2g
(0,0)
∆+4,`(z, z̄) . (5.18)

Before moving to the analysis of the coupling dependant and dynamical
H, we would like to pause for a second to comment on the superspace
description of N = 4 and in particular of the stress-tensor multiplet.

5.2 Interlude: N = 4 Superspace
In Sec. 2.3, we have introduced superspaces with the idea that it is very
powerful and useful to have a language which makes manifest the symme-
tries of a theory and the constraints on operators. In the case of N = 4
SCFTs and for half-BPS operators, the most convenient description are
harmonic and analytic superspaces [60,98–100]. Very similar to what we
have seen happening with chiral fields and the chiral superspace (2.23)
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in N = 1, a description of protected supermultiplets in terms of N = 4
superspace allows us to express them as some unconstrained fields de-
pending on a reduced set of coordinates.
To apply this technology to the stress-tensor multiplet in Fig. 2.2, first
of all we need to introduce harmonic coordinates

umn =
(
u+m
n u−m′

n

)
(5.19)

and its barred counterpart, parametrizing the coset space

SU(4)R
SU(2)× SU(2)′ ×U(1)

, (5.20)

where remember m and n are SU(4)R indices and we use m for the first
SU(2) and m′ for the second one in the coset denominator. The θ and θ̄
split accordingly

θmα = u+m
m θmα , θmα = u+m

m θmα (5.21)

and similarly

Qαm = ūm+mQ
α
m , Qαm′ = ūm−m′Q

α
m . (5.22)

For its BPS nature, the superprimary is annihilated by half of the su-
percharges. Under this constraint, we can further reduce the number
of coordinates our superfield depends on by introducing analytic super-
space. The stress-tensor superfield will then depend on a subset of the
original superspace coordinates: the analytic ones

O2(x, θ, θ̄) ≡ O2(xαα̇, θm
α , θ̄

α̇
m′ , ymm′) , (5.23)

where we have xαα̇, spacetime coordinate, 4 chiral and 4 anti-chiral
Grassmann variables, θm

α and θ̄α̇m′ , and finally ymm′ . This last tensor
is related to the original SU(4)R polarization as

ymn =

 εmn −ymn′

ynm′ εm′n′ det ||ymm′ ||

 . (5.24)

The connection between harmonic and analytic coordinates is made ex-
plicit by the identification(

u+m
m u−m′

m

)
=

(
δmn 0

ym
n′ δm

′

n′

)
. (5.25)

Given the superfield (5.23), we can recover the various component fields.
Starting from the superprimary, this is obtained by setting all the thetas
to zero

O2(xαα̇, θm
α , θ̄

α̇
m′ , ymm′)|θ=θ̄=0 = O2(x, y) . (5.26)
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Extracting the other components requires more work and one needs to
apply appropriate differential operators, whose form can be found in [101,
102].

This formalism and this construction might seem a bit cumbersome
at first. Yet, as we will soon see, it is powerful: it will allow us to build
the four-point function of four O2 superfields in terms of just a scalar
function [101,102].
First of all, let us see how we can uplift the usual propagator to super-
space

yi · yj
x2
ij

→ ĝij =
det ||ŷmm′

ij ||
x2
ij

, (5.27)

where we have defined

ŷmm′
ij = ymm′

ij − 4i
θαm
ij (xij)αα̇θ̄

α̇m′
ij

x2
ij

, (5.28)

with ymm′
ij = ymm′

i − ymm′
j and similarly for the Grassmann variables.

Then, starting from (5.1), we can think of promoting propagators to
superpropagators ĝij and write

〈O2O2O2O2〉 = ĝ2
12ĝ

2
34

(
Ĝrational + Ĝanom

)
, (5.29)

where Ĝrational is a rational function of the superpropagators computed
by means of Wick contractions. The interesting part is what we call
Ĝanom. Remarkably, this has been shown [101, 102] to be expressible in
terms of a scalar function F (x1, x2, x3, x4) ≡ F (x)

Ĝanom = Q4Q′4S̄4S̄′4
[
θ4

1θ
4
2θ

4
3θ

4
4

F (x)

ĝ2
12ĝ

2
34

]
, (5.30)

where we have defined

Q4 =
1

12
QαmQ

n
αQ

β
nQ

m
β ,

Q′4 =
1

12
Qαm′Qαn′Q

β n′Qβm′

(5.31)

and similarly for θ, S̄, S̄′.1 The scalar function depends only on the
correlator of the scalar superprimaries. In fact, by requiring

〈O2O2O2O2〉|θ=0
θ̄=0

= y2
12y

2
34

(
Gfree(z, z̄, α, ᾱ)

(x2
12x

2
34)2

+R(x2
13x

2
24)2F (x)

)
!
= 〈O2O2O2O2〉 ,

(5.32)

1The conformal supercharges S̄, S̄′ are defined exactly as (5.22).
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where R is defined in (5.9b), we find

F (x) =
H̃(z, z̄)

(x2
12x

2
34x

2
13x

2
24)2

. (5.33)

Here we have used an alternative decomposition with the respect to (5.8):
namely

G(z, z̄;α, ᾱ) = Gfree(z, z̄;α, ᾱ) +RH̃(z, z̄) ,

H̃(z, z̄) = H(z, z̄)−Hfree(z, z̄) ,
(5.34)

with Gfree and Hfree respectively as in (5.13) and (5.14c).
With the form (5.30) and the identification (5.33), we can determine

the correlation functions of all the fields composing the stress-tensor su-
permultiplet. In particular, the ones we will be interested in, in con-
nection with the discussion in Part III, are correlators involving the
stress-tensor. Despite the complexity of applying the supercharges and
extracting the different components, the correlators of the various oper-
ators appearing in O2 can be expressed in a very nice and surprisingly
compact form. For instance, the non-vanishing four-point functions in-
volving the stress-tensor take the form

〈T O2O2O2〉 = y23y34y24 D2
1

[
(η1x12x23x34x41η1)2F (x)

]
, (5.35a)

〈T T O2O2〉 = y2
34 (D1D2)2

[
(η1x13x32η2)

2
(η1x14x42η2)

2
F (x)

]
, (5.35b)

〈T T T T 〉 = 44 (D1D2D3D4)2
[
Λ(x, η)2F (x)

]
, (5.35c)

where for convenience we have contracted all the spinor indices with
commuting auxiliary variables, such that T ≡ ηαi η̄α̇iηβi η̄β̇iTαiβi,α̇iβ̇i .
The structure Λ(x, η) is defined as

Λ =
[(η1x12x23η3)(η4x41x12η2)− (η1x12x24η4)(η3x31x12η2)]2

(x2
12)2

, (5.36)

and we have introduced the differential operator

Di = η̄α̇i
∂

∂xαα̇i

∂

∂ηiα
, (5.37)

which we will meet again in Part III.
Finally, we would like to comment on the correlator of the top com-

ponent of the supermultiplet in Fig. 2.2, namely the self-dual and anti
self-dual Lagrangian L and L̄. In the neutral channel — see [103] and
Paper V — it reads

〈L(x1)L̄(x2)L(x3)L̄(x4)〉 =
1

(x2
12x

2
34)4
Fn
L(u, v) ,

Fn
L(u, v) = ∆(8)H̃(u, v) ,

(5.38)
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where
∆(8) = u4(∆(2))2u2v2(∆(2))2u−2 ,

∆(2) = u∂2
u + v∂2

v + (u+ v − 1)∂u∂v + 2(∂u∂v) .
(5.39)

We can rewrite this in terms of the z, z̄ coordinates, using the Casimir

D̂x = ∂xx(1− x)∂x ,

D̂xkh
(

1

x

)
= −h(h− 1)kh

(
1

x

)
,

(5.40)

then

∆(8) =
(zz̄)4

z − z̄
D̂z(D̂z − 2)D̂z̄(D̂z̄ − 2)

[
z − z̄
zz̄

(zz̄)−2

]
. (5.41)

This operator is going to play a very important role in Sec. 5.4.

5.3 Protected contribution and tree-level supergravity
Now that we have seen how to lift the four-point function of the stress-
tensor superprimaries to a superspace correlator, we can get into the
details of the decomposition (5.8). We will first determine the protected
contributions to the correlator, the one in correspondence to the ex-
change of the short and semi-short representations in the OPE (5.6). At
λ → ∞, this information is going to be enough to completely fix the
tree-level supergravity value of 〈O2O2O2O2〉 by using the Lorentzian
inversion formula.

First of all, let us expand the free-theory results (5.14) in conformal
blocks (5.15) and (5.17).

b0,` = −1 + (−1)`

2

Γ(`+ 1)2

Γ(2`+ 1)

(
(`− 1)(`+ 2)− 3

c

)
,

b1,` =
1− (−1)`

2

Γ(`+ 1)2

Γ(2`+ 1)

(
`(`+ 1) +

1

c

)
,

afree(τ, `) = 2`(1 + (−1)`)
Γ
(
τ
2 + 1

)2
Γ
(
`+ τ

2 + 2
)2

Γ(τ + 1)Γ(2`+ τ + 3)
×(

(`+ 1)(τ + `+ 2) +
(−1)

τ
2

c

)
, τ ≥ 0 .

(5.42)

Problematically, afree(τ, `) contains a tower of twist-zero operators, which
are below the unitarity bounds in (2.8). Moreover, it contains infinite
twist-two operators, which are exactly at threshold, which as we will
explain in a second, we would like to remove. The appearance of these
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operators is an artefact of the splitting we are using, in fact the full G
does not contain any non-unitary contributions, as expected.

The origin of this behaviour relies on the fact that a short multiplet
does not contribute only to f̂ but enters H as well.
Let us consider a single protected multiplet and denote its contributions
to f̂ and H respectively as

f̂(z, α)
∣∣
n,`

= bn,` yn(α) g
(0,0)
` (z) , (5.43a)

H(z, z̄)
∣∣
n,`

= a(τ, `)Gτ+`,` , (5.43b)

for some coefficient a(τ, `) and twist τ . To make it clear the presence of
this short protected subsector in H let us define

Hshort(z, z̄) =
∑
τ,`

a(τ, `)Gτ+`,` , (5.44)

such that we can split

H(z, z̄) = Hshort(z, z̄) +Hlong(z, z̄) , (5.45)

where, as the name suggests, in Hlong(z, z̄) only long, non-protected op-
erators are exchanged. The precise and more formal way of fixing Hshort

involves a detailed analysis of how the various short multiplets contribute
to k, G f̂ and H, how they are exchanged in the various representations
and it requires to take into account possible multiplet recombination —
when a long operator at threshold decomposes into a sum of semi-short
ones. We refer to [81,96,97] for details on how this procedure should be
carried out. Here, we prefer to resort to a shortcut for the determination
of Hshort, since this approach is similar in spirit to the strategy we will
use in Ch. 6.
We will proceed in the following way. Starting from (5.43), we fix a(τ, `)

in terms of bn,` such that when we combine together G f̂ and Hshort inside
the full correlator, all twist zeros and twist twos with ` > 2 are absent.
We can impose these requirements because we know that eventually, in
the full G, any given multiplet cannot yield any twist-zero — because
non-physical — or twist-two operators — correspond to higher spin cur-
rents absent in a sensible interacting theory [104,105]. Let us start from
twist-zero contributions. These appear when we plug

f̂
∣∣
1,`

=

(
α− 1

2

)
b1,`+1 g

(0,0)
`+1 (z) , (5.46)

in G f̂ and we expand in four-dimensional conformal blocks. To remove
them, we allow for a twist-zero contribution in Hshort as well

Hshort
∣∣
1,`

= a(0, `)G`,` , (5.47)

52



where recall that we are expanding in superblocks, which are related to
the usual 4d ones as G∆,` = u−2g∆+4,`. Now we sum these two pieces
together and expand according to the decomposition (5.3)

G f̂ +RHshort
∣∣
1,`

=
∑
n,m

∑
∆,`

C ′(∆, `;m,n)Yn,m(α, ᾱ) g∆,` . (5.48)

As you can see, we expect contributions from all six R-symmetry repre-
sentations. To give an example, let us focus on the n = m = 1 case, i.e.
the [0, 2, 0] channel — one can check that the other components follow
analogously. By using nice recurrence relation for the blocks, [106] and
Appendix E of Paper IV, we can show that

G f̂ +RHshort
∣∣
1,`;[0,2,0]

= 4
(
a(0, `)− (−2)`b1,`+1

)
g`+2,`+2

+
(
a(0, `)− (−2)`b1,`+1

)(
g`+2,` +

(`+ 2)2

4
(
`+ 3

2

)
2

g`+4,`+2

)

+
{5

4
g`+2,`−2 +

14`2 + 42`+ 25

12(2`+ 1)(2`+ 5)
g`+4,` +

5(`+ 2)2
2 g`+6,`+2

32
(
`+ 3

2

)
3

(2`+ 5)

+
1

4

(
g`+4,`−2 +

(`+ 2)2

4
(
`+ 3

2

)
2

g`+6,`

)
+

1

60
g`+6,`−2

}a(0, `)

12
.

(5.49)
By looking at the first two lines, we can see that imposing

a(0, `) = (−2)`b1,`+1 , (5.50)

we get rid of all twist zeros and the twist twos we have additionally
introduced. The twists greater than two are not problematic and they
will contribute to G.
We can repeat a similar story to cancel twist-two operators. For example
in the [0, 2, 0] representation

G f̂ +RHshort
∣∣
0,`;[0,2,0]

= 4(a(2, `) + (−2)`b0,`+2)g`+2,`+4

+ a(2, `)
{(

g`+4,` +
(`+ 3)2

4
(
`+ 5

2

)
2

g`+6,`+2

)
+

1

4
g`+4,`−2

+
2`2 + 10`+ 11

4(2`+ 3)(2`+ 7)
g`+6,` +

(`+ 3)2
2 g`+8,`+2

32
(
`+ 5

2

)
3

(2`+ 7)

+
1

60

(
g`+6,`−2 +

(`+ 3)2

4
(
`+ 5

2

)
2

g`+8,`

)
+

3

2800
g`+8,`−2

}
,

(5.51)

and again we see that twist twos cancel whenever

a(2, `) = −(−2)`b0,`+2 . (5.52)
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Interpreted from the OPE perspective in (5.6), this condition is equiva-
lent to cancel the C[0,0,0],` multiplet with ` > 2, which we recall contains
higher-spin currents.
Notice that a(0, `) = afree(0, `) in (5.42), as expected since the free the-
ory should not have twist zero contributions apart from the identity.
Whereas a(2, `) 6= afree(2, `), since twist twos are admissible in the non-
interacting theory.
We can resum the a(0, `) and a(2, `) to a full expression for Hshort

Hshort =
∞∑
`=0

(−2)`b1,`+1G`,`(z, z̄)− (−2)`b0,`+2G`+2,`(z, z̄) , (5.53)

=

(
2z
(
2z̄3 − z̄2 − 8z̄ + 6

)
− 6

(
z̄3 − 6z̄ + 4

))
log(1− z)

z2(z̄ − 1)2(z − z̄)

− 24 log(1− z̄)
zz̄(z − z̄)

+
12(z − 2) log(1− z) log(1− z̄)

z2z̄(z − z̄)
−

6
(
z̄3 − 6z̄ + 4

)
z(z̄ − 1)2(z − z̄)

+
1

c

(
− 36 log(1− z̄)

zz̄(z − z̄)
+

2(4zz̄ − 9z − 9z̄ + 18) log(1− z)
z2(z̄ − 1)(z − z̄)

+
18(z − 2) log(1− z) log(1− z̄)

z2z̄(z − z̄)
− 18(z̄ − 2)

z(z̄ − 1)(z − z̄)

)
+ z ↔ z̄ .

This agrees with the result in [96] and it is 1
c exact. Notice that by

summing ` from 0 and because of the shift in the second term (` →
`+2), we are not including the coefficient b0,0. So let us consider its role
separately: it contributes at twist zero in the singlet representation and
it nicely combines with k in (5.14a) to give, in the convention of (5.3),

C(0, 0; 0, 0) = k − b0,0 = 1 , (5.54)

which is precisely the normalization we require for the identity operator.
Then, it appears at twist two in the following combination

C(2, 0; 1, 1) = b0,0 − b1,1 =
2

c
= λ2

O2O2O2
, (5.55)

which is exactly the protected three-point coefficient of 〈O2O2O2〉. With
the expression for Hshort(z, z̄) we can also find the OPE coefficient for
other protected operators inside the O2 multiplet in Fig. 2.2, namely the
stress-tensor Tµν , and the R-symmetry current JSU(4)

µ

λ2
O2O2Tµν =

2

45c
=

1

5
(λfree
O2O2“Tµν ”)

2 ,

λ2

O2O2J
SU(4)
µ

=
2

3c
=

1

3
(λfree
O2O2“JSU(4)

µ ”)
2 .

In the expressions above, we have stressed the fact that the exact OPE
coefficients differ from the ones that one can naively obtain from the
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free theory in (5.13). The reason is that the free-theory coefficients
receive contributions from superdescendants of long operators [107], like
the Konishi.

Once identified the protected sector in G, we are left with Hlong, which
contains only long operators and has a conformal block expansion

Hlong(z, z̄) =
∑
∆,`

a∆,`G∆,` , (5.56)

with three-point coefficients real and positive, in a reflection positive
configuration. Moreover at large central charge and in the supergrav-
ity regime, long contributions can come only from multi-trace operators,
constructed from the protected single-trace operators Op. In fact, as dis-
cussed in Sec. 4.2, the other long single-trace operators, like the Konishi,
acquire a large dimension (∆ ∼ λ 1

4 ) and decouple from the spectrum.
Up to order 1

c , actually only double-trace operators appear. Their di-
mension and OPE coefficients admit a perturbative expansion in 1/c as

∆n,` = 4 + 2n+ `+

∞∑
κ=1

γ
(κ)
n,`

cκ
, (5.57a)

an,` =

∞∑
κ=0

a
(κ)
n,`

cκ
, (5.57b)

where n = 0, 1, . . . and γ(κ)
n,` are anomalous dimensions. Notice the twist

gap: the tower of double-trace operators starts at τ = 4. These operators
take the schematic form2

[O2O2]n,` = O2�
n∂µ1

· · · ∂µ`O2 . (5.58)

Hlong has a similar expansion

Hlong =
∞∑
κ=0

H(κ)

cκ
. (5.59)

The conformal block expansion for the first few orders reads

H(0) = un+2a
(0)
n,`G̃n,` ,

H(1) = un+2

(
log u

2
a

(0)
n,`γ

(1)
n,` + a

(1)
n,` + a

(0)
n,`γ

(1)
n,`∂∆

)
G̃n,` ,

H(2) = un+2
( log2 u

8
a

(0)
n,`(γ

(1)
n,`)

2 +
log u

2
(a

(1)
n,`γ

(1)
n,` + a

(0)
n,`γ

(2)
n,`+

(5.60)

2We will see later on that actually more operators with the same classical twist and
spin mix among each other.
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a
(0)
n,`(γ

(1)
n,`)

2∂∆) + a
(2)
n,` + (a

(1)
n,`γ

(1)
n,` + a

(0)
n,`γ

(2)
n,`)∂∆ +

a
(0)
n,`(γ

(1)
n,`)

2

2
∂2

∆

)
G̃n,` ,

where we have denoted G4+2n+`,`(z, z̄) = (u)
τ
2 G̃n,` and the sums over n

and ` are understood. From these few terms, we can easily guess that
the leading logarithmic part of the correlator always depends only on
a

(0)
n,` and γ

(1)
n,` of the double-trace operators in the combination

Hκ|logκ u =
∑
n,`

un+2
a

(0)
n,`

(
γ

(1)
n,`

)κ
2κκ!

G̃n,` . (5.61)

5.3.1 Tree-level supergravity from the inversion formula
In Ch. 3, we have seen how the OPE data are encoded in the function
ck(∆, `) and how this can be written dispersively in terms of dDisc.
At large c, given the form of the corrections (5.57) that the exchanged
operators receive, ck(∆, `) inherits the expansion

ck(∆, `)∼−1

2

〈
a(0)

h− τ(0)

2

〉
− 1

c

(
1

4

〈
a(0)γ(1)(
h− τ(0)

2

)2〉+
1

2

〈
a(1)

h− τ(0)

2

〉)

− 1

c2

(
1

8

〈
a(0)(γ(1))2(
h− τ(0)

2

)3〉+
1

4

〈
a(0)γ(2) + a(1)γ(1)(

h− τ(0)

2

)2 〉

+
1

2

〈
a(2)

h− τ(0)

2

〉)
+O(c−3) , (5.62)

where the brackets stand for averages over possible degenerate opera-
tors with the same twist τ (0) = ∆(0) − ` and spin. From this formula,
it is clear that at order c0 we expect simple poles for the h = ∆−`

2 of
the exchanged operators, whose OPE coefficients should recover the free
theory results computed at c → ∞. At the next order, double poles
arise in correspondence of those operators developing an anomalous di-
mension, while simple poles take into account the correction to the OPE
coefficients. Studying order by order the analytic structure of ck(∆, `),
we can extract more and more corrections.

To apply the inversion integral directly to H, it is necessary to slightly
adapt the expression (3.9) to account for the appearance of superblocks.
Fortunately, it is enough to shift h→ h+ 2 and multiply by u2, so that
the final expression reduces to

c(∆, `) =
1 + (−1)`

2
(−2)`κ̃

(0,0)
∆+4+`

∫ 1

0

dz

z2

dz̄

z̄2
k

(0,0)
−h (z)k

(0,0)
h+`+2(z̄)×

dDisc [(z̄ − z)zz̄H(z, z̄)] ,

(5.63)
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where we have used that for identical operators the t- and u- channels
are the same.

As we have explained in Sec. 3.1, the prescription to compute the
double discontinuity is to first pass to the crossed channel. Because
of the presence of k and G f̂ , H is not crossing symmetric but rather
transforms as (5.11). So at order c−κ crossing reads

Hshort(u, v) +
1∑

κ=0

H(κ)(u, v)

cκ
=
u2

v2
Hshort(v, u)

+
u2

v2

1∑
κ=0

H(κ)(u, v)

cκ
+ 1− u2

v2
+

1

c

v − u
v2

,

κ = 0, 1 , (5.64a)

H(κ)(u, v) =
u2

v2
H(κ)(v, u) , κ ≥ 2 . (5.64b)

Now let us focus on the first crossing equation and let us try to under-
stand which terms contribute to the inversion formula. Remember that
the terms with non-vanishing dDisc are either negative powers of v or
(log v)κ≥2 — see (3.15). These are present only in Hshort and in the last
two rational terms. Both H(0)(v, u) and H(1)(v, u), in fact, start at order
v2 as we can easily see from (5.60). So schematically

dDisc [H(u, v)] 1
c
∼ dDisc

[
u2

v2
Hshort(v, u)− u2

v2
+

1

c

v − u
v2

]
. (5.65)

Remarkably, this means that the protected contributions completely fix
the full tree-level (up to 1

c ) supergravity correlator. In other words, the
singular behaviour comes solely from the single-trace protected sector.
This is the same as what happens for amplitudes in flat space, where cuts
of single-particle states allow reconstructing the tree-level amplitude. By
analogy, we can represent dDisc as some cut operator3 acting on the
Witten diagram with four O2 external operators such that it is split in
two three-point functions, as depicted in Fig. 5.1.

3Similar ideas are explored in [108].
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O2

O2

O2

O2

=
∑
finite
single
traces

O2

O2

O2

O2

Figure 5.1. The full tree-level supergravity correlator can be reconstructed
through a dispersion relation starting from the discontinuity, denoted with the
red cut line, produced by single-trace protected operators.

The precise form of (5.65) is4

dDisc [(z̄ − z)zz̄H(z, z̄)] = dDisc

[
z̄2

(1− z̄)2

]
z

1− z

− dDisc

[
z̄

(1− z̄)

]
z2

(1− z)2
+

1

c
dDisc

[
z̄

(1− z̄)

](
z

1− z

− 2
z2

(1− z)2
− 2 log z

z3

(1− z)3

)

= dDisc

[
(z̄ − z)zz̄

(
Hfree(z, z̄)− 1

c
(zz̄)2D2422(z, z̄)

)]
,

(5.66)

and we can thus identify

H(z, z̄)
∣∣∣

1
c

= Hfree(z, z̄)− 1

c
(zz̄)2D2422(z, z̄) . (5.67)

The appearance of the D-function5 D2422 agrees with previous super-
gravity results [109] and it is compatible with the expected dimensions
and crossing-symmetry properties

D2422(u, v) = D2422(v, u) . (5.68)

Concretely it can be computed from a seed function as

D2422 = (3 + u∂u + v∂v)∂v∂uD1111 ,

D1111 =
1

z − z̄

(
2Li2(z)− 2Li2(z̄) + log (zz̄) log

(
1− z
1− z̄

))
.

(5.69)

Since we are reconstructing the result from a dispersion relation, one
can worry about potential ambiguities with a finite support in low spins.

4One should remember to expand also log z̄ =
∑∞
k=1

(−1)k

k

(
1−z̄
z̄

)k.
5See also Sec. 8.1.
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At order 1/c, one can prove convergence of the inversion formula for
` > −2 [31], but the situation might change and get worse proceeding
in the loop expansion. As a non-trivial check, we can extract the OPE
data as in (5.62) by plugging (5.66) into (5.63). Let us start from the
disconnected contributions6

c(0)(∆, `) = (−2)`κ̃
(0,0)
∆+4+`

(
Ī(0,0)
−2 I

(0,0)
1 (1)− Ī(0,0)

−1 I
(0,0)
1 (2)

)
, (5.70)

where the definitions and the values of the integrals can be found in
Sec. 3.1. The OPE coefficients of the double-trace operators can be read
out as residues at the poles with twist 4 + 2n

〈a(0)
n,`〉 = −2Resh=2+n c

(0)(∆, `)

=
2`+1(`+ 1)(2n+ `+ 6)Γ(n+ 3)2Γ(n+ `+ 4)2

Γ(2n+ 5)Γ(2n+ 2`+ 7)
,

(5.71)

and this exactly coincides with (5.42). Now let us pass to the first order
in 1/c, where we expect contributions from the anomalous dimensions.
These are encoded in the double poles coming from the log z integration.

c(1)(∆, `) = (−2)`κ̃
(0,0)
∆+4+`Ī

(0,0)
−1

(
I(0,0)

1 (1)− 2I(0,0)
1 (2)− 2I(0,0)

3 (3)
)

=
π2(h− 1)h(h+ 1)(h+ 2)2`−1Γ(h+ 1)2Γ(h+ `+ 2)2

sin(πh)2Γ(2h+ 1)Γ(2h+ 2`+ 3)
,

(5.72)
where, quite remarkably, the simple poles cancel among each others and
we have just the double poles coming from the sin(πh)2. From (5.62), it
is straightforward to see

〈a(0)
n,`γ

(1)
n,`〉 = −(n+ 1)(n+ 2)(n+ 3)(n+ 4)

(`+ 1)(2n+ `+ 6)
〈a(0)
n,`〉 ,

〈a(1)
n,`〉 =

1

2
∂n〈a(0)

n,`γ
(1)
n,`〉 .

(5.73)

5.4 Double-trace degeneracy and leading logs
Notice that in the expressions (5.73) for the anomalous dimensions and
OPE coefficients of the double-trace operators we have kept the average.
This is not by accident. In fact, apart from the n = 0 case, for fixed
n and `, there exists more than one superconformal primary, singlet
under SU(4)R. These degenerate operators, having the same classical

6Here and in the following, we will suppress the prefactor 1+(−1)`

2
and it will be

understood that only even spins are exchanged.
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twist (τ = 4 + 2n), mix among each other at tree level7 and they give
rise to the so-called mixing problem. We can label them with an index
i = 1, . . . , n+ 1

{[O2O2]n,` , [O3O3]n−1,` , . . . , [On+2On+2]0,`} ≡ Kn,`,i . (5.74)

To isolate single operators in the averages, which is essential if we would
like to go beyond tree level and take powers of the anomalous dimensions,
it is necessary to disentangle the various contributions. A solution for
this mixing problem is known at order 1/c and it has been worked out
in a series of papers [33, 35, 110–112] by using correlators of the form
〈OpOpOqOq〉. In particular, it is possible to show

λ2
O2O2K = a

(0)
n,`Rn,`,iAn,i , (5.75a)

Rn,`,i =
(4i+ 2`+ 3)(n+ `+ 6)i−1(i+ `+ 1)

sgn(−i+n+1)
−i+n+1

3 · 4n+1
(
i+ `+ 5

2

)
n+1

(5.75b)

An,i =
(2i+ 2)!n!(−2i+ 2n+ 6)!

(i− 1)!(i+ 1)!(n+ 4)(−i+ n+ 1)!(−i+ n+ 3)!
, (5.75c)

γ
(1)
n,`,i = −(n+ 1)4(n+ `+ 2)4

(`+ 2i− 1)6
, (5.75d)

where (x)k = Γ(x+k)
Γ(x) is the Pochhammer symbol.

Later on, these results have been interpreted as emerging from a hid-
den 10d conformal symmetry [63] such that 10d blocks diagonalize the
mixing problem. Before seeing how this symmetry works and what are its
consequences, we need some preliminary definitions and observations.
The first remark we would like to make is that the numerator of the
anomalous dimensions (5.75d) is proportional to the eigenvalue of the
eight-order Casimir operator ∆(8), we encountered in Sec. 5.2, acting on
N = 4 superblocks8

∆(8) =
zz̄

z − z̄
Dz(Dz − 2)Dz̄(Dz̄ − 2)

[
z − z̄
zz̄

(zz̄)2

]
, (5.76a)

∆(8)G4+2n+`,`(z, z̄) = (n+ 1)4(n+ `+ 2)4G4+2n+`,`(z, z̄) , (5.76b)

with
Dx = x2∂x(1− x)∂x ,

Dxkh(x) = h(h− 1)kh(x) .
(5.77)

The careful reader might object that this is different from the ∆(8)

in (5.39). This apparent contradiction is solved if one considers, instead

7Mixing with higher multi-trace operators would occur only at higher-loop order.
8The same operator can be generalized for generic external dimensions [63].
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of the correlator in (5.38), the charged Lagrangian four-point function
〈LLL̄L̄〉, which is the one where ∆(8) as in (5.76a) naturally acts. To
actually prove that the two definitions, (5.76a) and (5.41), are the same
it is enough to recall that under a 2↔ 3 crossing

Fch
L (z, z̄) = (zz̄)4FL

(
1

z
,

1

z̄

)
,

H̃(z, z̄) = H̃
(

1

z
,

1

z̄

)
.

(5.78)

A hand-wavy explanation of why this version of ∆(8) appears rather
than the other is that in the (12)-OPE of the charged channel the only
exchanged operator is something like Q8Oexc. This means that all the
protected multiplets appearing in O2 ×O2 are killed and we select only
the non-protected operators.

The second ingredient we need to introduce before moving to the main
discussion are ten-dimensional blocks. A generic d-dimensional block, for
equal external dimensions, is defined through the Casimir equation [113](

Dz + (d− 2)
zz̄

z − z̄
(1− z)∂z + z ↔ z̄

)
g

(d)
∆,`(z, z̄) =(

1

2
τ(τ − d) + `2 + (τ − 1)`

)
g

(d)
∆,`(z, z̄) .

(5.79)

In [63], a closed form has been found for 10d conformal blocks at the
unitarity bound (τ = d− 2)

g
(d=10)
`+8,` (z, z̄) = D(3)

z %`(z) +D(3)
z̄ %`(z̄) , (5.80)

where we have defined

D(3)
z =

(
zz̄

z̄ − z

)7

+

(
zz̄

z̄ − z

)6
z2

2
∂z +

(
zz̄

z̄ − z

)5
z3

10
∂2
zz

+

(
zz̄

z̄ − z

)4
z4

120
∂3
zz

2 ,

%`(z) =
120

(`+ 1)3
z`+1

2F1(`+ 1, `+ 4; 2`+ 8; z) .

(5.81)

Now that we have all the ingredients we are ready to see how this hidden
10d symmetry appears and how it greatly simplifies the resolution of
the mixing problem. Details together with other important interesting
applications can be found [63,89], see also [114–118] for generalizations.
Inspired by the similarity between the anomalous dimensions and the
partial-wave coefficients of 2→ 2 scattering of axi-dilatons in flat space
10d IIB supergravity, one can imagine that the theory enjoys a SO(10, 2)
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conformal symmetry. Then the rough idea is that one can define a 10-
dimensional object from which all tree-level correlators are extracted.
As explained in [63], at the disconnected order the object one has to
consider is

G(0)
(d=10)(u, v) = ∆(8)Hfree(u, v) = 144

(
u4 +

u4

v4

)
, (5.82)

which can be expanded in 10d blocks (5.80)

G(0)
(d=10)(z, z̄) =

∑
`=0
` even

ã
(0)
` g

(d=10)
`,`+8 (z, z̄) ,

ã
(0)
` =

8Γ(`+ 4)2

Γ(2`+ 7)
(`+ 1)6 .

(5.83)

At order 1
c , instead,

G(1)
(d=10)(u, v) = −u4D2422 . (5.84)

If now we focus on its log u terms, which are the ones contributing to
the anomalous dimensions, we find, quite incredibly, that they can also
be expanded in the same basis

G(1)
(d=10)(u, v)|log u =

1

2

∑
`=0
` even

ã
(0)
` γ̃

(1)
` g

(d=10)
`,`+8 (z, z̄) ,

γ̃
(1)
` = − 1

(`+ 1)6
,

(5.85)

where the relevant point is that for every spin ` only one block appears.
In this sense, 10d blocks manage to “diagonalize” the mixing problem and
they act somehow as projectors of SO(10, 2) to SO(4, 2)× SO(6). Since
this interpretation gives us a way to solve the mixing problem at tree
level, it allows us to compute all the leading logarithmic terms in (5.61),
since they depend only on this information. Remember that these terms
are of the form

logκ u

2κκ!

∑
n,`,i

un+2a
(0)
n,`,i

(
γ

(1)
n,`,i

)κ
G̃n,`(u, v) , (5.86)

where we have included explicitly the sum over the mixing index i =
1, . . . , n + 1. Now given the result in (5.85), together with the obser-
vation (5.76b) that ∆(8) on a superblock gives the numerator of the
anomalous dimensions, we can reduce all the sums in (5.86) to a simpler
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problem

Hκ|logκ u =
[
∆(8)

]κ−1 ∑
`=0
` even

1

(`+ 1)κ−1
6

ã
(0)
` γ̃

(1)
`

(−2)κκ!
g

(d=10)
`,`+8 (z, z̄)

=
[
∆(8)

]κ−1

·
(
D(3)
z h(κ)(z) + z ↔ z̄

)
.

(5.87)

In Paper I and II we have thoroughly analysed the function

h(κ) =
1

(−2)κκ!

∑
`=0
` even

1

(`+ 1)κ−1
6

960Γ(`+ 1)Γ(`+ 4)

Γ(2`+ 7)
×

z`+1
2F1(`+ 1, `+ 4; 2`+ 8; z) .

(5.88)

By studying explicit examples, we were able to derive the general struc-
ture9

h(κ)(z) = j0(z) + j1(z)H1(z) +

(
j2(z)K2(z) + j2

(
z

z − 1

)
I2(z)

)
+

(
j3

(
z

z − 1

)
K3(z) + j3(z)I3(z)

)
+ · · · (5.89)

+


(
jκ(z)Kκ(z) + jκ

(
z
z−1

)
Iκ(z)

)
for κ even(

jκ

(
z
z−1

)
Kκ(z) + jκ(z)Iκ(z)

)
for κ odd

,

where ji are generic function, In and Kn are iterative integrals defined
as

In(z) =

∫ z

0

dz′

z′(1− z′)(n−1)mod2
In−1(z′) , I1(z) ≡ H1(z) ,

Kn(z) =

∫ z

0

dz′

z′(1− z′)nmod2
Kn−1(z′) , K1(z) ≡ H1(z) .

(5.90)

We have denoted with H...(x) the Harmonic Polylogarithms (HPL) [120–
122]. Notice that from this general expression, we can directly infer that
at every κth-order, the leading logarithmic term H(κ)|logκ u has at most
a log2 v. For the leading (L) and next-to-leading (NL) transcendental
pieces we also found an explicit form for the generic polynomials jn(z)10

9Recently, it has been shown a connection between this form and a particular class
of four-dimensional loop integrals dubbed Zigzag integrals [119].

10We checked that the expression for the highest transcendental polynomial agreed
with the results in [112].
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jL
κ (z) =

43−2κ15

(−15)κκ!

(
10κ − 6 · 5κ + 50

z3
+

3

z4
(5κ − 25) +

30

z5

)
, (5.91a)

jNL
κ−1(z) =

42−2κ5

(−15)κκ!

{12

z
(3 · 5κ − 10κ − 5)− 3

z2
(18 · 5κ + 10− 10κ+1)

+
1

z3
[6 (17 · 5κ + 10κ + 265)− 2κ(39 · 5κ + 2 · 10κ + 685)]

+
3

z4
[(13 · 5κ + 685)κ− 20 (5κ + 43)] +

6

z5
(184− 137κ)

}
.

(5.91b)

For concreteness let us report the results for the first few h(κ)(z)

h(1) = jL
1 (z)H1 +

10
(
z3 + 4z2 − 18z + 12

)
z3

, (5.92a)

h(2) = jL
2 (z)H01 + jL

2

(
z

z − 1

)
(H01 +H11) + jNL

2 (z)H1

+ jNL
2

(
z

z − 1

)
H1 +

(z − 2)

z3

(
235

576
z2 − z + 1

)
, (5.92b)

h(3) = jL
3

(
z

z − 1

)
(H001 +H101) + jL

3 (z) (H001 +H011) + jNL
3 (z)H01

+jNL
3

(
z

z − 1

)
(H01 +H11) +

(z − 1)
(
1258z2 − 2903(z − 1)

)
172800z4

H1

−
(z − 2)

(
217855z2 − 249714(z − 1)

)
12441600z3

. (5.92c)

where the HPLs are evaluated in z.

5.5 From one loop to all loops
Let us go back to the main discussion, namely constructing or at least
constraining the correlator of four O2’s at higher orders in 1

c . We have
seen that dDisc completely fixes the tree-level result, so it makes sense
to ask if this generalises to higher loops. At order 1

c2 , the only contri-
bution to the four-point function comes from the non-protected sector
H(2), which admits the expansion in (5.60). From this explicit form, it is
evident that the only term contributing to dDisc is the leading logarith-
mic term. In fact under crossing, the log2 u gets mapped to log2(1− z̄),
which is the only term with non-vanishing double discontinuity. From
the discussion above, we know that this depends only on the anomalous
dimensions we have unmixed. Therefore we can completely determine it
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from (5.87)

dDisc
[
H(2)(z, z̄)

]
= 4π2u

2

v2

[
∆(8)

(
D(3)
z h(2)(z) + z ↔ z̄

)]
u↔v

,

= Dz(Dz − 2)Dz̄(Dz̄ − 2)H(2)′(z, z̄) .

(5.93)

The precise form of H(2)′(z, z̄) will not be relevant for our discussion
and can be found in [34, Appendix A]. The only important observation
we want to make is that its functional form precisely produces the pole
structure we expect in c(∆, `) at one loop (5.62).
Schematically

H(2)′ ∼ r1(z, z̄) log2 z + r2(z, z̄) log z + r3(z, z̄)

triple
poles

double
poles

simple
poles

a(0)(γ(1))2 a(0)γ(2) + a(1)γ(1) a(2)

To summarise, at one loop the double discontinuity is completely deter-
mined by the leading logarithmic term in H(2), given by (5.87). When
we plug its expression in the inversion integral (5.63), the pole structure
of the result encodes the new OPE data at one loop, namely a(2)

n,` and

γ
(2)
n,` — see also [33,35]. In other words, the tree-level data a(0)

n,` and γ
(1)
n,`,

once unmixed, completely fix the correlator at one loop. Pictorially, this
can be seen in Fig. 5.2.

For the moment, we have just sketched how to get the OPE data at
order 1

c2 . Finding the explicit expression for the full H(2) requires further
non-trivial steps. One can think of constructing it directly from dDisc

O2

O2

O2

O2

=
∑ O2

O2

Op

Op

Op

Op

O2

O2

Figure 5.2. Pictorial representation of the OPE needed to reconstruct the one-
loop result. This picture gives also an intuition of why we need to consider
correlators with different external dimensions to solve the mixing and in order
to take the proper “square” of the anomalous dimensions.
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through a dispersive integral with the methods in [62]. Alternatively,
once fixed the log2 u term, one can complete it to a full crossing sym-
metric function as in [35]. The result can be written in a very suggestive
way [123]

H(2) =
1

u2
∆(8)L(2) +H(1) , (5.94)

where L(2) is an easier function, dubbed “pre-amplitude”.
As we have tried to emphasise in Fig. 5.1 and 5.2, dDisc allows us to

fix the tree-level correlator from the protected single-trace exchanges and
one loop from tree-level data. This generalises to higher orders as well:
in general, the κth correlator can be constructed from the information
at (κ − 1)-loop. This shares lots of similarities with unitarity methods
and reconstructions of amplitude through dispersion relations appearing
in the flat space S-matrix theory. Pushing the analogy, this suggests to
interpret the dDisc of a correlator similarly to the discontinuity of an
amplitude. But CFT correlators are dual to AdS amplitudes, therefore
one can think of dDisc and the Lorentzian inversion formula as the right
way of formulating unitarity in AdS [108, 124, 125]. The analogy can be
made more precise and concrete by studying the results, we have obtained
so far, in the flat space limit and compare them with flat-space 10d
supergravity amplitudes. Starting from the CFT correlator in position
space, flat space physics is probed considering the bulk-point limit [6,
126,127]. Consider sufficiently localized wave-packets in AdS, such that
they focus on a bulk point, whose neighbourhood can be approximated
as flat space. Then one can show that, in this configuration, bulk S-
matrix elements are reproduced by correlators in the boundary CFT
with a prescribed singular behaviour as z approaches z̄. Let us stress
that this type of singularity makes sense only in Lorentzian kinematics,
where z and z̄ are real, independent variables. Therefore an analytic
continuation of the Euclidean correlator to imaginary times is necessary.
The existence and the behaviour of this singularity is the real hallmark
of the existence of a local gravity dual. In [34], the bulk-point limit is
performed directly on the inversion integral. This allowed the authors to
find a precise connection between the large n limit of a specific quantity
in the CFT, where n labels the double-trace spectrum, and the 5d partial
wave coefficients b`(s) of the dual amplitude

lim
n→∞

〈ae−iπγ〉n,`
〈a(0)〉n,`

= b`(s) , R
√
s = 2n . (5.95)

Without entering into details, this relation translates directly to a state-
ment relating the flat space limit of dDisc and the discontinuity of the
graviton amplitude in 10d flat space

lim
x→0

dDisc
[
H(κ)(z	, z̄)

]
↔ discs

[
A10d
κ (s, cos θ)

]
. (5.96)

66



Let us unpack this formula. On the LHS, the bulk-point limit is reached
by taking the analytic continuation z	 (z → ze−2πi) and the limit z → z̄
is parametrized as z = z̄ + 2xz̄

√
1− z̄. Once we have taken the limit,

the final CFT object we obtain is a function of z̄ only. This can now be
interpreted from the amplitude perspective as a function of the Mandel-
stam invariants 1

z̄ = 1 + t
s = 1+cos θ

2 , where θ is the center of mass angle
of the 2 → 2 scattering. A10d

κ is the flat space amplitude of gravitons,
in a specific polarization configuration [111], in type IIB supergravity
at order (8πGN )κ. Recall that the Newton constant is related to the
central charge through 8πGN = π5R8

c . To extract the 5d partial wave
coefficient b`(s), one should simply divide A10d

κ by the S5 volume. The
relation (5.96) has been explicitly checked at one loop in [34]. In Pa-
per II, we explored the consequences of this connection at all loops for
the leading logarithmic term in (5.86). What we found, is that this term
is related no longer to a single discontinuity of the amplitude, but rather
to a multiple s-channel cut. Pictorially, indicating with a dashed red line
a cut,

∑
n,`,i

un+2a
(0)
n,`,i(γ

(1)
n,`,i)

κG̃n,`
bulk-point←−−−−−→

limit
. (5.97)

The κ-rungs ladder diagram is the only contribution to the amplitude,
at (κ − 1)-loop, admitting this type of multiple discontinuities. At one
loop, in particular, this is the sole diagram appearing, hence the perfect
agreement between dDisc and the full discontinuity on the gravity side.
At higher loops, more topologies contribute to the amplitude, as we
will see in more detail below in the two-loop example. Proving the
relation (5.97) at all loops is possible because (5.87) greatly simplifies
in the bulk-point limit — see Paper II. Since we are interested in the
leading singularity as z → z̄, we were able to show that

dDisc
[
(z̄ − z)zz̄H(κ)|logκ u

]
4π2

bulk-pt−−−−→
limit

Γ(8κ− 2)

(2x)8κ−2
logκ−2(1− z̄)

(1− z̄)4κ−1

240z̄4κ−4
κ(κ− 1)

[
h(κ)(1− z	)− h(κ)(1− z̄)

]
z=z̄︸ ︷︷ ︸

g(κ)(z̄)

(5.98)

where we have used (3.15b) and we restricted to the leading log coming
from the double discontinuity. The powers of x are in one-to-one corre-
spondence to powers of n and the correct ones to give the right scaling
dimension for the amplitudes — remember that n ∼

√
s through (5.95).

It is exactly the function g(κ)(z̄) that has to be matched with the multiple
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discontinuity

g(κ)(z̄) ∝ + crossed

∝
∫ κ−1∏

i=1

d10ki
δ(+)(q2

1)δ(+)(q2
2) · · · δ(+)(q2

2κ−2)

q2
2κ−1 · · · q2

3κ−2

≡ Rκ(s, t) ,

(5.99)
where a cut propagator is put on-shell by substituting it with a one-
dimensional delta function δ(+)(p2) and qµi is a specific combination of
external and loop momenta kµi . The integral in (5.99) can be performed
explicitly in a recursive way as

Rκ(s, t) =

∫ t+s
s

0

dv Rκ−1(s,−s(1− v))K+(v, s, t)

+

∫ 1

t+s
s

dv Rκ−1(s,−s(1− v))K−(v, s, t) ,

(5.100)

where K±(v, s, t) = K(v, s, t)|x|=±x is a kernel defined as

K =
πt−3

(s+ t)3

{
s(s+ t− sv)4

∣∣∣∣ ts − v + 1

∣∣∣∣− (s+ t)5 + 5sv(s+ t)4

− 5v4(s+ t)
(
s4 + 8st3 + 6t4

)
+ 10v3(s+ t)2

(
s3 + 2t3

)
(5.101)

− 10s2v2(s+ t)3 + v5
(
20s2t3 + s5 + 30st4 + 12t5

)}
,

where the proportionality factor is just some numbers times power of s,
which can be reintroduced by dimensional analysis. Notice that in estab-
lishing the connection in (5.97), we did not worry about UV divergences.
This is motivated by the fact that the multiple cuts are not divergent.
Whereas if one were to consider the full amplitude, one should take
into account this issue and introduce appropriate counterterms. See [34]
and [119] for an exhaustive discussion of this problem respectively at one
and two loops.

What it is remarkable about this discussion, is that it is possible to
establish a one-to-one correspondence between the leading logarithmic
terms of the correlator, which can be isolated through multiple dDisc,
and a specific object defined on the dual amplitude. Unfortunately, the
information obtained in this way, it is not enough to fully fix the cor-
relator in the same way as it is known that multiple discontinuities can
not reconstruct the full amplitude. On the CFT side, this impossibility
to get the complete answer is rooted in two interconnected facts. First
of all, at 1

cκ , all the OPE data up to order (κ − 1) enter dDisc, so a(0)

and γ(1) are not enough any more. Moreover, starting at order 1
c3 , these
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OPE data start to depend not only on double-trace operators but on
more generic multi-trace ones.

Let us explain this last point in a concrete example, the two-loop
case described in Paper I. We know that the knowledge of the leading
log u term, as in (5.87), does not exhaust dDisc. At order 1

c3 , in fact,
also log2 u contribute. This piece will depend on one-loop OPE data of
double-trace operators, whose complete unmixed form is unfortunately
not known. But this is not enough: one should also consider the appear-
ance of triple-trace operators. In our work, we argued for their presence
by studying the discontinuity of the dual flat space amplitude.11 Let us
go back to the original relation in (5.96). By virtue of this, we argue
that the information needed to construct the two-loop correlator is the
same needed to determine the two-loop supergravity amplitude in ten
dimensions. At two loops this is given by [128]

A10d
3

(8πGN )3s4
= s2

{
p1 p4

p3p2

l1 l2

+

p1 p4

p3p2

l1 l2

(5.102)

+

p1 p4

p3p2

l1 l2

+

p1 p4

p3p2

l1 l2

}
+ crossed ,

and in our work we have explicitly computed the finite part of both
the planar — first line — and non-planar — second line — double box.
The s-discontinuity of this amplitude can be evaluated, for example,
employing Cutkosky rules [129]. The discontinuity in a given channel
is given by the sum over all cuts where the corresponding moment is
flowing. In our example,

discsA10d
3 ∼ + + +

+ + crossed .

(5.103)

This picture gives an intuition of how triple-trace operators enter at
two loops. The first two and the last types of diagrams, where two

11Other diagrammatic arguments in AdS can be found in [108]. Their presence is also
subsidised by the results in [119], where the full two-loop correlator is computed and
analysed.
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propagators are put on-shell, represent two-particle cuts. These can be
interpreted, from the CFT perspective, as the information related to
double-trace operators. Notice that, in these cases, a single cut divides
a diagram in a product of a tree-level times a one-loop diagram. This
agrees with the CFT expectation that one-loop double-trace OPE data
should enter dDisc at order 1

c3 . The remaining diagrams, instead, contain
a three-particle cut. We interpret it as a sign of the appearance of triple-
trace operators in the CFT four-point function.

This example makes it clear the need for information about multi-
trace operators in order to bootstrap four-point functions of half-BPS
operators beyond one loop. Moving away from four-point functions and
allowing for more external operators, these operators will also start to
appear in specific kinematic limits of five- or higher-point correlators.
The need to find new ways to constrain the spectrum of this class of
operators motivated the work in Paper IV. There, we focused on correla-
tors of the quarter-BPS operator O02. As one can see from its definition
in (4.9), this operator is genuinely double-trace at large N . As a conse-
quence, by studying its OPE, one can try to access information about
higher-trace data. In the following section, we will discuss our analysis
in more detail.
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6. Quarter-BPS operators

In Paper IV, we started a systematic study of these quarter-BPS opera-
tors. We developed a technology to deal with the increasing number of
R-symmetry tensor structures and we found a way of employing the un-
derlying chiral algebra to solve the superconformal Ward Identities (SWI)
in the case of less supersymmetric objects. Apart from the proliferation
of the SU(4)R representations, one of the big challenges in dealing with
quarter-BPS operators is the absence of known superconformal blocks.
In the case of four-point functions of half-BPS operators, instead, super-
conformal blocks have been computed and their knowledge allows us to
properly identify superprimary and repack the contribution of the whole
supermultiplet in just one object. This made it possible to solve the SWI
and turned out in the nice decomposition in (5.8) and it allowed finding
the exact form of Hshort. As we will soon see, the situation for correla-
tors involving quarter-BPS operators is going to be more involved and
will eventually leave us with a few unfixed ambiguities. Nonetheless, we
will be able to almost completely fix the protected part in some concrete
examples of correlators involving the easiest quarter-BPS operators, O02

in (4.9). Then, following similar reasoning as in Sec. 5.3.1, in Paper IV
we used the Lorentzian inversion formula to extract the leading order
OPE data in the large N supergravity.

6.1 How to use the chiral algebra
As anticipated before, we will use the chiral algebra of [48,96] to solve the
SWI satisfied by the four-point functions. The chiral algebra describes
the protected subsector of a N = 2 SCFT in four dimensions. Thus,
to apply this description to the N = 4 case, we have, first of all, to
decompose our operators in N = 2 submultiplets. In particular, the
R-symmetry breaking is realized as

SU(4)→ SU(2)R ×U(1)r × SU(2)F . (6.1)

When we apply this decomposition to Opq, we see scalar operators with
U(1)r charge r = 0, SU(2)R charge 2p + q and flavour charge p. These
are rather special operators, dubbed Schur operators, and they belong
to N = 2 half-BPS multiplets. Their presence allows us to exploit the
chiral algebra for solving the WIs.
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We refer to the original references [48, 130, 131] for exhaustive expla-
nations of what the chiral algebra is and how it appears in SCFTs. Here
we simply state the key facts necessary to constrain the four-point cor-
relators under consideration.

Let us call χ the chiral algebra map, such that when applied to a
four-point function of quarter-BPS operators

χ [〈O1O2O3O4〉] = Kf(z, η̃) , (6.2)

where K is a kinematic prefactor and f is a holomorphic function of z
and depends on the N = 2 polarization η̃.1 Importantly f is protected
and thus is completely determined by free theory computation. In the
half-BPS case, it is related to f̂(z).
Now recall that a generic four-point function can be expanded in the
R-symmetry tensor structures as

G(z, z̄,S1, . . . ,S4) =

Nstr∑
k=1

Tk(S1, . . . ,S4)Gk(z, z̄) . (6.3)

Using the chiral algebra map, we can split each Gk in a protected part
and an non-protected piece, Hm, as follows

Gk(z, z̄) = wk(z, z̄) +

Nu∑
m=1

Hm(z, z̄) v
(m)
k (z, z̄) ,

χ

[
Nstr∑
k=1

Tkwk

]
= f (z, η̃) ,

χ

[
Nstr∑
k=1

Tkv(m)
k

]
= 0 , for m = 1, . . . , dim(kerχ) ≡ Nu .

(6.4)

From the definition, this decomposition naturally contains an ambiguity

wk(z, z̄) ∼ wk(z, z̄) +

Nu∑
m=1

Am(z, z̄) v
(m)
k (z, z̄) . (6.5)

In our work, we tried to fix Am as much as possible based on some
reasonable assumptions. We tested this procedure on 〈O2O2O2O2〉 and
then we applied it to 〈O02O02O2O2〉 and to the fourO02’s correlator. Let
us briefly outline our strategy. First of all we determine f starting from
the free-theory results, computed by means of Wick contractions.2 With

1We contract all R-symmetry indices with a complex two-vector ηa and all flavour
indices with another two-vector η̃a

′
. Indices are raised and lowered with the Levi-

Civita tensors εab and εa′b′ .
2Alternatively, f can be computed directly in the 2d theory.
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that, we can specify the functions wk(z, z̄) up to the ambiguities Am.
To fix these, we impose a series of constraints. Firstly, we require the
identity and O2 to be exchanged in the OPE with the right coefficients.
Then we make sure that the disconnected contribution is the same as
the one in the free theory. Finally, the strongest condition comes from
enforcing that the correlator cannot exchange twist-two operators with
spin higher than two, for the same reasons explained in Sec. 5.3, We
showed that for the four-point function ofO2, this procedure is equivalent
to the one described in Sec. 5.3, modulo identifying A = u2Hshort. One
of the main differences, is that in this new approach, we did not need
the form of the superconformal blocks.

6.2 〈O02O02O2O2〉
As an explanatory example, let us report a few details about the easiest
correlator we have considered3

〈O02(x1,S1)O02(x2,S2)O2(x3, y3)O2(x4, y4)〉 = K4422

10∑
k=1

Tk Gk(z, z̄) ,

(6.6)
where the precise form of the R-symmetry tensors can be found in (4.14)
of Paper IV.

In this case, the chiral algebra map has dimension 8, so we have 8
possible ambiguities Am. By imposing the requirement explained above,
we were able to fix them to

A5 = A6 =
A4

λ
=

N2 − 4

(N2 − 1)(κ− 2)
Ã5 −

2(N2 − 3)

(κ− 2)(N2 − 1)
g4,0 , (6.7a)

A7 = − 40

N2 − 1
g2,0 , (6.7b)

where the constant λ parametrizes our inability to fix the twist-four
contributions and the other Am are left unconstrained by our arguments.
The precise form of Ã5 is given by

Ã5(z, z̄) = a(z, z̄) log(1− z̄)− 12 log(1− z) log(1− z̄) + z ↔ z̄ , (6.8)

with

a(z, z̄) =
zz̄

z − z̄

(
â(z) + â

( z

z − 1

))
, â(z) = 12 + z2 . (6.9)

For the crossed channel, namely 〈O2O02O02O2〉, instead, we have not
enough constraints to find a specific form for the ambiguities.

3The correlator 〈O02O2O2O2〉 is protected since it is “next to extremal” [90,132,133].
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Even if the information that we have is only partial, we can play
the game described in Sec. 5.3.1, plug the results in the inversion for-
mula and obtain the OPE data in O2 × O02 by looking at ck(∆, `) of
〈O2O02O02O2〉. By the (1 ↔ 2) crossing, required by the inversion in-
tegral (3.14), the ambiguities (6.7), will enter. Remarkably, only the
identity and twist-two terms in there contribute, so that the final re-
sult does not depend on the unconstrained constant λ. Similarly as
described in the all half-BPS case, we were able to compute the anoma-
lous dimensions by isolating the double-poles in ck(∆, `). Among them,
one ck(∆, `) caught our attention for its simplicity, the one correspond-
ing to the [1, 2, 1] representation. This observation made us speculate,
that perhaps the [1, 2, 1] representation plays for this correlator the same
role as the [0, 4, 0] in 〈O2O2O2O2〉, as explained around (5.10), and it
can be expanded in superconformal blocks, which are written as a single
conformal block, possibly with shifted quantum numbers.4

Besides very concrete examples, in Paper IV we have tried in general
to revive the study of quarter-BPS operators in N = 4 SYM and we have
set the ground for a study of their correlators through analytic bootstrap
techniques. Further improvements would benefit a lot from an explicit
form of the superblocks and from supplementary explicit computations
coming perhaps from higher-point functions. For instance, if the correla-
tor of six O2’s were known, one would be able to extract 〈O02O02O2O2〉
simply by taking two coincident limits of the six-point function.
A parallel line of attack can come from combining position space results
with the study of AdS Mellin amplitude of the dual operators. As we
have seen, quarter-BPS operators are in fact dual to threshold bound
states in AdS. A characterization of multi-particle scattering has been
initiated in [134]. Here the authors find a very peculiar behaviour of
the tree-level Mellin amplitudes suggesting to enlarge the basis of func-
tions, away from the usual D, for the position space four-point functions
involving multi-trace operators — similar evidence has been seen in a
different context in [135].

4Similar reasoning applies to the [4, 0, 4] in 〈O02O02O02O02〉.
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Part III:
Gauge theories in AdS and Supergluons
In this concluding part, we abandon maximal supersymmetry and we
explore holographic theories preserving only eight supercharges. These
four-dimensional N = 2 SCFTs have been recently at the center of in-
vestigation for their connection with gauge theories in AdS. Correla-
tors of four scalar supergluons, gauge analogue of the supergravitons
encountered before, have been computed at tree-level [38], one [136] and
two loops [137] and also their five-point function has been determined
in [138]. Moreover, in Mellin space the four-point function has been
shown to enjoy color-kinematics duality [38,115] and a double copy con-
struction [139], AdS versions of the well-known properties of gauge and
gravity amplitudes in flat space [140,141]. In this Part, based on Paper V,
we will further explore the existence of an AdS double copy in position
space for four-point functions of spinning operators in the N = 2 flavour
current multiplet and we will study their connection to the N = 4 SYM
counterparts in Part II. To derive the correlator of currents, in Ch. 7 we
introduce analytic and harmonic N = 2 superspaces. In this setup, we
will determine the correlator of four superfields by revisiting the results
of [101, 102], derived for N = 4 SYM. In Ch. 8, we consider the super-
gluon four-point function in the holographic limit and we will provide
evidence for the existence of an AdS double copy relating correlator of
currents in N = 2 and stress-tensors in N = 4 SYM. Although com-
puted in supersymmetric theories, these correlators coincide with their
version in bosonic Yang-Mills and Einstein gravity theories. Thus, find-
ing a duality for these spinning components would exactly reproduce the
original works in flat space.





7. Flavour current multiplet in 4d N = 2
SCFTs

In four dimensions N = 2 superconformal field theories preserve half
of the maximum allowed number of supersymmetry. As we have seen
in Sec. 2.1, their symmetry algebra coincides with su(2, 2|2), where the
R-symmetry subalgebra can be further split in

u(2)R ' su(2)R × u(1)r . (7.1)

Shortening conditions and unitarity representations have been studied
and classified in [56,57,142]. In this thesis, we will focus our attention on
a specific multiplet, the one containing the conserved current Jµ of some
global flavour group GF . This corresponds to the half-BPS multiplet
depicted in Fig. 2.1. As expected, the current is the top component, it
transforms as a vector and it is exactly at the unitarity bound (2.8) with
protected dimension ∆ = 3. The corresponding superprimary is a scalar
of protected dimension ∆ = 2, neutral under U(1)r and in the adjoint
of SU(2)R. For the reasons we will explain in Ch. 8, we refer to it as a
supergluon and we will denote it1,2

OI2(x, ξ) = ξa1ξa2O
I;a1a2

2 (x) . (7.2)

The index I = 1, ...,dim(GF ) is the color index in the adjoint represen-
tation of the flavour group and we have contracted the ai SU(2)R indices
with auxiliary (commuting) polarization spinors ξai , implementing the
correct symmetrization properties.
Retracing similar steps as in our discussion for N = 4 SYM, in this
chapter we will study the four-point function of OI2 just imposing the
constraints of superconformal invariance. Then we will proceed by lift-
ing this scalar correlator to its counterpart in superspace and we will see
how to extract the different components. Remarkably, in this way we
will get an explicit expression for the correlator of four flavour currents.

1We use the same notation O2 both for the current superprimary in N = 2 and for
the stress-tensor superprimary in N = 4 SYM. Whenever it is not clear from the
context what we refer to, we will add a superscript gl or gr respectively for N = 2
and N = 4.
2In the literature it is also sometimes called the moment map operator [143].
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7.1 Scalar four-point function
The correlator of four OI2 ’s can be written as

〈OI12 (x1, ξ1) · · · OI42 (x4, ξ4)〉 =
ξ2
12ξ

2
34

(x2
12x

2
34)2
GI1I2I3I4(z, z̄;α) , (7.3)

where ξij ≡ ξai ξbjεab and we have introduced the SU(2)R cross-ratio

α =
ξ13ξ24

ξ12ξ34
, α− 1 =

ξ14ξ23

ξ12ξ34
. (7.4)

Similarly to the N = 4 case, the four-point function satisfies supercon-
formal Ward identities [81, 106] such that the solution looks like

GI1···I4(z, z̄;α) =
(zα− 1)z̄ f̂ I1···I4(z)− (z̄α− 1)z f̂ I1···I4(z̄)

z − z̄
+ (zα− 1)(z̄α− 1)HI1···I4(z, z̄) .

(7.5)

Another alternative decomposition, the one that we will mainly use,
reads

GI1···I4(z, z̄;α) = GI1···I4rational(z, z̄;α) + (zα− 1)(z̄α− 1)H̃I1···I4(z, z̄) .
(7.6)

We identify the rational part GI1···I4rational with [136]

GI1···I4rational = δI1I2δI3I4 + δI1I3δI2I4 α2u2 + δI1I4δI2I3 (1− α)2u
2

v2

+
(C2,2,2)2

3

αu

v

(
(ct−cs)

(1− α)

α
+ (cs−cu)v + (ct−cu)(1− α)u

)
,

(7.7)
where we have introduced the cs,t,u color structures in terms of the f IJK
flavour structure constants

cs = f I1I2JfJI3I4 , ct = f I1I4JfJI2I3 , cu = f I1I3JfJI4I2 , (7.8a)
cs + ct + cu = 0 . (7.8b)

In the expression above, it appears the constant C2,2,2, which can be
expressed in terms of the flavour central charge

C2
2,2,2 =

6

CJ
. (7.9)

Relying on the results of [144], we will see how we can lift (7.7) to a
full N = 2 superspace expression by mimicking the N = 4 construction
of [101,102] and reviewed in Sec. 5.2.
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7.2 Flavour current four-point function in N = 2
superspaces

In this section, we will analyse the half-BPS flavour current multiplet
from the perspective of N = 2 harmonic [59, 145] and analytic super-
space [144] — see also [60] for a review. In this setup, we will derive
the expressions for the supercharges and we will construct the four-point
function of current superfields.

7.2.1 N = 2 Superspaces
Let us start with the construction of the superspace. As we have seen in
Sec. 2.3, the first step is to enlarge the original space by a set of Grass-
mann coordinates. In this case, we have eight new spinor variables θαa
and θ̄aα̇, where the index a transforms respectively under the fundamen-
tal and anti-fundamental representations of SU(2)R. Then we define a
superfield in terms of these new coordinates such that when all the θ and
θ̄ are set to zero we recover (7.2)

J(x, θαa, θ̄
a
α̇, ξ) = ξa1

ξa2
Ja1a2(x, θαa, θ̄

a
α̇) ,

Ja1a2(x, 0, 0) = Oa1a2
2 (x) ,

(7.10)

where we have suppressed the flavour index I to avoid cluttering. Notice
that we have included the polarization ξ among the superfield variables.
Soon this is going to be interpreted as coordinates of the supercoset as
well. In fact, differently from the example done at the end of Sec. 2.3,
when we consider superconformal symmetry in the superspace construc-
tion it is necessary to allow for an additional compact internal manifold in
order to accommodate for the R-symmetry and realize the entire super-
conformal group as the superspace isometries, as we have seen in (5.20).

To impose the shortening condition we should impose that the covari-
ant derivatives (2.14) act on the superfield such that

ξaD
a
αJ(x, θαc, θ̄

c
α̇, ξ) = εbaξaDα̇bJ(x, θαc, θ̄

c
α̇, ξ) = 0 . (7.11)

Similarly to what we have done for a chiral field in N = 1 theories in
Sec. 2.3, we would like to reduce the number and redefine the coordinates
in order to satisfy these constraints automatically. For doing that, we
need to rotate the original Grassmann coordinates to a new basis

θ+
α = u+

a θ
a
α , θ̄+

α̇ = u+aθ̄α̇a ,

θ−α = u−aθαa , θ̄−α̇ = u−a θ̄
a
α̇ ,

zµ = xµ + iθaσµθ̄b(u+
a u
−
b + u+

b u
−
a ) .

(7.12)

Now we would like the differentials constraints in (7.11) to act just as
derivatives with the respect to θ− and θ̄−, so that we can just declare

79



that J does not depend on those θ’s and cut by half the number of
Grassmann coordinates. This is achieved by imposing

ξaD
aθ+ = ξaε

bau+
a

!
= 0 , ⇒ u+

a = ξa , (7.13a)

ξaD
aθ− = ξau

−a !
= 1 , ⇒ u+

a u
−a = 1 (7.13b)

where spinor indices are understood. These conditions together with the
definitions (7.12) guarantee that the analogous barred constraints are
also satisfied and that

ξaD
azµ = 0 = εbaξaDbz

µ . (7.14)

Notice that if we further demand (u+
a )∗ = u−a as a matching condition,

all the constraints can be summarized in a matrix

U =

(
u+

1 u−1
u+

2 u−2

)
∈ SU(2) , detU (7.13b)

= 1 , (7.15)

and this set of coordinates exactly defines the harmonic superspace [59,
145].3
We can verify that under this change of coordinates the covariant deriva-
tives become

Da
α = −u+a ∂

∂θ+α
− 2iu+aσµαα̇ θ̄

−α̇ ∂

∂zµ
+ u−a

∂

∂θ−α
, (7.16a)

Dα̇a = u+
a

∂

∂θ̄+α̇
+ 2iu+

a θ
−ασµαα̇

∂

∂zµ
− u−a

∂

∂θ̄−α̇
, (7.16b)

such that
ξaD

a
α =

∂

∂θ−α
, εbaξaDα̇b =

∂

∂θ̄−α̇
. (7.17)

Finally the shortening conditions (7.11) are trivially realized declaring
that the multiplet depends only on the other half coordinates

J(z, θ+, θ̄+, ξ) ≡ J(z) . (7.18)

An equivalent formulation can be given also in terms of the analytic
superspace [144]. One has to complexify the U matrix and identify the
polarizations as

ξa = u+
a =

(
1
ỹ

)
, u−a =

(
0
1

)
. (7.19)

With harmonic and analytic coordinates at hand, we can derive the
differential representations of the supercharges in terms of that. For this

3Further details and observations supporting this identification can be found in Pa-
per V using the action of the SU(2)R generators on the highest weight state.

80



purpose, we need to determine supersymmetric infinitesimal variations
following the procedure described in Sec. 2.3 with the additional compli-
cation of including the R-symmetry generators. Details can be found in
Paper V, here we simply quote the results in harmonic4

Qaα = −u+a ∂

∂θα
+ 2iu−a θ̄α̇σµαα̇

∂

∂zµ
, (7.20a)

Qα̇a = u+
a

∂

∂θ̄α̇
+ 2iu−a θ

ασµαα̇
∂

∂zµ
, (7.20b)

Sαa = −4u+
a u
−
b θ

α ∂

∂u+
b

+ 2u−a θ
2εαβ

∂

∂θβ
+ iu+

a z̃α̇α
∂

∂θ̄α̇

− 2u−a θ
βσµβα̇z̃α̇α

∂

∂zµ
,

(7.20c)

S
α̇a

= 4u+au−b θ̄
α̇ ∂

∂u+
b

+ iu+az̃α̇α
∂

∂θα
+ 2u−aθ̄2εα̇β̇

∂

∂θ̄β̇

+ 2u−az̃α̇ασµαβ̇ θ̄
β̇ ∂

∂zµ
,

(7.20d)

and analytic superspace, where we define

Q1
α = Q+

α , Q2
α = Q−α , Qα̇1 = Q

−
α̇ , Qα̇2 = −Q+

α̇ ,

Sα1 = Sα− , Sα2 = −Sα+ , S
α̇1

= S
α̇+

, S
α̇2

= S
α̇−

,
(7.21)

Q+
α = −ỹ ∂

∂θα
+ 2iσαα̇θ̄

α̇ ∂

∂zµ
, Q−α =

∂

∂θα
, (7.22a)

Q
+

α̇ = −ỹ ∂

∂θ̄α̇
− 2iθασαα̇

∂

∂zµ
, Q

−
α̇ =

∂

∂θ̄α̇
, (7.22b)

Sα+ = 2θ2 ∂

∂θα
+ 4ỹ θα

∂

∂ỹ
− iỹ z̃α̇α

∂

∂θ̄α̇
+ 2θβσµβα̇z̃α̇α

∂

∂zµ
, (7.22c)

Sα− = −4θα
∂

∂ỹ
+ i z̃α̇α

∂

∂θ̄α̇
, (7.22d)

S
α̇+

= −2 θ̄2 ∂

∂θ̄α̇
+ 4ỹ θ̄α̇

∂

∂ỹ
+ iỹ z̃α̇α

∂

∂θα
+ 2z̃α̇ασµαβ̇ θ̄

β̇ ∂

∂zµ
, (7.22e)

S
α̇−

= −4 θ̄α̇
∂

∂ỹ
− i z̃α̇α ∂

∂θα
. (7.22f)

4In our convention z̃α̇α = σ̄µα̇αzµ and θ2 = θαθα, θ̄2 = θ̄α̇θ̄
α̇.
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7.2.2 Superfield correlators
Let us start defining the “superpropagator”: the superspace version of
the scalar propagator ξij

x2
ij

gij ≡
1

z2
ij

(
ξij − 4i

θ+α
ij (zij)αα̇θ̄

+α̇
ij

z2
ij

)
, (7.23)

with θ+
ij = θ+

i − θ+
j , similarly for θ̄+

ij and ξij = ỹi − ỹj ≡ ỹij . As a
non-trivial consistency check, we can verify that it behaves covariantly
under superconformal transformations

(Q±i +Q±j )gij = (Q
±
i +Q

±
j )gij = 0 ,

(S−i + S−j )gij = (S
−
i + S

−
j )gij = 0 ,

(Sα+
i + Sα+

j )gij = −4(θαi + θαj )gij ,

(S
α̇+

i + S
α̇+

j )gij = 4(θ̄α̇i + θ̄α̇j )gij .

(7.24)

The two-point function of (7.18) can be then simply written in terms of
the superpropagator as

〈JI1(z1)JI2(z2)〉 = δI1I2g2
12 . (7.25)

It reduces to the scalar correlator of two OI2 ’s when we set all the thetas
to zero and can be used to fix the differential operators extracting the
various component of the multiplet as depicted in Fig. 2.1.5 In particular,
if we focus on the last line, we can determine the differential operators
extracting the R-symmetry current

Dk,αα̇ =
1

4
√

3

(
i
∂

∂θ+α
k

∂

∂θ̄+α̇
k

+
∂

∂ỹk
σµαα̇

∂

∂zµk

)
, (7.26)

such that

D1D2 〈JI1(z1)JI2(z2)〉
∣∣
θ+
i =θ̄+

i =0
= −δI1I2 η1x12η̄2η2x12η̄1

(x2
12)4

=
π2

CJ
〈J I1(x1)J I2(x2)〉 ,

(7.27)

where we have defined Di ≡ ηαi η̄α̇i Di,αα̇ and J (xi) ≡ ηαi η̄α̇i Jαα̇(xi), con-
tracting the spinor indices with commuting auxiliary variables. More-

5We explicitly checked that the operators so extracted are conformal primaries and
transform as expected.
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over, we can identify the other two scalar top components

W(x) =
1

8
√

2

∂

∂θ+
α

∂

∂θ+α
J(z)

∣∣
θ+=θ̄+=0

≡ DW J(z) , (7.28a)

W(x) =
1

8
√

2

∂

∂θ̄+α̇

∂

∂θ̄+
α̇

J(z)
∣∣
θ+=θ̄+=0

≡ DW J(z) , (7.28b)

since they are charged under U(1)r, the only non vanishing two-point
function is

DW1 DW2 〈JI1(z1)JI2(z2)〉 =
δI1I2

(x2
12)3

= 〈W(x1)W(x2)〉 (7.29)

To construct the four-point function of current superfields we will
follow closely the procedure adopted for N = 4 SYM and reviewed
in Sec. 5.2. For doing that, it is fundamental the assumption, proved
in [144], that this correlator depends only on one scalar function, which
can be fixed in terms of the superprimaries component. Inspired by the
form (7.6), we write

〈JI1(z1) · · · JI4(z4)〉 = g2
12g

2
34

(
GI1I2I3I4rational + GI1I2I3I4anom

)
,

GI1I2I3I4rational = GI1I2I3I4rational

∣∣∣ ξij
x2
ij
→gij

.
(7.30)

The interesting piece is represented by the anomalous part, for which we
propose an ansatz in terms of the supercharges

GI1I2I3I4anom = (Q−)2(Q+)2(S
−

)2(S
+

)2

[
θ2

1θ
2
2θ

2
3θ

2
4

F (x)

g2
12g

2
34

]
, (7.31)

where x stands for the collection (x1, x2, x3, x4) and the flavour indices
are implicit in F (x). We define

θ2
i = θ+α

i θ+
iα , θ̄2

i = θ̄+
iα̇θ̄

+α̇
i , (7.32a)

(Q±)2 =
(∑4

i=1
Qα±i

)(∑4

i=1
Q±iα

)
, (7.32b)

(S
±

)2 =
(∑4

i=1
S
±
iα̇

)(∑4

i=1
S
α̇±
i

)
. (7.32c)

Written as in (7.31) and in virtue of the nilpotency of the Q and S, it
is evident that this expression is annihilated by half of the supercharges,
but remarkably, it satisfies also the other half of the Ward Identities.
This expression can be further simplified by introducing

S̃α̇ ≡ g2
12g

2
34

(∑
i
S
α̇+

i

)
g−2

12 g
−2
34 =

4∑
i=1

S
α̇+

i − 8 θ̄α̇i , (7.33)
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and (7.31) can be re-expressed as

GI1I2I3I4anom =
1

g2
12g

2
34

(Q+)2S̃2
[
x2

12x
2
13x

2
14Θ(x)F (x)

]
,

Θ(x) =

(
θ13x13

x2
13

− θ12x12

x2
12

)2(
θ14x14

x2
14

− θ12x12

x2
12

)2

.

(7.34)

This expression is much more manageable and in Paper V we were able
to explicitly compute the action of Q+ and S̃. By setting all the θ’s and
θ̄’s to zero, we can fix F (x) in term of the OI2 ’s correlator (7.6)

GI1I2I3I4anom

∣∣∣
θi=0=θ̄i

!
= (zα− 1)(z̄α− 1)H̃I1···I4(z, z̄) , ⇒

F (x) =
1

24

H̃I1···I4(z, z̄)

(x2
12x

2
34)2x2

13x
2
24

.

(7.35)

We can extract other components by applying the differential opera-
tors (7.26) and (7.28). In the next chapter, we will report the form of
the correlators involving the flavour current J . Here we will focus on
four-point functions of W and W. The non-vanishing ones are permuta-
tion of

〈W(x1)W(x2)W(x3)W(x4)〉 = DW1 DW2 DW3 DW4 GI1I2I3I4anom

=
1

(x2
12x

2
34)3
GW(z, z̄) ,

(7.36)

with

GW(u, v) = u3 ∆(2)uv∆(2)u−2H̃(u, v) ≡ ∆(4)H̃(u, v) , (7.37)

and ∆(2) defined in (5.39). Similarly as we have seen for ∆(8) in Part II,
we can express ∆(4) in terms of the Casimir operator (5.40)

GW(z, z̄) =
(zz̄)3

z − z̄
D̂zD̂z̄ (z − z̄)(zz̄)−2H̃(z, z̄) . (7.38)

Equivalently we can study the charged channel

〈W(x1)W(x2)W(x3)W(x4)〉 =
GuW(z, z̄)

(x2
12x

2
34)3

, (7.39)

and write this function in terms of the other Casimir operator in (5.77)

GuW(z, z̄) =
zz̄

z − z̄
DzDz̄ (z − z̄)H̃(z, z̄) . (7.40)

Analogously to our discussion in Sec. 5.4, this second form of ∆(4) can
be used to solve and diagonalize a tree-level “mixing” problem [115], this
time in AdS5 × S3, at strong coupling — see Ch. 8 for details on this
holographic realization — relying on a hidden 8d symmetry [38]. In [137],
these considerations were used to derive all leading logs in a large N loop
expansion in strong analogy with the results in (5.87) and (5.88).
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8. Holographic realizations and hints for an
AdS double-copy

In the previous chapter we have described four-dimensional N = 2
SCFTs quite generally and we have assumed only the existence of an
unspecified flavour group GF . From the holographic perspective, this
flavour group derives from a gauge group in AdS. There exist various
string theory constructions of gauge theories in AdS. Here we are in-
terested in those giving rise to a dual N = 2 SCFT on the boundary,
recently analysed in a series of papers [38,115,136–139] and at the center
of Paper V.

8.1 Supergluons
While we will not enter into the details of holographic constructions
preserving eight supercharges, explicit examples can be found in [146–
148], we will just comment on the common characteristics relevant to
our discussion. In all these cases, the near horizon geometry includes an
AdS5×S3 subspace, where there lives an N = 1 SYM theory with gauge
group GF . When reduced on the 3-sphere, the N = 1 vector multiplet
gives rise to a tower of Kaluza-Klein modes, which belong to half-BPS
N = 2 multiplets. The superprimaries are scalars of the form

OIR(x, ξ, ξ′) = ξa1 · · · ξaR ξ′a′1 · · · ξ
′
a′R−2
OI;a1···aR;a′1···a

′
R−2

R (x) , (8.1)

where as before I is the adjoint flavour index, ai is the SU(2)R R-
symmetry index while a′i is an additional SU(2)L global symmetry in-
dex. These last two groups can be interpreted as the S3 isometries
SO(4) ' SU(2)R×SU(2)L. The dimension of OIR is fixed by symmetries
to be ∆ = R and the superprimary with the lowest possible value is
exactly OI2 in (7.2), which we named supergluon on account of the fact
it contains exactly the conserved current associated to GF .

Importantly in all these models, regardless of their actual realizations,
there is a parameter N such that in the N → ∞ limit the gluon de-
grees of freedom decouple from the graviton ones living in the full bulk
theory. This derives from a hierarchy between the graviton coupling
CT ∼ N2 and the gluon one CJ ∼ N , such that the graviton self-
interaction and the one of two gluons and one graviton are parametri-
cally suppressed [38]. Therefore at tree-level, leading order in 1

N , we are
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left with an effective 8d theory of supergluons in AdS with no dynamical
gravity. In this setup, in Paper V we studied the four-point function of
scalar supergluons and by using the superspace lift in (7.30) and (7.31)
we were able to explicitly compute the four-current correlator.

Let us start from the correlator of the four scalar superprimaries in
Sec. 7.1, which we report here for convenience

〈OI12 O
I2
2 O

I3
2 O

I4
2 〉 =

ξ2
12ξ

2
34

(x2
12x

2
34)2
GI1I2I3I4(z, z̄;α) ,

GI1···I4(z, z̄;α) = GI1···I4rational + (zα− 1)(z̄α− 1)H̃I1···I4gl (z, z̄) .

(8.2)

In the holographic approximation1

H̃gl(z, z̄) ≡ H̃I1I2I3I4gl (z, z̄) =
6

CJ
(csHs + ctHt + cuHu) ,

Hs =
1

3
(zz̄)2

(
D2321 −D3221

)
,

Ht =
1

3
(zz̄)2

(
D2231 −D2321

)
,

Hu =
1

3
(zz̄)2

(
D3221 −D2231

)
,

(8.3)

where the color factors are defined in (7.8a) and the D-functions already
appeared in (5.69). These are defined starting from an integral over
AdS5

D∆1∆2∆3∆4
(x1, x2, x3, x4) =

∫
dz0d

4z

z5
0

4∏
i=1

(
z0

z2
0 + (~z − ~xi)2

)∆i

,

D∆1∆2∆3∆4
(u, v) =

(x2
13)Σ−∆4(x2

24)∆2

(x2
14)Σ−∆1−∆4(x2

34)Σ−∆3−∆4
×

×
2
∏4
i Γ(∆i)

π2Γ(Σ− 2)
D∆1∆2∆3∆4 ,

(8.4)

with Σ = 1
2

∑4
i=1 ∆i. D-functions of higher external dimensions can be

constructed iteratively from lower ones using the very nice property

D···(∆i+1)···(∆j+1)··· =
2− Σ

∆i∆j

∂

∂x2
ij

D···∆i···∆j ··· . (8.5)

8.2 AdS double-copy
It is a fairly well-established fact that flat-space scattering amplitudes of
various QFTs enjoy color-kinematics duality and satisfy a double copy
1We have added the subscript gl to distinguish the gluon correlator and the graviton
one H̃gr = − 4

N2 u
2D2422.
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construction — see [149] for a recent review. Roughly, the duality states
that scattering amplitudes in some gauge theories can be written in such
a way that the kinematic factors satisfy the same algebra as their color
factors, in particular, they satisfy the same Jacobi identities as in (7.8b).
Then substituting, in the gauge amplitude, each color factor by the cor-
responding kinematic one gives a gravity amplitude, schematically real-
izing

(gauge)⊗ (gauge) ∼ gravity. (8.6)

To give a concrete example consider the tree-level four-point amplitude
of gluons in a 4d flat-space Yang-Mills theory with gauge coupling g. In
momentum space, its form can be arranged as

color factors: cs + ct + cu = 0

numerators
ns + nt + nu = 0propagators

iAtree
YM = g2

( csns
s

+
ctnt
t

+
cunu
u

)
(8.7)

Starting from this expression, one can get the graviton amplitude in
Einstein-Hilbert gravity trough

iAtree
YM

∣∣∣cs,t,u→ns,t,u
g→
√

8πGN

= 8πGN

(
n2
s

s
+

n2
t

t
+

n2
u

u

)
= iAtree

EH . (8.8)

The existence of a double copy has led to various important advance-
ments in the amplitude context and has provided a unified framework
where to study gauge and gravity theories. Finding an AdS analogue is
therefore incredibly interesting and it can lead to new important discov-
eries.2 In [139], an AdS double copy has been found in Mellin space for
the four-point functions of scalar superprimaries OI2 in N = 2 and O2

in N = 4 SYM, together with their Kaluza-Klein generalizations, such
that

color ↔ kinematics
N = 2⊗N = 2 N = 4

which reproduces (8.6). In Paper V, we explored the existence of this
connection in position space in an attempt to lift it to the correlators of
four flavour currents and four stress-tensors. Studying the correlators of
the spinning components is paramount if we want to truly test the dou-
ble copy as originally formulated in flat space, namely a duality between
gluon and graviton amplitudes. In fact, even though we will compute
four-point functions in supersymmetric theories, at tree level they coin-
cide with amplitudes in purely bosonic Yang-Mills and Einstein-Hilbert
gravity theories in AdS.

2Related works attempting to define a double copy for AdS scalars are [150–155].
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Table 8.1. Conventions for superfield correlators in N = 2 and N = 4.

N = 2 N = 4

Ganom Q4S4
[
θ2

1θ
2
2θ

2
3θ

2
4

Fgl

g2
12g

2
34

]
Q8S8

[
θ4

1θ
4
2θ

4
3θ

4
4

Fgr

ĝ2
12ĝ

2
34

]
F (x) 1

24

H̃gl(z,z̄)

(x2
12x

2
34)2x2

13x
2
24

H̃gr(z,z̄)

(x2
12x

2
34x

2
13x

2
24)2

H̃ (8.3) −u2D2422

Let us start from the supergluon correlator, for convenience in Tab. 8.1
we have collected all the conventions we have used. In particular the
function Fgl appearing in (7.34) can be rewritten as

Fgl ∝ csNsWs + ctNtWt + cuNsWu , (8.9)

with

Ws = x−2
12 D1122 , Wt = x−2

14 D1221 , Wu = x−2
13 D1212 , (8.10)

exchange Witten diagrams in the s-, t-, u-channels and they can be
interpreted as the analogue of flat space propagators in (8.7). The role
of the numerators instead is played by Ns,t,u, which are written as

Ns = Dt − Du , Nt = Du − Ds , Nu = Ds − Dt , (8.11)

where

Ds =
1

x2
12

∂

∂x2
34

, Dt =
1

x2
14

∂

∂x2
23

, Du =
1

x2
13

∂

∂x2
24

. (8.12)

We can verify that expression (8.9) coincides with the original one in (8.3)
by using the relation (8.5).
Clearly the kinematic numerators satisfy the Jacobi identity

Ns + Nt + Nu = 0 . (8.13)

Now, following the same steps as in the flat space example, we expect
that by replacing cs,t,u with Ns,t,u, we would get the four-point function
of the supergravitons at tree level (5.67) — see Tab. 8.1. However, if we
perform this replacement we get

N2
sWs + N2

tWt + N2
uWu =

9π2

2
Fgr + R , (8.14)
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which, apart from prefactors, is almost the supergraviton correlator ex-
cept for a remainder3

R =
1

(x2
12x

2
34)4

u2(u+ v + uv)

2v2
. (8.15)

We have then found a position space prescription for an AdS double
copy, up to rational terms. Now we want to see what this implies for
the spinning correlators. For doing that, we have to go back to the
expressions obtained from superspace. In the table below we report
the relevant results for correlators involving one, two or four spinning
insertions. For N = 2 theories, the spinning operator we are considering
is the R-symmetry current J ≡ ηαη̄α̇Jαα̇, while in N = 4 SYM we are
focusing on the stress-energy tensor T ≡ ηαi η̄α̇iηβi η̄β̇iTαiβi,α̇iβ̇i .

# spinning insertions N = 2 N = 4

1 ỹ23ỹ34ỹ24 D1Λ1Fgl y23y34y24 D2
1Λ2

1Fgr

2 ỹ2
34 D1D2Λ2Fgl y2

34 D2
1D2

2Λ2
2Fgr

4 D1D2D3D4Λ3Fgl D2
1D2

2D2
3D2

4Λ2
3Fgr

The differential operator Di is defined in (5.37) and we have introduced

Λ1 = (η1x12x23x34x41η1) ,

Λ2 = (η1x13x32η2) (η1x14x42η2) ,

Λ3 = Λ(x, η) in (5.35c) .
(8.16)

Looking at the table above, the first thing that catches the eye is that
the N = 4 expressions differ from the N = 2 ones just for the powers
of Di and Λi. Combine this fact, with (8.9) and (8.14), a trivial double
copy would be satisfied, if we were to have a “squaring” of the form

(D1D2D3D4ΛNs,t,u)
2 ?

= D2
1D2

2D2
3D2

4Λ2N2
s,t,u , (8.17)

and similarly for the correlators with fewer spinning insertions. However,
we are dealing with differential operators and the expression in (8.17)
does not automatically hold since taking the square of an operator means
applying it twice. So differently from the scalar component, it seems that
we can not obtain a double copy simply by substituting cs,t,u with the
new numerators. The better formal way of obtaining it is instead

cs,t,u −→ D2
1D2

2D2
3D2

4 Λ(x, η)2 Ns,t,u (D1D2D3D4 Λ(x, η))−1 , (8.18)

3This result does not contradict the exact double copy found in Mellin space in [139],
because rational crossing symmetric terms as the one appearing in R have a vanishing
Mellin transform.
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in such a way that we obtain 〈T T T T 〉 starting from the current cor-
relators. We do reckon that the expression in (8.18) is formal and it
requires further study to make it explicit, especially given its non-local
form. Since we have access to explicit expressions, though in a specific
polarization configuration, we also tried to construct numerators, whose
squares could give a double copy for the four-point functions listed above.
Unfortunately, we were not able to get a result similar to (8.13) and (8.14)
and we leave this analysis to future work. A good starting point could
be exploring the connections with the recent works [156,157].
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9. Concluding Remarks
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9.1 Outlook and future directions
In this thesis we have reviewed various topics in superconformal field
theories: their connection to quantum gravity, their description in su-
perspace and their analysis through analytic bootstrap techniques. As
we have tried to emphasize in the scheme above, all these different as-
pects are deeply interconnected with one or more degrees of separation.
A fundamental piece of this diagram, which is missing from this thesis,
but it is present in Paper II–V, is Mellin amplitudes. We will make a
few comments regarding them at the end of this section.
Throughout the various chapters, we have spent some time trying to
stress the connection between CFT correlators and flat-space physics
and what we can learn from it. This analogy is yet to be fully explored
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and it would be interesting to further analyse the consequences of uni-
tarity to constrain loop amplitudes in N = 4 SYM. In Part II, we have
seen how iterated s-channel discontinuities are mapped to leading log-
arithmic terms of the correlator of four O2’s. Thus a natural question
to ask is whether there is a way to plug multiple discontinuities in some
generalized dispersive representations such that we can reconstruct at
least part of the full correlator. A good candidate to look at is the corre-
sponding Mellin amplitudes, mentioned above. Here we can hope to use
some of the results known in the amplitudes and S-matrix literature, like
the recent approach proposed in [158]. Instead of looking at flat space,
a complementary approach to bootstrap higher-genus correlators could
be to find inspiration from string theory amplitudes. Recently, great
progress has been made to compute them by combining old-fashioned
methods with insights from modular graph forms and the closed/open
string relations [159–165].
In the two-loop example in Sec. 5.5, we have shown how the triple-trace
cut, interpreted as the contribution from triple-trace operators, enters
the single discontinuity of the flat space amplitude. How does it mani-
fest in the corresponding position space result of [119,166]?
The need for constraining the multi-trace spectrum of N = 4 SYM was
among the motivations for the discussion at the end of Part II. Here we
have studied correlators of quarter-BPS operators and in particular of
O02, a genuinely double-trace operator at leading large N . Given the
presence of Schur-type operators in its N = 2 decomposition, we con-
structed the protected part of four-point functions involving O02 and O2

using the underlying chiral algebra. We mentioned that with this in-
formation we could extract corrections at large N to the averaged OPE
data of operators appearing in O2 × O02 and O02 × O02 by means of
the Lorentzian inversion formula. It would be nice to explore this mixed
correlator system using numerical bootstrap techniques.
Moreover, when studying these correlators, one of the problems we en-
countered is the absence of explicitly known superblocks. Being eigen-
functions of the superconformal group Casimir one could think of em-
ploying a superspace approach to solve this eigenvalue problem.

Finally, in Part III, we have reviewed N = 2 harmonic and analytic
superspace and, in this setup, we have reported explicit results for the
differential representations of the supercharges. We have used them to
construct the four-point function of the flavour current supermultiplet
starting from the correlator of the scalar superprimaries. Then we looked
for the existence of a position space AdS double-copy between the N = 2
current correlators and the stress-tensor ones in N = 4 SYM. The iden-
tification of an “almost” double copy for the bottom scalar component
together with the form of the correlator in superspace strongly suggest
an extension of the squaring (N = 2 ⊗ N = 2) ' N = 4 to spinning
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correlators. Unfortunately, we did not manage to extract a precise dou-
ble copy prescription, so there is room for further investigation. Since
we obtained very explicit results for the spinning correlators in position
space, it will be important to better study their structures, especially in
comparison with their flat space analogue. This can be a promising way
to find the exact form of numerators and denominators and to establish
a precise form for the AdS double copy. Finally, it would be interesting
to generalize our results and especially our superspace analysis to higher
Kaluza Klein modes and perhaps to different dimensions.

9.2 Mellin amplitudes
Mellin amplitudes are defined as integral transforms of position-space
correlators. They were introduced by Mack in [167, 168] and from that
moment on the interest around them saw a very rapid growth, especially
in the holographic context.
The Mellin representation turns out, in fact, to be a very natural lan-
guage to describe CFTs with weakly coupled duals [169] and they are
the closest analogue to a scattering amplitude we can define in AdS.
As evidence for that, four-point Mellin amplitudes are functions of two
variables, which can be identified with the usual Mandelstam s and t.
They have a very nice and clean analytic structure, they enjoy fac-
torization properties in terms of lower-point amplitudes at propagator
poles and it is possible to write diagrammatic rules mimicking Feyn-
man ones [169, 170]. Moreover, some of the simplifications that we
have seen at large N are more evident in Mellin space. For exam-
ple, the statement that only single-trace exchanges should be enough
to reconstruct tree-level correlators is directly incorporated in the Mellin
amplitude definition. In fact, the Mellin integral factorizes in a ratio
of gamma functions times the proper Mellin amplitude. At leading
large N , these gamma functions alone, having poles at the location of
the double-trace dimensions, correctly take into account their contri-
bution, in such a way that the actual Mellin amplitude retains only
poles corresponding to true single-trace exchanges [171]. This prop-
erty has been essential to bootstrap all tree-level Mellin amplitudes in
AdS5×S5 [36,172], in AdS5×S3 [38] and in AdS7×S4 [173] and higher-
point functions [138, 174, 175] in similar setups. Other simplifications
occur in Mellin representations because of their manifest and straight-
forward crossing properties like writing dispersion relations [176,177] or
deriving the original formulation of the AdS double-copy [38,139].
As the last remark, AdS Mellin amplitudes truly reduce to the corre-
sponding flat space counterparts when the Mellin variables are taken to
be large [171] and this is yet another way to take the flat space limit and
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check for consistencies. In this case as well as in our discussion about the
bulk-point limit, we have always considered the flat space limit as the
place where to look for agreement and inspiration. It would be interesting
to reverse this reasoning and perhaps to learn about flat space starting
from AdS and in particular from the well-defined boundary CFT, related
ideas are presented in [13,178].
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Svensk Sammanfattning

En konform fältteori (CFT) är en speciell typ av kvantfältteori (QFT),
som är symmetrisk under konforma transformationer. Det betyder att
teorin inte förändras när vi tillämpar en transformation som bevarar
vinklar. Konforma symmetriska teorier är särskilt invarianta under om-
skalning, så de förändras inte oavsett hur långt eller nära vi tittar på
dem.
CFTs förekommer i olika fysikaliska sammanhang: de beskriver andra
ordningens fasövergångar i statistisk mekanik och kvantkritiska punkter
i kondenserade materians teori. Förutom deras roll i att förklara kritiska
fenomen är CFTs en nyckelingrediens för att förstå och klassificera QFTs.
Faktum är att CFTs kan ses som start och slutpunkten för ett flöde, kal-
lat renormeringsgruppsflöde, som renormeringsgruppsflöde olika QFTs.
Slutligen, via AdS/CFT-korrespondensen ger CFTs en icke-perturbativ
definition av kvantgravitation. AdS/CFT-korrespondensen definierar en
dualitet mellan en gravitationsteori i en krökt Anti de Sitter rum-tid och
en CFT som lever på randen av AdS rum-tiden. Dualiteten är sådan att
fysiken som kodas in i den d+ 1-dimensionella bulken är densamma som
den som beskrivs av den d-dimensionella CFT. Med tanke på att sam-
bandet gäller mellan olika dimensioner kallas dessa teorier holografiska.

Strävan efter en teori för kvantgravitation är ett problem med lång
historia teoretisk fysik. Faktum är att det är svårt att hitta en beskriv-
ning som på samma gång kvantmekaniken och Einsteins allmänna relati-
vitetsteori, av de få passar konsistenta förslagen är strängteorin. Genom
AdS/CFT-korrespondensen kan CFT faktiskt tillhandahålla en ram för
att hantera detta problem. Med tanke på deras rika matematiska struk-
tur och den mycket exakta formuleringen i termer av axiom kan CFTs
representera det rätta sättet att se på observerbara kvantgravitationsob-
jekt. Samtidigt är det viktigt att notera att inte alla CFT är lämpliga
teorier för kvantgravitation. Ändå är det möjligt att visa att teorier med
ett stort antal frihetsgrader och ett stort gap i dimensionen av operatörer
ger en konsekvent, lokal lågenergiteori för gravitation i bulken.
I denna avhandling kommer vi huvudsakligen att fokusera på studiet av
dessa holografiska CFT. Speciellt kommer vi att titta på den supersym-
metriska versionen av konforma teorier, dvs superkonforma fältteorier el-
ler SCFT. Supersymmetri kan förstås som en extra symmetri hos teorin,
vilken är väldigt speciell eftersom det kan relatera bosoner till fermioner,
som är fält med olika statistik. Med tanke på mängden symmetrier som
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dessa teorier besitter, är ett mycket kraftfullt verktyg vi kan använda för
att analysera dem den analytiska konforma “bootstrap”-metoden. Denna
metod är en icke-perturbativ teknik designad för att studera CFTs base-
rade på de principerna: kausalitet, korsningssymmetri och associativitet
för operatorproduktsutvecklingen (OPE). I denna avhandling tillämpar
vi dessa tekniker för att studera fyrapunktsfunktioner i två exempel av
SCFT: N = 4 Super Yang-Mills (SYM), det prototypiska exemplet på
holografisk CFT som är en maximalt supersymmetrisk teori i fyra di-
mensioner, samt en klass av N = 2 teorier.

I Artiklar I and II studerade vi fyrpunktsfunktionen hos de super-
konforma primära operatorerna av stress-tensormultipleten i N = 4
SYM,double till gravitonamplituder i AdS, vid stark koppling och vi
begränsade en del av den. Vi kopplade också våra resultat till intres-
santa egenskaper hos amplituder i platt rymd. I samma sammanhang
analyserar vi i Artikel IV fyrpunktsfunktionen hos en annan typ av ope-
ratorer, kallad kvarts-BPS. Vi fixerade en del av deras korrelatorer med
hjälp av teorins underliggande symmetri och vi tillämpade analytiska
bootstrap-tekniker för att fixera korrigering till dimensionerna och OPE-
koefficienterna för de operatorer som finns i spektrumet. Vi tar ett annat
perspektiv i Artikel V. Här studerade vi fyrpunktsfunktioner hos spin-
noperatorer i N = 2 SCFTs och vi bevisade för ett samband mellan
korrelatorer i dessa teorier och de i N = 4. På detta sätt försökte vi
etablera en form av “AdS dubbelkopia”: Med avstamp av en amplitud i
en gauge teori (N = 2) kan man konstruera spridningsamplituder i en
gravitationsteori (N = 4). Artikel III är en översiktsartikel av analytiska
bootstrap-tekniker för konforma och superkonforma fältteorier och in-
nehåller några av de resultat som tidigare visats i de andra artiklarna.
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