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Abstract: Five-dimensional gauge and gravity theories are known to exhibit striking
properties. D = 5 is the lowest dimension where massive tensor states appear naturally,
providing a testing ground for perturbative insights into six-dimensional tensor theories.
Five-dimensional supergravities are highly constrained and admit elegant geometric and
algebraic formulations, with global symmetries manifest at the Lagrangian level.

In this paper, we take a step towards the systematic investigation of amplitudes in
five dimensions, and present a five-dimensional version of the spinor-helicity formalism,
applicable to massless, massive and supersymmetric states. We give explicit representations
for on-shell spinor and polarization variables such that the little-group symmetry and gauge
redundancy are manifest. Massive self-dual tensor states are discussed in some detail,
as well as all the on-shell supermultiplets that can appear in matter-coupled gauge and
supergravity theories. As a byproduct of considering supersymmetry in the presence of
central charge, we obtain massless ten-dimensional Majorana-Weyl spinors as products of
five-dimensional massive spinors.

We present compact expressions for superamplitudes at multiplicity three and four,
including several novel superamplitudes that either do not straightforwardly uplift to six
dimensions, or have not appeared in the six-dimensional literature. We discuss several
examples of five-dimensional double-copy constructions in the context of gravitational the-
ories with massive vectors and tensors, illustrating that the formalism we construct can
also be used to considerably streamline the double-copy construction of N = 2 Maxwell-
Einstein supergravities.
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1 Introduction

Over the past decades, four-dimensional spinor-helicity variables have been crucial for
streamlining scattering amplitude calculations, uncovering novel structures in gauge the-
ories and gravity. They are a fundamental ingredient of the Parke-Taylor formula for
tree-level MHV amplitudes [1], are closely related to the twistor-space description of ampli-
tudes [2–5], and provide a simple presentation for modern on-shell recursion relations [4, 6].
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The built-in advantage of the spinor-helicity formalism consists in providing a covariant
and dimension-specific solution for the on-shell conditions, leading to simple expressions
for momenta and physical polarization vectors and tensors. In turn, this leads to the obser-
vation that scattering amplitudes become simple once they are written in terms of physical
(i.e. on-shell) quantities.

Spinor-helicity methods have been used most successfully for amplitudes involving four-
dimensional massless states. Detailed extensions of the formalism have been introduced in
three, six and ten dimensions [7–12], as well as for massive fields in four dimensions [13]
(see also refs. [14–22]). While helicity cannot be defined in higher dimensions and for
massive fields, the term higher-dimensional spinor-helicity is commonly used (with a slight
abuse of notation) to refer to the higher-dimensional extension of the 4D spinor-helicity
formalism. The invariant content of the higher-dimensional approach is to properly classify
all variables by both their little-group and Lorentz group representations, and as such
spinor/little-group formalism can be used as a synonym.

Five-dimensional theories are interesting because they populate a special corner of the
parameter space of known theories. On the one hand, all theories in five dimensions can
be dimensionally reduced to four dimensions. This reduction, however, obscures properties
that are indigenous to five dimensions, such as supergravity U-duality symmetries being
symmetries of the action rather than of the equations of motion. On the other hand, not
all five-dimensional theories can be lifted to six dimensions, either because of their field
content, or because of their interactions. Thus, studying effects that depend strongly on
the dimensional regulator, such as rational terms in the amplitudes, may be subtle. It may
be more appropriate to make all variables explicitly five dimensional. In this work, we
tackle the problem of defining natural variables for scattering amplitudes in five spacetime
dimensions, and initiate the study of the 5D spinor-helicity formalism.

Large classes of N = 2 Maxwell-Einstein and Yang-Mills-Einstein supergravities are
naturally formulated in five dimensions [23–30]. Their Lagrangians are considerably sim-
pler than those of their four-dimensional relatives, and yet present a far richer structure
than theories that uplift to higher dimension. While the study of scattering amplitudes
in these theories has been yielding interesting results [31–40] (see also ref. [41] for a com-
prehensive review), until now the analysis relied on using four-dimensional spinor-helicity
methods after dimensional reduction. To streamline and advance the study of amplitudes
in five-dimensional theories, it is therefore desirable to develop tools that are designed
to work directly in five dimensions, bypassing the need for dimensional reduction. Ad-
ditionally, various gaugings of maximal supergravity have been explicitly studied in five
dimensions [42–45], including some very recent results [46–48]. While the application of
amplitude methods to the study of gauged maximal supergravity is still in its infancy [49],
the five-dimensional spinor-helicity methods developed here should provide a valuable tool
for advanced calculations [50].

A central aspect of D = 5 is that it is the lowest dimension where massive anti-
symmetric tensor states and fields can arise, which cannot be dualized to other types
of interacting fields [26–29]. Studying theories with massive tensors in five dimensions
may prove to be crucial for understanding six-dimensional theories with tensors, possibly
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including the famed (2, 0) theory. The study of amplitudes in the (2, 0) theory has so far
presented notable difficulties, for example, due to the lack of suitable three-point amplitudes
that can be used as building blocks [51] (see also refs. [52, 53]).1 In many cases, the study
of amplitudes in five dimensions has required adapting tools and methods developed in six
dimensions. This includes dimensional reduction of the spinor-helicity formalism from six
dimensions [51], techniques based on scattering equations [63, 64], as well as ambitwistor
strings [65, 66].

Venturing away from Minkowski backgrounds, five-dimensional theories are of great
interest from the perspective of the AdS/CFT correspondence [67–69]. In its simplest for-
mulation it relates correlation functions in N = 4 super-Yang-Mills theory to boundary
correlation functions in 5D gauged supergravity given by the reduction of type IIB super-
gravity on a five-sphere [70, 71]. Supergravity fields are then naturally organized with a
split notation in which spacetime indices along the compact directions are related to R-
symmetry indices. The massive 5D spinors with central charge that we will study have a
similar organization, and it is likely that they can be suitably adapted to describe states
in AdS5 × S5 background.

1.1 Summary of results

In section 2, we provide the basic elements of the 5D formalism we are constructing, and
introduce the relevant notation. The starting point are spinors |pa〉A obeying the massless
Dirac equation and carrying an index a for the SU(2) little group. Five-dimensional spinor
indices denoted as A,B transform under USp(2, 2) and can be raised and lowered with
symplectic matrices ΩAB and ΩAB, which can also be used to define the USp(2, 2)-invariant
inner product 〈 · | · 〉. Massless momenta p contracted with a five-dimensional gamma
matrix are then expressed in terms of these spinor as

pAB = |pa〉A|pa〉B . (1.1)

Given a massless spinor |ka〉A, one can define a reference spinor |qa〉A obeying the massless
Dirac equation, as well as 〈ka|qb〉 = εab. Polarizations for massless vectors are written in
terms of the spinors introduced above as

εµab(k, q) =
〈k(a|γµ|qb)〉√

2
, (1.2)

and carry two symmetric SU(2) little-group indices.
For massive states, the little group is SU(2) × SU(2). Given a massless spinor |ka〉A

and the corresponding reference spinor |qa〉A, we define two distinct massive spinors (which
throughout the paper will be denoted with boldface font) transforming under the different
SU(2) factors, |pa〉A = |ka〉A + m|qa〉A and |pȧ]A = |kȧ〉A − m|qȧ〉A. A massive on-shell
momentum in five-dimensions (contracted with the five-dimensional gamma matrices) can
then be written as

pAB = 1
2 |pa〉A|p

a〉B + 1
2 |pȧ]A|p

ȧ]B , (1.3)

1For a different approach for understanding perturbative six-dimensional self-dual tensor theories see
refs. [54–62].
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Supersymmetry N = 2 (1, 0) N = 4 (1, 1) (2, 0)

Vector superfield VN=2
a (3.38) V(1,0)

ȧ (3.50) VN=4 (3.44) V(1,1) (3.59)

Tensor superfield T (1,0)
a (3.52) T (2,0) (3.60)

Hyper superfiel d Φα
N=2 (3.39) Φα̇

(1,0) (3.51)

Graviton superfield HN=2
abc (3.41) H(1,0)

aȧḃ
(3.53) HN=4

ab (3.46) H(1,1)
bḃ

(3.62) H(2,0)
ȧḃ

(3.63)

Table 1. On-shell superfields discussed in the paper for various representation of the supersymme-
try algebra. (r+, r−) denotes the number of chiral and anti-chiral little-group components of the
supercharges, where N = 2(r+ + r−) [72]. Entries of the table refer to the relevant equations in
section 3.

in close similarity with the massless case. Massive spinors can be used to construct massive-
vector and massive-tensor polarizations,

εµaȧ(p) = −〈pa|γ
µ|pȧ]

2
√

2m
, εµνab (p) = 〈pa|γ

µν |pb〉
4
√

2m
, εµν

ȧḃ
(p) = [pȧ|γµν |pḃ]

4
√

2m
. (1.4)

Massive anti-symmetric tensors appear first in five dimensions. Massive self-dual and anti-
self-dual tensor polarizations transform in the (3,1) or (1,3) representations of the little
group, respectively, while massive-vector polarizations transform in the (2,2) represen-
tation. In section 2 we show that the above polarizations obey appropriate complete-
ness relations in little-group indices and in Minkowski space. We also introduce explicit
parametrizations for the massive and massless spinors, which are useful in concrete calcu-
lations.

In section 3, we discuss supersymmetry and study explicitly on-shell superfields, as
summarized in table 1. Massless superfields correspond to massless representation of the
supersymmetry algebra; massive superfields correspond to short massive 1/2-BPS repre-
sentations with central charge. In case of N = 2 supersymmetry, superfields carry free
little group indices. Individual fields can be extracted by looking at the different terms of
the expansion in the Grassmann variables η, using well-established techniques. In this pa-
per, we study explicitly vector, hypermultiplet, tensor and graviton superfields with N = 2
supersymmetry and vector, tensor and graviton superfields with N = 4 supersymmetry.
Double-copy relations between different superfields are discussed. These can also be used
to construct superfields with N = 6, 8 supersymmetry. We furthermore briefly outline the
relation between our 5D superfields and 4D and 6D superfields in section 4.3.

In section 4, we discuss superamplitudes at three and four points for interacting mul-
tiplets, and present some novel expressions. Among our main results, we have formulae for
three-point superamplitudes between N = 2 massless vector multiplets,

AN=2
3 (1V, 2V, 3V) = −i〈Q1|p2|q1〉 〈q2|Q〉〈q3|Q〉+ cyclic(1, 2, 3) . (1.5)

where |Qi〉 are the one-particle supersymmetry generators, |Q〉 = ∑
i |Qi〉, and the un-

derlined spinors are obtained by dressing free SU(2) little-group indices with auxiliary
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variables, e.g. | i 〉 ≡ |kai 〉zia. Amplitudes between two hypermultiplets and one vector
multiplet have the form

AN=2
3 (1Φα̇, 2Φβ̇ , 3V) = i

2ε
α̇β̇〈q3|Q〉〈Q|Q〉 . (1.6)

These amplitudes have their massive counterparts in the three-vector amplitude

A(1,0)
3 (1V, 2V, 3V) = i

24
(m1 −m2)[12][3Q〉

m1m2m3
〈Q|Q〉+ cyclic(1, 2, 3) (1.7)

and in the hyper-hyper-vector amplitude

A(1,0)
3 (1Φα̇, 2Φβ̇ , 3V) = i

εα̇β̇

4m3
[3Q〉〈Q|Q〉 , (1.8)

where the above are supported by the mass conservation condition m1 +m2 +m3 = 0. We
find that N = 2 massive and massless superamplitudes are distinct from the ones obtained
from dimensional reduction from six-dimensions in ref. [51]. In addition to these results,
in section 4, we discuss the following results as applications of our formalism:

• N = 4 superamplitudes between three massless vector multiplets are given in
eqs. (4.30) and (4.35).

• N = 4, (1, 1) superamplitudes between three massive vectors are given in eq. (4.45).

• We discuss three-point amplitudes between (2, 0) tensors and do not find covariant
formulas, consistent with previous results in the literature [51].

• Superamplitudes between three KK-graviton supermultiplets are given for (2, 0),
(1, 1) and (2, 2) supersymmetry in eqs. (4.50), (4.54) and (4.53), respectively.

• Tensor-tensor-graviton superamplitudes in (2, 0) supergravity are given in eq. (4.50).

• Superamplitudes at four points are given in section 4.2.

Finally, in section 5, we discuss theories of gravitationally interacting fields, including
massive tensors, from the point of view of the double-copy construction [73–75]. Among
other things, we obtain compact expressions for amplitudes for Maxwell-Einstein and Yang-
Mills-Einstein theories, recovering previous results in a considerably simpler form. We then
conclude with a discussion of open problems and direction for future investigation.

2 Five-dimensional spinor-helicity formalism

To make the 5D spinor-helicity notation accessible, in this section we spell out the necessary
details, including the explicit parametrization for the frequently-encountered spinors and
polarization vectors and tensors.
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2.1 Five-dimensional on-shell spinors: massless and massive

Working in mostly-minus signature (+ − − − −), we consider the SO(1, 4) → SO(1, 3)
decomposition of a 5D momentum and gamma matrices, pµ = (pµ̄, p4), γµ = (γµ̄, γ4),
respectively. Here 4D indices are barred for clarity, µ̄ = 0, . . ., 3, and what we call γ4 is the
usual γ5 matrix in 4D. Thus, in the Weyl basis, we have

/p ≡ pµγµ =
(
−ip4 p · σ
p · σ̄ ip4

)
, (2.1)

where σµ̄ = (1, σi) and σ̄µ̄ = (1,−σi) are the 4D sigma matrices. Because of the isomor-
phism SO(1, 4) ∼= USp(2, 2), we can lower the upper index on /p and write the 5D momentum
as an antisymmetric 4× 4 matrix,

pAB = pµγ
µ
AB ≡ −pµ(γµ) C

A ΩCB = −(/pΩ)AB . (2.2)

We choose the symplectic metric Ω of USp(2, 2) to be block diagonal,

ΩAB =
(
εαβ 0
0 −εα̇β̇

)
= ΩBA , (2.3)

where A,B are fundamental USp(2, 2) indices decomposed as A = α ⊕ α̇ in terms of the
SL(2,C) indices of the Levi-Civita symbols and sigma matrices σµ̄

αβ̇
, σ̄β̇αµ̄ . We use Ω to

lower and raise indices, according to the left-multiplication convention, e.g.

XA = ΩABXB , XA = ΩABX
B . (2.4)

The two-dimensional Levi-Civita symbol is normalized as ε12 = ε21 = 1, implying that
ΩACΩCB = δ B

A .
The gamma matrices with lowered indices, γµAB = ΩBC(γµ) C

A , are antisymmetric and
Ω-traceless, γµABΩBA = 0. Furthermore, in addition to the Clifford algebra {γµ, γν} = 2ηµν ,
they obey the special 5D identity

(γµ) B
A (γµ) D

C = −2ΩACΩBD + 2δDA δBC − δBAδDC . (2.5)

See appendix A for further details on the gamma matrices.
The determinant of pAB evaluates to Det(pAB) = (1

4pABp
AB)2 = (p2)2. Thus, for

massless 5D momentum, p2 = 0, the matrix pAB has rank two. It can therefore be factorized
over the SU(2) little group using on-shell USp(2, 2) spinors,

pAB = |pa〉A|pa〉B or /pA
B ≡ pAB = |pa〉A〈pa|B , (2.6)

where a, b, . . . are SU(2) little-group indices and the “bra” is defined as 〈pa|B = ΩBA|pa〉A.
Little-group indices can be lowered and raised through left-multiplication, similarly to
eq. (2.4), by the Levi-Civita symbol εab = εba. An explicit parametrization of the massless
USp(2, 2) spinor is

|pa〉A =


p0 + p3 0
p1 + ip2 − ip4

p0+p3

ip4 − p1−ip2
p0+p3

0 1

 , (2.7)

– 6 –



J
H
E
P
0
2
(
2
0
2
3
)
0
4
0

where we have scaled the little-group components to make the spinor entries free of square
roots. Using spinors that are rational functions of the momentum components will greatly
simplify practical calculations. The parametrization (2.7) is such that the contraction of
two USp(2, 2) spinors of the same massless momentum gives a vanishing result,

〈pa|pb〉 ≡ ΩBA|pa〉A|pb〉B = 0 . (2.8)

Eq. (2.8) implies that the spinor satisfies the massless Dirac equation,

pAB|pa〉B = 0 , (2.9)

and hence it is an on-shell spinor.2 Here pAB is obtained by raising the indices in
eqs. (2.1)–(2.2).

We proceed to extend the construction above to massive 5D momenta obeying p2 = m2.
The matrix pAB now has rank 4, so it can be factorized over the massive little group
SO(4) ∼ SU(2)× SU(2). To construct this factorization, we note that we can always split
p into two massless momenta k and q,

pµ = kµ +m2qµ , (2.10)

where qµ is a reference null-vector that satisfies 2p · q = 2k · q = 1, and kµ is defined by
the above relation. Since both k and q are massless, we can reuse for each of them the
parametrization from eq. (2.7). After contracting eq. (2.10) with the gamma matrices, we
get an expression that can be factorized over the SU(2)× SU(2) little group,

pAB = |ka〉A|ka〉B +m2|qa〉A|qa〉B = 1
2 |pa〉A|p

a〉B + 1
2 |pȧ]A|p

ȧ]B , (2.11)

or, alternatively,
p B
A = 1

2 |pa〉A〈p
a|B + 1

2 |pȧ]A[pȧ|B , (2.12)

where we have defined massive spinors

|pa〉A = |ka〉A +m|qa〉A ,
|pȧ]A = |kȧ〉A −m|qȧ〉A . (2.13)

Eqs. (2.11) and (2.12) are the massive counterpart to eq. (2.6), and express a 5D momentum
as a bilinear in the spinor-helicity variables with a sum over the little-group indices. This is
a structure common to spinor-helicity formalisms in various dimensions; indeed eq. (2.12)
could have been postulated as the starting point of the massive formalism; here we justified
it through its relation to the familiar decomposition (2.10) of a massive momentum in terms
of two null vectors.

2Here we treat the on-shell spinor as a function of the momentum following the parametrization in
eq. (2.7). However, if the spinor is used to define the null momentum, then eq. (2.8) becomes a one-
parameter constraint. The presence of this constraint differentiates the 5D spinor-helicity formalism from
its 4D and 6D relatives.
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In eq. (2.13) we assign the indices a and ȧ to run over the left and right factors of
the massive little group SU(2)× SU(2), respectively. For this expression to be consistent,
the a, b indices for the massless spinors need to be taken to belong to the diagonal SU(2)
subgroup of SU(2)×SU(2), so that left and right SU(2) transformations act on the massless
spinors in the same way, and the massless spinors can be written with dotted or undotted
indices.

Let us further spell out the properties of the reference spinor |qa〉A. We will demand
that it is normalized relative to the |ka〉A, to satisfy

〈ka|qb〉 = εab . (2.14)

Indeed, this relation can be solved as

|qa〉 = |q̃b〉〈q̃|k〉−1
bc ε

ac , (2.15)

where |q̃b〉 is an arbitrary massless USp(2, 2) spinor, and 〈q̃|k〉−1
bc is the matrix inverse of

〈kc|q̃b〉. It then follows that qµ = 1
4〈qa|γ

µ|qa〉 = q̃µ/(2q̃ · p). In particular, it implies that
2p · q = 2k · q = 1

2〈k
a|qb〉〈qb|ka〉 = 1 as desired. The constraint (2.14) is stronger than the

momentum constraint 2k · q = 1, as it also imposes an alignment of the little groups of the
k, q vectors. We will assume that this stronger constraint holds throughout the paper.

The constraint in eq. (2.14) implies that the contractions of the two spinors corre-
sponding to a massive momentum are

〈pa|pb〉 = 2mεab , [pȧ|pḃ] = −2mεȧḃ , 〈pa|pḃ] = 0 . (2.16)

It therefore follows that the massive spinors obey the massive Dirac equation,

pAB|pa〉B = −m〈pa|A ,
pAB|pȧ]B = m [pȧ|A . (2.17)

While it is tempting to identify the above spinors with the standard particle u and an-
tiparticle v solutions to the Dirac equation, this is not quite accurate. As shown in the
appendix A, the reality properties of the square and angle spinors are compatible with
them being symplectic-Majorana spinors.

In terms of the pair of massless spinors that satisfy eq. (2.14), the USp(2, 2) identity
operator can be written as

|qa〉A〈ka|B + |ka〉A〈qa|B = δBA , (2.18)

from which the completeness relations of the massive spinors follow,

|pa〉A〈pa|B = p B
A +mδBA ≡ 2m(P+) B

A ,

|pȧ]A[pȧ|B = p B
A −mδBA ≡ 2m(P−) B

A . (2.19)

The projectors satisfy P±P± = ±P± and P±P∓ = 0. The above relations are analogous
to the completeness relations of the standard u and v spinors.

– 8 –



J
H
E
P
0
2
(
2
0
2
3
)
0
4
0

Before ending this section, we note that there exists a reference spinor that is particu-
larly natural to work with. For massless momenta kµ, a convenient parametrization of the
reference spinor is

|qa〉A =


0 0
0 1

k0+k3

1 0
0 0

 . (2.20)

which corresponds to the null vector qµ = 1
2(k0+k3)(1, 0, 0,−1, 0), and the global null vector

q̃µ = (1, 0, 0,−1, 0). However, this spinor cannot be obtained by plugging the momentum
qµ into the parametrization in eq. (2.7), since this gives a singular expression. Indeed, the
above reference spinor is located at infinity in the parametrization (2.7). This choice has
the benefit that inner products are simple,

〈qai |qbj〉 = 0 , 〈kai |qbj〉 =
(

0 1
− k0i+k3i
k0j+k3j

0

)
, (2.21)

where i, j are the particle labels.
Furthermore, with the choice (2.20), the massive-spinor parametrizations simplify con-

siderably. From eq. (2.13) and the identity k0 + k3 = p0 + p3, we obtain the massive spinor

|pa〉A =


p0 + p3 0
p1 + ip2

m−ip4
p0+p3

m+ ip4 − p1−ip2
p0+p3

0 1

 . (2.22)

The spinor |pȧ]A can be obtained by flipping the sign of the mass as |p] = |p〉
∣∣
m→−m. We

will use these massive spinors in the remainder of the paper.
When displaying amplitudes in the following sections, we will find convenient to dress

the free little-group indices with bosonic auxiliary variables za and z̃ȧ. In formulae in which
we do not wish to explicitly display these variables, we will adopt the following short-hand
notation,

| i 〉 ≡ |kai 〉zia , | i 〉 ≡ |pai 〉zia , | i ] ≡ |pȧi ]z̃iȧ , (2.23)

where the index i is the particle label. However, for the reader’s convenience, we will keep
the little-group indices and momentum explicit for the remainder of this section.

2.2 Massless and massive polarization vectors

An advantage of spinor-helicity variables is that they provide convenient parametriza-
tions for general asymptotic states. Here we construct 5D polarization vectors, using the
previously-introduced spinor variables. We start with the polarizations of massless vectors.
The only natural choice is3

εµab(k, q) =
〈k(a|γµ|qb)〉√

2
= −
〈q(a|γµ|kb)〉√

2
. (2.24)

3Upon dimensional reduction, these expressions reproduce the ones from ref. [76] with the identifications
εµ11 → εµ−, ε

µ
22 → εµ+.
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where a, b are the SU(2) little-group indices and the symmetrization is normalized as
A(aBb) = 1

2AaBb + 1
2AbBa. The reference spinor |qb〉 must satisfy eq. (2.14) or, equiv-

alently, eq. (2.15). The massless polarization vector constructed in this way is transverse,
k ·εab(k, q) = q ·εab(k, q) = 0, because |k〉 and |q〉 obey (by construction) the massless Dirac
equation. It also satisfies the following completeness relations:

εµab(k, q)εµ,cd(k, q) = −1
2(εacεbd + εadεbc) ,

εµab(k, q)ε
ν,ab(k, q) = −ηµν + 2k(µqν) . (2.25)

Any massless polarization can be mapped to one written in terms of the reference spinor
given in eq. (2.20) with a gauge transformation.4

Using the massive on-shell spinors we have constructed in the previous section, we can
also construct polarization vectors for massive vectors (W bosons),

εµaȧ(p) = −〈pa|γ
µ|pȧ]

2
√

2m
. (2.26)

By construction, these are transverse as before, p · εaȧ(p) = 0, and span the SO(4) little
group,

εµaȧ(p)εµ,bḃ(p) = −εabεȧḃ . (2.27)

Moreover, they obey the Minkowski-space completeness relation appropriate to vectors
transverse to a massive on-shell momentum,

− εµaȧ(p)εν,aȧ(p) = ηµν − pµpν

m2 ≡ η̃
µν , (2.28)

which is also the massive-vector physical-state projector. We may also construct a linearized
field strength for the massive vector using the spinor. It takes the form

Fµνaȧ = −〈pa|γ
µν |pȧ]

2
√

2
= 2 p[µε

ν]
aȧ , (2.29)

where γµν = 1
2(γµγν − γνγµ) are the rank-2 elements of the Clifford algebra as usual, and

the antisymmetrization includes a factor of 1/2.
In the massless limit, the four on-shell vector states in eq. (2.26) split into three

symmetric and one antisymmetric one with respect to the diagonal little group. The latter
mode is divergent in the massless limit,

m

2 (εµ
aḃ

(p)− εµbȧ(p))
∣∣∣
m→0,ȧ→a,ḃ→b

= − 1√
2
pµεab . (2.30)

The symmetric states reduce to the massless polarization vector in eq. (2.24),

1
2
(
εµ
aḃ

(p) + εµbȧ(p)
)∣∣∣
m→0,ȧ→a,ḃ→b

= εµab(k, q) . (2.31)

4Note that enacting different gauge transformations for the different polarizations does not change
amplitudes and hence does not break the SU(2) little-group symmetry for the asymptotic states.
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The linearized field strength for the massive vector has no mass factor in the denominator,
so it has a smooth massless limit.

In giving explicit representations for amplitudes in 5D, it will be convenient to dress
the little-group indices with (Grassmann-even) auxiliary variables za, z̃ȧ, so that external
states carry dressed polarization vectors in the massless and massive cases,

εµi = εµab(ki, qi)z
a
i z
b
i , εµi = εµ

aḃ
(pi)zai z̃ḃi , (2.32)

where we also introduced particle labels i. An added benefit of this notation is that
the auxiliary variables take care of the symmetrization of the little-group indices for the
massless polarization.

2.3 Tensor polarizations

Five dimensions is the lowest dimension in which theories can exhibit asymptotic states
corresponding to massive (anti)self-dual tensor fields [77],

Bµν = ± i

3!mεµνρσλH
ρσλ , (2.33)

where Hµνρ = ∂[µBνρ] is the field strength of the anti-symmetric tensor Bµν and the 5D
Levi-Civita symbol is normalized as ε01234 = ε01234 = 1. For an on-shell tensor with
p2 = m2 and ∂µBµν = 0, the massive (anti)self-duality relation can also be written as

∂ρHρµν = ∓ im3! εµνρσλH
ρσλ . (2.34)

The variables introduced in previous sections allow us to construct polarization tensors
obeying all the required physical constraints. For a massive self-dual and anti-self-dual
tensors they are

εµνab (p) = 〈pa|γ
µν |pb〉

4
√

2m
, εµν

ȧḃ
(p) = [pȧ|γµν |pḃ]

4
√

2m
, (2.35)

respectively. These polarization tensors are transverse,

pµε
µν
ab (p) = 0 , pµε

µν

ȧḃ
(p) = 0 . (2.36)

They also satisfy the little-group completeness relation for each SU(2) factor of the little
group,

εµν
ȧḃ

(p)εµν,ċḋ(p) = 1
2(εȧċεḃḋ + εȧḋεḃċ) ,

εµνab (p)εµν,cd(p) = 1
2(εacεbd + εadεbc) , (2.37)

as well as the Minkowski-space completeness relation in the space of transverse two-tensors,

εµνab (p)ερσ,ab(p) = 1
4(η̃µρη̃σν − η̃µση̃ρν)− εµνρσλpλ

4m ≡ PSD ,

εµν
ȧḃ

(p)ερσ,ȧḃ(p) = 1
4(η̃µρη̃σν − η̃µση̃ρν) + εµνρσλpλ

4m ≡ PASD . (2.38)
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Here η̃µν is the massive-vector physical-state projector defined in eq. (2.28), and PSD and
PASD are the (anti-)self-dual tensor projectors. The latter satisfy (PSD)2 = PSD, (PASD)2 =
PASD and PSDPASD = 0.

The polarization tensors (2.35) satisfy the momentum-space form of the (anti)self-
duality relations in eq. (2.33),

pρεµνρσλ ε
µν
ab (p) = −2mεσλ,ab(p) ,

pρεµνρσλ ε
µν

ȧḃ
(p) = 2mεσλ,ȧḃ(p) . (2.39)

The polarization tensors in eq. (2.35) can also be obtained from the massive polarization
vectors we have constructed through the relations

εµνab (p) = − 1√
2
ε

[µ
aȧ(p)ε

ν]
bḃ

(p)εȧḃ ,

εµν
ȧḃ

(p) = 1√
2
ε

[µ
aȧ(p)ε

ν]
bḃ

(p)εab . (2.40)

This provides one way of realizing massive tensors in a gravitational theory using the double
copy of massive vectors from a gauge theory.

The massless limit of the polarization tensors (2.35) is singular because of the manifest
factors of m−1; one can however dualize them to polarization vectors which are finite in
the massless limit. For example, the self-dual tensor becomes

εµ
′

ab(k, q) = 2εµνab (p)kρqσεµνρσληλµ
′
∣∣∣
m→0

, (2.41)

where pµ = kµ + m2qµ as before, and the polarization vector is identical to the one in-
troduced in eq. (2.24). For the anti-self-dual tensor εµν

ȧḃ
(p), the same limit holds up to an

overall minus sign. In fact, the self-dual and anti-self-dual tensor can be combined into a
tensor that is finite in the massless limit,

εµνab (k, q) = εµνab (p)− εµν
ȧḃ

(p)
∣∣∣
ȧ,ḃ→a,b;m→0

. (2.42)

This corresponds to the physical state of a massless vector, albeit written as tensor.
Combining the above relations we have the following (non-linear) relation for the mass-

less polarization vector,

εµ
′

ab(k, q) = −
√

2εµac(k, q)ενbd(k, q)εcdkρqσεµνρσληλµ
′
, (2.43)

which is equivalent to the statement that, in 5D, the double copy of two massless vectors
contains a massless vector in its antisymmetric part.

2.4 Conformal generators

In this subsection, we briefly comment on conformal symmetry in five and six dimensions,
and their possible supersymmetric extensions. It is convenient to start in 6D, and infer
details of the 5D case via dimensional reduction.
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The unitary representations of the 6D conformal group SO(6, 2) = SO∗(8) and their
extensions to superconformal algebras OSp(8∗|N ), with even N , using twistorial oscillators
were studied in refs. [78–80]. The generators of SO(6, 2) were realized as bilinears of twisto-
rial oscillators and one finds that the group admits infinitely many representations, referred
to as doubletons, that describe massless conformal fields of ever increasing spins. These
massless conformal fields correspond to symmetric tensors of the spinor representation
of the 6D Lorentz group SU∗(4). For the doubletons, the Poincaré mass operator van-
ishes identically. Similarly, the conformal superalgebras OSp(8∗|N ), with even subalgebras
SO∗(8) ⊕ USp(N ), exist for any even N and admit infinitely-many conformally-massless
unitary supermultiplets of ever increasing spins. In six dimensions, coordinates and mo-
menta can be described by anti-symmetric tensors of twistorial variables in coordinate-space
or momentum-space pictures. The twistorial oscillators formulated in ref. [80] satisfy the
commutation relations

[ξÂa, λ
B̂b] = 1

2δ
B̂
Â
δba , (2.44)

where Â, B̂ = 1, 2, 3, 4 are the spinor representation indices of SU∗(4) and a, b = 1, 2.
Then, the translation Pµ̂ and special-conformal generators Kµ̂ in six dimensions can be
represented as

P ÂB̂ = −1
2(Σµ̂)ÂB̂Pµ̂ = λÂaλB̂bεba , KÂB̂ = −1

2(Σµ̂)ÂB̂Kµ̂ = ξÂaξB̂bε
ba , (2.45)

where Σµ̂ are the anti-symmetric 6D sigma matrices and µ̂, ν̂, . . . = 0, 1, . . . , 5. Under
commutation, they close into the Lorentz group SU∗(4) generators M Â

B̂
and dilatation

generator D.
Under the 5D Lorentz group USp(2, 2), the 6D translation and special conformal gen-

erator decompose as 5 + 1 which corresponds to taking the symplectic traces in the anti-
symmetric tensor representation of SU∗(4),

P ÂB̂ = PAB + 1
4ΩABP , KÂB̂ = KAB + 1

4ΩABK , (2.46)

where as before ΩAB is the USp(2, 2) invariant symplectic metric, and

PAB = P ÂB̂ − 1
4ΩAB P , P = 1

4ΩABP
ÂB̂ = P5 , (2.47)

KAB = KÂB̂ −
1
4ΩABK , K = 1

4ΩABKÂB̂ . (2.48)

The generators PAB and KAB close into the USp(2, 2) generators MA
B and dilatation

generator. Together, they generate the 5D conformal group SO(5, 2). The conformally-
massless representations of SO(6, 2) lead to massive representations of SO(5, 2) under the
above reduction since

P µ̂Pµ̂ = 0 =⇒ PµPµ = (P5)2 = M2 , (2.49)

where M is the mass. Restricting to the massless SO(5, 2) representations is not possible
without modifying the oscillator construction. It follows from general results that confor-
mal groups SO(D, 2) in even dimensions D admit infinitely many unitary representations
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describing massless conformal fields of ever increasing spins, while, in odd dimensions,
one finds only two unitary representations that describe massless conformal fields, namely
scalar and spinor fields [81]. At a deeper level, this follows from the following fact. Mass-
less conformal fields in any dimension [82] are described by the so-called minimal unitary
representations of the conformal group SO(D, 2) and their deformations. A true minimal
unitary representation of SO(D, 2) describes a massless conformal scalar in D dimensions.
This minimal unitary representation admits infinitely many deformations labeled by the
quadratic Casimir of the little group SO(D − 2) of massless particles in even dimensions.
They describe massless conformal fields of ever increasing spins. On the other hand, in
odd dimensions, the minimal unitary representation of the conformal group admits a single
deformation that describes a massless spinor field [82]. Therefore, in five dimensions, only
the scalar and spinor fields can be conformally massless [83]. The so-called two remarkable
representations of the 3D conformal group Sp(4,R) = SO(3, 2) that were first studied by
Dirac and labeled as singletons correspond simply to the minimal unitary representation
and its spinorial deformation.

The minimal unitary representation of the 5D conformal group SO(5, 2) and its defor-
mation as well as their supersymmetric extension were studied in refs. [83, 84]. There exists
a unique simple superconformal algebra in five dimensions, namely the exceptional super-
algebra F (4) with the even subalgebra SO(5, 2)⊕ SU(2) [85]. The minimal unitary super-
multiplet of F (4) consists of two complex scalar fields in the doublet of R-symmetry group
SU(2)R and a symplectic-Majorana spinor, which are both conformally massless [83]. The
superalgebra F (4) is not a subalgebra of any of the 6D superconformal algebras OSp(8∗|N ).

In this paper we will not study the F (4) superalgebra, however we will study the
massive representations that come from 6D superconformal algebra. In particular, the
Poincaré subalgebra of 6D superconformal algebra OSp(8∗|N ) descends directly to N ex-
tended Poincaré superalgebra in 5D with the momentum generator in the fifth spatial
dimension acting as a singlet central charge under the R-symmetry group USp(N ).

3 Supersymmetry

We now consider the Poincaré superalgebras in five dimensions. N -extended Poincaré
superalgebras with central charges have the general form [72]

{QIA, QJB} = ΩIJ (γµ)ABPµ + ΩAB (ZIJ + ZΩIJ) , (3.1)

where the supercharge QIA carries a lower USp(2, 2) Lorentz index and an upper USp(N )
R-symmetry index. The ΩIJ is the symplectic metric of USp(N ), and the central charge is
here decomposed into a singlet Z and non-singlet ZIJ of this group. The non-singlet central
charge ZIJ is antisymmetric and Ω-traceless. Massless representations of the Poincaré
superalgebras have vanishing central charges.

In this section, we discuss in detail the realization of both the massless and massive
cases for (minimal) N = 2 and N = 4 supersymmetry.5 This is sufficient for describing

5In our convention, the number of supercharges is 4N . For massive 1/2-BPS multiplets we use a label
(r+, r−) to denote the number of chiral and anti-chiral little-group components of the supercharges, where
N = 2(r+ + r−) [72].
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super-Yang-Mills amplitudes and theories that have tensor multiplets. For gravitational
theories, which may have up to N = 8 supersymmetry, we will infer the details via the
double copy. All relevant 1/2-BPS on-shell superfields will be given, and their double-copy
relations will be exhibited.

3.1 N = 2 supersymmetry without central charge

The N = 2 Poincaré superalgebra in five dimensions without central charges is given by

{QαA, Q
β
B} = εαβ γµABPµ , (3.2)

where α, β are SU(2) R-symmetry indices and A and B are as before the fundamental
USp(2, 2) indices. The supercharge for a one-particle state of null momentum pµ can be
written as a product of an on-shell spinor, |pa〉A, and Grassmann-odd variables θαa ,

QαA

∣∣∣
1-pt

= |pa〉Aθαa ≡ |qα〉A , (3.3)

where we defined the Grassmann-odd symplectic-Majorana spinor |qα〉A. In term of this
spinor, it follows that θαa = 〈qa|qα〉, where 〈qa| is the usual reference spinor satisfying
〈qa|pb〉 = εab.

As a consequence of (3.2), θαa must satisfy the supersymmetry algebra projected on
the little group,

{θαa , θ
β
b } = −εαβεab . (3.4)

The possible solutions of eq. (3.4) are related by SU(2)× SU(2) transformations,6

θ′αa = E b
a θ

β
b Ẽ

α
β , (3.5)

where DetE = Det Ẽ = 1. For our purpose, it is convenient to choose a solution that
maintains little-group covariance, at the expense of manifest R-symmetry. An explicit
parametrization of θαa that satisfies this algebra is given by the oscillator representation

θαa = (θa)α =
(

ηa
− ∂
∂ηa

)
, (3.6)

where ηa are two unconstrained Grassmann-odd auxiliary parameters, which together
transform as a spinor in the little group and a scalar in the Lorentz group. We may
also assign a U(1) charge of 1/2 to ηa, and charge −1/2 to ∂

∂ηa , which corresponds to the
Cartan generator of the broken SU(2). Thus, the ηa are complex variables.

Having defined the one-particle supercharge, it follows that the multi-particle super-
charge is the sum

QαA =
n∑
i=1
|qαi 〉A , (3.7)

6Naively, the right-hand side of this relation is invariant under two independent SL(2,C) transformations,
one acting on the indices a, b, . . . and one acting on the R-symmetry group indices α, β, . . .. However R-
symmetry group is always compact and the indices a, b, . . . refer to the little-group SU(2) indices inside
SL(2,C).
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where i is the particle label. It is easy to check the full supersymmetry algebra,

{QαA, Q
β
B} =

n∑
i,j=1
{|qαi 〉A, |q

β
j 〉B} =

n∑
i,j=1
|pai 〉A|pbj〉B{θαai, θ

β
bj} = εαβ γµABPµ , (3.8)

where we used that {θαai, θ
β
aj} = −δij εαβεab, since the little group of each particle is inde-

pendent, and the total momentum is defined as Pµ = ∑
i p
µ
i .

3.2 N = 2 supersymmetry with central charge

The N = 2 supersymmetry algebra in 5D admits a singlet central charge,

{QαA, Q
β
B} = εαβ γµABPµ + Zεαβ ΩAB . (3.9)

On dimensional grounds, it is possible to identify the central charge with mass, hence we
rewrite it as

Z = M . (3.10)

We can repeat the construction of the single-particle supercharge as in the massless case
above, while replacing the massless spinor with a massive one. For a one-particle state
of momentum pµ and mass m, we now use a massive spinor to extract the little-group
dependence,

QαA

∣∣∣
1-pt

= |pa〉Aθαa ≡ |qα〉A . (3.11)

This implies that the supercharges can now be chiral in the sense that they only involve
one of the SU(2) factors of the little group SO(4) ∼ SU(2)×SU(2). The fermionic oscillator
algebra is now chiral in the same sense,

{θαa , θ
β
b } = −εαβεab . (3.12)

As before, this relation has a family of solutions parameterized by SU(2)× SU(2); a repre-
sentative, written in terms of an unconstrained Grassmann variable and the corresponding
derivative, is

θαa = (θa)α =
(

ηa
− ∂
∂ηa

)
, (3.13)

where, as in the massless case, we have chosen to break the SU(2) R-symmetry down to
a manifest U(1), while maintaining the SU(2) little-group symmetry. The multi-particle
supersymmetry algebra, whose generators are sums of single-particle supersymmetry gen-
erators, follows straightforwardly,

{QαA, Q
β
B} =

n∑
i,j=1
{|qαi 〉A, |q

β
j 〉B} =

n∑
i,j=1
|pai 〉A|pbj〉B{θαai, θ

β
bj} = εαβ(γµABPµ + ΩABM) .

(3.14)
The last equality follows from eq. (2.19), Pµ = ∑

i p
µ
i and M = ∑

imi.
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3.3 N = 4 supersymmetry without central charge

The massless N = 4 supersymmetry algebra in 5D is

{QȦA, QḂB} = ΩȦḂ γµABPµ , (3.15)

where Ȧ, Ḃ are USp(4) R-symmetry indices.7 As before, the supercharge for a one-particle
state of null momentum pµ can be written by factoring out an on-shell spinor carrying the
Lorentz index,

QȦA

∣∣∣
1-pt

= |pa〉AθȦa ≡ |qȦ〉A , (3.16)

where θαa are Grassmann-odd and satisfy the supersymmetry algebra projected on the little
group,

{θȦa , θḂb } = −ΩȦḂεab . (3.17)

An explicit parametrization of θαa that satisfies the algebra is given by the oscillator repre-
sentation

θȦa = (θa)Ȧ =
(
θ1α
a

θ2α
a

)
with θı̂αa =

(
η̂ı̂a
− ∂
∂η̂aı̂

)
, (3.18)

where we used the SO(2)×SU(2) subgroup of SO(5) by writing the four-component USp(4)
index as a product of two fundamental indices, Ȧ = ı̂ ⊗ α. Alternatively, we can write a
solution that does not break the diagonal SU(2) factor,8

θȦa = (θa)Ȧ = i√
2

(
ηαa + ∂

∂ηaα

ηαa − ∂
∂ηaα

)
. (3.19)

This solution gives the maximal R symmetry that can be realized in amplitudes without
breaking little-group symmetry. The unconstrained Grassmann-odd auxiliary parameters
ηαa have four complex components, making the SU(2) little group and U(1) × SU(2) ⊂
USp(4) R-symmetry subgroup manifest.

Similarly to previous cases, the multi-particle supersymmetry algebra follows by sum-
ming over particle labels i, j,

{QȦA, QḂB} =
n∑

i,j=1
{|qȦi 〉A, |qḂj 〉B} =

n∑
i,j=1
|pai 〉A|pbj〉B{θȦai, θḂbj} = ΩȦḂγµABPµ . (3.20)

3.4 N = 4 supersymmetry with central charge

The massive N = 4 supersymmetry algebra in 5D includes an antisymmetric central charge
ZȦḂ,

{QȦA, QḂB} = ΩȦḂ γµABPµ + ZȦḂ ΩAB . (3.21)
7Since the R-symmetry group USp(4) ∼= SO(5) only differs from the Lorentz group USp(2, 2) ∼= SO(1, 4)

by a signature change, it is convenient recycle the notation by putting dots on all indices. Specifically, we
take ΩȦḂ to be given by eq. (2.3).

8Note that a simpler SU(2)-preserving parametrization of θȦa can be obtained after doing a similarity
transform on ΩȦḂ , but here we work with the block-diagonal symplectic metric (2.3).
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We will first consider the case in which the central charge is a singlet of R-symmetry group
USp(4). Thus, it is of the form

ZȦḂ = M ΩȦḂ , (3.22)

which is a direct extension of the N = 2 case in section 3.2. We will construct a supercharge
which only depend on the massive angle spinor,

QȦA

∣∣∣
1-pt

= |pa〉AθȦa ≡ |qȦ〉A . (3.23)

Thus, in this case, the supersymmetry is chiral, which, in 6D language, corresponds to
(2, 0) supersymmetry.

The Grassmann-odd parameters satisfy the same little-group superalgebra as in the
massless case (3.17),

{θȦa , θḂb } = −ΩȦḂεab . (3.24)

The explicit solution for this algebra is then identical to eq. (3.19). This is not surprising,
since the little-group and R symmetries are identical to the massless case. The full algebra
is then

{QȦA, QḂB} =
n∑

i,j=1
{|qȦi 〉A, |qḂj 〉B} =

n∑
i,j=1
|pai 〉A|pbj〉B{θȦai, θḂbj} = ΩȦḂ(γµABPµ +MΩAB) ,

(3.25)
where the mass term M = ∑

imi comes from the completeness relation in eq. (2.19).
Next, consider the case in which ZȦḂ is not a singlet and, thus, breaks USp(4). We

start with the simplifying assumption that the central charge is proportional to a SO(5)
gamma matrix. For example, taking iΓ9 gives the block-diagonal form

ZȦḂ = iM (Γ9)ȦḂ = M

(
εαβ 0
0 −εα̇β̇

)
. (3.26)

Here we take the SO(5) index to run from 5 to 9, and the internal SO(5) gamma matrices
are simply related to the spacetime ones by a Wick rotation,

Γn
ȦḂ

=
(
−iγ0

AB, γ
µ>0
AB

)∣∣∣
A→Ȧ,B→Ḃ,n=µ+5

. (3.27)

With the central charge pointing in a fixed direction, the R-symmetry is broken to
SO(4) ∼ SU(2) × SU(2), and the supercharges separate into those that transform in each
copy of SU(2),

QȦA →
(
QαA
Q̃α̇A

)
, (3.28)

where, as before, the Greek indices are R-symmetry and the dot distinguishes the left and
right SU(2) factors. For a one-particle state of momentum pµ and mass m, we use the
massive spinors to extract the little-group dependence,

QαA

∣∣∣
1-pt

= |pa〉Aθαa ≡ |qα〉A ,

Q̃α̇A

∣∣∣
1-pt

= |pȧ]Aθ̃α̇ȧ ≡ |qα̇]A . (3.29)
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We are led to two independent oscillator algebras

{θαa , θ
β
b } = −εαβεab , {θ̃α̇ȧ , θ̃

β̇

ḃ
} = −εα̇β̇εȧḃ , {θαa , θ̃

β̇

ḃ
} = 0 , (3.30)

which are solved by

θαa = (θa)α =
(

ηa
− ∂
∂ηa

)
, θ̃α̇ȧ = (θ̃ȧ)α̇ =

(
η̃ȧ
− ∂
∂η̃ȧ

)
, (3.31)

where now we have two sets of complex unconstrained auxiliary Grassmann parameters ηa,
η̃ȧ. They make the little group SU(2) × SU(2) manifest and break the R-symmetry down
to U(1) × U(1) ⊂ SU(2) × SU(2). Note that this is isomorphic to the solution we wrote
down in eq. (3.18).

Now consider the more general case where the central charge is a generic SO(5) vector,9

ZȦḂ = iΓn
ȦḂ
Mn . (3.32)

On general grounds, we expect that we need 10D Majorana-Weyl spinors to construct
single-particle supercharges, and that we should think of a ten-dimensional momentum p[10]

as decomposed as p[10]
N = (pν , µn), where pν = (p0, p1, p2, p3, p4) is SO(1, 4) momentum, and

µn = (µ5, µ6, µ7, µ8, µ9) is SO(5) momentum. For p[10] to be massless, the 5-vectors must
satisfy the constraint p2 −m2 = 0 and µ2 + m2 = 0 (with negative SO(5) signature such
that µ2 < 0). For a generic multi-particle state the mass vector appearing in the central
charge is given as Mn = ∑

j µ
n
j , where j labels the particles.

We can then obtain new spinors by tensoring the 5D massive spinors as

λaα
AȦ
≡ 1√

2m
|pa〉A|µα〉Ȧ and λ̃ȧα̇

AȦ
≡ 1√

2m
|pȧ]A|µα̇]Ȧ , (3.33)

where the SO(5) spinors can be obtained from eq. (2.22) by an appropriate Wick rotation:10

|µ〉 = |p〉
∣∣∣
pj>0→iµj+5

and |µ] = i|p]
∣∣∣
pj>0→iµj+5

. The resulting 10D Majorana-Weyl spinor is
the direct sum of the above spinors, and it has 4 + 4 = 8 degrees of freedom, as is manifest
from inspecting the little-group indices.

The one-particle supercharge can now be written more covariantly as

QȦA

∣∣∣
1-pt

= 1√
2m

(
|pa〉Aθαa 〈µα|Ȧ + |pȧ]Aθ̃α̇ȧ [µα̇|Ȧ

)
≡ |qȦ〉A , (3.34)

9Antisymmetry rules out higher-rank elements of the Clifford algebra in the decomposition of the central
charge. Also, for 1/2-BPS multiplets in super-Yang-Mills theory, the singlet and SO(5)-vector central charge
are mutually exclusive [72].

10The insertion of i’s are chosen such that the completeness relations for the spinors are |µa〉Ȧ〈µa|Ḃ =
iµ Ḃ
Ȧ

+mδḂ
Ȧ

and |µȧ]Ȧ[µȧ|Ḃ = −iµ Ḃ
Ȧ

+mδḂ
Ȧ
.
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where we may now think of |qȦ〉A as either a 5D symplectic-Majorana spinor or a 10D
Majorana-Weyl spinor. The supersymmetry algebra now becomes

{QȦA, QḂB}=
∑
i,j=1
{|qȦi 〉A, |qḂj 〉B}

=
∑
i,j=1

1
2mi

(
|pai 〉A|pbj〉B{θαai, θ

β
bj}〈µαi|

Ȧ〈µβj |Ḃ+|pȧi ]A|pḃj ]B{θ̃α̇ȧi, θ̃
β̇

ḃj
}[µα̇i|Ȧ[µβ̇j |

Ḃ
)

= ΩȦḂγµABPµ + iΩAB(Γn)ȦḂMn , (3.35)

where θαai and θ̃α̇ȧi obey the little-group supersymmetry algebras (3.30) with the same solu-
tion (3.31). Indeed, the two last cases we considered, namely the central charge proportional
to iΓ9 or to a general SO(5) vector, are related to each other by a SO(5) rotation, so it is
not surprising that the little-group details are the same.

Let us briefly explain the appearance of the imaginary unit in front of the mass in the
central charge. If follows from constructing the 10D gamma matrices, they are given by
the following 32-by-32 matrices,

(ΓN ) B
A =

(
0 (ΣN ) BḂ

AȦ

(ΣN ) BḂ
AȦ

0

)
, (3.36)

where the 16-by-16 sigma matrices are (ΣN ) BḂ
AȦ

=
(
(γν) B

A δ Ḃ
Ȧ
, iδ B

A (Γn) Ḃ
Ȧ

)
and

(ΣN ) BḂ
AȦ

=
(
(γν) B

A δ Ḃ
Ȧ
, − iδ B

A (Γn) Ḃ
Ȧ

)
. From this we see that iΓn is the natural ex-

pression appearing in the sigma matrices, and it is ΣN that appears on the final line of
the anti-commutator eq. (3.35). Hence, the supersymmetry algebra can be written more
compactly as,

{QB
Ȧ
, QḂA} = (ΣN ) BḂ

AȦ
P

[10]
N , (3.37)

where P [10]
N = (Pν ,Mn) is the 10D momentum generator.

3.5 On-shell superfields for massless 5D multiplets

The unconstrained Grassmann variables η are the building blocks of the 5D on-shell mul-
tiplets. We list here the on-shell superfields describing massless 1/2-BPS multiplets; the
massive ones will be described in the next subsection. All displayed indices are either SU(2)
little-group indices (Latin), or SU(2) R-symmetry indices (Greek).

The on-shell vector supermultiplet with N = 2 supersymmetry is

VN=2
a = χ1

a +
(
Aab + εab√

2
φ

)
ηb + χ2

a (η)2 , (3.38)

where we have defined the square of the Grassmann variables as (η)2 = 1
2ηaη

a = η1η2. This
superfield contains four bosonic11 (Aab=Aba, φ) and four fermionic χαa degrees of freedom,
the latter are symplectic-Majorana spinors.

11Imposing proper normalization for the scalar gives the
√

2 factor, since εab/
√

2 has unit norm.
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The superfield transforms as a covariant SU(2) little-group spinor, while the SU(2) R-
symmetry of the gaugino χαa is not manifest. This is a consequence of the chosen oscillator
representation of the supersymmetry algebra, which breaks manifest R-symmetry, and thus
realizes linearly only half of the supercharges.12 Only a U(1) remnant of the R-symmetry
remains manifest in the charge carried by the η and the fermions.

The hypermultiplet is a little-group singlet and an R-symmetry doublet,

Φα
N=2 = φ

α + χαaη
a + φ

α(η)2 , (3.39)

and contains four bosonic and four fermionic degrees of freedom. The vector and hyper-
multiplets are related through the double copy involving a fermion χαa ,

VaN=2 = Φα
N=2 ⊗ χaα , (3.40)

where the index contraction is needed to obtain the same number of degrees of freedom as
in eq. (3.38).

The graviton multiplet with N = 2 supersymmetry transforms as a spin-3/2 represen-
tation of the little group,

HN=2
abc = ψ1

abc +
(
habcd + 1√

2
A(abεc)d

)
ηd + ψ2

abc(η)2 , (3.41)

where the tensors with little-group indices a, b, c, . . . are symmetric. The parenthesis denote
total symmetrization of the little-group indices, which includes a 1/n! factor. The multiplet
has eight bosonic and eight fermionic degrees of freedom. ψαabc are the gravitini and the
vector Aab represents the graviphoton.

The above graviton multiplet can be obtained as a double copy of the N = 2 vector
multiplet and a non-supersymmetric vector field,

HN=2
abc = VN=2

(a ⊗Abc) , (3.42)

where the little-group indices are symmetrized. If instead we antisymmetrize a pair of
indices (contracting with εab), we get the axidilaton-vector multiplet

VN=2
c = 1

2ε
abVN=2

a ⊗Abc = χ1
c +

(
Aaxi
cb + εcb√

2
ϕdil

)
ηb + χ2

c (η)2 . (3.43)

Next considering N = 4, we find the maximally-supersymmetric vector multiplet

VN=4 = φ+ χαaη
a
α +Aabη

a
αη

bα + φαβηaαη
a
β + χ̄αaη

a
α(η)2 + φ̄(η)4 , (3.44)

where (η)2 = 1
4η

a
αη

α
a . It contains eight bosonic and eight fermionic degrees of freedom, and

it has manifest SU(2) × U(1) ⊂ USp(4) R-symmetry. The vector multiplet can also be
obtained from two different double copies:

VN=4 = 1
2Φα
N=2 ⊗ Φβ

N=2εαβ = 1
2V
N=2
ȧ ⊗ VN=2

ḃ
εȧḃ . (3.45)

12The choice here is analogous in spirit with the non-chiral 4D superspace of ref. [86].
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The N = 4 graviton multiplet transforms as a little-group vector,

HN=4
ab = Aab +

(
ψαabc + 1√

2
ψα(aεb)c

)
ηcα +

(
habcd + 1√

2
Ã(a(cεb)d) + 1

2εa(cεd)bφ

)
ηcαη

dα

+ηcαηcβA
αβ
ab +

(
ψ̄αabc + 1√

2
ψ̄α(aεb)c

)
ηcα(η)2 + Āab(η)4 , (3.46)

where the six graviphotons are distributed as three singlets and a triplet of the manifest
SU(2) R symmetry. The multiplet has 24 bosonic and 24 fermionic degrees of freedom. It
can be obtained as the double copy of an N = 4 vector and non-supersymmetric vector,

HN=4
ab = VN=4 ⊗Aab , (3.47)

or, alternatively, as the symmetric double copy of two N = 2 vector multiplets:

HN=4
ab = VN=2

(a ⊗ VN=2
b) . (3.48)

The little-group indices are symmetrized, and the single-copy Grassmann variables ηαa =
(ηa, η̃a) form a doublet of the expected manifest SU(2) R symmetry of the double-copy
multiplet.

Finally, the N = 6 and maximal N = 8 supersymmetry graviton multiplets can be
obtained as the double copies

HN=6
a = VN=4 ⊗ VN=2

a , HN=8 = VN=4 ⊗ VN=4 , (3.49)

respectively. It is not difficult to carry out the multiplication and separate the various
monomials in Grassmann variables to identify the component states. We will not write
them out explicitly, but instead note that these multiplets contain 64 + 64 and 128 + 128
bosonic and fermionic states, respectively.

3.6 On-shell superfields for massive 5D multiplets

From the perspective of the little group, 5D massive multiplets and massless 6D multiplets
are the same. We will therefore use the established notation for the latter to also denote
the former.

The 5D massive vector multiplet can also be seen as a 6D chiral (1, 0) multiplet,13

V(1,0)
ȧ = χ1

ȧ +Waȧη
a + χ2

ȧ(η)2 , (3.50)

where the fermions χȧα are symplectic-Majorana spinors. Similarly, the hypermultiplet is

Φα̇
(1,0) = ϕ1α̇ + χα̇aη

a + ϕ2α̇ (η)2 . (3.51)

The above fermions χαȧ and scalars ϕαα̇ are transforming in the SO(4) R-symmetry, but
the realization of the supersymmetry algebra using ηa partially breaks the R-symmetry to
U(1)× SU(2).

13We label the massive supermultiplets in terms of the (r+, r−) SU(2) × SU(2) little-group components
of the supercharge [72].
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An (1, 0) tensor multiplet can be written as

T (1,0)
a = χ1

a +
(
Bab+

εab√
2
ϕ

)
ηb + χ2

a (η)2 , (3.52)

where Bab is a self-dual tensor, and the fermions χαa are symplectic-Majorana spinors of
opposite SO(4) chirality compared to the spinors in the (1, 0) vector multiplet.

A 6D (1, 0) graviton multiplet, and the corresponding massive 5D multiplet, is

H(1,0)
aȧḃ

= ψ1
aȧḃ

+
(
habȧḃ + εab√

2
Bȧḃ

)
ηb + ψ2

aȧḃ
(η)2 . (3.53)

It has 12 bosonic and 12 fermionic states and it is symmetric in the dotted little-group
indices. Bȧḃ is the anti-self-dual gravitensor and ψαaȧḃ are the gravitini. Through the double
copy, we can also write the (1, 0) graviton multiplet as

H(1,0)
aȧḃ

= V(1,0)
ȧ ⊗Waḃ − εȧḃ T

(1,0)
a , (3.54)

where we “subtract” the tensor multiplet following the ghost prescription outlined in
ref. [87]. The subtracted tensor multiplet has its own double-copy decomposition,

T (1,0)
a = 1

2εα̇β̇Φα̇
(1,0) ⊗ χ

β̇
a . (3.55)

The construction (3.54) corresponds to the double-copy realization of pure 6D (1, 0) su-
pergravity via tensor ghosts from ref. [87]. It should be noted that we can also identify
T (1,0)
a = V(1,0)

ȧ ⊗Waḃε
ȧḃ.

It is interesting to contrast the double-copy form of some of the component fields in
eq. (3.54). The gravitensor is

Bȧḃ = 1
2Wa(ȧ ⊗ W̃bḃ) ε

ab , (3.56)

while the “axitensor” contained in the first product and subtracted by T (1,0)
a are

B̃axi
ab = −1

2W(aȧ ⊗ W̃b)ḃ ε
ȧḃ = 1

2χ
α
a ⊗ χbα . (3.57)

The second identification is necessary for the subtraction in eq. (3.54) to remove the “ax-
itensor” together with its partners and yield the (1,0) graviton multiplet.

We turn next to maximal supersymmetry. The (1, 1) vector multiplet (or, equivalently,
the massive 5D N = 4 vector multiplet) is

V(1,1) = ϕ11̇ + χa1̇η
a + χ1ȧη̃

ȧ + ϕ12̇(η̃)2 + ϕ21̇(η)2

+Waȧη
aη̃ȧ + χa2̇η

a(η̃)2 + χ2ȧη̃
ȧ(η)2 + ϕ22̇(η)2(η̃)2 . (3.58)

Introducing the variables ζα =
(
1, (η)2) and ζ̃α̇ =

(
1, (η̃)2), it can also be written more

compactly as
V(1,1) = ϕαα̇ζ

αζ̃α̇ + χaα̇η
aζ̃α̇ + χαȧη̃

ȧζα +Waȧη
aη̃ȧ . (3.59)
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If we assign SO(4) ∼ SU(2) × SU(2) transformations to the ζ, ζ̃ variables, the massive
N = 4 vector multiplet exhibits the complete SO(4) R-symmetry unbroken by the central
charge.

The (2, 0) tensor multiplet can be written as

T (2,0) = φ+ χαaη
a
α +Babη

a
αη

bα + φαβηaαη
a
β + χ̄αaη

a
α(η)2 + φ̄(η)4 , (3.60)

where states exhibit a manifest SU(2) × U(1) ⊂ SO(5) R-symmetry. This multiplet has
exactly the same form as the massless N = 4 vector multiplet, except that the massless
vector Aab is here replaced by a massive self-dual tensor Bab. The (2, 0) tensor multiplet
can be obtained as a double copy in two different ways,

T (2,0) = 1
2Φα̇

(1,0) ⊗ Φβ̇
(1,0)εα̇β̇ = 1

2V
(1,0)
ȧ ⊗ V(1,0)

ḃ
εȧḃ , (3.61)

in terms of two (1, 0) hypermultiplets or two (1, 0) vector multiplets, respectively.
The (1, 1) graviton multiplet can be written as a double copy,

H(1,1)
bḃ

= V(1,1) ⊗Wbḃ = Wαα̇bḃζ
αζ̃α̇ + ψ̃aα̇bḃη

aζ̃α̇ + ψ̃αȧbḃη̃
ȧζα + h̃aȧbḃη

aη̃ȧ , (3.62)

where Wαα̇bḃ are four massive vectors, ψ̃aα̇bḃ = ψaα̇bḃ + εabψα̇ḃ/
√

2 consist of a massive
gravitino and a fermion (similarly for ψ̃αȧbḃ), and h̃aȧbḃ = haȧbḃ+ εabBȧḃ/

√
2 + εȧḃBab/

√
2 +

εabεȧḃφ/2 consists of the graviton together with a tensor and a scalar.
The (2, 0) graviton multiplet can also be obtained as a double copy,

H(2,0)
ȧḃ

= V(1,0)
ȧ ⊗ V(1,0)

ḃ
− εȧḃ T

(2,0) , (3.63)

as the little-group-traceless part of the product of two (1, 0) vector multiplets.
In a similar spirit, (2, 0) non-metric graviton multiplet is a double copy of a (2, 0)

tensor multiplet and another tensor,

H(2,0)
ab = T (2,0) ⊗Bab . (3.64)

The “graviton” habcd is non-metric in the sense that it only has chiral little-group indices
and descends from the field strength of a mixed tensor gauge field and not that of a
symmetric metric tensor in six dimensions. It contains five degrees of freedom (i.e. the
same as the 5D massless graviton).

For 3/4-maximal and maximal supersymmetry, we can obtain massive graviton multi-
plets as various double copies. The most interesting are the following:

H(2,1)
ȧ = V(1,1) ⊗ V(1,0)

ȧ , H(2,2) = V(1,1) ⊗ V(1,1) ,

H(3,0)
a = T (2,0) ⊗ T (1,0)

a , H(4,0) = T (2,0) ⊗ T (2,0) . (3.65)

We will not spell out here the details of the component fields, as they are simply a straight-
forward but tedious exercise of distributing the multiplets over the tensor product and
identifying fields.
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In the massive case, we can also consider gravitino multiplets of Poincaré supergravity.
They appear when supersymmetry is spontaneously broken, and can be obtained from
a double-copy construction. When maximal supersymmetry is partially broken down to
3/4-maximal supersymmetry, the massive 5D gravitino multiplet is of (2, 1) type,

Ψ(2,1)
α̇ = V(1,1) ⊗ Φ(1,0)

α̇ . (3.66)

For 3/4-maximal supersymmetry partially broken down to 1/2-maximal supersymmetry,
the gravitino multiplet is of (1, 1) type

Ψ(1,1)
ȧα = V(1,1) ⊗ χȧα = V(1,0)

ȧ ⊗ Φ(0,1)
α , (3.67)

or (2, 0) type
Ψ(2,0)
ȧα̇ = V(1,0)

ȧ ⊗ Φ(1,0)
α̇ . (3.68)

Finally, for partial breakings that preserve 1/4-maximal supersymmetry, the gravitino mul-
tiplets are of (1, 0) type

Ψ(1,0)
ȧḃα

= V(1,0)
(ȧ ⊗ χḃ)α . (3.69)

4 Five-dimensional amplitudes with vectors and tensors

In our conventions, m-point color-dressed gauge-theory amplitudes are written as

Am = gm−2 ∑
σ∈Sm−2

Am(1, σ(2), · · · , σ(m− 1),m)Tr(T 1T σ(2) · · ·T σ(m−1)Tm) , (4.1)

where Am(1, . . . ,m) are color-ordered partial amplitudes and representation matrices are
chosen to obey Tr(T aT b) = δab and [T a, T b] = f̃abcT c. We use Am(1, . . . ,m) to denote
the corresponding partial superamplitudes. Similarly, we use Mm to denote component
gravitational amplitudes andMm to denote gravitational superamplitudes.

4.1 Three-point amplitudes and superamplitudes

As illustrated in section 2, we dress the SU(2) little-group indices with auxiliary bosonic
variables za, z̃ȧ. To avoid explicitly displaying little-group indices, we use the short-hand
notation introduced in eq. (2.23),

| i 〉 ≡ |kai 〉zia , |qi〉 ≡ |qai 〉zia , | i 〉 ≡ |pai 〉zia , | i ] ≡ |pȧi ]z̃iȧ . (4.2)

For example, in this notation, the massless polarization vector corresponding to the i-th
leg is written as

εµi =
〈 i |γµ|qi〉√

2
, (4.3)

where qi is a reference momentum obeying the condition (2.14), as well as 〈qiqj〉 = 0.
The three-gluon partial amplitude in 5D Yang-Mills theory is given by

A3(1A, 2A, 3A) = i
(
za2〈2aq3b〉zb3

)(
zc3〈3cq2d〉zd2

)(
ze1〈1e2f 〉〈2fq1g〉z

g
1
)

+ cyclic(1, 2, 3) , (4.4)
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where we have chosen to display the little-group indices and to collect little-group singlets
in parenthesis. Using the short-hand notation, this expression can be rewritten in the more
compact form

A3(1A, 2A, 3A) = i〈2q3〉〈3q2〉〈1|k2|q1〉+ cyclic(1, 2, 3) . (4.5)

Three-point partial amplitudes in 5D Yang-Mills theory with massless matter are

A3(1φ, 2φ, 3A) = i〈31a〉〈1aq3〉 = i〈3|k1|q3〉 , (4.6)
A3(1χ2, 2χ1, 3A) = i〈13〉〈q32〉 − (3↔ q3) , (4.7)

A3(1χ2, 2χ1, 3φ) = − i√
2
〈12〉 . (4.8)

These amplitudes can be obtained from the superamplitude

AN=2
3 (1V, 2V, 3V) = −iηa1〈1a|p2|q1〉

( 3∑
i=1

ηbi 〈ibq2〉
)( 3∑

j=1
ηcj〈jcq3〉

)
+ cyclic(1, 2, 3) , (4.9)

by acting with the appropriate Grassmann derivatives corresponding to the desired external
states. More explicitly, the component amplitudes in eqs. (4.5)–(4.8) are

A3(1A, 2A, 3A) = −
(
za1

∂

∂ηa1

)(
zb2

∂

∂ηb2

)(
zc3

∂

∂ηc3

)
AN=2

3 (1V, 2V, 3V) , (4.10)

A3(1φ, 2φ, 3A) = −
(
εab√

2
∂

∂ηa1

∂

∂zb1

)(
εcd√

2
∂

∂ηc2

∂

∂zd2

)(
ze3

∂

∂ηe3

)
AN=2

3 (1V, 2V, 3V), (4.11)

A3(1χ2, 2χ1, 3A) =
(
∂

∂η2
1

∂

∂η1
1

)(
zc3

∂

∂ηc3

)
AN=2

3 (1V, 2V, 3V) , (4.12)

A3(1χ2, 2χ1, 3φ) =
(
∂

∂η2
1

∂

∂η1
1

)(
εcd√

2
∂

∂ηc3

∂

∂zd3

)
AN=2

3 (1V, 2V, 3V) , (4.13)

where the operators corresponding to each leg have been constructed so that they extract
the components of the corresponding on-shell superfields with the correct normalization.

The superamplitude (4.9) can also be rewritten in terms of the supercharges |Q〉 =∑
i |Qi〉 = ∑

i |ia〉ηia as

AN=2
3 (1V, 2V, 3V) = −i〈Q1|p2|q1〉 〈q2|Q〉〈q3|Q〉+ cyclic(1, 2, 3) . (4.14)

Note that this object is totally symmetric under permutations. This is appropriate given
the fermionic nature of the superfields since the color factor (which has been stripped off)
is totally antisymmetric. In a similar way, we can write down the superamplitude between
two massless hypermultiplets and one vector multiplet in 5D N = 2 super-Yang-Mills
theory. It has an even simpler expression,

AN=2
3 (1Φα̇, 2Φβ̇ , 3V) = i

2ε
α̇β̇〈q3|Q〉〈Q|Q〉 . (4.15)
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Moving to the massive case, it is instructive to first consider three-point amplitudes
between two massive spinors and a massless vector. With a chiral spinor χ and an anti-
chiral spinor χ̃, we have the following candidate amplitudes:

A(1χ, 2χ, 3A) = −i
√

2〈1|ε3|2〉 = i〈13〉〈q32〉 − (3↔ q3) , (4.16)
A(1χ̃, 2χ̃, 3A) = −i

√
2[1|ε3|2] = i[13〉〈q32]− (3↔ q3) , (4.17)

A(1χ, 2χ̃, 3A) ?= −i
√

2〈1|ε3|2] = i〈13〉〈q32]− (3↔ q3) . (4.18)

Taking the two masses to have opposite sign, i.e. m1 = m = −m2, one can check that the
third candidate amplitude A(1χ, 2χ̃, 3A) is not gauge invariant. For ε3 → p3 this amplitude
does not vanish, unlike the other two, and hence it must vanish identically. This implies
that χ and χ̃ are not related by CPT symmetry, and hence massive 5D theories have a
notion of chirality that is preserved by the interactions, similar to 6D massless theories.

We also give the component amplitude between two massive and one massless vectors,
which has the following expression:

A3(1W, 2W, 3A) = − i

4m2

{(
[23〉〈q32〉 − (3↔ q3)

)
[1|k3|1〉 (4.19)

+ 1
2
(
〈12〉[12]− 〈12][12〉)〈3|p1|q3〉

}
− (1↔ 2) .

It corresponds to the partial amplitude in Yang-Mills theory with spontaneously-broken
gauge symmetry (hence the W -boson label) or, alternatively, to a Kaluza-Klein Yang-Mills
theory.

If we have three massive vector bosons, the spontaneously-broken 5D Yang-Mills am-
plitude can be cast in the following form,14

A3(1W, 2W, 3W ) = i

4m2m3
[12]〈23〉[31〉 ± perms(1, 2, 3) , (4.20)

where the permutations run over the dihedral group S3 with negative sign for odd permu-
tations. The amplitude we give here is only supported on the mass conservation relation,

m1 +m2 +m3 = 0 . (4.21)

It can be derived from the superamplitude of 5D half-maximal super-Yang-Mills theory on
the Coulomb branch,

A(1,0)
3 (1V, 2V, 3V) = i

24
(m1 −m2)[12][3Q〉

m1m2m3
〈Q|Q〉+ cyclic(1, 2, 3) , (4.22)

which is invariant under chiral (1,0) supersymmetry, provided that the mass conservation
condition in eq. (4.21) is obeyed. The bilinears in the chiral and anti-chiral supercharges
can be written more explicitly as

〈Q|Q〉 =
3∑

i,j=1
ηai 〈iajb〉ηbj , [Q̃|Q̃] =

3∑
i,j=1

η̃ȧi [iȧjḃ]η̃
ḃ
j . (4.23)

14Note that the identity (m1 −m3)[12]〈23〉[31〉 ± perms = 0 can be used to rewrite the amplitude.
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The (1,0) superamplitude for two massive hypermultiplets and a massive Coulomb-
branch vector multiplet in 5D super-Yang-Mills theory is

A(1,0)
3 (1Φα̇, 2Φβ̇ , 3V) = i

εα̇β̇

4m3
[3Q〉〈Q|Q〉 , (4.24)

where we have again assumed mass conservation.
Moving to the case of massless N = 4 supersymmetry, we find no straightforward

generalization of the superamplitude (4.9). To explore other possible forms, let us turn
to the known 6D construction of three-point amplitudes [7, 8], and adapt it to 5D. We
begin by noticing that, with massless three-point kinematics, all the 2-by-2 matrices 〈iajb〉
have rank one, and hence have no inverses. Instead one can decompose them into SU(2)
little-group spinors uai as

〈1a2b〉 = ua1u
b
2, 〈2a1b〉 = −ub1ua2, (4.25)

〈2a3b〉 = ua2u
b
3, 〈3a2b〉 = −ub2ua3, (4.26)

〈3a1b〉 = ua3u
b
1, 〈1a3b〉 = −ub3ua1 . (4.27)

All uai variables are uniquely determined, up to an overall sign, by this system.
There exist corresponding reference spinors wai that satisfy

uaiw
b
i − ubiwai = εab (no sum over i) (4.28)

and that can be further constrained by
3∑
i=1
|ia〉wai = 0 . (4.29)

With these constraints, wai are not unique, but the remaining two degrees of freedom will
cancel out once the amplitude is assembled [8]. Note that the uai and wai variables only
exists for on-shell three-point kinematics, which has degenerate and complex momenta.

With the above variables, the massless three-point superamplitude in 5D N = 4 super-
Yang-Mills theory can be written as

AN=4
3 (1V, 2V, 3V) = i

4δ
2(∑

i

ηαiaw
a
i

) ∏
α=1,2

〈Qα|Qα〉 , (4.30)

where |Qα〉 = ∑
i |Qαi 〉 = ∑

i |ia〉ηαia is the supercharge. Note that one cannot write down a
delta function of all the eight supercharges as this object vanishes for three-point kinemat-
ics.15 Nevertheless, is possible to verify that the above superamplitude is invariant under
all supersymmetry generators.

So far, we have only given implicit definitions for the uai and wai spinors, but we can do
a bit better. Given that our spinor parametrization |ia〉 is linear in momentum in the first
little-group component a = 1, we have via momentum conservation the convenient relation

3∑
i=1
|i1〉 = 0 . (4.31)

15The spinors |Qαi 〉, with i = 1, 2, 3, span a three-dimensional subspace of USp(2, 2) and δ8(Q) has the
interpretation as the square of the corresponding four-volume, hence it vanishes.
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This implies that 〈1121〉 = 〈2131〉 = 〈3111〉 ≡ r2, which then gives the unique solution for
the uai spinors,

ua1 = 1
r
〈1a21〉 , ua2 = 1

r
〈2a31〉 , ua3 = 1

r
〈3a11〉 . (4.32)

One can easily confirm that uai ubj gives by construction three correct entries of the corre-
sponding 2-by-2 matrix ±〈iajb〉, and by the reduced rank it then follows that the forth
entry (a = b = 2) is also correct. Our choice of parametrization also gives a simple solution
for the wai spinors,

wai = wa = 1
r

(0, 1) . (4.33)

With this choice, eq. (4.29) follows from eq. (4.31), while u[a
i w

b] = εab follows from the fact
that all little-group spinors have the same first entry u1

i = r.
We may further simplify the construction by noticing that, for any choice of the wai

variables, one can find a corresponding global reference spinor 〈ρ| such that

wai = 〈ρ|ia〉 . (4.34)

Thus, we can write also the last delta function in eq. (4.30) in terms of the supercharge,

AN=4
3 (1V, 2V, 3V) = i

4
∏
α=1,2

〈ρ|Qα〉〈Qα|Qα〉 = i

36
∏
α=1,2

det
(
|Qα〉, |Qα〉, |Qα〉, |ρ〉

)
. (4.35)

Because the last formula is a 4-by-4 determinant, there exists a three-fold family of |ρ〉
spinors that gives the same amplitude. For the choice of wai = 1

r (0, 1), we find that the
global reference spinor can be chosen simply as

〈ρ| = 1
r

(0, 0, 0, 1) . (4.36)

Generalization to the massive case follows even more closely the 6D case [8]. Three
point kinematics implies that

det〈iajb〉 = mimj = det[iȧj ḃ] , det〈iaj ȧ] = 0 . (4.37)

One can define the little-group spinors

〈1a2ḃ] = ua1ũ
ḃ
2, 〈2a1ḃ] = −ua2ũḃ1 , (4.38)

〈2a3ḃ] = ua2ũ
ḃ
3, 〈3a2ḃ] = −ua3ũḃ2 , (4.39)

〈3a1ḃ] = ua3ũ
ḃ
1, 〈1a3ḃ] = −ua1ũḃ3 , (4.40)

with corresponding reference spinors wai and w̃ḃi that satisfy

uaiw
b
i − ubiwai = εab (no sum over i) , (4.41)

ũȧi w̃
ḃ
i − ũḃi w̃ȧi = εȧḃ (no sum over i) , (4.42)
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with the additional constraints∑
i

|i〉awai = 0 ,
∑
i

|i]ḃw̃
ḃ
i = 0 . (4.43)

With our parametrization of the massive spinors, an explicit solution is

uai = 1
r
〈iaj1] , ũȧi = 1

r
[iȧj1〉 , wai = 1

r
(0, 1) = w̃ȧi , (4.44)

where j = i+ 1 Mod 3, and r2 = 〈1121] = 〈2131] = 〈3111].
The three-point massive (1, 1) superamplitude in maximal 5D super-Yang-Mills on the

Coulomb branch is then the direct generalization of eq. (4.30),16

A(1,1)
3 (1V, 2V, 3V) = i

4δ
(∑

i

ηiaw
a
i

)
δ
(∑

i

η̃iȧw̃
ȧ
i

)
〈Q|Q〉[Q̃|Q̃]

= i

36det
(
|Q〉, |Q〉, |Q〉, |ρ〉

)
det
(
|Q̃], |Q̃], |Q̃], |ρ]

)
, (4.45)

where the global reference spinors satisfy 〈ρ|ia〉 = wai and [ρ|iȧ] = w̃ȧi , which for our
simple choice can be obtained by 〈ρ| = [ρ| = 1

r (0, 0, 0, 1). Again, we have imposed mass
conservation.

It is interesting to note that, from the simple factorized form of the massive (1, 1)
superamplitude, one may attempt to write down a massive (2, 0) superamplitude for non-
abelian self-dual tensor multiplets (interpreted as a Kaluza-Klein reduction of a 6D (2, 0)
tensor theory). The naive guess is

A(2,0)
3 (1T , 2T , 3T ) ?= i

4
∏
α=1,2

〈ρ|Qα〉〈Qα|Qα〉 = i

36
∏
α=1,2

det
(
|Qα〉, |Qα〉, |Qα〉, |ρ〉

)
, (4.46)

which superficially looks indistinguishable from the massless N = 4 superamplitude. How-
ever, we do not find any covariant expressions (in terms of momenta and tensor polar-
izations) that match the corresponding candidate non-abelian three-tensor component
amplitude

A3(1Bab, 2Bcd, 3Bef ) ?= i det
(
|1(a〉, |2(c〉, |3(e〉, |ρ〉

)
det
(
|1b)〉, |2d)〉, |3f)〉, |ρ〉

)
, (4.47)

nor for the corresponding candidate scalar-tensor component amplitude

A3(1φ, 2φ, 3Bab) ?= iua3u
b
3 = i

√
2m3ε

ab
3,µν

[11|γµν |21]
[1121] . (4.48)

The fact that we do not find covariant formulas is consistent with the three-point-amplitude
analysis of ref. [51], and indicate that these are not well-behaved amplitudes. In the
next subsection the corresponding four-tensor amplitude will be analyzed with the same
conclusion.

16Recall the vector amplitude from ref. [8], (ua1ub2wc3 + cyclic(1, 2, 3))(ũȧ1 ũḃ2w̃ċ3 + cyclic(1, 2, 3)), may be
obtained from eq. (4.45) using the identities 〈1a2b〉 = ua1u

b
2−2m2w

a
1u

b
2 +2m1u

a
1w

b
2 and 〈1a2b〉wc3−ua1ub2wc3 +

cyclic(1, 2, 3) = 0.
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The three-graviton superamplitude in massive 5D Kaluza-Klein (2,0) supergravity is
given by the double copy

M(2,0)
3 (1H, 2H, 3H) = −iA(1,0)

3 (1V, 2V, 3V)A(1,0)
3 (1V, 2V, 3V) (4.49)

= i

36det
(
|1], |2], |3], |ρ]

)2 ∏
α=1,2

det
(
|Qα〉, |Qα〉, |Qα〉, |ρ〉

)
.

Likewise, there exist a well-behaved massive abelian tensor-graviton superamplitude in the
Kaluza-Klein (2,0) supergravity theory

M(2,0)
3 (1T , 2T , 3Hȧḃ) = −iA(1,0)

3 (1V ċ, 2V ḋ, 3V ȧ)A(1,0)
3 (1Vċ, 2Vḋ, 3V

ḃ)

= i

36det
(
|1ċ], |2ḋ], |3ȧ], |ρ]

)
det
(
|1ċ], |2ḋ], |3

ḃ], |ρ]
) ∏
α=1,2

det
(
|Qα〉, |Qα〉, |Qα〉, |ρ〉

)
= − i

18 ũ
ȧ
3ũ

ḃ
3
∏
α=1,2

det
(
|Qα〉, |Qα〉, |Qα〉, |ρ〉

)
. (4.50)

Note the same tensor amplitude can be obtained as the double copy of (1, 0) super-
Yang-Mills amplitudes with massive half-hyper multiplets and a Coulomb-branch vector,

M(2,0)
3 (1T , 2T , 3Hȧḃ) = −iA(1,0)

3 (1Φ, 2Φ, 3V ȧ)A(1,0)
3 (1Φ, 2Φ, 3V ḃ) , (4.51)

and the equivalence of the two double copies follow from the kinematic identities

ũȧ3ũ
ḃ
3 = −1

2det
(
|1ċ], |2ḋ], |3ȧ], |ρ]

)
det
(
|1ċ], |2ḋ], |3

ḃ], |ρ]
)

= −1
4det

(
|1ċ], |1ċ], |3ȧ], |ρ]

)
det
(
|2ḋ], |2

ḋ], |3ḃ], |ρ]
)

ũȧ3 = 1
2det

(
|1ċ], |1ċ], |3ȧ], |ρ]

)
= −1

2det
(
|2ḋ], |2

ḋ], |3ȧ], |ρ]
)
, (4.52)

where, as before, mass conservation is assumed. The above equivalence agrees with the
fact that the different tensors can be embedded into the (2, 2) gravitational theory where
they are related by R-symmetry.

The three-graviton superamplitude in massive Kaluza-Klein (2,2) supergravity is

M(2,2)
3 (1H, 2H, 3H) = −iA(1,1)

3 (1V, 2V, 3V)A(1,1)
3 (1V, 2V, 3V) (4.53)

= i

362

∏
α=1,2

det
(
|Qα〉, |Qα〉, |Qα〉, |ρ〉

) ∏
α̇=1,2

det
(
|Q̃α̇], |Q̃α̇], |Q̃α̇], |ρ]

)
,

and similarly in (1,1) supergravity

M(1,1)
3 (1H, 2H, 3H) = −iA(1,0)

3 (1V, 2V, 3V)A(0,1)
3 (1V, 2V, 3V)

= i

36det
(
|1〉, |2〉, |3〉, |ρ〉

)
det
(
|Q〉, |Q〉, |Q〉, |ρ〉

)
(4.54)

×det
(
|1], |2], |3], |ρ]

)
det
(
|Q̃], |Q̃], |Q̃], |ρ]

)
,

where we assumed that both massive amplitudes originate from massless 6D kinematics via
Kaluza-Klein compactification. All the massive amplitudes given above can equivalently
describe 6D massless amplitudes.
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4.2 Superamplitudes at four points

The most convenient expressions for superamplitudes are relevant for gauge theories with
maximal N = 4 supersymmetry. As it is to be expected, the basic object appearing at four
points is the Grassmann delta function, which takes the following expression with the 5D
spinor-helicity notation,

δ8(Q) = 1
4

2∏
α=1

(∑
i<j

ηαai 〈iajb〉ηαbj
)2

= 1
64

2∏
α=1

(
〈Qα|Qα〉

)2
. (4.55)

The color-ordered superamplitude between four vector multiplets is then readily written as

AN=4
4 (1V, 2V, 3V, 4V) = −4iδ

8(Q)
st

. (4.56)

We can directly verify that this superamplitude yields the appropriate component ampli-
tudes. For example, the amplitude between four massless vectors is

A4(1A, 2A, 3A, 4A) = − i

st

(
〈12〉〈34〉+ cyclic(1, 2, 3)

)2
= i

st

{
2〈12〉〈23〉〈34〉〈41〉 − 〈12〉2〈34〉2 + cyclic(1, 2, 3)

}
. (4.57)

The N = 2 vector superfields can then be embedded in the N = 4 superfields, which
leads to the identification

AN=2
4 (1V, 2V, 3V, 4V) = −4i

(
za1

∂

∂ηa2
1

)
· · ·
(
zd4

∂

∂ηd2
4

)
δ8(Q)
st

= −2iδ
4(Q)
st

(
〈12〉〈34〉+ cyclic(1, 2, 3)

)
. (4.58)

Since the complement of an N = 2 vector superfield in an N = 4 vector superfield is a
hypermultiplet, from the amplitude above one can extrapolate that the amplitudes with
hypermultiplets take a similar form,

AN=2
4 (1Φα̇, 2Φβ̇ , 3V, 4V) = −2iεα̇β̇ δ

4(Q)
st
〈3|p1|4〉 , (4.59)

and

AN=2
4 (1Φα̇, 2Φβ̇ , 3Φγ̇ , 4Φδ̇) = −2iδ4(Q)

(
εα̇β̇εγ̇δ̇

s
+ εβ̇γ̇εδ̇α̇

t

)
. (4.60)

It is easy to promote the massless four-point amplitudes to massive amplitudes by
replacing the expressions for the massless supercharges with the supercharges in the massive
case. As before, we have several distinct representations of the supersymmetry algebra that
differ based on the chirality of the supercharges under the SO(4) little group. Let us start by
introducing the needed Grassmann delta functions for massive supercharges. For standard
non-chiral (1, 1) supersymmetry, we have

δ4(Q)δ4(Q̃) = 1
4

(∑
i<j

ηai 〈iajb〉ηbj
)2(∑

i<j

η̃ȧi [iȧjḃ]η̃
ḃ
j

)2
= 1

64
(
〈Q|Q〉[Q̃|Q̃]

)2
, (4.61)
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whereas for chiral (2,0) and (0,2) supersymmetry one has the following Grassmann delta
functions:

δ8(Q) = 1
4

2∏
α=1

(∑
i<j

ηαai 〈iajb〉ηαbj
)2 = 1

64

2∏
α=1

(
〈Qα|Qα〉

)2
, (4.62)

δ8(Q̃) = 1
4

2∏
α=1

(∑
i,j

η̃αȧi [iȧjḃ]η̃
αḃ
j

)2 = 1
64

2∏
α=1

(
[Q̃α|Q̃α]

)2
.

Based on these expressions, we can obtain massive superamplitudes between four massive
vector multiplets,

A(1,1)
4 (1V, 2V, 3V, 4V) = −4i δ4(Q)δ4(Q̃)

(s−m2
s)(t−m2

t )
, (4.63)

where ms,mt denote the masses for the s- and t-channel poles. They are given by the
mass-conservation condition: ms = m1 +m2, mt = m2 +m3. It is useful to explicitly write
out the component amplitude between four massive vector fields, it is

A4(1W, 2W, 3W, 4W ) = −i
(
〈12〉〈34〉+ cyclic(1, 2, 3)

)(
[12][34] + cyclic(1, 2, 3)

)
(s−m2

s)(t−m2
t )

= i

(s−m2
s)(t−m2

t )
{
〈12〉[23]〈34〉[41] + [12]〈23〉[34]〈41〉 −

[12]〈21〉[34]〈43〉+ cyclic(1, 2, 3)
}
. (4.64)

Having obtained the (1, 1) vector amplitude, one may guess that a naive candidate for
the color-ordered superamplitude between four massive tensor (2, 0) multiplets is

A(2,0)
4 (1T , 2T , 3T , 4T ) ?= −4i δ8(Q)

(s−m2
s)(t−m2

t )
. (4.65)

To check if this is a well-behaved amplitude we want to check if it factorizes properly. In
terms of the already guessed three-point amplitudes, we can work out the needed s-channel
factorization,∫

d4η5A(2,0)
3 (1T , 2T , 5T )A(2,0)

3 (−5T , 3T , 4T ) = −4iδ8(Q) τ2

(t−m2
t )2 , (4.66)

where τ = 1
r34

(
[1121][31ρ] + [2131][11ρ] + [3111][21ρ]

)
and ρ = 1

r12
(0, 0, 0, 1), with r2

ij =
〈i1j1]. In order for the factorization to work, we need the double pole to cancel out.
However, the relation between τ and the pole is τ τ̃ = t−m2

t , where τ̃ is given by swapping
square and angle spinors in τ . Hence, the double pole only cancels out in the massless limit
or, alternatively, if we had done the same calculation for (1, 1) super-Yang-Mills theory.
One may wonder if the three-point amplitudes can be modified such that they absorb the
unwanted τ2/(t − m2

t ) factor. However, given that it depends non-trivially on momenta
belonging to different three-point amplitudes, this is unlikely to work out. Our conclusion
agree with the analysis of ref. [63], where the non-abelian (2,0) candidate amplitude was
shown to have irreconcilable factorization properties.
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In contrast to the problematic non-abelian tensor case, there is interesting and well-
behaved gravitational amplitude that involves abelian tensor multiplets. The four-tensor
superamplitude in (2,0) supergravity is given by the double copy

M(2,0)
4 (1T , 2T , 3T , 4T ) =−i(s−m2

s)A
(1,0)
4 (1V, 2V, 3V, 4V)A(1,0)

4 (1V, 2V, 4V, 3V)

= iδ8(Q)
( 1
s−m2

s

+ 1
t−m2

t

+ 1
u−m2

u

)
, (4.67)

where the poles corresponds to (massive) graviton exchange. This agrees with refs. [88, 89]
which use the 6D scattering-equation formalism to obtain the same tensor amplitude.

4.3 Comparison with superamplitudes in other dimensions

Massive multiplets in five dimensions are closely related with massless multiplets in six di-
mensions since the little group is the same. This relation was used in [51] to dimensionally-
reduce the 6D spinor-helicity formalism to 5D and discuss certain three-point amplitudes
potentially related to those of the (2,0) 6D theory.

Following the standard 6D notation, a massless momentum is written as [7, 8, 79]

pAB[6] = λAaλBa , p
[6]
AB = λ̃Aȧλ̃

ȧ
B , (4.68)

where λAa are 6D chiral spinors, A,B = 1, . . . , 4, and a, b are SU(2) indices, and similarly
for the anti-chiral spinors λ̃Aȧ . In our massive formalism, we have the natural identification

λAa ≡ 〈pa|A , λ̃ȧA ≡ |pȧ]A . (4.69)

The sixth component of the 6D momentum is interpreted as the mass in five dimensions
(leading to a natural interpretation for the mass-conservation condition ∑imi = 0). For-
mulas for the polarization vectors and supercharges follow straightforwardly from their 6D
analogues. It should also be noted that the USp(2, 2)-invariant matrix Ω can be seen as
the sixth entry to the Σ matrices in 6D, where the remaining five entries are given by the
5D gamma matrices.

Moving to the massless case, it can be obtained from the 6D spinor-helicity formal-
ism through the identification of the chiral and anti-chiral spinors λ and λ̃. In a sense,
massless superfields and amplitudes in five dimensions present a closer analogy with 4D
superamplitudes in a non-chiral representation [86]. Starting from the conventional chiral
representation of four-point amplitudes, one can act with a Grassmann Fourier transform
with respect to half of the Grassmann coordinates,

Φ =
∫
dη3dη4eη

3η̃3+η4η̃4Φchiral . (4.70)

For example, the maximally supersymmetric on-shell vector superfield in four dimensions
now have the expansion

VN=4
4D = ϕ34 + χ̄α34η

α + χα̃η̃
α̃ +A−η2 +A+η̃2 + ϕαα̃η

αη̃α̃ +
χαη

α(η̃)2 + χ̄12α̃η̃
α̃(η)2 + ϕ12(η)2(η̃)2, (4.71)
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with α = 1, 2 and α̃ = 3, 4. This closely reflects our 5D superfields. The corresponding
superamplitude at four points in 4D spinor-helicity notation is given by

AN=4
4D (1, 2, 3, 4) = −i

∏2
α=1

(∑
i<j η

α
i 〈ij〉ηαj ) ∏4

α̃=3
(∑

i<j η̃
α̃
i [ij]η̃α̃j )

st
, (4.72)

The relation between 4D and 5D variables is then simply

ηαia〈iajb〉ηbαj
∣∣∣
4D kin

= ηαi 〈ij〉ηαj + η̃α̃i [ij]η̃α̃j . (4.73)

It is also immediate to verify that, with this relation, eq. (4.57) reproduces the familiar
expression for the 4D amplitudes upon dimensional reduction with the correct normali-
zation.

5 More on double-copy amplitudes

In this section, we revisit the double-copy construction of Maxwell-Einstein and Yang-
Mills-Einstein theories with the new formalism.

5.1 Maxwell-Einstein and Yang-Mills-Einstein supergravities revisited

The main advantage of the 5D formalism is that it does not require reducing the super-
gravity Lagrangian to four dimensions to match amplitudes from the double copy, as it
was done in the earlier work [32, 34]. Being able to formulate the construction directly in
five dimensions streamlines and simplifies the derivation. One of the remarkable properties
of Maxwell-Einstein theories with N = 2 supersymmetry in five dimensions is that they
exhibit the simple cubic vector couplings [23, 90]

1
6
√

6

∫
d5xCIJKε

µνρστF IµνF
J
ρσA

K
τ , (5.1)

where the CIJK tensor is symmetric in the I, J,K indices running over the number of
vector fields present in the theory. The full Lagrangian of the theory is fixed once the
CIJK tensor in determined, as done in refs. [23–25]. In turn, this tensor can be read off
the three-vector amplitude, which has the following simple expression,

M3(1A, 2A, 3A)=−i
√

8
3CIJKε

(
k1, ε1, k2, ε2, ε3

)
=−i2CIJK√

3
〈12〉

(
〈13〉 〈q32〉 − (3↔q3)

)
,

(5.2)
where ε(a, b, c, d, f) = aµbνcρdσfλεµνρσλ. In short, these theories are completely specified
by their three-point amplitudes.

The simplest double-copy realization of a family of such theories involves, as one of
the gauge theory factors, N = 2 super Yang-Mills theory and, as the other factor, a
Yang-Mills theory with additional adjoint scalars φi. At three points, all N = 2 am-
plitudes can be packaged in a single superamplitude. The two non-zero amplitudes on
the non-supersymmetric side are A3(1A, 2A, 3A) and A3(1A, 2φi, 3φj). With the intent of
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identifying the relevant CIJK tensors, we focus on amplitudes between vectors in the su-
pergravity theory. In five dimensions, we have three possible double-copy origins for vector
states:

Aiab = Aab
∣∣
N=2 ⊗ φ

i
∣∣
N=0 , (5.3)

A1
ab = φ

∣∣
N=2 ⊗Aab

∣∣
N=0 , (5.4)

A0
ab = Ac(a

∣∣
N=2 ⊗A

c
b)
∣∣
N=0 , (5.5)

where the gauge-theory scalars carry an index i = 2, . . . , nV and we label the vector states
with their little-group indices. It is not difficult to see that there are only two non-zero
amplitude between three vectors: M3(1A0, 2Ai, 3Aj) and M3(1A0, 2A1, 3A1). The former
is given by17

M3(1A0, 2Ai, 3Aj) = − i4ε
ab ∂

∂za1
A3(1A, 2A, 3A) ∂

∂zb1
A3(1A, 2φi, 3φj) , (5.6)

where the differential operators in the antisymmetric indices extract the correct little-group
representation. After some additional work, it is possible to cast the double-copy amplitude
in the form

M3(1A0, 2Ai, 3Aj) = iδij〈12〉
(
〈13〉 〈q32〉 − (3↔ q3)

)
. (5.7)

The second nonzero amplitude is

M3(1A0, 2A1, 3A1) = −iε
ab

4
∂

∂za1
A3(1A, 2φ, 3φ) ∂

∂zb1
A3(1A, 2A, 3A)

= −i〈12〉
(
〈13〉 〈q32〉 − (3↔ q3)

)
, (5.8)

which despite its appearance is invariant under the full S3 permutation symmetry. The
difference in sign compared to eq. (5.7) can be traced to the fact that in the two amplitudes
the scalars entering the double-copy construction for the supergravity vectors come from
different gauge-theory factors.

We can now read off the CIJK for this theory directly by comparing the double-copy
amplitudes in eqs. (5.8) and (5.7) with the supergravity expression eq. (5.2):

C011 =
√

3
2 , C0ij = −

√
3
2 δij . (5.9)

This is the well-known generic Jordan family of Maxwell-Einstein supergravities in five
dimensions [23–25]. It should be noted that analyzing amplitudes in five dimensions gives
us the option to avoid explicitly expanding around a base point.18 The earlier formulation
of the double-copy construction for these theories requires matching of amplitudes in four
dimensions, so the 5D spinor-helicity formalism considerably streamlines the derivation.

17Here the normalization of the double-copy follows the KLT formula with the gravitational coupling set
to κ = 2, i.e. M3 = −iA(1, 2, 3)Ã(1, 2, 3).

18There is however the built in assumption that there exists a base point which leads to canonically-
normalized vector fields. It is this point that is chosen by the double copy.
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We can extend the supersymmetric gauge theory by including hypermultiplets and
the non-supersymmetric theory by including fermions. This yields extra vectors in the
double-copy theory as

Aαab = χ(a
∣∣
N=2 ⊗ χ

α
b)
∣∣
N=0 , (5.10)

where α is an extra flavor index carried by the gauge-theory fermions. Introducing these
fields turns on additional three-vector amplitudes, which are of the form

M3(1Ai, 2Aα, 3Aβ) = −iA3(1A, 2χ, 3χ)A3(1φi, 2χα, 3χβ) . (5.11)

The amplitude between two fermions and one scalar in the non-supersymmetric theory is
taken to be proportional to a matrix in the global indices that appears in the Yukawa
couplings,

A3(1φi, 2χα, 3χβ) = − i√
2

Γiαβ〈23〉 . (5.12)

The resulting supergravity amplitude is

M3(1Ai, 2Aα, 3Aβ) = − i√
2

Γiαβ〈23〉
(
〈21〉 〈q13〉 − (3↔ q3)

)
, (5.13)

which leads to the additional non-zero entries of the CIJK tensor,

Ciαβ = 1
2

√
3
2Γiαβ . (5.14)

We have recovered the construction for homogeneous supergravities first given in ref. [34].
Here we do not discuss the constraints imposed by color/kinematics duality on the matrix
Γiαβ , i.e. we just assume that we have gauge theories obeying color/kinematics duality
from which we can take the amplitudes entering the double copy. Color/kinematics duality
can be conveniently studied at the level of the gauge theories, and in this particular case
requires that the Γiαβ matrices obey Clifford-algebra relations, as shown in ref. [34]. The net
result is that we recover the classification of homogeneous Maxwell-Einstein supergravities
from the supergravity literature [30].

For completeness, we also give the double-copy map for the other bosonic supergravity
fields,19

habcd = A(ab
∣∣
N=2 ⊗Acd)

∣∣
N=0 , (5.15)

ϕ1 = Aab
∣∣
N=2 ⊗A

ab
∣∣
N=0 , (5.16)

ϕi = φ
∣∣
N=2 ⊗ φ

i
∣∣
N=0 , (5.17)

ϕα = 1√
2
χa
∣∣
N=2 ⊗ χ

aα
∣∣
N=0 . (5.18)

Finally, it is completely straightforward to turn on trilinear scalar couplings in the non-
supersymmetric gauge theory entering the construction while preserving the duality be-
tween color and kinematics. This yields non-Abelian gauge interactions in the gravitational

19Note that the field combinations appearing in the double-copy map are canonically normalized, with
the exception of ϕ1, which has a 3

2 (∂µϕ1)2 kinetic term in the supergravity Lagrangian expanded at the
appropriate base-point.
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double-copy theory, which becomes a Yang-Mills-Einstein theory with gauge symmetry
given by the flavor symmetry of the trilinear couplings in the non-supersymmetric gauge
theory Lagrangian, as shown in ref. [32].

The component amplitudes discussed in this section can be supersymmetrized using
the superamplitudes introduced in section 4. The amplitude between three supergravity
massless vector multiplets can be written as20

M3(1V i, 2Vj , 3Vk) = −i 2√
3
Cijk〈12〉〈q3|Q〉〈Q|Q〉 , (5.19)

where we used eq. (4.15) and this expression is invariant under cyclic symmetry due to
nontrivial properties of three-point kinematics.

5.2 Amplitudes with massive vectors and tensors

In this section, we study double-copy amplitudes with massive external fields. Their sim-
plest realization is in a gravitational theory containing massive vectors. We begin by
studying amplitudes with gravitons and massive vector fields, and then proceed to include
other massless and massive fields.

Similarly to the massless vectors discussed in the previous section, massive vectors
can originate either as the double copies of a massive vector and a massive scalar, or as
the double copies of two massive fermions. We start by considering amplitudes between
two massive vector fields and a graviton. The first type of massive vectors leads to the
double-copy amplitude

M3(1W, 2W, 3h) = −iA3(1φ, 2φ, 3A)A3(1W, 2W, 3A)
= −i(ε3 · p1)

(
2(ε1 · p2)(ε2 · ε3) + (ε1 · ε2)(ε3 · p1)− (1↔ 2)

)
. (5.20)

The second type of double copy leads to

M3(1W, 2W, 3h) = −iA3(1χ, 2χ, 3A)A3(1χ̃, 2χ̃, 3A)
= i

(
〈13〉 〈q32]− (3↔ q3)

)(
[13〉 〈q32〉 − (3↔ q3)

)
. (5.21)

Upon explicit evaluation, one can check that the two expressions are equivalent. This is a
consequence of the graviton interacting universally with matter, and an important check
that we obtained the correct amplitudes. A change of normalization in the double-copy
map would result in these two amplitudes becoming different, i.e. this is a check of the
correctness of the normalization of the double-copy fields.

At the level of amplitudes, we can write six gauge-invariant structures with the right
little-group indices,21{

〈12] 〈21] (p1 · ε3), 〈12〉 [21] (p1 · ε3), 〈1|p2|1] 〈2|ε3|2]− (1↔ 2),

m1〈12〉 [2|ε3|1], m1[12] 〈2|ε3|1〉, m1[12〉 [2|ε3|1〉 − (1↔ 2)
}
. (5.22)

20Here, the indices i, j, k run over the matter vector multiplets in the theory. This expression requires the
CIJK tensors to be given in the canonical basis with C000 = 1, C0ij = − 1

2δ
ij , C00i = 0 and Cijk arbitrary.

21As in the previous section, we take the two masses to obey m1 = −m2 = m.
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These structures are however not independent, and it is possible to verify the relations

2
(
〈12〉 [21]− 〈12] 〈21]

)
(p1 · ε3) + 1

2
(
〈1|p2|1] 〈2|ε3|2]− (1↔ 2)

)
+m1〈12〉 [2|ε3|1]−m1[12] 〈2|ε3|1〉 = 0 (5.23)

and

〈12〉 [2|ε3|1] + [12] 〈2|ε3|1〉 − [12〉 [2|ε3|1〉 − 〈12] 〈2|ε3|1] = 0 . (5.24)

We will use these relations in the remainder of this section and organize the three-point
matrix elements from the supergravity Lagrangian and from the double copy in a basis of
gauge-invariant structures drawn from eq. (5.22).

In the supergravity Lagrangian we can write three terms that are gauge invariant with
respect to the massless vector. The first is a bilinear in the covariant derivative of the
massive vector fields,

O1 = D[µW ν]D
µW ν . (5.25)

The corresponding three-point matrix element is

gst
a〈WWA〉

∣∣∣
|DW |2

= igst
a(ε1 · ε2 (p1 − p2) · ε3 + ε2 · ε3 p2 · ε1 − ε1 · ε3 p1 · ε2)

= i
gst

a

2m2

{(
〈12〉[21]−〈21]〈12]

)
(p1 · ε3)+ 1

4
(
〈1|p2|1]〈2|ε3|2]−(1↔2)

)}
,

(5.26)

where ta is the representation matrix of the massive vectors with respect to the unbro-
ken gauge group and gs is the coupling constant of the supergravity gauge interactions.
Representation indices for the massive vectors are not explicitly displayed. The second
gauge-invariant term in the supergravity Lagrangian has the form

O2 = F aµνW
µ
taW ν . (5.27)

Its contribution to the three-point amplitude is

gst
a〈WWA〉

∣∣∣
W ·F ·W

= igs t
a(ε1 · ε3 p3 · ε2 − ε2 · ε3 p3 · ε1)

= i
gst

a

8m2

(
〈1|p2|1] 〈2|ε3|2]− (1↔ 2)

)
. (5.28)

Note that in the Yang-Mills Lagrangian with spontaneously-broken gauge symmetry both
O1 and O2 are present with the same normalization, and

〈WWA〉
∣∣∣
YM

= 〈WWA〉
∣∣∣
|DW |2

+ 〈WWA〉
∣∣∣
W ·F ·W

. (5.29)

Lastly, as we have seen in our analysis of the massless theories, an additional operator
appears in the supergravity Lagrangian,22

O3 = DW ∧A ∧DW . (5.30)
22A fourth possible term in the supergravity Lagrangian has the form D(µW ν)D

µW ν and will not be
considered in this section. Together with the three we discuss they exhaust the basis of independent
three-point gauge invariants.
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The corresponding contribution to the three-vector amplitude is

ta〈WWA〉
∣∣∣
DW∧A∧DW

= 4ita ε(ε1, ε2, ε3, p1, p2) = ita
(
〈12〉 [1|ε3|2]+ [12] 〈1|ε3|2〉

)
. (5.31)

We now consider amplitudes obtained through the double-copy construction. Specif-
ically, massive fields can have two distinct origins: they can arise as double copies of two
massive fermions, or as double copies of one massive vector and one massive scalar. We will
take the massive vector either as the vector arising from the double copy of two gluons or
as a gluon times an adjoint scalar. Altogether, we have five distinct classes of three-point
amplitudes that we need to discuss. We start from the bosonic double copies. The simplest
one is23

M3(1W, 2W, 3A) = −iA3(1W, 2W, 3A)A3(1ϕ, 2ϕ, 3φ)

= λ

2
(
〈WWA〉

∣∣∣
|DW |2

+ 〈WWA〉
∣∣∣
W ·F ·W

)
(5.32)

where λ is the constant appearing in the three-scalar coupling, which is normalized as
λ
∫
ϕφϕ. This leads to the supergravity gauge coupling constant being given by

gs = κλ

4 , (5.33)

which is consistent with the result in ref. [34] (we have restored κ in the above equa-
tion). A3(1W, 2W, 3A) must be an amplitude from a spontaneously-broken gauge-theory
amplitude in order to satisfy color/kinematics duality. Another bosonic double copy is

M3(1W, 2W, 3A) = −iA3(1W, 2W, 3φ)A3(1φ, 2φ, 3A)
= im(ε1 · ε2)(ε3 · p1 − ε3 · p2)
= m〈WWA〉|DW |2 −m〈WWA〉W ·F ·W . (5.34)

In order to have an amplitude of this form, one needs to take φ to be the Higgs field on
the left gauge theory. For this amplitude, the supergravity coupling constant is

gs = κm

2 . (5.35)

There is one last amplitude obtained from a bosonic double copy,

M3(1W, 2W, 3A) = −iε
ab

4
∂

∂za3
A3(1W, 2W, 3A) ∂

∂zb3
A3(1ϕ, 2ϕ, 3A)

= −〈WWA〉DW∧A∧DW . (5.36)

Interestingly, the double copy does not give any term proportional to the mass, and there-
fore it is the same as in the massless case given in the previous section.

23For amplitudes between fields transforming in matter non-adjoint representations, instead of three-point
color-ordered amplitudes, we use three-point amplitudes in which the color factor T aij has been stripped.
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We now inspect amplitudes in which the massive vectors come from fermionic double
copies. There are two such amplitude. The first one is

M3(1W, 2W, 3A) = −iε
ab

4
∂

∂za3
A3(1χ, 2χ, 3A) ∂

∂zb3
A3(1χ̃, 2χ̃, 3A)

=
√

2im
[
(ε1 · ε3 p3 · ε2 − ε2 · ε3 p3 · ε1)

]
=
√

2im〈WWA〉W ·F ·W . (5.37)

The second amplitude is

M3(1W, 2W, 3A) = −iA(1χ, 2χ, 3A)A(1χ̃, 2χ̃, 3φ)

= i

2[12] 〈1|ε3|2〉 = m〈WWA〉|DW |2 + 1
4〈WWA〉DW∧A∧DW . (5.38)

The result gives both a term proportional to the CIJK tensor and a term that vanishes in
the massless limit.

In formulating the above double-copy constructions, we have paired massive fermions
with opposite little-group chiralities. However, we can also choose to have the double-copy
map pair fermions with equal chiralities to give supergravity tensors,

M3(1B, 2B, 3A) = −iA(1χ, 2χ, 3A)A(1χ, 2χ, 3φ)

= i

2〈12〉 〈1|ε3|2〉 . (5.39)

Several comments on these results are now in order. First, we have seen that, in contrast to
amplitudes between two vectors and a graviton, which are universal, massive and massless
supergravity vectors admit several different kinds of couplings. In particular, vectors with
different double-copy origin give rise to different operators in the supergravity Lagrangian.
Some of these couplings disappear in the massless limit. This is an indication that the
double-copy theory does not admit an unbroken gauge phase. In fact, these classes of am-
plitudes arise naturally in the double-copy construction for Yang-Mills-Einstein theories
with non-compact gauge groups, which always need to have the gauge group be sponta-
neously broken to a compact subgroup to preserve unitarity. In some cases, one has the
choice on how to pair gauge-theory states in the double-copy map. Different choices can
result in massive vectors or massive tensors in the output of the double copy. However, the
pairing of gauge-theory states depends on their respective gauge-group representations, so
that a supergravity state is associated to a gauge-invariant bilinear with states from the
two gauge-theory factors.

In this section, we have used three-point gauge amplitudes for the input of the double
copy without studying in detail the theories from which they are originating. In particular,
we have not analyzed the constraints coming from color/kinematics duality, which become
important for ensuring the consistency of amplitudes at higher-points. Color/kinematics
duality may require a delicate balance between the various gauge-group representations
and impose constraints on the parameters of the theory. For example, fermions carrying
both little-group chiralities can be present in a given representation, which implies that

– 41 –



J
H
E
P
0
2
(
2
0
2
3
)
0
4
0

both tensors and vectors will be generated through the double copy. The analysis of the
double-copy construction for theories with non-compact gauge groups is beyond the scope
of this article and will be carried out in a separate publication [91].

6 Conclusion

In this paper, we have introduced a 5D version of the spinor-helicity formalism, which
provides convenient variables valid for 5D massive and massless kinematics, as well as
extended on-shell supersymmetry. We have discussed two main applications: the study
of amplitudes involving massless and massive Yang-Mills fields and the formulation of
the previously-known double-copy construction for N = 2 Maxwell-Einstein and Yang-
Mills-Einstein theories in a purely 5D language. Furthermore, we have elaborated on
massive self-dual tensor fields. These appear naturally in some supergravity theories in
five dimensions and, as such, these theories can be regarded as an important stepping
stone towards understanding the mysterious 6D theories of non-abelian tensor fields.

The 5D N = 2 Maxwell-Einstein and Yang-Mills-Einstein supergravities, which are
uniquely determined by their trilinear couplings, are a prime testing ground for under-
standing whether all supergravity theories exhibit a double-copy structure [41, 75]. To
systematically explore these research directions, efficient methods that make use of the
special properties of 5D kinematics are necessary. Earlier discussions appeared in ref. [92]
and especially ref. [51], in which a 5D formalism is obtained by dimensionally-reducing the
6D spinor-helicity formalism of refs. [7, 8]. See also refs. [65, 66] for a discussion of five-
dimensional amplitudes in the context of ambitwistor strings and refs. [63, 64] for methods
based on scattering equations.

In this paper, we constructed manifestly-supersymmetric three-point superamplitudes
whose components reproduce the amplitudes determined by the standard cubic terms of 5D
N = 2 supergravity couplings around Minkowski vacua. The form of the superamplitudes
and the structure of the superfields, with origins in 6D massless theories, suggest a possible
generalization to amplitudes of non-abelian (2, 0) self-dual tensor multiplets. However, our
analysis, suggesting the absence of covariant expressions corresponding to the candidate
spinor-helicity expressions, are consistent with the negative results obtained in ref. [51].
Furthermore, while the candidate four-point formulas for the non-abelian tensor amplitudes
are suggestive, they do not pass standard factorization checks, in agreement with the
analysis of ref. [63].

The superamplitudes for maximally supersymmetric gauge and gravity theories are
similar to the ones obtained through dimensional reduction from 6D. This is a consequence
of the fact that theories with N = 4 supersymmetry in five dimensions always uplift to
higher dimensions. However, superamplitudes with only half-maximal supersymmetry do
not always follow a similar pattern. The expressions constructed in section 4.1 are distinct
from the truncations of the corresponding maximally-supersymmetric superamplitudes,
and appear to be native to five dimensions. Indeed, the explicit mass dependence in the
denominator implies that they cannot be straightforwardly uplifted to six dimensions. This
is consistent with the fact that not all N = 2 theories in five dimensions possess a higher-
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dimensional uplift, in close analogy with e.g. 4DN = 2 theories that do not have a 5D uplift.
Concretely, whether the superamplitude in eq. (5.19) uplifts to six dimensions depends on
the particular form of the CIJK tensors. The simplest example of non-upliftable theories
discussed in the literature are those in the so-called generic non-Jordan family (see ref. [23]).

In section 3.4, we analyzed the 5D N = 4 supersymmetry algebra with a non-singlet
central charge and interpreted the central charge as components of the momentum in 10
dimensions. We can expose the full 10D Lorentz symmetry by combining the two products
of massive 5D spinors in eq. (3.33) into a covariant Majorana-Weyl 10D spinor

ΛIA =
(
σiaα̇λ

aα̇
AȦ

σjȧαλ̃
ȧα
AȦ

)
, (6.1)

where I = i ⊕ j is an SO(8) little-group vector index, i ⊕ j is its decomposition over the
subgroup SO(4) × SO(4) ⊂ SO(8), and σiaα̇, σ

j
ȧα are the respective SO(4) sigma matrices.

Finally, the index A = A ⊗ Ȧ is a 16-component Weyl spinor index. We thus obtain a
spinor-helicity-like formalism in 10D, with manifest SO(1, 4) × SO(5) symmetry, which is
different from that of ref. [11]. It would be desirable to explore this formalism further and
explicitly construct the low multiplicity superamplitudes of 10D super-Yang-Mills and type
IIA/B supergravity.

Finally, one of the reasons for developing a systematic 5D formalism, and perhaps
its main application, is to streamline the study of 5D supergravities in the double-copy
realization of their amplitudes. In five dimensions, N = 2 Maxwell-Einstein and Yang-
Mills-Einstein theories are uniquely specified [23, 25] by the CIJK tensor which enters
the three-vector terms in the Lagrangian. We have shown how to extract these CIJK
tensors from the double-copy form of the three-vector amplitudes and recovered it for all
the homogeneous supergravities, classified in ref. [30] and first given in a double-copy form
in ref. [34]. The formalism developed here can be further applied to the study of gauged
supergravities and Yang-Mills-Einstein theories with non-compact gauge groups. We will
return on the latter in forthcoming work [91].
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A Gamma matrices and reality properties for on-shell spinors

The 5D gamma matrices with lowered USp(2, 2) indices are antisymmetric, Ω-traceless and
satisfy the following quadratic relations

γ
(µ
ABΩBCγ

ν)
CD = 2ηµνΩAD ,

γµABΩBCγνCDΩDA = 4ηµν ,
γµAB(γµ)CD = 2(ΩACΩBD − ΩADΩBC)− ΩABΩCD , (A.1)

where the first identity is the Clifford algebra.
Under complex conjugation the gamma matrices transform into themselves up to a

similarity transform through time-like matrix γ0,AB,

(γµAB)∗ ≡ γ̃µ,AB = γ0,ACγµCDγ
0,BD . (A.2)

Hence it is the time-like gamma matrix

γ0,AB = γ0
AB = −(γ0

BA)−1 =
(

0 iσ2
iσ2 0

)
(A.3)

that effectively lowers and raises USp(2, 2) indices under complex conjugation.
By inspection we see that the massive spinors obey the following reality property

(|pa〉A)∗ ≡ |p̃a〉A = γ0,AB|pb〉BEab , (A.4)

where Eab is a complex unit-determinant matrix (SL(2,C) matrix) that depends on the
momentum, the reference vector and the precise choice of spinors in eq. (2.7).

If we consider the spinor parametrization in eq. (2.7), and pick a reference vector
q̃µ = (1, 0, 0, 1, 0), then the matrix Eab takes the simple form

Eab =
(

0 − x−1

x 0

)
, (A.5)

where x = p0 + p3 − m2

p0−p3
.

Since it has unit determinant, the general Eab matrix satisfies

Eacε
cdEbd = −εab , (A.6)

and hence it acts as a complex conjugation on the little-group metric. Indeed, we have that

(εab)∗ = −εab . (A.7)

Note that the γ0,AB matrix satisfies the analogous relation

γ0,ACΩCDγ
0,BD = −ΩAB , (A.8)

which similarly implies that (ΩAB)∗ = −ΩAB.
We can invert the conjugation in eq. (A.4), then we get

γ0
AB|p̃b〉BEba = −|pa〉A . (A.9)

This can be interpreted as the statement that the complex conjugated spinor is equal to
the original spinor, up to a similarity transform and a sign flip. This is consistent with the
spinors being symplectic-Majorana spinors.
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B Amplitude decomposition in terms of total SU(2) weights

We now turn to the massless amplitudes in five dimensions, and ask what is the 5D
equivalent of the 4D decomposition in helicity sectors. Since the 4D helicity follows the
weight under little group rephrasing and the 4D little group is a subgroup of the 5D one,
U(1) ⊂ SU(2), it is natural to expect that the desired decomposition is that in irreducible
representations of the 5D little group.

With the particular choice of reference momenta from eq. (2.20), we have the relations

(ε11
i · ε11

j ) = 0 , (ε11
i · ε12

j ) = 0 , (ε22
i · ε12

j ) = 0 , (ε22
i · ε22

j ) = 0 , (B.1)

for all i, j. A three-point massless amplitude can be decomposed in terms of the total
SU(2) little-group representation carried by the external states. This is done by tensoring
three three-dimensional representations of SU(2),

3⊗ 3⊗ 3 = 7⊕ 2× 5⊕ 3× 3⊕ 1 . (B.2)

To generate all amplitudes within a given SU(2) sector, we can start from the lowest-weight
state in which there is a maximal number of 1 in the little-group labels for the polarization,
and act with raising operators. Eq. (B.1) has as a consequence that we need at least two
1 and two 2 labels to have a nonzero results, hence the 7 and 5 sectors are automatically
zero for YM theory in 5D, since the corresponding lowest-weight states do not have this
property. This therefore constrains the structure of the allowed polynomials in auxiliary
variables that are dressing the amplitudes with free SU(2) indices:

A
(3)
a1b1...a3b3

za1
1 zb1

1 z
a2
2 zb2

2 z
a3
3 zb3

3 = A
(3)
a1b1...a3b3

{
za1

1 zb1
1 z

a2
2 zb2

2 z
a3
3 zb3

3

∣∣∣
3

+ za1
1 zb1

1 z
a2
2 zb2

2 z
a3
3 zb3

3

∣∣∣
1

}
,

(B.3)
where we have defined za1

1 zb1
1 z

a2
2 zb2

2 z
a3
3 zb3

3

∣∣∣
3
and za1

1 zb1
1 z

a2
2 zb2

2 z
a3
3 zb3

3

∣∣∣
1
as the degree-six poly-

nomials in the auxiliary variables that transform in the three-dimensional SU(2) represen-
tation and in the singlet representation.

At four points, the decomposition is carried out in a similar way except that now the
starting point is the product of four three-dimensional representations of SU(2):

3⊗ 3⊗ 3⊗ 3 = 9⊕ 3× 7⊕ 6× 5⊕ 6× 3⊕ 3× 1 . (B.4)

As before, the amplitudes in the 9 and 7 sectors are equal to zero, mirroring the vanishing
of all plus and one-minus amplitudes in four dimensions. As in four dimensions, these
sectors become nonzero once a higher-dimensional operator is added to the Lagrangian of
the theory.
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