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Background: An endocochlear potential (EP) exists in the mammalian cochlea
generated by the stria vascularis and an associated fibrocyte network. It plays an
essential role for sensory cell function and hearing sensitivity. In non-mammalian
ectothermic animals the endocochlear potential is low and its origin somewhat
unclear. In this study, we explored the crocodilian auditory organ and describe the
fine structure of a stria vascularis epithelium that has not been verified in birds.

Material and Methods: Three Cuban crocodiles (Crocodylus rhombifer) were
analyzed with light and transmission electron microscopy. The ears were fixed in
glutaraldehyde The temporal bones were drilled out and decalcified. The ears
were dehydrated, and embedded and was followed by semi-thin and thin
sectioning.

Results: The fine structure of the crocodile auditory organ including the papilla
basilaris and endolymph system was outlined. The upper roof of the endolymph
compartment was specialized into a Reissner membrane and tegmentum
vasculosum. At the lateral limbus an organized, multilayered, vascularized
epithelium or stria vascularis was identified.

Discussion: Electron microscopy demonstrates that the auditory organ in
Crocodylus rhombifer, unlike in birds, contains a stria vascularis epithelium
separate from the tegmentum vasculosum. It is believed to secrete endolymph
and to generate a low grade endocochlear potential. It may regulate endolymph
composition and optimize hearing sensitivity alongside the tegmentum
vasculosum. It could represent a parallel evolution essential for the adaptation
of crocodiles to their diverse habitats.

KEYWORDS

crocodilian, electron microscopy, auditory organ, stria vascularis, gap junctions
crocodiles and stria vascularis

Introduction

Hearing in amniotes depends on the activation of a set of inner ear hair cells
submersed in a fluid called endolymph that is rich in potassium ions. In the mammalian
cochlea there is a high positive endo-cochlear potential (EP), that is essential for the high
sensitivity of the auditory receptors to transduce mechanical energy into electrical
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signals, especially at high frequencies (Russell, 1983; Russell et al.,
1986; Hibino and Kurachi, 2006; Hibino et al., 2010). In the
mammalian auditory organ, the EP is thought to be generated by
the stria vascularis (SV); a vascularized multicellular epithelium
associated with a fibrocyte network in the lateral wall of the
cochlea (Békésy and Sy, 1952; Tasaki and Spyropoulos, 1959; Salt
et al., 1987; Spicer and Schulte, 1996). The cells are endowed with
a plethora of ion channels and transporters. Schmidt (1963)
characterized three types of EPs in ectothermic, avian, and
mammalian auditory organs. Frogs, turtles, snakes, lizards,
and crocodilians generally have a low EP, around +2 to
+7 mV (Schmidt and Fernandez, 1962), while birds have a
somewhat higher EP between +10 and +20 mV (Schmidt,
1963; Sauer et al., 1999) and therian mammals +80 to +90 mV
(Wangemann, 2002; Wilms et al., 2016). A SV is well developed
in marsupials that have a cochlea similar to eutherian mammals
(Aitkin et al., 1979) and is remarkably developed in monotremes,
such as the duckbill and spiny anteaters (Tachyglossidae). The
monotremes seem to have both reptilian features such as egg-
laying and some mammalian organization of the organ of Corti.
They hold a lagena at the distal end of the cochlear duct and have
a well-developed SV with associated capillary network
(Pritchard, 1881; Smith and Takasaka, 1971; Fritzsch et al.,
2013; Schultz et al., 2017). In non-mammalian tetrapods
including birds, the Reissner membrane contains a folded
single-layer epithelium named tegmentum vasculosum (TV)
overlying the basilar papilla between the scala media and
vestibule cells (Deiters, 1860; Retzius, 1884; Satoh, 1917;
Kolmer, 1928; Jahnke et al., 1969; Dohlman, 1970; Rosenhall,

1971; Smith and Takasaka, 1971; Tanaka and Smith, 1978; Wilms
et al., 2016; Pfaff et al., 2019). If it is homologous with the
mammalian SV responsible for the production of EP and
secretion of endolymph is not known.

Recently, we analyzed the auditory organ in two species of the
crocodilian family (Crocodilys rhombifer and Osteolaemus
tetraspis), using transmission electron microscopy (TEM) and
immunohistochemistry (Li et al., 2022). Besides a highly
specialized TV, we also detected a separate multicellular
epithelium located at the abneural side of the papilla basilaris
with intra-epithelial capillaries. It is reminiscent of a mammalian
SV and we speculate that, unlike many other non-mammalian
species, the crocodilians also possess a functionally equivalent
SV. It could represent an early evolutionary transformation of
structure resulting in an analogous organization of endolymph
secreting epithelia and generating EP. A survey of literature
showed that an epithelium reminding of a SV tissue was
already described in crocodilians by Gustaf Retzius (1884) at
the lateral limbus in the Alligator mississippiensis (Retzius, 1884)
and also by Ganeshina (1990) in the Caiman crocodylus
(Ganeshina, 1990). No similar epithelium was described in
birds to our knowledge. Hasse (1873) studied the inner ear in
two crocodilian specimens (Crocodylus niloticus) but there is no
mention of a SV (Hasse, 1873). Anatomical analyses, including
electron microscopy, of the crocodilian auditory organ have been
performed by several authors without description of SV (Baird,
1974; Boord, 1961; Baird, 1974; Leake, 1977; Drenckhahn et al.,
1991; Gleich and Manley, 2000; von Düring et al., 1974; Li et al.,
2022). The aim of this presentation was to give a detailed

FIGURE 1
Light microscopy of the auditory organ in the Crocodylus rhombifer. A stria vascularis is located at the lateral limbus. A tegmentum vasculosum
epithelium evaginates into the endolymphatic space. HC, homogene cells; TM, tectorial membrane; BM, basilar membrane.
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portrayal of the fine structure of the SV in the Cuban crocodile
(Crocodylus rhombifer). Electron microscopic imaging of the
crocodilian SV has not been presented before to our knowledge.

Hopefully it could broaden our understanding of the ancient
progression and evolution of this important part of the inner ear
across different vertebrates.

FIGURE 2
Light microscopy of the stria vascularis in the Crocodylus rhombifer at the lateral fibrocartilaginous plate. There is a multi-layered epithelium with
apical dark cells (DC) and basally light cells (LC). The epithelium contains blood vessels (BV). A vessel is seen to merge with the epithelium (open arrow).
Inset shows the SV in the basal turn of a human cochlea for comparison. It contains marginal, intermediate and basal cells. Together with the lateral
fibrocytes, they are believed to secrete and recirculate K+ ions and generate an endocochlear (EP) essential for sensory hair cell transduction. Type I,
II, and V fibrocytes are shown of the five different types (I–V). RM, Reissner membrane.

FIGURE 3
Electron micrograph of a crocodilian stria vascularis showing apical dark (DC) and basally light cells (LC). The epithelium contains capillaries (Cap).
The LCs form a network with intercellular spaces containing DC enfoldings. The DCs contain clear secretory-like vesicles near the endolymph lumen.
Framed area shows a DC extending basally and is magnified in Figure 13. HyC, hyaline cells; RM, Reissner membrane.
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Material and methods

Transmission electron microscopy (TEM)

Two male specimens of the Cuban crocodile (Crocodylus
rhombifer) weighing 250 gm were anesthetized using Ketamine
5 mg and Medetomidine 0.05 mg and euthanized using an
intracardial injection of T-61 0.4 mL (Merck Animal Health.
200 mg embutramide for narcotic action and 50 mg mebezonium
iodide for curariform action and 5 mg tetracaine hydrochloride, in
aqueous solution). The skull was separated, and the temporal bones
were removed using an oscillating saw. The eardrum and the
columella were removed and the ears immersed in 2.5%
glutaraldehyde and 1% PFA in 2.5% phosphate buffer. The
temporal bones were placed in fixative for 48 h and in 0.1 M Na-
EDTA for 3 weeks. Thereafter, the surrounding bone was further
removed and the ears placed in 1% osmium tetroxide. The
specimens were dehydrated in graded ethanol and embedded in
Epon. The embedded specimens were divided into different pieces
and mounted for semi-sectioning (1 µm thick). Sections were
stained in toluidine blue and photographed. Areas of interest
were thin-sectioned, and the sections were stained in lead citrate
and uranyl acetate and examined at 80 kV in a Tecnai G2 Spirit TEM
(Thermo Fisher/FEI Company, Eindhoven, Netherlands). Images
were acquired with an ORIUS™ SC200 CCD camera (Gatan Inc.
Pleasanton, CA, United States), using the Gatan Digital Micrograph
software. A human SV from a cochlea taken out for an earlier

study was used for analysis and comparison (Rask-Andersen et al.,
2000).

Results

Light microscopy

Semi-thin cross sections of the crocodilian auditory organ
showed the scala media with papilla basilaris, tectorial
membrane, and the epithelium overlying the organ separating
endolymph from the scala vestibule perilymph (Figure 1). A
Reissner membrane varied in morphology from a thin or cubic
single layer to a folded, epithelium with many subepithelial blood
vessels representing a tegmentum vasculosum (TV). Reissner
membrane was composed of dark and light cells reaching the
surface.

Lateral to the hyaline cells, there was an epithelial ridge
extending approximately 300 µm to the Reissner membrane
(Figure 1). It was multi-layered and contained dark cells facing
endolymph that had both a densely stained cytoplasm and cell
nucleus. They were both flat and columnar and had an irregular
basal and basolateral cell coat. Basal light cells had a less densely
stained cytoplasm and cell nucleus. The light cells ramified and
extended from the limbus up against the dark cells. Several darkly
stained, branched cells were located deep in the epithelium. In
contrast to the TV, this epithelium contained blood vessels and

FIGURE 4
(A) A dark cell (DC) contains a rich number of mitochondria with basal, mitochondria-rich enfoldings. (B) A coil of dark cell lamellae protruding into
the intercellular space. (C) Higher magnification of dark cell enfoldings showing lamella with long mitochondria (Mi). Nu, Nucleus; E, endolymph.
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thereby reminded one of a mammalian SV. These vessels entered
through the basal lamina and branched from a richly vascularized
lateral limbus (Figure 2). The SV contained remarkable spherical
intercellular spaces having a diameter around 20 µm. They appeared
close to the epithelial surface but also deeper in the epithelium near
the basal lamina. The spaces seemed to be shaped by the light cells
and contained densely stained dark cells with foliated cell processes.

TEM

The SV epithelium in the Crocodylus rhombifer was
approximately 75–100 microns in height and consisted of apical
electron-dense cells and basal light electron-lucent cells (Figure 3).
Laterally, the epithelium extended to the cover fold of the Reissner
membrane. The epithelium is located on the vascularized
fibrocartilaginous limbus separated by a thin basal lamina through
which vessels ran into the epithelium. Electron microscopy showed
that the multi-layered epithelium contained several intra-epithelial
capillaries. The electron-dense dark cells faced endolymph and
showed a multitude of mitochondria almost completely filling the
apical cytoplasm (Figure 4A). They also contained clear secretory-like
vesicles associated with prominent Golgi structures and rough
endoplasmic reticulum. Basally, the dark cells displayed extensive
enfoldings or lamellae, less than 40 nm thick, forming complex
geometric coils (Figure 4B). The lamellae were dilated only to give
space for the large number of mitochondria, sometimes as long as

3 microns (Figure 4C). Their cytoplasm also contained dense
ribosomal aggregates. The cellular coils were bathed in large
intercellular spaces surrounded by branched light cells forming a
network of fluid-filled cavities (Figure 5A). The light cells rested on a
thin basal lamina, ramified and extended to the dark cells to which
they formed tight junction-like membrane specializations (Figures 5B,
C). The light cells were also rich in mitochondria and displayed
prominent gap junctions and occasionally round electron-dense
bodies (Figures 6A, B). No nerve fibers were detected inside the
epithelium except around the hyaline cells as earlier described (Li
et al., 2022). The dark cell lamellae often adhered and interacted with
the light cells with focal adhesions (Figure 6C, D). Occasionally,
lamellae penetrated deep into the light cell cytoplasm (Figures 7A–C).
A few round lymphocyte-like cells could be observed in the
intercellular spaces. These cells also interacted physically with the
dark cell lamellae (Figure 8). The dark basal enfoldings also attached
to a basal lamina around the intra-epithelial capillaries (Figure 9)
forming palisades of interdigitating podocyte-like processes
(Figure 10). The capillaries had a thin endothelium surrounded by
a discontinuous basal lamina and an interrupted pericyte sheet. There
was a rim of loose extracellular tissue surrounding the vessels
containing some fibrous elements margined by a continuous basal
lamina (Figures 9B, C, 10). The light cells partly surrounded the
capillaries and were interconnected by multiple gap junctions and
intimately related to the capillaries (Figures 10B, 11).

The SV contained dark cells also located deeper into the epithelium.
Figures 12A–D, a–c show different morphologies of dark cells,

FIGURE 5
(A) Light cells (LCs) are colorized to show the network formation (arrows) forming intercellular spaces containing basal dark cell (DC) enfoldings.
Dark cell cytoplasm contains secretory-like vesicles (V) of different sizes. The light cell processes reach apically to the dark cells and form tight junction-
likemembrane fusions (encircled). Starred cells (*) are epithelial dark cells reaching basally. Their cell nuclei have translocated basally. (B,C) Encircled light
cell processes are rich in microtubules (mt) and form tight contacts to the dark cells.
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sometimes arranged as cell clusters partly surrounded by light cells
(Figure 12D). Sections showed that they had expanded basally with the
cell nucleus located basally (Figures 12, 13). The dark cells were
surrounded by light cell processes forming dilated intercellular spaces
at different levels of the epithelium (Figures 12A–C). Serial sections
seemed to show that the dark cells maintained connections to the
endolymph. The cells had an irregular nuclear envelope (Figure 13B) and
often prominent nucleoli. The perinuclear cytoplasm contained many
membrane-bound vesicles. Near the endolymph lumen there were large
clear, various-sized vacuoles and the cytoplasm showed intensely stained
ribosomal conglomerates (Figures 13C, D). Many cells had a close
relationship with the capillaries and displayed lateral and basolateral cell
processes or lamellae.

The Reissner membrane and tegmentum
vasculosum

The tegmentum vasculosum also contained dark and light cells
(Figure 14). Both cell types reached the lumen. The dark cells had an
electron-dense cytoplasm with extensive basal interdigitating
enfoldings with many rod-shaped mitochondria of somewhat
different appearance than those in the SV. Several blood vessels
had subepithelial location. Not invariably, the epithelial cells formed
aggregates, and it was not possible to evaluate if the epithelium was
single-layered. Basally, it was bordered by light cells forming a rim or
cell layer facing the basal lamina. These light cells seemed to be the

same as those fronting the lumen and surrounded by dark cells
similar to the crocodilian SV. Many dark cells contained clear
secretory-like vesicles. The Reissner membrane also contained
light and dark cells. Some of these dark cells displayed a large
number of thin processes attached to the light cells. Their cytoplasm
contained many secretory-like clear vesicles.

Discussion

In mammals, the SV is an epithelium with unique intraepithelial
capillaries containing three functionally different cell types, namely,
the marginal, intermediate, and basal cells. Together with the lateral
fibrocyte system, they are believed to secrete and recirculate K+ ions
and generate an EP essential for sensory hair cell transduction
(Tasaki and Spyropoulos, 1959; Salt et al., 1987; Wangemann,
2002; Hibino et al., 2010). In a recent investigation, focusing on
hair cell regeneration, a separate multi-layered epithelium with
intraepithelial capillaries was detected at the lateral
fibrocartilaginous plate in the Crocodylus rhombifer (Li et al.,
2022). Structurally, it is similar to a mammalian SV being
vascularized and having both dark and light cells (Smith, 1957;
Rodriguez Echandia and Burgos, 1965; Kimura and Schuknecht,
2009). The crocodilian SV showed morphological differences from
themammalian with no joined fibrocyte cell system connected to the
epithelium. Melanocyte-like, pigmented intermediate cells were also
not clearly recognized. Its location and morphology differed from

FIGURE 6
(A) Light cells (LC) at the base of the stria vascularis with intercellular spaces containing dark cell enfoldings. The light cells display extensive gap
junctions (GJ). (B) Higher magnification shows a gap junction between two light cells. Mi, mitochondrion. (C) Light cell process (LC) forms an occlusion
(encircled) against the dark cell (DC). (D) Interaction between the light cell (LC) and dark cell (DC) process within the dilated space. Membrane
specialization with focal densities are seen (arrows).
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FIGURE 7
(A) Interaction between the light cells (LC) and dark cells (DC). Light cells are connected with extensive gap junctions (GJ). (B) Higher magnification
of framed area in (A). Dark cell processes project deep into the cytoplasm of the light cells. (C)Dark cell processes and light cells membranes adhere close
to each other (arrows).

FIGURE 8
Electron microscopy of the SV near the hyaline cells. Both dark cells (DC) and light cells (LC) are seen forming large intercellular spaces containing
dark cell enfoldings. The spaces contain lymphocyte-like cell (Ly) magnified in B and (C). (B) Higher magnification of the free cell shown in (A). It is
surrounded by dark cell lamellae (arrow) further magnified in (C). (C) Higher magnification shows cell lamellae adhering to the cell coat of the
lymphocyte-like cell. The light cell nucleus contains a prominent nucleolus.
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the TV described in non-mammalian tetrapods such as anurans and
birds (Deiters, 1860; Kuhn, 1881; Retzius, 1881; Ishiyama et al., 1970;
Hossler et al., 2002b; Mason et al., 2015).

Earlier studies of the stria vascularis in
crocodilians

It was generally believed that crocodiles and birds lack a true
SV and that it is substituted by the TV. Retzius (1884) described a
similar epithelium consisting of columnar cells at the lateral limbus
in the auditory organ of the Alligator mississippiensis. An
equivalent epithelium was not defined in birds (Columba livia
domestica). In his detailed illustrations he showed that it contains
blood vessels and named it Stria vascularis (Retzius, 1884). In his
classical work Das Gehörorgan des Wierbelthiere II, Das
Gehörorgan Der Reptilien, Der Vögel und Der Säugethiere” he
described this “remarkable” epithelium and stated that he
considers this to be the only vascularized epithelium in the
body (“Es ist dies Epithel meines Wissens das einzige
gefässführende, echte Epithel im Organismus“). Ganeshina
(1990) also described a SV located at the abneural limbus in
Caiman crocodilus (Ganeshina, 1990). She believed it was
secretory together with TV and the Reissner membrane
suggesting a unique level of morphological differentiation of the
secretory apparatus in caimans compared to mammals. All three

regions contained dark and light epithelial cells, but the SV
epithelium displayed morphological peculiarities with
extraordinary intercellular spaces suggesting a separate secretory
function. The dark cells were more elongated with extensive
luminal surfaces. The giant intercellular spaces were closed by
tight junctions. A blood capillary was also mentioned
running inside the epithelium near the basal lamina derived
from a vessel of the lateral limbus. A few possible nerve fibers
were also described in the epithelium. The author concluded
that the TV may produce the main volume of endolymph while
the SV and Reissner membrane may regulate its delicate ionic
composition. Several electron micrographs were presented of the
TV but none of the SV.

The stria vascularis in Crocodylus rhombifer

The arrangement of the dark cell lamellae with podocyte-like
foot processes adhering to the blood capillaries is similar to that of a
nephron glomerulus. Moreover, dark and light cells showed
membrane adhesions suggesting absorptive routes. The aqueous
spaces could offer optimal conditions for the greatly enlarged surface
of the lamellae to absorb fluid and ions to be secreted into
endolymph. This machinery could transfer and fine-tune
endolymph secretion and EP generation akin to the intermediate
and marginal cells of the mammalian SV (Figure 11). The different

FIGURE 9
A strial capillary (cap) located near the endolymph space (E). Framed areas are magnified in (B,C). The vessel is partly surrounded by light cells (LC). (B)
Framed area in (A) is magnified and shows a light cell tightly adjoining the capillary wall adhering to the basal lamina. (C) Framed area in (A) is magnified showing
the extensive basal enfoldings of the DCs adhering to the basal lamina (BL) around the pericapillary extra-cellular space (ES). DC, dark cell; E, endolymph.
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morphology of the dark cells could suggest that they are highly
dynamic cells possibly even “amoeboid-like” able to expand deeper
into the epithelium still maintaining exchange to the endolymph
surface. It could increase the potential to process and secrete
endolymph fluid.

The light cells resemble intermediate perivascular cells that are
essential for the generation of high EP in the mammalian SV
(Hibino et al., 1997; Wangemann, 2002; Hibino and Kurachi,
2006; Liu et al., 2017). Intermediate cells are known to express
the inward rectifying potassium channel Kir4.1. Gap junctions were
prominent between the light cells suggesting exchange of ions, small
metabolites, and second messengers between adjacent cells
(Figure 11). They may facilitate K+ transport to the dark cells
and could suggest that the light cells have a function also similar
to the basal cells in the mammalian SV. The light cells in the
crocodile could therefore be analogous to both the basal and
intermediate cells to relay K+ ions for endolymph secretion and
generation of EP. The intercellular spaces formed by the light cells in
the crocodile could be analogous to the electrically isolated
intrastrial space in mammals that are surrounded by marginal
and intermediate/basal cells indispensable for maintaining EP
(Nin et al., 2008). Further examinations are required to establish
the involved ion transporters as well as the molecular composition of
the gap junctions in the crocodilians.

The tegmentum vasculosum

The Crocodylus rhombifer displayed a prominent but variable
TV that overlay the papilla basilaris as earlier demonstrated in the
Alligator mississippienses and Caiman crocodilus (Retzius, 1884;
Ganeshina, 1990). Retzius’ illustrations show a tegmentum of
varying size along the papilla basilaris, but it seems to be missing
in some regions. Deiters (1860) and others described this peculiar
epithelium and indicated its analogy to the mammalian SV (Deiters,
1860). It was folded and highly vascularized with subepithelial
vessels in anurans, neobatrachians, and birds (Hasse, 1873; Kuhn,
1881; Retzius, 1881; Retzius, 1884; Satoh, 1917; Held, 1926;
Dohlman, 1964; Jahnke et al., 1969; Dohlman, 1971; Smith and
Takasaka, 1971; Mason et al., 2015; Wilms et al., 2016). It is believed
to secrete endolymph and generate EP, and its spectacular
ultrastructure was exquisitely demonstrated in birds (Ishiyama
et al., 1970; Rosenhall, 1971; Hossler et al., 2002a; Hossler et al.,
2002b). Extensive basolateral dark cell enfoldings were described
with many mitochondria similar to the crocodilian SV. Not only
similarities but also differences between the TV, vestibular system,
and marginal cells of the mammalian SV were highlighted.
Typically, a basal lamina separated light and dark cells from the
connective tissue and blood vessels (Ishiyama et al., 1970; Hossler
et al., 2002b). Na/K-ATPase activity was demonstrated in the

FIGURE 10
(A) Medium-power electron micrograph showing the SV epithelium closely associated with an intra-epithelial capillary. The capillary contains a
nucleated red blood cell (RBC). Framed area is magnified in (C). (B) Higher magnification shows the pericapillary region with light cells (LC) adhering to a
thin basal lamina (BL). The light cells are connected with extensive gap junctions (GJ). There is a space between the endothelial cells (EC) and the basal
lamina (BL). This space contains connective tissue fibers. (C) Higher magnification shows podocyte-like, dark cells (DC) projections adhering to the
basal lamina (BL) and light cells (LC) surrounding the capillary (Cap) endothelium. There is a space containing extra-cellular matrix and thin connective
tissue fibers around the endothelium. E; Endolymph. ES; Extra-cellular space.
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chicken TV similar to the dark cells of mammalian SV (Kuijpers
et al., 1970; Yoshihara et al., 1987).Wilms et al. (2016) also identified
several deafness genes encoding ion channels and transporters
known to be expressed in the mammalian SV. They concluded
that both the TV and SV may have evolved from an ancestral
vestibular type of epithelium. GJB2 and GJB6, which are important
human deafness genes encoding connexin26 and connexin30, were
also expressed. The gene encoding the inward-rectifying potassium
channel Kir4.1, known to be essential for the formation of high EP in
mammalian SV, could not be localized in the avian TV (Tanaka and
Smith, 1978; Hibino et al., 2010; Wilms et al., 2016). In the present
investigation, the Reissner membrane epithelium also contained
dark cells with digitating processes and secretory-like clear vesicles.
Therefore, all secretory-like epithelia in the crocodilian seem to
share some similar morphological signatures.

Crocodiles and the evolution of the
endocochlear potential

The mammalian cochlea has an exceptionally high EP playing
an important evolutionary role (Manley, 2012; Köppl and Manley
(2019)). It is believed to be generated in the multi-cellular
compartments of the SV by an electrogenic component generated
by active ion transport across the perilymph-endolymph barrier and
K+ diffusion potentials (Kuijpers et al., 1970; Salt et al., 1987;
Wangemann, 1995; Sauer et al., 1999; Nin et al., 2008; Hibino
et al., 2010). It is developed during the period of cochlear

elongation and high-frequency hearing. Studies in the pigeon and
crocodiles, including caiman crocodilus (Paleosuchus trigonatus,
Melanosuchus niger, Caiman crocodilus), show that cochlear
microphonics and large summating potentials can be detected
even in the absence of a large DC potential (Schmidt and
Fernandez, 1962). Low hearing thresholds and increased
sensitivity were recorded even in animals with low EP. Moreover,
an EP may not entirely depend on a developed SV. Some birds,
especially the barn owl, have a high anoxia-sensitive EP and possess
a large TV (Wilms et al., 2016; Köppl, 2022). Crocodilians are
ectothermic animals and anoxia-insensitive with a low EP (Schmidt
and Fernandez, 1962) that could be linked to their low metabolic
rate, respiratory differences, and adaption to different aquatic
environments (Wilms et al., 2016; Köppl et al., 2018). The EP
constitutes the driving force for K+ across the transduction
channels, and, similar to mammals, caiman crocodilus have an
inner ear travelling wave, and there is also active mechanical
processes within the basilar papilla (Wilson et al., 1985).
Crocodylus rhombifer surprisingly expressed the anion transporter
prestin in both the long and short hair cells suggesting a voltage-
dependent electromotility or active amplification driven by voltages
across the hair cell membrane (Li et al., 2022). Recordings of
stimulated otoacoustic emissions showed a non-linear growth
with stimulus intensity and frequency-selective suppression
characteristics in the caimans (Wilson et al., 1985). It may
improve sensitivity to higher frequencies even though
characteristic frequencies of single auditory neurons in the
caimans seems restricted from 70 to 2,900 Hz with tonotopic

FIGURE 11
Graphic illustration showing relationship between the SV cells and intra-epithelial capillaries (Cap) and hypothetical representation of endolymph
secretion and EP formation in the crocodilian stria vascularis (Crocodylus rhombifer). The dark cell (DC) projections interact with the light cell as well as
the pericapillary basal lamina (BL). The light cells (LC) are intercellularly coupled through gap junctions (GJ) allowing ions to be mediated. The light cells
form dilated extra-cellular spaces by branches reaching the apical region of the dark cells where they form tight junctions (TJ). These spaces could
form a unique environment for the exchange and transport of ions.
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organization of central neurons similar to birds (Manley, 1970;
Wilms et al., 2016). Furthermore, the tight cellular organization
within the crocodilian basilar papilla may restrict active hair cell
motion and alternate system of hair bundle gating could play a more
prominent role.

The size of the SV seems to vary among the investigated
crocodile species, possibly explained by the different regions that
were analyzed (Retzius, 1884; Baird, 1974; Ganeshina, 1990). SV in
caimans was restricted to the proximal part of the cochlear duct
(Ganeshina, 1990) that may suggest that gradients exist along the
papilla to monitor endolymph microchemistry. Variations at
different frequency locations may reflect the existing gradients in
endolymph composition, receptor currents, and EP, serving to
optimize hearing sensitivity at different hair cell regions as
suggested by Ganeshina (1990). Gradients in Na/K-ATPase
activity were shown in the mammalian cochlea being larger in
the basal turn compared to the apex (Kuijpers et al., 1970; Salt
et al., 1987; Sziklai et al., 1992).

Crocodiles and birds belong to the archosaurs dating back to the
dinosaurian era (Brusatte et al., 2015). Their well-developed hearing
and communication skills imply intriguing steps in the evolution of
the amniotic ear. Crocodiles and birds have anatomically similar
inner ears but only crocodilians seem to have developed a SV
(Takasaka and Smith, 1971; Baird, 1974; Oesterle et al., 1992;
Köppl, 2022). This is surprising, considering its assumed function
is to generate an EP, which is larger in birds than in crocodilians

(Schmidt and Fernandez, 1962). It may suggest that the TV, which is
well developed in both birds and crocodilians, also plays an
important role for the generation of EP. Crocodilians depend on
the external physical environment to a high degree, while birds have
an endothermic (“warm-blooded”) metabolism. Birds are believed
to have expanded greatly after the mass annihilation about
66 million years ago (Brusatte et al., 2015). Genetic evolution
suggests that nearly all modern birds developed during a
relatively short period thereafter (Jarvis et al., 2014). Dinosaurs
are believed to be intermediate (“mesothermic”) (Padian and
Horner, 2004) and may have been more like large living birds
and mammals than reptiles. Consequently, crocodilians could
have adopted particular instruments to adapt to more variable
aqueous-terrestrial habitats, such as under water and in low
temperature conditions, which have led to modifications of their
inner ear secretory epithelia.

Hearing depends on a strict homeostatic regulation of the ionic
and micro-chemical environment around the hair cells. In
mammals, a blood-labyrinth and tight junction barrier exists
(Claudin-11) that protects the inner ear to some degree from
fluctuations in homeostasis (Gow et al., 2004; Kitajiri et al., 2004;
Liu et al., 2017). In the crocodile, endolymphatic membranes, such
as the Reissner membrane and TV, are well vascularized, seemingly
lacking such barriers, making them theoretically more vulnerable to
external conditions. However, a tight junction barrier looks to exist
between the light and dark cells to create an isolated environment in

FIGURE 12
Electronmicroscopy showing different anatomy of the dark cells in the crocodilian SV. (A) A dark cells with thin apical cytoplasm and extensive basal
lamellae. (B) A T-shaped elongated dark cell projects into the epithelium. Its cell nucleus heads the basal front. (C) A dark cell (left) elongates and deviates
basally. It contains a large number of clear vesicles and vacuoles assumed to represent secretory vesicles. (D) A conglomerate of dark cells are surrounded
by light cells. (a–c) Illustration of different dark and light cells morphology in the crocodilian SV.
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FIGURE 13
(A) Electron microscopy of the stria vascularis near the Reissner membrane (RM) fold. A dark cell (DC, framed) extends basally and its nucleus has
translocated. Framed areas are magnified in (B–D). (B) Higher magnification of framed area in A shows the cell nucleus (Nu) and a large number of
secretory-like vesicles (V). (C) Higher magnification of secretory-like vesicles (V) and osmiophilic ribosome aggregates (rER). (D) Apical region with
multitudes of mitochondria surrounded by ribosome aggregates. E, Endolymph.

FIGURE 14
(A) Electron microscopy of the tegmentum vasculosum in the crocodile. There are both dark (DC) and light cells (LC). The dark cells contains
secretory-like vesicles (V and arrows). Basally light cell face the basal lamina and a subepithelial capillary (Cap). (B). Low power view of the tegmentum
vasculosum. (C). Extensive folds of the dark cells contain multiple mitochondria. E, endolymph.
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the dilated spaces. This may correspond to the unique intrastrial
compartment of the mammalian SV essential for the generation of
the electric field potential. Crocodilian species possess extracellular
osmoregulation through specific salt excreting glands (Taplin and
Grigg, 1981). Alligator mississippiensis live in freshwater ecosystems
and lack salt-secreting glands that are present in Crocodylidae.
Different marine/estuarine habitats, ecological niches, and
isolated cave ecosystems (Shirley et al., 2017) could increase
requirements for supplementary systems to fine-regulate
endolymph homeostasis and optimize hearing. This may explain
the different anatomy and evolution of the inner ear secretory
epithelia in reptiles and birds. The crocodilian SV seems to be an
ancient functional innovation and may constitute example of an
intriguing parallel evolution through different selective pressures.

Conclusion

Transmission electron microscopy shows that the auditory
organ in Crocodylus rhombifer contains a SV separate from the
TV. Here, we show the cellular organization for the first time.
The SV is believed to secrete endolymph and participate in
the generation of the EP, essential to increase crocodile hearing
sensitivity under various environmental conditions. The crocodilian
SV may constitute example of an intriguing parallel evolution
through different selective pressures alongside the TV.
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